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Introduction The supporting information contains an expanded description of data

preparation in Text S1. This section details the retrieval of a wind field from SAR imagery,

the preparations of both ERA5 and buoy data for use with the COARE.5 algorithm, the

decorrelation of ERA5 validation as a result of spatial resolution and a comparison be-

tween buoy and ERA5 validation data. Text S2 expands upon the methodology. It details

the statistics derived from the two- and one-dimensional spectra and the analysis frame-

works used to obtain results. Text S3 provides a supplement to the results. It contains
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an analysis of the results in a geographical representation, the effects of turbulence scale

and viewing geometry on estimation and a variance budget bringing together estimation

results and the expected maximum attainable estimation as a result of noise and errors

in validation data.

1. Text S1. Data preparation

1.1. Wind-field retrieval

SAR backscatter intensity is generally related to a current-relative, neutral wind field

at 10 m above the ocean surface (throughout this study simply referred to as wind field)

through a geophysical model function (GMF). GMFs require an a-priori wind direction,

which is provided by the ERA5 global reanalysis product along with information on the

SAR viewing geometry. This study employs CMOD5.N, a GMF developed to estimate

wind speeds for O(10km) C-band scatterometer observations (Hersbach, 2008). SAR reso-

lution is still orders of magnitude greater than that of scatterometers, for which CMOD5.N

is designed. Therefore we cannot discount the possibility that CMOD5.N is incapable

of quantifying high-resolution wind-field properties. The GMF assumes the observed

backscatter to be solely related to the local wind conditions; any imprints caused by rain

bursts, swell, surface slicks or currents can lead to erroneous estimates of the wind field.

With the exception of currents, most of these errors can be separated in the frequency

domain or avoided by restricting analyses to homogeneous scenes.

1.2. ERA5 data

Included in the retrieved ERA5 data are: 10 m horizontal wind vectors, 2 m air and

dew point temperature, sea-surface temperature, surface pressure, surface thermal radi-

July 7, 2023, 11:49am



: X - 3

ation downwards (long-wave radiation), surface solar radiation downwards (short-wave

radiation) and boundary layer height. Wind vectors are converted to a magnitude and

orientation w.r.t. North and relative humidity is computed from the air and dew-point

temperatures using the Arden-Buck equation. Parameters boundary layer height, long-

wave and short-wave radiation have a minimal impact on the computation of LERA5, but

are nonetheless required inputs to run the COARE3.5 algorithm. Alternatively these pa-

rameters could be attributed a constant value. No surface-current vectors are available

from ERA5 such that the wind speed can not be converted to a current relative equivalent,

as advised by the COARE3.5 algorithm.

1.3. Buoy data

Buoy data from WHOI (2022); NDBC (2022); NOAA (2022a, 2022b) is used as a

secondary validation source. It serves as a check on ERA5’s validation capacity and

as an independent validation for a small subset of co-located SAR observations. SAR

observations are considered co-located with one of 269 buoys if they occur within 4 hours

and a 200 km radius of a measurement. To increase the number of co-locations the analysis

was performed over January 2014 - April 2022. During this time window, a total of 7565

co-locations occur between scenes classified as rolls and 103 unique buoys. All buoys

measured air/sea temperature, relative humidity (or dew point temperature from which

relative humidity can be calculated) and wind speeds/directions. COARE3.5 provides

an ideal tool to calculate Lbuoy from buoy measurements as it can take into account

the variable measurements heights of each buoy. None of the buoys measured all the

required parameters to run the full COARE3.5 algorithm, necessitating supplementary
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ERA5 data. This includes the spatiotemporal co-located ERA5 data for boundary layer

height, long-wave radiation and short-wave radiation. Additionally, only a few buoys

measured surface pressure. For consistency the ERA5 surface pressure values were used

for all buoys instead. Similar to ERA5, no (consistent) observations of the currents were

made such that the wind speed could not be made current relative.

