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Abstract :   
 
Plankton plays a prominent role in the bioaccumulation of mercury (Hg). The MERITE-HIPPOCAMPE 
campaign was carried out in spring 2019 along a north-south transect including coastal and offshore areas 
of the Mediterranean Sea. Sampling of sea water and plankton by pumping and nets was carried out in 
the chlorophyll maximum layer. Two size-fractions of phytoplankton (0.7–2.7 and 2.7–20 μm) and five of 
zooplankton (between 60 and >2000 μm) were separated, and their total mercury (THg) and 
monomethylmercury (MMHg) contents were measured. Bioconcentration of THg was significantly higher 
in the smallest phytoplankton size-fraction dominated by Synechococcus spp. The bioaccumulation and 
biomagnification of MMHg in zooplankton was influenced by size, food sources, biochemical composition 
and trophic level. MMHg was biomagnified in the plankton food web, while THg decreased toward higher 
trophic levels. Higher MMHg concentrations were measured in oligotrophic areas. Plankton communities 
in the Southern Mediterranean Sea had lower MMHg concentrations than those in the Northern 
Mediterranean Sea. These results highlighted the influence of environmental conditions and 
trophodynamics on the transfer of Hg in Mediterranean plankton food webs, with implications for higher 
trophic level consumers. 
 
 

Highlights 

► Highest THg bioconcentration was highlighted in picoplankton. ► MMHg biomagnified while THg 
decreased along the plankton food web. ► MMHg bioaccumulated and biomagnified in zooplankton. ► 
Highest zooplankton MMHg concentrations were observed in oligotrophic areas. 
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and >2000 11m) were separated, and their total mercury (THg) and monomethylmercury 

(MMHg) contents were measured. Bioconcentration of THg was significantly higher in the 

smallest phytoplankton size-fraction dominated by Synechococcus spp. The bioaccumulation 

and biomagnification of MMHg in zooplankton was influenced by size, food sources, 

biochemical composition and trophic level. MMHg was biomagnified in the plankton food 

web, while THg decreased toward higher trophic levels. Higher MMHg concentrations were 

measured in oligotrophic areas. Plankton communities in the Southern Mediterranean Sea 

had lower MMHg concentrations than those in the Northern Mediterranean Sea. These 

results highlighted the influence of environmental conditions and trophodynamics on the 

transfer of Hg in Mediterranean plankton food webs, with implications for higher trophic 

level consumers. 

Keywords 

Mercury, methylmercury, plankton, trophic transfer, contamination, food web 

1. Introduction 

Mercury (Hg), prcdominantly in its inorganic forrn, is released to the atmosphere and the 

ocean from natural and anthropogcnic sources, with the latter largely outweighing the 

former (Outridgc et al., 2018). Anthropogenic Hg cmissions are thought to have tripled 

surface ocean Hg lcvcls (Lamborg et al., 2014). Marine apex predator Hg levels are driven 

by anthropogenic Hg inputs and marine methylmercury (McHg) production (Medieu et al. 

2022), yet their relative importance is still poorly constrained (Wang et al. 2019). The 

relatively small and semi-enclosed Mediterranean Sea receives proportionally more Hg and 

the sea water MeHg dynamics are well known, making it an ideal case study (Cossa et al., 

2022). Microorganisms present in the ocean can convert inorganic Hg into MeHg species 

(Villar et al., 2020), namely monomethylmercury (MMHg) and dimethylmercury (DMHg). 

MMHg is a potent neurotoxic which bioaccumulates in organisms with size and age and 

biomagnifies in food webs, reaching high concentrations in apex predators (Morel et al., 

1998). Mediterranean human populations are exposed to high levels of Hg related to higher 

marine fish consumption, posing a potential health risk (UNEP, 2019; Petrova et al., 2020). 

This is fmther exacerbated by the higher fish Hg levels in the Mediterranean Sea, often 

exceeding regulatory limits (Aston and Fowler, 1985; Storelli and Marcotrigiano, 2001; 
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Tseng et al., 2021 ). 

Severa! hypotheses have been proposed to explain the so-called "Mediterranean Hg 

anomaly" (Aston and Fowler, 1985; Cossa and Coquery, 2005), mainly attributing the 

higher biota Hg levels to enhanced MeHg production. The high methylation capacities 

reported in the Mediterranean Sea may enhance MMHg availability to the lower trophic 

levels, namely plankton (Cossa and Coquery, 2005, Monpemts et al., 2007; Cossa et al., 

2022). Similarly to the Arctic Ocean, the Mediterranean MeHg maxima are located at 

shallow depths in proximity to the phytoplankton habitat, allowing for an efficient uptake 

into the food web (Heimbürger et al., 2010, 2015; Cossa et al., 2012). Nevertheless, sea 

water Hg concentrations alone cannot explain the "Mediterranean Hg anomaly" observed for 

biota (Aston and Fowler, 1985; Cossa and Coquery, 2005). While Hg concentrations have 

been extensively observed in Mediterranean higher trophic level biota (Cinnirella et al., 

2019 and references therein), only few studies have been conducted on plankton Hg levels 

(Cossa et al., 2012; Chouvelon et al., 2019). 

Although studies are scarce, plankton organisms are hypothesized to play a key role in the 

accumulation and transfer of Hg in the Mediterranean food webs (Cossa and Coquery, 2005; 

Harrnelin-Vivien et al., 2009; Chouvelon et al., 2018, 2019; Cossa et al., 2022). 

Phytoplankton bioconcentrates Hg more than 10,000 timcs from sea water, which is by far 

the larges! enrichmcnt step of Hg along the marine food web (Lee and Fisher, 2016). 

Mercury bioconcentration has been shown to be related to spccies and size, with the highest 

bioconcentration for smallest phytoplankton cells largely drivcn by their highcr surface-to­

volume ratio (Lee and Fisher, 2016). In the Mediterranean Sea, phytoplankton is mainly 

composed of small cells (pico- and nanoplankton) with a low biomass (Leblanc et al., 2018; 

Boudriga et al., 2022; Tesân-Onrubia et al., 2023), and a high Hg bioconcentration may thus 

be expected (Chouvelon et al., 2018). In addition, the slow-sinking pico- and 

nanophytoplankton cells are more prone to remineralization (Guidi et al., 2009) and thus to 

providing more Hg for methylation (Heimbürger et al., 2010). Due to technical difficulties, 

data on Hg concentrations in small phytoplankton fractions collected in the field remain 

scarce to date (Gosnell and Mason, 2015; Gosnell et al., 2017). Zooplankton represents the 

link between phytoplankton and higher trophic levels. MMHg bioaccumulates in 

zooplankton with size and age mainly because of food uptake (Tsui and Wang, 2004; 

Hammerschmidt et al., 2013). A size-based approach has become widely used to study the 

structure and functioning of the planktonic compartment (Rau et al., 1990; Rolff, 2000; 
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Carlotti et al., 2008; Hunt et al., 2017). However, taxonomie and groups composition differ 

between plankton size-fractions (Boudriga et al., 2023; Fierro-Gonzalez et al., 2023). 

