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Abstract : 

Context 

Adult aquatic insects are major vectors of aquatic subsidies to terrestrial ecosystems, providing 
substantial ecosystem services to agriculture. Distance to water is reported as the prime factor to model 
their spatial distribution, but the role of local drivers, either terrestrial or aquatic habitat features, is not 
well established, notably in highly heterogeneous landscapes.  

Objectives  

We assess the distribution and prioritise explanatory factors of aquatic insects in agricultural landscapes. 

Methods  

Adult aquatic insects (Ephemeroptera, Plecoptera, Trichoptera) were caught with sticky traps on a regular 
grid-pattern set across a heterogeneous agricultural landscape during two years. Using innovative 
landscape variables related to water, woodland, elevation and insolation (derived from drone data), 
classical random forest models were run to predict the distribution of insects.  

Results 

Variables that significantly explained insect distribution differed between insect orders, but the distance 
to water was consistently amongst the three most informative variables in models. Ephemeroptera 
occurrence was influenced by woodland density, while Plecoptera and Trichoptera were more influenced 
by potential insolation. Predictions revealed a low distribution pattern for Ephemeroptera and a high 
probability of occurrence for Plecoptera across terrestrial ecosystems. Predictions were poor for 
Trichoptera, perhaps reflecting various dispersal patterns among species that emerged earlier or later in 
spring and from a wide range of aquatic habitats.  
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Conclusions  
 
This work is the first to predict the probability of occurrence of aquatic insects across a spatially 
heterogeneous agricultural landscape. Prediction maps suggest that the aquatic footprint, defined as the 
occurrence of aquatic insects across a terrestrial landscape, is higher than previously thought. 
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Introduction 48 

Aquatic insects constitute major biological flows from aquatic to terrestrial ecosystems (Polis et al. 49 

1997; Nakano and Murakami 2001). After their aquatic larval stage, numerous insect species emerge 50 

as winged adults and disperse across the terrestrial ecosystems. Characterizing the spatial and temporal 51 

magnitude of such movements is central to understand the associated ecological functions for receiving 52 

ecosystems, as well as potential services to agriculture (Raitif et al. 2019). Notably, various aquatic 53 

insect species can feed on pollen during their adult stage (e.g., Winterbourn 2005; Hass et al. 2018), 54 

and thus have the potential to contribute to pollination while agroecosystems suffer a global decline in 55 

pollinators (Potts et al. 2010). These aquatic insects also provide nutritional subsidies to terrestrial 56 

consumers in the riparian zone and farther inland from banksides (Baxter et al. 2005; Uno 2016). They 57 

disseminate essential polyunsaturated fatty acids from aquatic environments to terrestrial ecosystems 58 

(Martin-Creuzburg et al. 2017; Mathieu-Resuge et al. 2021), and they are recognized as key elements 59 

of terrestrial food web functioning (Wesner 2010; Lafage et al. 2019). Many terrestrial predators are 60 

natural enemies of pest outbreaks in cropland (e.g., spiders and carabids, Riechert and Lockley 2003; 61 

Paetzold et al. 2005; Symondson et al. 2006; Stenroth et al. 2015), and can benefit from aquatic prey 62 

that usually emerges when terrestrial prey is scarce. Significant quantities of winged insects can emerge 63 

from lakes, reaching 1,200 to 2,500 kg.ha-1.yr-1 (Gratton et al. 2008) and generally exceeding that of 64 

rivers (Williams et al. 2004; Bartrons et al. 2013). In agricultural landscapes however, 14 to 74 kg.ha-65 