1.4. ERA5 decorrelation

The coarse 1◦ × 1◦ resolution of used ERA5 data leads to decorrelation between obser-

vations and validation. By quantifying this effect we can determine what fraction of the

error budget is controlled by ERA5’s resolution and whether or not a finer resolution is re-

quired. The average decorrelation is predicted by analyzing the mean difference between

an ERA5 retrieved LERA5-field with a shifted version of itself. To increase the repre-

sentability of results for co-location between SAR and ERA5, the analysis is performed

between -20◦ and 20◦ latitude (corresponding the highest concentration of observed rolls),

all shifted data points involving positive LERA5’s are removed and the distribution of

LERA5 is further filtered such that it is similar to that of ERA5 co-located with SAR (not

shown). Assuming that the decorrelation gradient between an offset of 0◦ and 1◦ holds on

a sub-grid level, that all offsets are purely longitudinal and that the average offset between

observations and the points hypothetically represented by ERA5 within the sub grid is

0.25◦, the found maximum achievable R2 and minimum median absolute error (MAE) on

a logarithmic scale are approximately 0.94 and 0.02 respectively.
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1.5. Buoy-ERA5 comparison

Comparing a subset of SAR observations co-located with both ERA5 and buoys en-

ables us to assess the validation capabilities of ERA5 with respect to the ground truth

measurements from the buoys. Table S1 contains comparison results. A direct com-

parison between these two validation sources gives a MAE of 0.202 which is equal to a

median relative error of 59%. An R2 of 0.258 indicates that just over a quarter of the

variance from ERA5 is directly explained by validation retrieved from buoys, highlighting

the volatility of Obukhov-length estimation. The difference between validation sources

may be caused by consistent offsets. To remove the effect thereof, a ML algorithm is

trained to regress buoy data (raw measurements and those computed from COARE3.5

but excluding any unique buoy/network identifier) towards LERA5. Indeed the R2 value

for the predictions of this algorithm, L̂buoyML
, increases nearly three-fold to 0.759: when

accounting for consistent offsets, buoys are able to explain approximately 76% of ERA5’s

variance. This ballpark figure provides a lower bound on the fraction of ground-truth-

related atmospheric information contained in ERA5’s data set. A separate analysis on

a greater buoy-ERA5 co-locations data set yielded slightly better results (R2 ≈ 0.8, not

shown) even after excluding parameters potentially contaminated by ERA5, e.g. param-

eters calculated through COARE3.5. Therefore, a maximum of approximately 24% of

LERA5’s variance remains unexplained of which a minimum of approximately 6%-points

are caused by spatial decorrelation (see Text S1.4), leaving a maximum of 18% of LERA5’s

variance to be miscellaneous noise. When comparing estimates from the analytical ap-

proach, L̂, with the different validation sources, Lbuoy and LERA5, results are closer to
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the buoy than ERA5 as indicated by the greater R2 and lesser MAE. Two new ML al-

gorithms are trained, L̂MLERA5
and L̂MLbuoy

, using all the SAR-derived parameters. The

former is trained towards validation from ERA5 and the latter towards validation from

the buoys. The performance difference between either L̂MLERA5
or L̂MLbuoy

and their re-

spective validation is statistically insignificant. This suggests that both validation sources

are approximately equally representative of the atmosphere as extracted from SAR im-

agery. Results appear slightly better when regressing towards validation from ERA5,

perhaps because the more precise point-wise buoy measurements experience greater spa-

tiotemporal decorrelation than the large-scale averaged ERA5 values. On a small sample

of co-locations, results from the validation comparison substantiate the use of ERA5 for

validation: even though ERA5 differs from the buoys, it differs consistently such that

predicting ERA5 is akin to indirectly predicting buoy values.

2. Text S2. Supporting Methodology

2.1. Spectral computations

2.1.1. Two-dimensional spectrum

First five rows and columns are clipped from all sides of the wind field, thereby removing

pixels prone to discontinuities and errors. Next each wind field is subdivided into four

equal-sized tiles of approximately ten by ten kilometers. A two-dimensional Hann window

is applied on each wind-field tile followed by the subtraction of the mean (removing the

0th frequency component). Next the Power Spectral Density (PSD) of the windowed and

mean-removed wind-field tile is computed in the spatial domain yielding Si(ξx, ξy), where ξ

is the spatial frequency with units of m−1 in the x-axis and y-axis of the ith wind-field tile.
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The four PSD’s per wind field are averaged to create a single smoothed PSD representative

of the whole wind field, S(ξx, ξy). The hypothetical power loss due to windowing is

compensated. For non-homogeneous scenes this correction may be insufficient, such that

σ2
windfield ̸=

∫
ξx

∫
ξy
S (ξy, ξx) dξy dξx. (1)

The fraction of variance gained/lost after applying a window correction, as compared

to the variance of the original wind field, is kept and will be referred to as the window

effect

window effect =

∫
ξx

∫
ξy
S (ξx, ξy) dξy dξx

σ2
windfield

. (2)

This parameter partially captures the inhomogeneity of the wind fields in question. The

Cartesian S(ξx, ξy) is linearly interpolated to a polar coordinate system giving S(θ, ξ)

where θ and ξ are the angle with respect to image north (satellite azimuth direction)

in degrees and spatial frequency in m−1 respectively. SAR imagery is loaded at 100 m

resolution in both axes (∆x ≈ ∆y), such that

ξNyquist ≥
1

2 ·∆x
=

1

200
. (3)

Variance in S(θ, ξ) for ξ > ξNyquist contains high-frequency energy sampled in fortuitous

angles only. The total energy beyond ξNyquist is stored as the variance beyond Nyquist.