Zooplankton may exhibit different feeding patterns across size-fractions, ranging from 

herbivorous to carnivorous, resulting in different Hg exposure (Puéko et al., 2014). 

Oligotrophic ecosystems are characterized by lower growth rates, which reduces the 

biodilution of Hg in biota (i.e., decrease in Hg with increasing biomass) (Silva et al., 2008; 

Cossa et al., 2012; Chouvelon et al., 2018). The relatively warm waters of the Mediterranean 

Sea may stimulate Hg-methylating microbes (Bacci et al., 1989; Heimbürger et al. 2010), 

likewise increase the metabolic activity of higher trophic levels, and reduce excretion rates 

of MMHg (Remen et al., 2015; Maulvault et al., 2016). The biochemical composition of 

organisms can influence their physico-chemical affinity for Hg bioaccumulation (Wu and 

Wang, 2011; Charette et al., 2021 ). Overall, little is known about the biological mechanisms 

of accumulation of Hg in plankton in the Mediterranean Sea and the influence of species, 

size, and biochemical composition of plankton. Moreover, Hg biomagnification in the food 

web may be related to food sources but also to trophic structure. The longer food web of 

oligotrophic ccosystems (Décima, 2022; Tesan-Onrubia et al., 2023) may increase MMHg 

biomagnification (Cossa et al., 2012, 2022). Nevertheless, to date, biomagnification in a 

sizc-fractionated plankton food web has, to our knowledge, never been studicd. 

The Mediterranean Sea represents a semi-enclosed basin with spatial nutrient gradients and 

different sources and concentrations of Hg in sca water (Durrieu de Madron et al., 2011; 

Cossa et al., 2022). Spatial variations of Hg concentrations have bccn shown in both sca 

water and scdiments (Cossa and Ma1tin, 1991; Horvat et al., 1999; Covelli et al., 2001; 

Tessier et al., 2011; Rosati et al., 2020), potentially impacting Hg concentrations in fishes 

(Kucuksezgin et al., 2001; Cresson et al., 2015) and at all levels of the food web (Chenet 

al., 2008). Gosnell and Mason (2015) hypothesized that the spatial variability of Hg 

concentrations in plankton size-fractions is also related to the plankton productivity. 

However, in the Mediterranean Sea, no spatially resolved data is available on the Hg content 

of plankton. 

To investigate the "Mediterranean Hg anomaly" at the base of the pelagic food web, 

sampling different plankton size classes remains a challenge, the main technical difficulty 

being the collection of large quantities for subsequent chemical analyses. A key feature of 

the MERITE-HIPPOCAMPE campaign was the implementation of targeted sampling 

strategies for the collection of large quantities of size-fractionated phyto- and zooplankton at 
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the chlorophyll maximum layer (CML). Throughout the MERITE-HIPPOCAMPE cruise, 

samples were taken for sea water, different s ize-fractions of phyto- (0.7-2.7, 2.7- 20 µm) 

and zooplankton (60-200, 200-500, 500- 1000, 1000-2000 and >2000 µm). Complementary 

studies were also conducted on environmental parameters, species or groups composition, 

biochemical and stable isotopes composition of the different size-fractions (Boudriga et al. , 

2022; Fien-o -Gonzâlez et al. , 2023; Tesân-Onrubia et al., 2023; Tedetti et al. , 2023). The aim 

of our study was to investigate the bioconcentration, bioaccumulation and biomagnification 

of THg and M MHg in different plankton size classes in contrasted ecoregions of the 

Mediterranean Sea. 

2. Material and methods 

2.1 Sampling preparation 

The M ERITE-HIPPOCAMPE cruise took place in the Mediterranean Sea, between April 

13th and May 14th 201 9, onboard the R/V Antea (Fig. l ; Tedetti and Tronczynski, 2019). A 

total of 10 stations were sampled in different eco regions, including coastal sites in the Bay 

of Marseille and Toulon (France), in the Gulf of Gabès (Tunisia) and offshore 

Mediterranean waters (Table S1). Details on the sampling sites, the hydro-bio-geochemical 

context and the sampling techniques are repo1ied in Tedetti et al. (2023). 

Unfiltered sea water was collected under trace metal clean conditions with a 12 L GOFLO 

bottle (General Oceanics). Sea water was filtered through a PFA filter holder (Savillex), 

holding a 47 mm diameter glass fiber fil ter of 0.7 ~un porosity (GF/F, Whatman), conserved 

in PF A bottles and immediate ly analyzcd. Suspended pa1t iculatc matter was sampled using 

McLane Large Volume Water Transfei· System Samplers (WT S6-142LV, 4-8 L min-' ), also 

called in situ pumps. These in situ pumps were mounted with bulk and sequential fi ltration 

systems (Bishop et a l. , 20 12), holding 142 mm diameter nylon (20 ~tm), GF/D (2.7 ~1111) and 

GF/F (0.7 ~1111) fi lters, and typically filtered between 169 and 300 L. The glass fiber filters 

(GF/D and GF/ F, Whatman) were pre-combusted (450°C, 6 h), rinsed, dried and weighcd 

prior to deployment. The 20 ~1111 nylon fi lters (Mouge!, France) were c leancd (HCl 0.05% 

v/v), dr ied and weighed prior to deployment. After deployment, the fi lters wcre stored 

fo lded in ha lf in prc-combusted alum inurn fo i! at -20°C. 

Zooplankton collection was carried out towing a Multinet Plankto n Sampler (Midi type w ith 
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0.25 m2 opening, Hydro-Bios) at ~2 knots. The obtained bulk sample was consecutively 

sieved to obtain the following fractions: 60-200, 200-500, 500-1000, 1000-2000 and 

>2000 µm. Samples were stored in cleaned polypropylene tubes and conserved frozen at -

20°C. In the laboratory, filters and zooplankton were freeze-dried before being analyzed. 

Overall, 67 samples were collected for THg and MMHg measurements in different fractions. 

We collected 10 samples of sea water, 10 samples of each of the following fractions: 0.7-

2.7, 2.7-20, 60-200, 200-500 flffi, 9 samples of the 500-1000 µm fraction, 5 samples of the 

1000-2000 µm fraction and 3 samples of the >2000 µm fraction. 

Dry weight biomass and biochemical content of ail the sieved size-fractions were analyzed 

and are available in Tesan-Onrubia et al. (2023). 