1.yr-1 of insect dry mass can emerge from streams (Raitif et al. 2018), among which 12.5 kg.ha−1.yr−1, 66 

on average, ultimately fell to the ground (Raitif et al. 2022). This is a substantial source of fertilization 67 

for soils (Jefferies et al. 2004). Notably, stream-derived N deposition on land can exceed the current 68 

amounts of atmospheric N deposition in temperate regions (Raitif et al. 2019). These study cases on 69 

winged aquatic insects highlight that the mechanisms governing their dispersal and distribution must 70 

be understood before appropriate prediction of their distribution across terrestrial areas, and latent 71 

beneficial impacts to agriculture, can be made.  72 
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To date, the most studied factor to explain the distribution of winged aquatic insects is the 73 

distance to water, their abundance decreasing rapidly farther inland from aquatic edges after a few 74 

meters (Svensson 1974; Miller et al. 2002; Carlson et al. 2016). Dispersal distances likely vary between 75 

species (Muehlbauer et al. 2014; Peredo Arce et al. 2021), but also depend on the aquatic habitat 76 

considered (Gratton and Vander Zanden 2009; Schindler and Smits 2017). To date, a majority of 77 

studies have focused on a single habitat type, mostly permanent streams or lakes (Gratton and Vander 78 

Zanden 2009; Carlson et al. 2016; Mathieu-Resuge et al. 2021). Yet many invertebrate species live in 79 

other temporary or permanent environments such as ponds, ditches or irrigation canals (Williams 1997; 80 

Labat et al. 2022). These habitats may represent a substantial proportion of surface water in these 81 

landscapes (Davies et al. 2010), more particularly in agricultural areas (Williams et al. 2004). In a 82 

recent study, Gerber et al. (2022a) raised the issue of defining aquatic habitats that serve as potential 83 

sources of emerging insects, highlighting the need for fine and thorough hydrographic mapping for 84 

studying aquatic insects’ dispersal and distribution at the landscape scale. Additionally, several 85 

landscape features likely modulate the distribution of winged aquatic insects dispersing across 86 

terrestrial ecosystems, but again, underlying mechanisms are poorly characterised. It has been 87 

reported that riparian woodland density can hamper the dispersal of emerging chironomids and 88 

caddisflies (Delettre and Morvan 2000; Greenwood 2014). Temperature, woodland edges and 89 

topography are other variables that control the flight and movements of terrestrial insects across the 90 

landscape (Mattila 2015; Tonkin et al. 2018; Sweaney et al. 2022); however, they have been rarely 91 

investigated for winged aquatic insects. Some studies have shown the importance of temperature for 92 

aquatic insects. In the case of specific Diptera such as the crane fly, Tipula maxima (Jourdan et al. 93 

2019), dispersal‐related traits vary depending on ambient environmental conditions (temperature 94 

regimes, discharge patterns and biotic interactions during individual development). For adult 95 

Plecoptera, air temperature acts as a factor that potentially influences longevity (Collier and Smith 96 
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2010). This result suggests that maintenance of appropriate microclimatic conditions should be a 97 

consideration in riparian management (Petersen et al. 2004). Consequently, the biophysical 98 

characteristics of riparian zones and, more broadly, terrestrial areas adjacent to aquatic environments, 99 

are an important factor to consider when studying the distribution of aquatic insects. Accordingly, 100 

much research attention has focused on how terrestrial environmental features regulate subsidy 101 

dispersal and the responses of terrestrial consumers (e.g., forest cover, complexity of ground habitats, 102 

availability of terrestrial resources), and on how human activities alter these linkages (Petersen et al. 103 

2004). For example, small aquatic insects (Nematocera) were most abundant under agricultural land 104 

use, whereas larger bodied aquatic insects (Plecoptera and Trichoptera) were more associated with 105 

forest land use (Stenroth et al. 2015). 106 

In this work, we aim at (1) identifying landscapes features, defined hereafter as explanatory 107 

factors, that explain the occurrence of some aquatic insects (i.e., Ephemeroptera, Plecoptera and 108 