A wind-streak containing wind field is shown in upper left of Figure S1 with its corre-

sponding two-dimensional PSD, S(ξx, ξy), displayed in the upper right. The majority of
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energy is located at high frequencies (ξ > 1/600 m−1) with a narrow circular concentration

of energy at the maximum vertical extents indicating a swell system. The wind-streak

related energy is observed within the bandpass of interest (1/600 m−1 ≥ ξ > 1/3000 m−1)

where the energy concentration is perpendicular to the streak orientation. Energy within

the lowpass frequencies (ξ < 1/3000 m−1) contains information about mesoscale phenom-

ena.

The lower left of Figure S1 contains annotations of further parameters derived from

S(ξx, ξy). The orientation of maximum integrated energy over frequencies within a Gaus-

sian smoothed bandpass gives the energy direction which, being the orientation of the

rolls, could be used as a proxy for wind direction e.g. Figure 3c in Wang et al. (2019).

The 180◦ spectral ambiguity is removed by selecting the orientation closest to that from

the ERA5 wind direction. The energy direction with respect to geographical North is

converted to a direction with respect to the radar range direction δ (energy direction in

range). A spectral area within 20◦ to the left and right of the energy direction is referred to

as the beam. Variance within this beam and the intersection of the beam with the band-

pass are stored as variance beam and variance bandpass beam respectively. Contours are

shown for which frequencies greater than 1/3000 m−1 a cumulative integration of S(ξx, ξy)

per angle achieves 25%, 50% and 75% of the average energy within the bandpass. For

each contour the mean, median, standard deviation and median absolute deviation in

pixels from the center are stored. These zero-dimensional parameters give insight into the

spread and directionality of the spectral energy.
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2.1.2. One-dimensional spectrum

The one-dimensional spectrum S(ξ) in the lower left of Figure S1 is computed from the

two-dimensional spectrum in the upper right by integrating over θ such that

S(ξ) =

∫ 360

θ=0
S (θ, ξ) dθ

∆θ
(4)

where ∆θ is the angular spacing of polar spectrum in radians. In the two-dimensional

example spectrum of Figure S1 one can see high-frequency energy from swell located

perpendicular to the orientation of wind-streak energy within the bandpass. A polar

integration over θ prevents this energy from projecting itself on the otherwise smooth

−5/3 inertial subrange. The one-dimensional spectrum within the bandpass is scaled

with ξ2/3 such that the higher frequencies increase in amplitude with respect to the lower

frequencies. The peak of this scaled spectrum is selected as the spectral peak. Without

scaling one would always select the mesoscale as containing a spectral peak when both a

mesoscale and microscale peak are present. Spectral peaks located at ξ < 1/1500 m−1 are

assumed to fall within the mesoscale whereas peaks at ξ > 1/1000 m−1 are assumed to

fall within the microscale. Spectral troughs are selected as the lowest point between the

spectral peak and ξ = 1/300 m−1.

Estimated spectral peaks and spectral troughs can be located at the same frequency

as the latter is not scaled prior to analysis. For these undesirable cases the spectrum is

successively scaled with decreasing powers during trough detection such that the ampli-

tude of high frequencies decreases with respect to that of the low frequencies. Though

this increases the probability of finding a trough at high frequencies, the quality of the
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slope between peak and trough for these cases may be of poor quality. Several filtering

operations are applied to remove such cases.

The range between peak and trough is assumed to be the inertial subrange with a

−5/3 spectral slope. As a quality check this slope is scaled with ξ5/3 which, for a perfect

inertial subrange, yields a normalised spectral amplitude identical for each frequency. The

frequency-weighted standard deviation of S(ξ) · ξ5/3 is divided by the median value giving

a frequency-weighted normalised slope deviation of the inertial subrange, zS(ξ). Poorly

identified inertial subranges are detected through high values of zS(ξ) and subsequently

removed.