2.2 Reagents and standards for Hg analyses 

Reagent and standard solutions were prepared in ultrapure water (18 Mn cm; MilliQ). 

Sodium tetraethylborate (Merseburger Spezialchemikalien) solution (1 % m/v) was prepared 

in ultrapure water and dispcnsed into 15 mL trace metal grade polypropylene vials (VWR). 

The solution was frozen initially and, after thawing, stored at 4°C for up to 3 days. Sodium 

acctatc buffer solution (2 M) was prcpared by diluting glacial acetic acid (J.T. Baker) and 

anhydrous sodium acetate (J.T. Baker), which was mufflcd at 300°C for 3 h prior to making 

up the solution. Nitric acid (14 M) and hydrochloric acid (12 M) were bi-distilled in a clean 

room under trace metal free conditions. 

Standard solutions of inorganic Hg (iHg) (0.9 flg L·1) and MMHg (0.02 and 1 µg L·1) for 

plankton analysis were prepared from standard solutions (NIST3133 for iHg and a 1 µg L· 1 

MMHg solution purchased from Brooks Rand Labs, traceable to NIST3133). The standards 

were diluted in 0.5% v/v nitric acid and 0.2% v/v hydrochloric acid solution using a 

precision balance (Mettler Toledo XS 105; d = 0.01 mg). 

2.3 THg and MMHg in sea water 

Filtered dissolved total mercury ( dHg) was analyzed on board by cold vapor atomic 

fluorescence spectrometry (CV-AFS) immediately after sampling. The mineralization of ail 

dissolved Hg species was done using an acidic BrCI solution during 20 to 60 min prior to the 

analyses. For shipboard analyses, we used a lab-built sample sparging device connected to a 
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Tekran 2500 fluorescence detector and a chromatography package to quantify fluorescence 

peaks. For our analyses, a 40 mL aliquot of the digested sample containing ils quantitatively 

oxidized mercury (Hg2+) was placed in a gas-stripping FEP tube. An excess of SnCh was 

added immediately before closing it to con vert ail Hg into gaseous elemental Hg, Hg(0). The 

sample was sparged in a FEP tube al 150 mL min-1 for 4 min with Hg-free Ar to exsolve 

Hg(0) and to sweep it toward a gold trap were it was retained. Mercury was thermally 

desorbed from the trap and swept by an argon stream into the CV-AFS detector. For dHg 

analyses, the daily 4-point externat linear calibration curves were verified with an aliquot of 

a certified reference material (ORMS-5, National Research Council Canada) that was 

analyzed every fifth run. Additional !-point recalibration curves were acquired when the 

instrument's response drifts by more than 5% from the target value of the reference material. 

Overall precision and accuracy of dHg measurements, based on repeated analyses of 

sampi es, standards and CRMs, was better than 10%, and limits of quantification attained 

during the cruise were better than 5 pg L-1, based on repeated analyses of 4 pg Hg2+. 

Unfiltered MeHg species were analyzed back al the laboratory in samples acidified to 0.5% 

v/v with HCI l IN, and stored in FEP bottles without headspacc. Acidification couverts the 

gascons DMHg to MMHg, and thus the sum of bath is mcasured as MeHg. The general 

principles of the hydrid gencration are as follows. Analyses were carricd out by sparging a 

40 mL sample aliquot with He white NaBH4 was continuously added (10 g L-1 pumpcd at 

0.25 mL min-1 ). The evolved volatiles were retaincd on a 20 cm long, U-shaped cryogenic 

trap and chromatography column (Chromosorb with silicone OVI at 15%) immersed in 

liquid nitrogcn. Whcn stripping of the McHg is completed aftcr 7 min, the trap is rcmoved 

from liquid nitrogen and heated. As il progressively wam1s, the trapped Hg species 

including elemental and MeHg are released al different limes from the column. Helium and 

Hg gases exiting from the outlet of the column then flowed through a 20 cm x 1 mm inner 

diameter quartz tube maintained al 800°C, where Hg species are pyrolyzed to elemental Hg. 

The cooled helium and Hg vapor were then directed to a mirrored cell (Hellma, Germany) of 

a CV-AFS detector (Tekran 2500). 

A 2-point externat calibration was done at the beginning of each day, and after every 5th 

sample to account for potential instrumental drift. Based on the uncertainty of low amounts 

of analyte (2 pg Hg as MMHg), the detection limit was 0.29 pg Hg as MMHg, in a 40 mL 

sample (7 pg L-1). The dissolved methylmercury (dMeHg) species were calculated by 

subtracting the pa1ticulate (0.7 to 20 r1111) from the unfiltered fraction. 
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2.4 THg and MMHg in plankton 

THg was analyzed in zooplankton size-fractions (>60 µm) usmg atomic absorption 

spectrometry (AAS, AMA 254, LECO). The analyzer was equipped with a low-level Hg 

optical cell. The certified reference material (MESS-4, National Research Council Canada) 

was measured at the beginning and end of the run to verify accuracy. The THg 

measurements were always within the certified values and the limit of detection, 

corresponding to the blank plus three limes the standard deviation, was 23 pg. 

ln contras! to zooplankton, THg and MMHg on digested filters were simultaneously 

measured by purge-and-trap gas chromatography pyrolysis atomic fluorescence 

spectrometry (PT-GC-Pyr-AFS, MERX-M, Brooks Rand Labs) (Sharif et al., 2013). The 

biomass collected on filters was too low for measuring THg in a subsample with a signal 

close to the detection limits of the AAS. Secondly, particulate matter may not be evenly 

distributed in the filters and may not be suitable for subsampling (Bishop et al., 2012). 

Filters were digcsted, and both iHg and MMHg were derivatized and mcasured 

simultaneously. Briefly, filters and zooplankton aliquots between 13 and 190 mg were 

digested in 20 and 60 mL, pre-combusted (350°C, 5 h) glass vials with 4.57 M nitric acid 

(3.5-15 mL) for 12 h al 60°C (Hammerschmidt and Fitzgerald, 2006). Amber glass vials (60 

mL) were filled with ultrapure water and buffered with sodium acetate to pH 4.5-4.9. An 

aliquot of the acidic extract (400-800 pL) was then added. The solution was spiked with iHg 

(100 to 400 ttL) and MMHg (10 to 400 µL) solutions for quantification via standard 

addition. 