Trichopetera, namely EPTs) and (2) developing a spatially explicit statistical model to predict their 109 

potential distribution across an agricultural landscape. Investigations were performed in a 140ha 110 

agricultural area including meadows, crops, woodlands and a variety of aquatic ecosystems (stream, 111 

ponds and ditches). Winged EPTs were collected during their aerial dispersal across the area in spring 112 

and summer for two consecutive years. Random forest models were run on high-resolution landscape 113 

variables (e.g., distance to water, potential insolation, elevation and woodland density) extracted from 114 

drone data to predict the distribution of EPTs across the experimental area. Notably, we hypothesized 115 

that distance from water edge negatively correlates with the probability of occurrence of aquatic 116 

insects, while high densities of riparian trees along streams could hamper inland distribution. We also 117 

investigated differences among species owing to their ecological preference for woody and shaded or 118 

open and insolated habitats. 119 

 120 
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Methods 121 

Study area 122 

The study site was located at the northeast of Brittany (48°36' N, 1° 32' W, France), is part of the 123 

European LTSER (Long-Term Socio-Ecological Research) network and occurs within the “Zone 124 

Atelier Armorique” (ZAAr). The ZAAr is a temperate region with no dry season and warm summers. 125 

The area is representative of an intensive agricultural area dominated by dairy production, composed 126 

of small fields separated by a hedgerow network called ‘‘bocage’’ (Baudry et al. 2000). Annual crops 127 

in this area are winter cereals and maize (Fig. 1A). The study area was selected based on the 128 

representativeness of the different landscape elements within it, based on the Shannon Diversity Index 129 

(SHDI) using Chloé software (Boussard and Baudry 2017). The average SHDI index for the ZAAr is 130 

0.29±0.10 (calculated at a resolution of 1 km by 1 km) and that for the study area is 0.39 ± 0.12. The 131 

140ha study area consisted of a patchwork landscape of woodland, hedgerows, pastures, croplands, 132 

and agricultural areas (Fig. 1B), and is crossed by a 33.2 km long first-order (Strahler 1952) stream 133 

named Le Guyoult.  134 

Sampling 135 

Emerging EPTs were caught using interception traps called sticky traps (Raitif et al. 2022). 136 

Sticky traps consisted of a transparent A3 plastic cover (42 x 29.7 cm, 2 mm thick) on which was 137 

spread a thin layer of non-drying glue (Tanglefoot®, Tangle-Trap® Sticky Coatings). The plastic cover 138 

sprayed with glue was fixed cylindrically around a stake at 1 m height to catch insects coming from all 139 

possible directions (Wesner 2010). Hoops placed inside the cylinder reinforced the structure (Fig. 1C). 140 

The sticky traps were set in a grid pattern spaced out by at least 50 m to cover the entire study site 141 

homogeneously. 142 

Two sampling campaigns were carried out, in spring and summer in 2020 and 2021, from April 143 

to June, which is the period of emergence of most aquatic insects in Brittany (Raitif et al. 2018). In 144 
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2020, 56 sticky traps were placed. In 2021, 64 sticky traps were placed, among which 20 were co-145 

localized with those in 2020 (Fig. 1B). The plastic covers spread with glue remained in place for 15 146 

consecutive days for each sampling session before being retrieved and frozen in the laboratory. 147 

Monitoring of the traps throughout the emergence period has made it possible to visualize the 148 

emergence peaks of the insects, which are dependent on the weather. Therefore, two sampling sessions 149 

were conducted in 2020, from May 18th to June 2nd and from June 2nd to June 16th. In 2021, three 150 

sampling sessions were conducted, from April 1st to April 15th, from April 26th to May 10th, and from 151 

May 20th to June 3rd. For each sampling session, only the plastic covers were replaced. 152 

In the laboratory, EPTs were extracted from the glue using D-limonene terpene and stored in 153 

96°C alcohol. All specimens were identified using a stereomicroscope (Leica M205 C) equipped with 154 

a binocular camera (Leica DMC4500) at the species or genus level using several identification keys 155 

(Ephemeroptera: Elliott 1983; Bauernfeind and Soldán 2013, Plecoptera: Despax 1951; Lubini et al. 156 