The used similarity-theory equations require a PSD as a function of temporal frequency

S(n), where n is the temporal frequency with units Hz. Invoking Taylor’s hypothesis,

temporal frequency n is calculated from spatial frequency ξ as

n = ξU, (5)

where U indicates the averaged wind field over the entire scene. In order to decrease

sensitivity to systematic errors and outliers in the wind field—caused by erroneously

attributing the magnitude of observed backscatter to the wind field alone, neglecting any

current-induced effects or due to the inhomogeneity of the estimated wind field—this

study uses the median wind speed Ũ in all places where literature prescribes U or U .

Following Equation 1 from J. C. Kaimal, Wyngaard, Izumi, and Coté (1972), this leads

to the calculation of S(n) as
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S (n) =
1

U
S (ξ) . (6)

2.2. Analytical framework

2.2.1. Shear component

Wind-induced surface stress τ is related to friction velocity u∗ and wind velocity follow-

ing

u∗
2 = CdU

2
, (7)

τ = ρairu∗
2, (8)

where Cd is the drag coefficient, U the mean horizontal wind speed and ρair the air density

(Fairall et al., 1996). The drag coefficient Cd is calculated following

Cd =

[
κ

ln(z)− ln(z0)− ψm

]2
, (9)

where z is the measurement height (10 m for CMOD5.N), z0 the aerodynamic roughness

length, κ the von Kármán constant (According to Table 2 in Foken (2006) κ ≈ 0.40) and

ψm the diabatic wind profile function (Stull, 1988). For neutral conditions (zL−1 = 0),

the ψm term becomes zero and Cd will be referred to as Cdn. Since neutral wind speed is

retrieved from the GMF, Cdn will be used for all shear-component calculations. In turn

the aerodynamic roughness length z0 can be calculated according to the Charnock relation

as (Fairall et al., 1996)
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z0 = a
u∗

2

g
+ 0.11

ν

u∗
. (10)

The Charnock constant a is an empirical measure used to quantify the sea state (Smith et

al., 1996). Young, Sikora, and Winstead (2000) use a constant value of 0.011. According

to Hersbach (2011), the a value for seas with swell hovers around 0.01 whereas for young

steep seas it is closer to 0.04. Typical values fall within this range. For consistency, this

study will use a value of 0.011. A constant value of 9.8 ms−2 is chosen for gravitational

acceleration g and, according to Equation 78 presented in Andreas et al. (1989), the

kinematic viscosity of air ν is approximately 1.5 · 10−5m2s−1 for an air temperature of

293 K. This series of equations is solved iteratively taking an initial estimate of Cdn.

Convergence is achieved within a few iterations. The calculated values for z0, Cdn and u∗

are used in the successive algorithms. Parameters ρair, a and ν are approximated rather

than retrieved from measurements. A summary of the convective algorithm is outlined in

Table S2.

2.2.2. Convective component

The convective atmospheric component is estimated from the variance present within

the inertial subrange. Therefore a portion of the microscale spectrum must be identified

as following the -5/3 power law in the one-dimensional spectrum S(n). As the analysis is

frequency normalised it does not matter at which frequency in the inertial subrange the

analysis is performed, as long as it falls on the same -5/3 slope. Rewriting Equation 4

from J. Kaimal et al. (1976) yields
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w∗ =

√√√√(2π)2/3fi
2/3nS(n)

αψ2/3
, (11)

where α is the Kolmogorov constant of approximately 0.5 and ψ the dimensionless energy

dissipation rate. Results obtained in Young et al. (2000) used a mixed-layer value of

ψ = 0.6. This study uses ψ = 1.0 which, based on Figure 4 in J. Kaimal et al. (1976), is

deemed more representative for the surface layer. Lastly, fi represents the dimensionless

frequency calculated following

fi =
nZi
U

(12)

with Zi being the boundary layer height. In further calculation towards Obukhov length,

the value of Zi will cancel itself out, making its estimation unnecessary. A value for the

convective velocity scale, w∗,i, is obtained for each analysed frequency ni within the inertial

subrange. These values should be near identical meaning they can be combined using a

frequency-weighted average to form a single convective velocity scale, w∗, representative

of the entire inertial subrange. The final value of w∗ is combined with a rewritten version

of Equation 4.2a from Stull (1988) yielding

w′T ′
v =

w∗
3Tv
gZi

. (13)

Plugging w′T ′
v into Equation 5.7c from Stull (1988) yields Obukhov length L following

L = − T vu
3
∗

κgw′T ′
v

. (14)
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The Tv’s cancel themselves out in Equations 14 and 13. Having calculated L, a sta-

bility correction is applied to the original wind field to account for unstable atmospheric

stratification. Young et al. (2000) calculates a stability correction factor χ as

χ = 1−
(
ψm

√
Cdn
κ

)
, (15)

where Cdn is retrieved from the shear algorithm and ψm is computed by plugging the

obtained value of L into

x =
(
1 + 16

∣∣∣∣ zL
∣∣∣∣)1/4

, (16)

followed by plugging x into (corrected for typo)

ψm = ln

(1 + x2

2

)2
− 2tan−1 (x) +

π

2
. (17)

Next χ is multiplied with all the mean wind-speed terms in the convective algorithm.