Finally, we added the derivatizing agent, sodium tetraethylborate (NaBeT 4) and fi lied the 

via! with ultrapure water until a slightly negative meniscus was formed. The cap was 

tightened, and the preparation was gently mixed. The samples were measured by PT-GC­

Pyr-AFS. The chromatogram typically contains three peaks, corresponding to different 

mercury species: elemental mercury (Hg0), ethylmethylHg and diethylHg. THg was 

calculated as the sum of iHg and MMHg. We followed a standard addition protocol to 

estimate THg and MMHg concentrations. The low concentrations and matrix effect 

associated with biological samples make standard addition a more reliable analytical 

approach than extemal calibration. For a single sample, five measurements were performed 

to construct a regression line. Of the five measurements, two corresponded to sample 
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replicates without addition, and the remaining three to three different volumes of standard 

solution. The targeted standard volumes corresponded to between I and 5 times the amount 

of iHg or MMHg present in the sample. The linear regression between added iHg or MMHg 

and the peak height was calculated. The y-intercept of the linear regression was used to 

obtain the iHg and MMHg concentrations. The correlation coefficients (R2
) ranged from 

0.96 to 1.00. The certified reference material (DORM-4, National research council Canada) 

was digested and measured similarly to the samples. The measurements corresponded 

respectively to 79 and 85% of the THg and MMHg certified concentrations. The limits of 

detection for iHg and MMHg were respectively 8 and 0.8 pg. 

Based on the measurement made during the MERITE-HIPPOCAMPE crmse between 

plankton biomass wet and dry weights (% of water in plankton: 90 ± 3%; Tedetti et al., 

2023), a factor of 10 was used to allow comparison of the THg and MMHg concentrations 

expressed here on a dry weight basis, with those reported in the literature. Further 

experiments were carried out to assess the THg blanks in the filters, which could be due to 

the retention of dissolved, colloidal and particulate Hg (<0.7 µm) (Table S2). Different 

volumes of sea water (10-80 L) were filtered as replicates through three stacked 0.7 µm 

glass fiber filtcrs (GF/F, 142 mm). THg blanks measured on the 2nd and 3rd filtcrs werc not 

significantly different (H = 1; p > 0.05) and represented less than 2% of the particulate 

fraction measured on the 1st filter (n = 12). We therefore assume that the THg measured on 

the filters was reprcsentative of the particulatc fraction, with a negligiblc contribution of the 

dissolved (<0.7 µm) fraction. 

2.5 Data treatment 

The effect of size-fractions and geographical area on the THg, MMHg and fraction of 

MMHg were assessed by means of one-way ANOVA (F) or non-parametric Kruskal-Wallis 

(H) tests after testing for norrnality and homogeneity of variances, followed by appropriate 

paired comparison tests, using the software Statistica 12. Principal component analysis 

(PCA) was performed using the R software (R Core Team, 20 I 7). The PCA used data from 

Tesan-Onrnbia et al. (2023) that may influence THg and MMHg in zooplankton: proteins, 

carbohydrates, lipids, li 13C, 815N, C/N, THg and MMHg in the 0.7-2.7 and 2.7-20 ftm 

fractions, phytoplankton size-fractions biomass, zooplankton size-fractions biomass, and 

plankton group composition. 
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The bioconcentration factor of THg and MMHg (BCFHg, in L kg·') was calculated between 

plankton and sea water: 

BCFHg = ( [Hg]Plankton) x I06 
[Hg]seawater 

where [Hg]r1ank1on is the dry weight concentrations of THg or MM Hg on a given s ize-fraction 

(in ng g·1), [Hg]sea water is the di ssolved concentrations of Hg ( dHg) or MeHg (dMeHg) in sea 

water (in pg L·1 ), and 106 is the unit conversion factor. 

The trophic magnification factor (TMFHg) of THg and MMHg was calculated within the 

planktonic food web as follows: 

Log [Hg]Planh.-ton = 815N * a + b 

where log [Hg]r1ankton is the logarithm of the THg or MMHg concentration in plankton 

fractions, 815N is the nitrogen stable isotope in the plankton fraction and ais the slopc of the 

linear regression. 

3. Results and discussion 

The basis of marine Medite1i-anean food webs is mainly constituted of pica- (0.7-2.7 ~tm) and 

nanophytoplankton (2.7- 20 ~tm) (Banaru et al. , 2013; 20 19). These phytoplankton fractions 

a re consumed by zooplankton (Hunt et a l. , 201 7; Tesan-Onrubia et al. , 2023), which transfer 

the organic matter and the associated contaminants up to higher trophic level consumers. THg 

a nd MMHg measurements on the 0.7-2.7 and 2.7- 20 ~Lm s ize-fractions are scarce and were 

usua lly only measured on relative ly small sea water volumes (Gosnell and Mason, 201 5; 

Gosnell et al. , 2017). In the present study, these analyses were performed on large volume 

samples (> 150 L), which enabled precise Hg species measurements and complementary 

b iological and biochemical ana lyses (Tesan-Onrubia et al. , 2023). 

3.1 THg and MMHg in phytoplankton 

A contrasted pattern of the re lationship between concentration and size was observed for THg 

a nd MMHg in phyto- and zooplankton s ize classes (Fig. 2a, 2b, Tables S3, S4). Both THg and 
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MMHg concentrations decreased in phytop lankton with increasing cell size, but the difference 

was sta tistically significant only for THg in the smallest size-fractions (86 ± 32 ng g-1 dw in 

the 0.7- 2.7 ~Lm fraction, and 42 ± 28 ng g-1 dw in the 2.7- 20 µm fraction) (F = 10.6, p = 

0 .005). These values were in the upper range (maxima 42- 160 ng g-1 dw) of previous 

o bservations obtained on a wide range of phytoplankton fractions (Baeyens et al. , 2003; 

Hammerschmidt and Fitzgerald, 2006; Beldozska and Kobos, 20 18; Cossa et al., 2012; 

H ammerschmidt et al. , 201 3; Gosnell and Mason, 201 5; Lamborg et al. , 2016; Fox et al. , 

2 01 7; Harding et al. , 20 18). However, our measurements were lower than the maxima (420-

740 ng g- 1 dw) reported in studies with larger size-fractions (Bargagli et al. , 1998), indirect 

measurements (Luengen and Flegal, 2009), small volumes of filtered sea water (Gosnell et al. , 

2 01 7) and estuaries (Kehrig et al. , 2009; Mason et al. , 202 1, 2023) (Table S5). Mean MMHg 

concentrations of 1.2 ± 0 .7 ng g- 1 dw and 0.8 ± 0.6 ng g-1 dw were measured in the 0.7-2.7 

a nd in the 2.7- 20 ~Lm fractions, respectively, and are w ithin the range of previous studies. Our 

observations correspond well to MMHg concentration measured in phytoplankton (Baeyens et 

a l., 200 3; Hammerschmidt and Fitzgerald, 2006; Luengen and Flegal 2009; Cossa et al., 201 2; 

Hammerschmidt et a l. , 201 3; Gosnell and Mason, 201 5; Gosne ll et al. , 2017; Fox et al. , 20 17; 

Harding et al. , 2018) but were lower than concentrations mode led for the Mediterranean Sea 

(2- 15 ng g- 1 dw) (Rosati et al. , 2022) and for the global ocean (12- 185 ng g-1 dw) (Zhang et 

a l., 2020; Wu et al. , 202 1 ). 