2012, Trichoptera: Malicky 2010; Barnard and Ross 2012). 157 

Selected landscape features as explanatory factors 158 

Water maps. We characterized the full hydrographic networks including all water bodies (i.e., the 159 

mainstream, the tributaries, the ditches, and the water-full ponds at the time of the survey). For 2020, 160 

the hydrographic networks used were directly extracted from Gerber et al. (2022a). For 2021, 161 

hydrographic networks were characterized at four successive dates (April 12th, May 5th, May 27th, and 162 

June 29th). We divided the water bodies into five aquatic habitats: the mainstream, the tributaries, 163 

ditches with running water, ditches with standing water, and ponds. From the aquatic habitats and the 164 

four dates of mapping, we defined 14 hydrographic networks. For each year and each order, we defined 165 

the hydrographic network that best explains the distribution of the aquatic insects following Gerber et 166 

al. (2022a). All the details are provided in the Supplementary information (S1). 167 
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Woodland maps. On May 25th in 2020, a drone survey was performed to characterize the landscape 168 

features of the study site. A fixed-wing (sensefly eBee X) was used to survey the whole area at once. 169 

The flight altitude was 120 m above ground level. Using a RGB camera (sensefly soda 3D, 20M pixels) 170 

and a photogrammetric approach, a RGB orthorectified map and a digital surface model (DSM) of 0.04 171 

m and a mean XYZ geometrical horizontal and vertical accuracy of 0.016 m were obtained (Houet 172 

2022). Using eCognition software, homogenous polygons according to their color and height were 173 

segmented. All woodland polygons were then manually classified from RGB visual interpretation and 174 

rasterized at 0.05 m. Resolution was checked using a trimble geo7x Dgps, which recorded the absolute 175 

position of 10 targets covered by the drone's flight. 176 

Elevation maps. We used a digital elevation model (DEM) with 1 m resolution obtained from the 177 

French National Institute of Geographic and Forest Information (“Institut national de l'information 178 

géographique et forestière”, https://ign.fr/)  179 

Potential insolation maps. The potential insolation mapping (Potential Incoming Solar Radiation 180 

kWh.m-2, PISR) was calculated using the SAGA software v.7.9 (Conrad et al. 2015) for each sampling 181 

session. PISR represents the sum of the solar energy per square meter and is calculated every hour 182 

based on the position of the sun and the DSM. Shadowed areas near woodlands will exhibit a lower 183 

PISR value than an area in the middle of a field. The PISR values are calculated for all the points of 184 

the DSM, thus on the canopy. The sticky traps are sometimes located under trees, and therefore receive 185 

much lower insolation than that received by the canopy. To take this into account, we removed the 186 

wooded areas from the PISR. Then the missing values were interpolated from edges using the GDAL 187 

translator library v. 3.5, fillnodata function. 188 

Explanatory factors. We derived 19 biophysical factors from the environmental maps described 189 

(Supplementary information, Table S2). Movement distances may vary according to the insect orders, 190 

land uses, and models used to estimate the abundance decrease with distance from water. For example, 191 
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previous studies differed in the distance over which Chironomidae abundance decreased by 50%, from 192 

13 m to 25 m, and of Trichoptera from 1.3 m to 5 m (Muehlbauer et al. 2014; Raitif et al. 2022). This 193 

potentially modifies the extent of the variables effect. Hence, we used three buffer sizes because the 194 

scale at which environmental factors may influence aquatic insect distribution is not well known. The 195 

woodland density (the number of wooded pixels divided by the area) and the mean and variance of the 196 

elevation and potential insolation were calculated for each sticky trap within three scale buffers: a 5 m 197 

radius buffer, a 5 m to 25 m radius ring buffer (a 25 m buffer without the 5 m radius buffer) and a 25 198 

m to 50 m radius ring buffer (a 50 buffer without the 25 m radius buffer) using zonal statistics function 199 