Since S(ξ) captures the variance of U , its correction becomes χ2. However, following

Equation 6, S(ξ) is divided by U (and thus χ) yielding S(n), such that the correction

for S(n) becomes χ2 · χ−1. The values for fi, S(n) and w∗ are updated iteratively until

convergence. A summary of the convective algorithm is outlined in Table S3.

2.3. Machine Learning

2.3.1. Data filtering

ML algorithms are trained towards matrix y containing the transformed validation val-

ues of Obukhov length Log10 (|Lval|), where Lval is either LERA5 or Lbuoy. All observations

in y with a positive L or a positive heat flux orientated into the ocean are removed; the
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analytical model is incapable of predicting these phenomena. The remaining y has size

m× 1 with m observations.

The matrix of independent variables X of size m × n contains m observations for n

parameters. The n parameters in X are devoid of any validation data (either from ERA5

or buoys) with the exception of the ERA5-retrieved wind direction which is implicitly

contained in all wind-field related parameters. Included in n are zero-dimensional param-

eters derived from the SAR scene along with information about the acquisition, e.g. Ũ ,

u∗, L, incidence angle ϕ, etc. Spatiotemporal information (latitude, longitude and time)

is withheld from the ML-algorithm to prevent it from fitting to geographical locations or

seasons rather than observation.

Observations are filtered prior to training. Primary filtering is performed by threshold-

ing on observed parameters. This includes filtering of observations for which any of the

following conditions are not met: 1.5 ≥ window effect ≥ 0.5, normalized spectral slope

deviation zS(ξ) ≤ 0.25, energy direction from Figure S1 differs by less than 30◦ from θERA5,

200 m ≤ inertial subrange length ≥ 20% of the peak production wavelength and 2950 m

≥ peak production wavelength ≥ 610 m. The first threshold removes inhomogeneous

scenes, the second removes scenes with a poor fit to the spectral -5/3 slope, the third

removes scenes with likely classification errors and the fourth and fifth thresholds remove

scenes with unlikely inertial subranges. The ensemble of primary filtering operations in-

sures that only the SAR scene are considered for which one could reasonably assume the

analytical method to be applicable. In fact, primary filtering slightly penalizes ML results
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in return for systematically reducing prediction noise (a minor R2 reduction in return for

a significant MAE reduction, not shown).

A secondary and more refined filtering operation aims at removing outliers. First all

observation columns n in X are scaled by removing the mean and dividing by the their

respective standard deviations. Next the dimension of Xscaled is reduced using Principal

Component Analysis (PCA). The first principal components explaining a combined 80%

of the total variance, XPCA 80%, are used. Outliers in XPCA 80% are found using the

unsupervised Local Outlier Factor outlier-detection algorithm with 100 nearest neighbors

(implemented in Sci-kit learn, Pedregosa et al., 2011). Observations that do not meet

the set thresholds or whose values can be considered outliers are subsequently removed

from both y and X to maintain identical m-size. Lastly, both y and X are split into

80% training and 20% testing fractions. Performances of the analytical and ML-assisted

methods are assessed on the test fraction of the filtered scenes.

For the rolls data set, approximately two-thirds of the data is removed in this manner,

leaving a total of 35,907 observations (out of 124,682). The ensemble of filtering operations

decreases the proportion of observations for which LERA5 indicates near-neutral unstable

conditions, conditions under which the Obukhov length tends to explode.

For the rolls & cells data set, the energy-direction filtering operation is dropped as

the spectral energy orientation of cells cannot consistently be interpreted as a streak

orientation. Other filtering operations remain the same. Of the resulting composite data

set containing 100,538 observations, approximately two-thirds is classified as cells and one-

third as rolls. A greater number of the former pass the filtering operation as the spectral
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signature of cells tend to be more clearly defined. Additionally, fewer cell observations are

removed due to co-located ERA5 indicating non-convective conditions. With rolls being

generally less unstable, this plagues them particularly.