C houvelon et al. (20 19) showed that Hg bioaccumulation in the lowest size-fractions (6- 60 

1 .. 1111) may be high compared to larger plankton size-fractions. The higher surface-to-volume 

ratio (giving a higher contact surface), which increases Hg uptake (Fisher, 1985), may explain 

the higher concentrations of T Hg measured in picoplankton in our study. Small phytoplankton 

cells a re prevalent in Medi terranean o ligotrophic waters and during our sampling survey 

(Boudr iga et a l. , 2022). Enhanced concentrations of MeHg have p reviously been observed in 

sea water during pico- and nanoplankton blooms in the Mediterranean Sea (Heimbürger et al. , 

2010). 

Low disso lved Hg (dHg) and MMHg (dMHg) concentrations measured in this study (94 ± 32 

pg L-1 and 13 ± 7 pg L-1
, respectively, Table S6) are likely due to enhancecl photochemistry 

and evasion (Cossa et al. , 2009; Sunderland et al., 2009; He imbürger et al. , 20 10; Cossa et al. , 

2022). The mean BCF-111g values in the 0.7-2.7 and 2.7- 20 pm fractions were 2 x 106 L kg-1 

dw and I x 106 L kg_, dw, respectively, white the mean BCFM~IHg values were 1 x !Os L kg-1 

dw and 8 x 1 os L kg-1 dw, respectively (Table S7). Mediterranean phytoplankton of d ifferent 
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size classes bioconcentrate THg and MMHg 106 and 105 times, respectively, from sea water, 

these values being in the upper range of those reported in the literature (Table SS). The mean 

THg bioconcentration values observed in this study are > 10 times higher than the partitioning 

coefficient of suspended particulate matter (Kd), generally used in global THg models (Zhang 

e t al., 2014), which testifies to the need for more accurate regional data. Various studies have 

already highlighted the underestimation of Kd, constraining Hg export fluxes from the surface 

and, more broadly, its biogeochemical cycle (Lamborg et al., 2016; Tesan-Onrnbia et al., 

2020). It has also been observed that MMHg bioconcentration was promoted under low 

dissolved organic carbon concentrations (Schartup et al., 2018). 

The MERITE-HIPPOCAMPE cruise offered a unique opportunity to couple biologica\ and 

contaminant analyses (Tedetti et al. , 2023), and explore for the first time the relationships 

between the composition of the suspended pa1ticles collected, and their THg and MMHg 

concentrations. Suspended pa11icles collected on filters were a complex mixture of living and 

dead organisms (autotrophic and heterotrophic), a lso containing detritus and minerai paiticles. 

Tesan-Onrubia et al. (2023) showed that the 0.7- 2.7 and 2.7- 20 µm size-fractions were 

dominated (86% of the total biomass) by two phytoplankton groups: Synechococcus spp. (~ l 

µm) and nanoeukaryotes (~4 µm). The two axes of the PCA analysis relating THg and 

MMHg concentrations to the s ize class and group composition of phytoplankton cxplained 

56% of the variability (Fig. SI). Higher THg concentrations were associated with a 

dominance of Prochlorococcus spp. (~0.5 ~1111) in the 0.7- 2.7 ~Lm size-fraction, and a 

dominance of nanoeukaryotes in the 2.7-20 ~Lm size-fraction. Similarly, higher MMHg 

concentrations were related to the dominance of Synechococcus spp. in the 0.7-2.7 µm size­

fraction, and to the dominance of Cryptophyceae (~6 ~1111) in the 2.7-20 ~1111 size-fraction. 

These two phytoplankton size-fractions constitute a large part of the diet of zooplankton 

organisms between 200 and 1000 µm size, and represent an important source of Hg for 

consumers (Tesan-Onrubia et al. , 2023). 

3.2 THg and MMHg in zooplankton 

THg and MMHg bioaccumulated with s1ze among zooplankton, thcir concentrations 

increasing from 22 to 45 ng g-1 dw, and from 3 to 7 ng g- 1 dw, respectively, in 60 to 2000 µm 

s ize-fractions (Fig. 2a, 26, Tables S3, S4). Bioaccumulation of MM Hg with zooplankton size 

was previously shown in the North Atlantic (Hammerschmidt et al. , 2013), while no 
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difference was found for THg in the Mediterranean (Chouvelon et al. , 2019). THg and MMHg 

concentration values reported here in the Medite1rnnean zooplankton were comparable to 

those observed in other regions (Table S8) (Stem and Macdonald, 2005; Hammerschmidt and 

Fitzgerald, 2006; Loseto et al., 2008; Lavoie et al., 201 O; Cossa et al., 20 12; Hammerschmidt 

e t a l., 2013; Gosnell and Mason, 2015; Gosnell et al., 20 17; Harding et al. , 2018), but were 

lower than those from the Arctic Ocean (Campbell et al. , 2005; Foster et al. , 2012; Puéko et 

al. , 20 14; Fox et al., 2017) and from one study in the Mediterranean Sea (Buckman et al. , 

2 01 8). Our measured MMHg concentrations in zooplankton are in relatively good agreement 

with mode! outputs for the Mediterranean Sea (3- 10 ng g-1 dw) (Rosati et al. , 2022) and the 

g lobal ocean (1 - 69 ng g-1 dw) (Zhang et al. , 2020; Wu et al. , 202 1). 

C hanges in metabolism during an organism's life cycle may impact its MMHg concentration. 

Hammerschmidt and Fitzgerald (2006) showed reduced removal and higher uptake rates in 

large-size organisms compared to smaller ones. Fierro-Gonzâlez et al. (2023) reported an 

increase in camivory with increasing size of zooplankton, which was also in agreement w ith 

increasing trophic level traced by o15N (Tesân-Onrubia et al. , 2023). The lowest THg and the 

highest MMHg concentrations were both measured in the largest size-fraction (>2000 ~un) 

(Table S3, S4 and S9), as observed in previous studies (Chouvelon et al. , 2019). 

The biochemical composition of zooplankton may also expia in the accumulation of THg and 

p articularly MMHg. MMHg concentrat ions were significantly correlated w ith particulate 

organic carbon (POC), proteins and lipids in zooplankton (R2 = 0.47, p < 0.0001; R2 = 0.18, p 

= 0.009 and R2 = 0.25, p = 0.002, respectively). The quantity of these compounds increased 

w ith the size of zooplankton, except for the >2000 ~1111 fraction (Tesan-Onrubia et al. , 2023) . 