GIS software v.3.22 (QGIS Association 2022). Then, for each sticky trap, the distance from the nearest 200 

wooded area was calculated using the st_distance function from the sf package (Pebesma 2018). The 201 

nearest aquatic habitat (i.e., mainstream, tributary, ditch with running water, ditch with standing water, 202 

or pond) was determined using the st_join function from the sf package.  203 

To help with the interpretation of the models, we explored the relationships between the factors 204 

with Pearson coefficients (correlation matrix available in the Supplementary information, Fig. S3) 205 

because we suspect some factors to be correlated (e.g., insolation and woodland). 206 

 207 

 208 

Statistical analyses 209 

To identify explanatory factors for predictive models, we calibrated the models by insect order 210 

(i.e., Ephemeroptera, Trichoptera and Plecoptera) with the random forest algorithm using the 211 

randomForest package (Liaw and Wiener 2002). Random forest, based on recursive partitioning, does 212 

not rely on assumptions about relationship between the explanatory variable and the response variable 213 

(as in GLM or GAM models). This approach is entirely data-driven and reduces the associated variance 214 
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of the prediction (Breiman 2001). Therefore, within the limit of the data, random forest which 215 

maximizes the reduction of deviance is more suitable for prediction than GLM or GAM (Guisan et al. 216 

2017). 217 

The response variables were the occurrences of EPT orders and the explanatory variables were 218 

the environmental factors and the sampling sessions. We used the occurrence of different orders 219 

because it allows us to validate our prediction, and to compare our results with other studies. We 220 

followed the procedure described by Genuer and Poggi (2020). According to this procedure, the 221 

number of trees was fixed at 10,000. The number of factors tested at each division minimizing the out-222 

of-bag error (OOB error estimates of the prediction error using the unselected observations in a 223 

bootstrap sample as test data, Genuer and Poggi 2020) was chosen. For each order, we kept a session 224 

when the occurrence rate was higher than 10% to have enough occurrences to calibrate the models 225 

(Fig. 2). We used the dataset from 2020 to calibrate the model because the predictions were better 226 

compared to 2021 (Supplementary information, Fig. S4).  227 

For predictions, we used the VSURF function from the VSURF package (Genuer et al. 2015). It 228 

is a three-step variable selection procedure based on random forests. The first step is dedicated to 229 

eliminating irrelevant variables from the dataset according to the Mean Decrease Accuracy, a measure 230 

that expresses how much accuracy the model losses by excluding each variable. The second step aims 231 

to select all variables related to the response for interpretation purposes. The model is built with 232 

variables selected in the first step and variables with the lowest OOB errors. The third step refines the 233 

selection by eliminating redundancy in the set of variables selected by the second step, for prediction 234 

purposes. Variables are kept if the OOB error decreases more than the average variation, thus limiting 235 

the correlations between the variables. Finally, the remaining variables are added in order of increasing 236 

importance. Model validation was made using the area under curve (AUC) criteria. AUC is a standard 237 

measure often applied to random forest (Guisan et al. 2017). It measures the discrimination (i.e., the 238 
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ability to distinguish between occupied and unoccupied sites, Guisan et al. 2017) by comparing the 239 

order of occurrences observed in 2021 with the predictions of the model based on environmental 240 

variables in 2021. AUC ranges in value from 0 to 1. A model whose predictions are 100% wrong has 241 

an AUC of 0, and one whose predictions are 100% correct has an AUC of 1. An AUC of 0.5 suggests 242 

no discrimination, 0.7 to 0.8 is considered acceptable and 0.8 to 0.9 is considered excellent (Guisan et 243 

al. 2017). 244 

Finally, for the whole area, we created predictive maps of the probability of ETPs occurrences 245 

based on the explanatory factors selected by the VSURF procedure. To obtain predictive maps of the 246 

whole area, we computed for each selected factor its map in 2021. Distance maps (for woodland and 247 

water) were calculated using Chloé software v. 4.1 (Boussard and Baudry 2017). Maps of density, 248 

mean and variance (for woodland, potential insolation, and elevation) were calculated using moving 249 

windows. A moving window assigns to each pixel the value of a function (e.g., mean, variance) in a 250 

window centered on each of these pixels, using the focal function from the terra package (Hijmans et 251 

al. 2023). Moving windows sizes and shapes were identical to the three scale buffers so that the pixel 252 

values are comparable to the corresponding factor values for each of the sticky traps. All the maps 253 

were resampled at 5 m resolution using the nearest neighbor method, aggregate function, in the terra 254 

package. 255 

All statistical analyses were performed using the R software v. 4.2.1 (R Core Team 2021). 256 