2.3.2. Regression

Regression is performed using a so-called stacked regressor where multiple regressors

are trained on the data independently followed by training a final regressor on the output

of the original regressors. This final regressor learns from the combination of original

results, allowing it to make a new and improved prediction. The following independent

regressors are used: LightGBM, XGBoost, CatBoost, Bayesian Ridge and Lasso LARS.

The former three use state of the art tree-based boosting (Ke et al., 2017; Chen & Guestrin,

2016; Prokhorenkova et al., 2018, respectively) which, when trained on sufficient data,

consistently outperforms the latter two (both implemented by Pedregosa et al., 2011),

which are added to increase diversity for the stacking regressor. The outputs of these five

regressors are combined, or stacked, using a final Ridge regressor (Pedregosa et al., 2011).

Hyperparameters of the independent regressors are tuned using a Tree-structured

Parzen Estimator (Bergstra et al., 2011) and hyperband-based pruner (Li et al., 2017)

implemented in the open-source optimization software Optuna (Akiba et al., 2019). Op-

timization targets the minimization of the mean MAE between y and estimate ŷ after a

5-fold cross validation on the training data. Alternatively one could opt for the maxi-

mization of R2 for which results are nigh identical (not shown). The hyperband pruner is

called after successively training on 10%, 20%, 30%, 40% and 60% of the training data.

Hyperparameter optimization per regressor is constrained to 200 iterations or 40 minutes
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run time, depending on which condition is met first. Hardware and software specifica-

tions are: Python 3.9.12, Ubuntu 20.04.4 LTS, 64 GB of DDR4 at 3200 MHz and an Intel

Xeon(R) W-11955M CPU @ 2.60 GHz × 16.

The optimal preprocessing scaler of the X matrix is sought in addition to optimizing the

regression hyperparameters. Namely, whether to scale all columns of the X matrix using

one (or none) of several common preprocessing scalers available in the Scikit-learn Python

package (Pedregosa et al., 2011). Similarly, the optimization procedure decides whether

to transform the dependent matrix y to a normal distribution (and to how many quantiles

this normal distribution should contain) prior to regression. Such a transformation can

boost performance when the regressor assumes y to follow a normal distribution. The X

scalers and y transformations are selected per independent regressor. Information leakage

is prevented by fitting the scalers and transformations on the training data only.

3. Text S3. Supplement to results

3.1. Spatiotemporal analysis

Spatiotemporal averages of estimates are shown in Figure S2. Though the magnitude

may be off, spatial features of the analytical results in the upper left overlap with those

from validation in the upper right: there is increased instability near the coasts (in par-

ticular for the equatorial west coasts), a thin equatorial region with greater instability

separates the northern and southern tropical regions with lesser instability, followed by

a transition into oceans north and south of 30◦N & 30◦S respectively. Results from the

ML-assisted approach in the lower right are qualitatively different from those obtained

with the analytical approach and very similar to those from validation.
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Spatial differences between |L̂| and |LERA5|, shown in the upper left of Figure S3, indi-

cate under estimation of |L| north of 30◦N and south of 30◦S whereas within these bands

there is over estimation. Notable exceptions are the coasts bordering Angola, Ecuador,

Senegal and the sea just north of Madagascar. Spatial differences between |L̂ML| and

|LERA5| can be discerned from the upper right of Figure S3. The ML algorithm is capable

of explaining away most of the original under estimation of |L| for the seas bordering An-

gola, Ecuador, Senegal and Madagascar, i.e. observations for these regions contain useful

signatures. The fact that error signs of ML results appear regionally correlated indicates

that regional phenomena are sources of errors. For instance, the coherent structures of flip-

ping error signs near the equator are located where one would expect equatorial currents

in close proximity to the equatorial counter current. These apparent errors could originate

from the validation side, as a result of, for instance, not supplying current-relative wind

speed to COARE3.5 or poor parameterisation of currents in ERA5’s ocean-atmosphere

interactions. The error sign of the maps in the top panel of Figures S3 may fortuitously

cancel out, falsely giving the impression of low median errors. This is mitigated by an-

alyzing the absolute median errors, provided in the lower panel, which confirm that the

magnitude of errors is not significantly affected by sign cancellation.