T he affinity of Hg for POC and proteins is due to the capacity of thiol groups present in 

cellular proteins to effecti vely bincl to Hg and MMHg (Ravichandran, 2004; Yoon et al. , 

2005; Gosnell and Masan, 20 15). 

3.3 Trophic transfer of THg and MMHg 

Trophic transfet· in the plankton food web was assessed taking into conside ration ail phyto­

and zooplankton size-fractions. The two smallest s ize-fractions of phytoplankton (0.7- 2.7 and 

2.7- 20 µm) presented the highest THg but the lowest MMHg concentrations with respect to 

mos t zooplankton size-fractions (H = 23.9, p < 0.0001 and H = 30. 1, p < 0.000 1, respectively) 

(Fig . 2a, 2b, Tables S3, S4). While THg concentrations were related mainly to the e ffect of 

the surface-volume ratio on bioconcentrat ion in phytoplankton, MMHg concentrations were 
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mainly re lated to predation relationships and biomagnification processes among zooplankton 

fractions. Biomagnification was assessed by using the o15N as a proxy of trophic level (Fig. 

3). The logTHg and logMMHg showed respectively negative and positive correlations with 

o15N (R2 = 0.1 , p < 0.05 and R2 = 0.43, p < 0.0001 , respectively, n = 57), indicating a 

bioreduction of THg (TMFrng = 0.9) and a biomagnification of MMHg in the food web 

studied (TMF MMHg = 1.7). ln our work, particularly low TMFrng were recorded, indicating a 

marked bioreduction of THg within the p lanktonic food web. Chouvelon et al. (2009) also 

observed no THg increase in zooplankton fractions of increasing size, and THg 

biornagnification in the food web only when zooplanktivorous fishes were considered . In our 

case, when only zoop lankton size-fractions >60 ~tm were considered, significant positive 

con elations were observed for both logTHg and logMMHg and o15N (R2 = 0.22, p < 0.005 

and R2 = 0.39, p < 0.0001 , respectively), thus evidencing the biomagnification of THg 

(TMFrng = 1.3) and a higher biomagnification factor ofMMHg (TMFMMHg = 2. 1) . 

The high propo1tions of MMHg, exceeding 95% in higher trophic level consumers (UNEP, 

2019), as well as the lack of data in the literature regarding prirnary producers and pa1ticularly 

pico- and nanoplankton, may explain these differences. The plankton TMFMrvlHg in our study 

showed high values compared to other marine food webs, which a lso included higher trophic 

level organisms (Atwell et a l. , 1998; Campbell et al. , 2005; Al-Reasi et a l. , 2007; Nfon et al., 

2009; Lavoie et a l. , 20 10, 201 3; Cossa et al. , 20 12; Chouvelon et al., 2018; Harding et al. , 

2018; Hilgendag et a l. , 2022). Low growth rates, specific to the oligotrophic Mediterranean 

Sea, seem to induce higher MMHg biomagnification in planktivorous food webs (Cossa et al. , 

2012; Chouvelon et a l. , 20 18). The ¾ MM Hg significantly increased betwcen phyto- and 

zooplankton groups from a mean of 3% in the 0.7- 20 ~1111 fractions to 23% in the >60 µm 

fraction (H = 35.8, p < 0.0001) (Fig. 2c), highlighting the preferred biomagnification of 

MMHg. Inorganic Hg has a lower assimilation effi ciency compared to MMHg, while their 

effl ux rates are s imilar (Mason et al. , 1996; Lawson and Mason, 1998; Lee and Fisher, 2017), 

explaining the inverted patterns between food sources and consumers. Inorganic Hg reacts in 

the same way as other trace metals (Chen and Folt, 2000; Ho et a l. , 2007; Chouvelon et al., 

20 19; Chifflet et a l. , 2023). To our knowledge, there is no previous estimation of MM Hg 

biomagnification in plankton food web considering different size-fractions of phyto- and 

zooplankton. The few studies that have explored this point consisted of models for the 

Mediterranean Sea (Rosati et al. , 2022) and the global ocean (Zhang et al. , 2020; Wu et al., 

202 1). Without exception, these models indicate bioreduction of MMHg in p lankton food 
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webs, mainly composed of herbivorous and om111vorous orgamsms, and biomagnification 

when camivorous organisms were taken into consideration. Our results suggest the contrary, 

biornagnification of MMHg occurs in ail plankton consumers, independently of their trophic 

position. 

The trophic transfer efficiency between phytoplankton (0 .7- 2.7 and 2.7- 20 ~1111) and 

zooplankton size-fractions (>60 µm) was assessed by considering the total amounts of THg 

and MMHg available in their respective biomasses at the CML (Fig. 4). THg amounts in 

phyto- and zooplankton biomass was 15 and 1 ng m-3 of sea water, respectively, white their 

respective MMHg contents amounted to 200 and 300 pg m-3. MMHg is almost I O times 

higher than that modeled in the Medite1i-anean Sea (Rosati et al., 2022). The trophic transfer 

efficiency of THg ranged from 2 to 2 1 % (average 8%), white it was higher for MMHg, 

rang ing from 11 to 169 %, with an average of 78%. Zooplankton can represent a comparable 

or even larger s ink of MMHg when compared to phytoplankton. Longer lifespan together 

with bioaccumulation can lead to a higher MMHg storage in zooplankton despite their lower 

biomass than phytoplankton. The MMHg trophic transfer effi ciency estimated here presented 

a higher value than the zooplankton daily grazing, which accounted for 2.7 to 27% of the 

phytoplankton stock (Fierro-Gonzâlez et al. , 2023). Considering daily grazing and Hg 

concentrations in phytoplankton and assuming a quantitative assimilation of MMHg, 

zooplankton organisms should have grazed fo r 6 to 13 days to reach the MMHg 

concentrations measured in their body. This short integration time suggested that zooplankton 

cou Id be a good bio indicator of Hg exposure over days or a few weeks. The results repo1ied 

here indicated that MMHg was effi c iently biomagnified and transferred along the p lankton 

food web, in contrast to a rather incfficient transfer of inorganic Hg. 

3.4 Spatial variability of THg and MM Hg 

Dissolved Hg ( dHg) concentrations ranged from 50 to 165 pg L-1 at St 11 and St4, 

respectively. Disso lved MeHg (dMeHg) concentrations ranged from detection limits (7 pg L-

1) a t St! , St9, St l 1, St l 7 and St l9 to 26 pg L-1 in St3. Both Hg species were comparable to 

previous studies in the Mediterrancan Sea (Jiskra et al. , 202 1; Cossa et al. , 2022). 

THg and MM Hg concentrations in phytoplankton (0.7- 20 ~tm) showcd strong spatial 

variat ions in the western Mecliterranean, \.V ith the highest values in the smallest fraction 

recorded at St 1 (Toulon in the north) and St 17 (Gabès in the sou th) (Table S3 and S4). 

Volume concentrat ions of MMHg in the 0.7 to 20 µm fractions (in pg L-1) were significantly 
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coITelated to phytoplankton biomass (R 2 = 0.49, p < 0.001) (Table S 10). This highlighted the 

influence of the biomass on Hg-uptake at the basis of the plankton food web. Zones with high 

biomass of small phytoplankton cells may store a large amount of Hg in phytoplankton, 

bioavailable then for grazers and higher trophic level consumers. In addition, inorganic Hg 

may represent a substrate for MMHg production. 

Our results suggested higher THg and especially MMHg differences in zooplankton between 

s tations than between size-fractions (Fig. 5, Table S3 and S4). The high growth rates and 

short life cycles of zooplankton make it a potentially relevant biomonitor for ambient MMHg 

concentrations over short pe1iods, as suggested in the previous section. This observation 

contrasts w ith the high variability reported in marine organisms of higher trophic level related 

in particular to longer life span and larger home ranges (UNEP, 2019). 

THg and MMHg concentrations of zooplankton size-fractions available at ail stations (60-

200, 200-500 and *500- 1000 ~Lm, *unavailable for St l 7) were pooled to test zooplankton 

spatial variabil ity that appeared higher for MMHg than for THg (Fig. 5). S ignificant 

differences were reported between stations only for MMHg (H = 24.0, p = 0.004). Mean 

MMHg concentrations differed ten-fold between minimum (0 .6 ng g-1 dw, St l 7) and 

maximum values (9.4 ng g-1 dw, St l ) . This highlightcd the impo1tance of measuring MMHg 

in consumers with lower trophic levels. Zooplankton from northern (St 1, 2, 3 and 4) and 

offshore (St9, l O and 11) arcas presented higher MM Hg concentrations than th ose from the 

southern area (St! 5, 17 and 19) (H = 14.0, p = 0.001 ). A TMF MM Hg < 1 indicated a 

bioreduction of MMHg in zooplankton and consequently a lower exposure to Hg of 

zooplankton a long the Tunisian coast (St 17 and 19). (Fig. 6). 

The two axes of the PCA analysis, perforn1ed between THg, MMHg, POC, C/N, protein, 

lipids, o13C, o15N, and biomass values in zooplankton per station, explained 57% of the 

variability (Fig. S2). Two groups of stations were observed along the first axis: the first group 

gathering St ! , 2, 9, 10 and 11 , and the second one including St3, 4, 15, 17, and 19. The first 

group \.vas related to high concentrations in POC, proteins, lipids, THg, MMHg, trophic level 

and o15N in zooplankton, whi te the second group was corre lated with high values of C/N, o13C 

a nd zooplankton biomass. MMHg in zooplankton increased with the trophic level (o 15N may 

be used as a proxy). Zooplankton MMHg decreased with increasing amounts of organic 

rnatter, likely because of the affinity of POC, proteins and lipids for Hg. MMHg 

concentrations in zooplankton were high in oligotrophic, low productivity areas with low 

zooplankton biomass, high trophic level and high POC, protein and lipid content. Under 
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oligotrophic conditions, zooplankton were limited by food resources and, as a result, their 

biomass and growth rates decreased, and increasing Hg bioaccumulation was observed. 

Oligotrophic ecosystems also have longer food webs with intermediate consumers ( ciliates, 

dinoflagellates, microzooplankton, etc.), which may constitute a trophic link between pico­

and nanoplankton, and mesozooplankton, generating additional food steps and probably 

increasing the biomagnification processes (Soreide et al., 2006; Kürten et al., 2013). 

The negative correlation in zooplankton between MMHg and its biomass may suggest a 

biodilution with growth in more productive areas. This is probably the case in the Gulf of 

Gabès where lower Hg concentrations in planktivorous species were already reported 

compared to those in the nmth-westem Mediterranean basin (Aboul-Dahab et al., 1986; Ben 

Hassine et al., 1990; Joiris et al., 1999). Moreover, in ecosystems where nutrients and 

phytoplankton resources are abundant, herbivory is the main food pathway, generating lower 

trophic level ecosystems (Sommer et al., 2002) and thus potentially lower Hg concentrations 

in consumers. 

Coastal areas have been considered to be hotspots for Hg-accumulation due to proximity to 

sediment and rcsuspension (Chen et al., 2008). Cossa et al. (2018) showcd that MeHg 

concentrations in subsurface waters arc higher in Mediterranean offshore waters. Although 

coastal regions are subjectcd to additional sources of Hg (submarine groundwater discharge, 

rivers and sediments), our rcsults evidenced a lowcr trophic transfcr of Hg in plankton food 

wcbs compared to offshore areas, as also observed by Cossa et al. (2012) in the Gulf of Lion. 

There is indeed more and more evidence of in situ Hg methylation in oxygenated waters of 

the open ocean (Mason and Fitzgerald, 1990; Blum et al., 2013; Masbou et al., 2015; Villar et 

al. 2020; Liu et al., 2021 ), and the Medite1rnnean Sea (Cossa et al. 2022). 

However, potential sources of Hg in contaminated areas must be considered as well. Toulon 

Bay represents an important hotspot of Hg, containing large amounts in its sediments (Tessier 

et al., 2011) and may be responsible for the highest concentrations measured in this study. 

High concentrations of THg and MMHg have already been recorded in fish and mussels in 

Toulon Bay (Cresson et al., 2014; Briant et al., 2017). 

4. Conclusions 

Few Hg data are currently available for plankton, particularly for MMHg, and they gcncrally 

show wide variations. An inappropriate plankton sampling strategy may lead to the collection 
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of organisms with a heterogenous size and composition, highly impacting their Hg and 

MMHg concentrations. We have tried to overcome these limitations with a dedicated 

sampling strategy for the acquisition of different phyto- and zooplankton size-classes, the 

acquisition of trophic proxies and the collection of sufficient biomass for complementary 

biological and chemical analyses. 

High THg and MMHg bioconcentration values were observed for phytoplankton, with the 

highest values for picoplankton. Small phytoplankton cells were the main contributors to 

primary production in the Mediterranean waters during our sampling campaign and a major 

food source for zooplankton. Phytoplankton THg concentrations were higher overall 

compared to the existing literature. Our study implies that phytoplankton in the oligotrophic 

Mediterranean Sea is an important driver in the biomagnification of MMHg. 