3.2. Turbulence-scale effect

Theoretically the analytical method is only valid for the microscale inertial subrange. In

Table S4 the ML prediction performance is assessed across the mesoscale and microscale

in order to determine whether its applicability is also constrained by scale. We separated

scales according to the wavelength of the found spectral peak. Scenes with spectral peaks
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greater than 1500 m are assumed to contain mesoscale convection whereas spectral peaks

located at less than 1000 m are assumed to fall within the microscale. Performances are

obtained from an ML algorithm retrained on an equal number of scenes for both scales.

The difference in R2 score is statistically insignificant while a statistically significant lower

MAE value for the mesoscale suggests that a ML-assisted approach is systematically better

at inferring atmospheric stability from larger-scale turbulence. A sampling difference

between scales is the likely cause of this result: the distribution of LERA5 within the

microscale is broader than that of the mesoscale (not shown), potentially penalizing the

MAE metric. Nevertheless, it is evident that the ML-assisted approach is able to extract

significant atmospheric information from scenes containing either micro- or mesoscale

turbulence. The indifference to scale confirms that little predictive power is extracted

from the scale-sensitive parameters derived in the analytical methodology.

3.3. Viewing-geometry effect

Radar observations of the ocean surface are generally sensitive to the orientation of

surface waves with respect to the sensor. ML-estimation performance is assessed for

different bins of ERA5 wind directions with respect to the radar range direction, δERA5, in

order to determine the effect of this inherent sensitivity to the extraction of atmospheric

information. Results are presented in Table S5. A δERA5 of 0
◦ indicates wind propagating

exactly down (or up) the radar range direction with a maximum value of 90◦ indicating

wind propagating perpendicular to the range direction. The ML algorithm is retrained per

δERA5-angle bin using an identical number of observations following the same distribution

of LERA5 (according to a two-sample Kolmogorov-Smirnov test the distributions across

July 7, 2023, 11:49am



: X - 21

bins are insignificantly different with all p-values greater than 0.95). The small sample size

of overlapping LERA5’s across δERA5-bins prevents statistically significant results; almost all

mean values fall within two standard deviations of all other means. Nonetheless, from the

18-36 bin onwards the explainable variance R2 decreases while the median error increases.

This suggests that the quantity of atmosphere-related information extracted from SAR

scenes decreases for winds propagating at greater angular differences with respect to the

radar range direction. A similar observation is made in Wang et al. (2020) where the

detection of rolls decreases with wind directions propagating perpendicular to the radar

orientation, again suggesting a gradual loss of atmospheric information contained in SAR

imagery as a function of viewing geometry. The relatively poor performance for 00-18 bin

might be caused by increased sensitivity exactly down range, systematically picking up

noise and/or sampling a broader range of possible parameter values associated with L.

This would also explain the increased uncertainty ranges.

3.4. Variance budget

Analyses of the validation data in Text S1.5 suggest a maximum of 24.1% of variance

observed in the validation data may be ascribed to noise, of which a minimum of 6%-

points as a result of spatial decorrelation (Text S1.4). These ballpark figures lead to an

R2
max = 0.759. Therefore, with an obtained R2 = 0.673, approximately 88% of the ex-

plainable variance is resolved. The remaining 8.6%-points of unexplained variance provide

an indicative limit for attainable improvement. Resolving all individual uncertainties—

such as those related to the high-resolution applicability of CMOD5.N, the inability to

capture/extract atmospheric information through the used zero-dimensional parameters
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or the disregard of surface currents—is unlikely to improve results by more than 8.6%-

points, and certainly no more than 26.6%-points (unexplained % + misc. noise %). An

infographic detailing the variance budget for the rolls data set is provided in Figure S4.
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Figure S1. Spectral example of WV scenes classified as containing rolls. Sentinel-1B, date: 07-

07-2021, absolute orbit: 027685, vignette : 42, product unique ID: FF3B. (Upper left) Wind field

as retrieved from the GMF. (Upper right) Logarithm of wind field’s 2D PSD, S(θ, ξ). Arbitrary

units with more purple indicating greater amplitude. (Lower left) 1D integrated spectrum of 2D

PSD , S(ξ). (Lower right) Annotations for S(θ, ξ).
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Figure S2. Global median estimation results on 2.5◦×2.5◦ for the 20% testing data set during

2020-2021. Medians calculated on logarithmic scale. (Upper left) L̂ (Upper right) LERA5 (Lower

left) Scene count (Lower right) L̂ML.

Figure S3. Global median estimation and validation differences on 2.5◦ × 2.5◦ for the 20%

testing data set during 2020-2021. Medians calculated on logarithmic scale. (Upper left) differ-

ence L̂ and LERA5. (Upper right) difference L̂ML and LERA5 (Lower left) Absolute difference L̂

and LERA5. (Lower right) Absolute difference L̂ML and LERA5.
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Figure S4. Approximate explainable variance budget for LERA5 estimation on rolls data set.