Although THg accumulation through die! is a widely accepted process, our results show that 

THg bioreduces while MMHg bioaccumulates in the plankton food web. Different kinetics of 

iHg and MMHg have been evidenced in plankton, supporting the need to analyze both phyto­

and zooplankton, and to relate them to their species/group composition in future studies. 

Biomagnification of MMHg in ail plankton consumers was evidenced, independently of their 

trophic position. High biomagnification factors were measurcd compared to prcvious studies, 

suggesting an effective transfcr in Mediterranean plankton food webs. 

Moreover, the biochemical composition of zooplankton, particularly the availability of POC, 

proteins and lipids appears to have an important role in MMHg bioaccumulation. 

Spatial variability in MMHg concentrations in zooplankton was important, with ten-fold 

differcnccs bet:wcen areas. Productivity gradients may explain these contrasts. Higher 

zooplankton MMHg concentrations were measured in low productive areas offshore. In 

contras!, more productive coastal planktonic food webs showed lower zooplankton MMHg 

concentrations. Our results suggest a lower impact of Hg on plankton food webs in the less 

poorly-studied southern Mediterranean Sea, but more observations are needed to corroborate 

this. Oligotrophy and plankton trophodynamics were key factors in the transfer of Hg in the 

Mediterranean Sea, playing probably an important role in the Hg transfer along food webs. 

Our study may thus contribute to explaining the higher Hg levels observed in Mediterranean 

apex predators. The impact of climate change is thought to contribnte to the increase of the 

oligotrophy and the decrease in size of phytoplankton and may thus exacerbate Hg 

accumulation in Mediterranean marine food webs in the future. Overall, our study suggests 

that bioconcentration of MMHg into phytoplankton and subsequent bioaccumulation and 
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biomagnification are by far the most important factors driving higher trophic level MMHg 

exposure. As such, the efforts in reducing Hg emissions within the Minamata Convention may 

be outweighed by the effects of climate change on the lower marine food web structure. 
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1084 Figure captions 

~1085 

31086 Figure 1: Location of the tcn sampling stations of the MERITE-HIPPOCAMPE cruise in the Mediterranean Sea 

i1087 (April-Mai 2019). 

61088 

~ 1089 Figure 2: Boxplot of the concentrations of A) THg, B) MMHg (ng g-1 dw) and C) ¾MMHg in the different 

91090 plankton size-fractions (fractions between 0.7 and 20 µm (green scale) and >60 µm (red scale) for ail stations 
10 
11 1091 combined. H = Kruskal-Wallis nonparametric test and the associated p-value for the respective Hg spccies (H = 

121092 24, p < 0.0001; H ~ 36, p < 0.0001 and H ~ 30, p < 0.0001, respectively). The mcan and median values are 
13 
141093 represented by a cross and a horizontal line, respectively, and the box length is defined as the interquartilc range. 

151094 The minimum and maximum values are rcpresented by whiskers. Mean values with diffèrent post-hoc lettcrs are 
16 
1 71095 significantly different (p < 0.05). 

181096 
19 
2 o 1097 Figure 3: Logarithm of THg (A) and MMHg (B) concentrations in function of il 15N (%,) in the different phyto-

211098 (green dots) and zooplankton (red dots) sizc-fractions. The lincar regression cun'e with its cquation and the R-
22 
2 31099 square are indicated. 
24 1100 
25 
261101 Figure 4: Transfer efficicncy between phytoplankton (0.7 to 20 µm fractions) and zooplankton (>60 µm 
27

1102 fractions) amounts ofTHg (A) and MMHg (B) (in pg m·3) by station. Yellow, orange and red isolines represent 
28 
2 91103 transfer efficiencies of 1, 5 and 10% for T!-Ig and 10, 50 and 100% for MM Hg, respectively. 
30

1104 
31 
321105 Figure 5: Box plots of A) THg (yellow) and B) MMHg (rcd) (in ng g-1 dw) concentrations measured in the 60 to 

~ ! 1106 l 000 µm zooplankton sizc-fractions by station. The mean and median values are representcd by a cross and a 

3 51107 horizontal linc, respectively, and the box length is dcfincd as the interquartile range. 
36

1108 37 

381109 Figure 6: Trophic magnification factors of THg (TMFrn,, in yellow) and MMHg (TMF'"'"' in red) at the 

!~1110 different stations. >l values indicated biomagnification, white <I indicated bioreduction. 
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Figure SI: Principal component analysis of the phytoplankton composition (Synechococc11s spp., 

10 

5 

Prochlorococc11s spp., picoeukaryotes, nanoeukaryotes and cryptophyceae), THg and MMHg in the 0.7- 2.7 and 

2.7- 20 ~tm size-fractions by station. Color gradient indicates the contribution of the variables from blue for low 

contribution to red for high contribution. 
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Figure S2: Principal component analysis of the biochemical variables (zooplankton biomass, 8 13C, 815N, C/N, 

POC , proteins, carbohydrates and lipids), THg and MM Hg in zooplankton (60 to 1000 ~un fractions) by station. 

Col or gradient indicates the contri bution of the variables from blue for low contribution to red for high 

contribution. 
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Table SI. Main characteristics of the ten sampling stations of the MERITE-HIPPOCAMPE cruise (13 April-14 May 2019) aboard the R/V Antea along a north-south transect 

in the Mcditcrrancan Sea. The cnvironmcntal conditions in thcsc stations wcre dctailcd in Tcdctti et al. (2023). 

McLanc MultiNet 

Station 
Latitude Longitude Botlom depth 

Location sampling depth sampling depth 

(N) (E) (m) (m) (m) 

Stl 
Bay of Toulon 

43° 03.819' 
(north) 

5° 59.080' 91 20 20 

Toulon - Antharcs 
St2 42° 56.020' 5° 58.041' 

(north) 
1770 25 34 

Marseille - Julio 
St3 43° 08.150' 5° 15.280' 95 55 58 

(north) 

St4 
Bay of Marseille 

43° 14.500' 5° 17.500' 58 31 35 
(north) 

North Balcaric Front 
St9 41 ° 53.508' 6° 19.998' 

(offshore) 
2575 20 20 

North Balcaric Front 
Stl0 40° 18.632' 7° 14.753' 

(offshore) 
2791 50 30 

North Balcaric Front 
Stl 1 39° 07.998' 7°41.010' 

(offshore) 
1378 40 30 

Gulf of Hammamet 
Stl5 36° 12.883' 11° 07.641' 

(south) 
100 40 60 

GulfofGabès 
Stl 7 34° 30.113' 11 ° 43.573' 

(south) 
50 40 40 
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