A ML algorithm trained on estimated neutral median wind speed, Ũn, is capable of explaining

47.6% of variance. Including two viewing geometry related parameters, ϕ and δ, increases the

explained variance by 6.8%-points. Including a further 32 parameters (for a total of 35) derived

from two-dimensional spectra adds 10.7%-points. Including eight parameters (for a total of 43)

uniquely derived in the analytical method adds a mere 2.2%-points. A comparison between

buoys and ERA5 indicates that a minimum of 75.9% of ERA5’s LERA5 is physically based. The

remaining 24.1%-points are attributed to noise of which approximately a quarter is attributed

to spatial decorrelation. The difference between the 75.9% of LERA5 explained by the buoys, and

the 67.3% explained by SAR yields 8.6% of unexplained but attainable signal. Results should

be seen as ballpark figures representative for the data set of this study. Exact values are likely

to vary with the maximum explainable variance being a function of geographical location, data

distribution, viewing geometry and or other (unconsidered) factors.
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Table S1. Estimation performance between log10 (|Lx|) and log10 (|Ly|) where log10 (|Ly|) is

the objective for 2056 observations with both buoy and ERA5 validations. Results are shown

for ERA5 validation co-located in space and time with buoy observations rather than SAR

acquisitions, allowing for a comparison between buoy and ERA5 validation.

Lx-Ly Lbuoy-LERA5 LbuoyML
-LERA5 L̂-LERA5 L̂-Lbuoy L̂MLERA5

-LERA5 L̂MLbuoy
-Lbuoy

R2 0.258 ± 0.083 0.759 ± 0.047 -1.374 ± 0.219 -0.572 ± 0.134 0.495 ± 0.053 0.396 ± 0.096
MAE 0.202 ± 0.010 0.087 ± 0.007 0.359 ± 0.017 0.259 ± 0.011 0.120 ± 0.014 0.136 ± 0.013

Table S2. Summary of shear algorithm in Text S2.2.1

Step Equations Operations Constants

1 S7 u∗ =
√
CdnUn

2
initial guess Cdn

2 S10 z0 = au∗
2

g
+ 0.11 ν

u∗
a, g, ν

3 S9 Cdn =
[

κ
ln(z)−ln(z0)

]2
z, κ

4 Iterate till convergence

Table S3. Summary of convective algorithm in Text S2.2.2

Step Equations Operations Constants

1 S5 n = ξU · χ χ = 1 for first iteration
2 S12 fi =

nZi

U ·χ Initial estimate Zi
3 - U → S(n)

4 S11 w∗ =

√
(2π)2/3fi

2/3nS(n)·χ
αψ2/3 α, ψ

5 S13 w′T ′
v =

w∗3Tv
gZi

Initial estimate of Tv

6 S14 L = − T vu3∗
κgw′T ′

v
κ, g, u∗ from the shear algorithm

7 S16 x =
(
1 + 16

∣∣∣ z
L

∣∣∣)1/4 z

8 S17 ψm = ln
[(

1+x2

2

)2]
− 2tan−1 (x) + π

2

9 S15 χ = 1−
(
ψm

√
Cdn

κ

)
Cdn from the shear algorithm

10 Iterate till convergence
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Table S4. ML performance for scenes whose inertial subrange is assumed to lie in either the

microscale (ξpeak [610, 1000] m) or mesoscale (ξpeak: [1500, 2950] m). A maximum of 7910 scenes

occurred within the microscale range. An identical number of scenes with peaks in the mesoscale

range was chosen to prevent artificially improving performance.

microscale mesoscale
R2 0.667± 0.038 0.619± 0.045
MAE 0.150± 0.007 0.124± 0.007

Table S5. ML performance on a logarithmic scale for the angular difference between ERA5

wind direction and radar range direction, δERA5. The ML algorithm is retrained per δERA5-bin on

400 data points. These data points follow a similar validation distribution across the δERA5-bins

with 50 LERA5’s chosen for each of eight logarithmically spaced ranges between -300 m < LERA5

< -20 m.

δERA5 00-18 18-36 36-54 54-72 72-90
R2 0.573± 0.177 0.666± 0.054 0.570± 0.092 0.554± 0.095 0.394± 0.137
MAE 0.166± 0.037 0.124± 0.029 0.156± 0.010 0.164± 0.018 0.181± 0.021
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