 257 

 258 

Results 259 

A total of 748 adult aquatic insects (EPTs) were sampled. Among Ephemeroptera, 91 260 

individuals were counted and 6 species identified. The most represented species was Habrophlebia 261 

fusca (80.2%). The distances at which the abundance of Ephemeroptera was at 50% and 10% of its 262 
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near-water source levels were 1.1 and 6.5 m, respectively. Among Plecoptera, 484 individuals were 263 

counted and 6 species identified. The three most abundant species were Nemoura cinerea (60.33%), 264 

Nemoura lacustris (15.49%) and Amphinemoura standfussi (13.42%). The distances at which the 265 

abundance of Plecoptera was at 50% and 10% of its near-water source levels were 2.5 and 109 m, 266 

respectively. Among Trichoptera, 128 individuals were counted and 9 species identified. The four main 267 

species were Stenophylax lateralis (26.56%), Beraea pullata (25%), Limnephilus centralis (20.31%) 268 

and Limnephilus sparsus (10.15%). The distances at which the abundance of Trichoptera was at 50% 269 

and 10% of its near-water source levels were 3.4 and 304 m, respectively. 270 

 271 

Factors explaining occurrences of aquatic insects 272 

Distance from water consistently ranked within the top three variables controlling the 273 

distribution of EPTs (Fig. 3). For Ephemeroptera, two correlated variables (Supplementary 274 

information, Fig. S3) stood out in addition to distance from water: woodland density and the mean of 275 

PISR in a 5 to 25 m ring. For Plecoptera, the top three variable controlling the distribution were the 276 

distance from water and average PISR at 5 m and to a lesser extent the woodland density in a 5 to 25 277 

m ring. For Trichoptera, the session was the main variable followed by the variance of PISR in a 25 to 278 

50 m ring and the distance from water.  279 

 280 

Prediction 281 

For Trichoptera, the variance of PISR in a 25 to 50 m ring was retained for prediction through 282 

the VSURF procedure. For Ephemeroptera, the distance from water and the woodland density in 5 to 283 

25 m were retained. For Plecoptera, the distance from water and the mean of PISR in a 5 m buffer were 284 

retained. Predictions were good for Ephemeroptera (AUC = 0.86, Fig. 4) and nearly acceptable for 285 
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Plecoptera (AUC = 0.68, Fig. 4). For Trichoptera, the model gave poor predictions (AUC = 0.43, Fig. 286 

4). Thus, prediction maps were made for Ephemeroptera and Plecoptera (Fig. 5). The prediction map 287 

of Ephemeroptera showed visually three levels of probability of occurrence. The highest one represents 288 

areas close to the water with riparian forests (from 0.75 to 1) and occupies 16 % of the study area, 289 

including the hydrographic network (0.4 % of the area). Then, the probability is medium for wooded 290 

patches without or with small water bodies or for an area close to the water without riparian forests 291 

(from 0.25 to 0.75, occupying 16 % of the study area). Finally, the probability of occurrence is very 292 

low in the fields (from 0 to 0.25) which occupy 68 % of the study area. The prediction of Plecoptera 293 

exhibited a very high probability of occurrence in an approximatively 12 m buffer around water bodies 294 

(> 0.9 of occurrence probability, 13 % of the study area, including the hydrographic network, i.e., 1.1% 295 

of the area). Most of the values from 0.75 to 0.9 (33 % of the study area) are in a 12 m to 50-60 m 296 

buffer from the water bodies. 297 

 298 

Discussion 299 

In this study, we highlighted the distribution extent of EPTs in terrestrial environments. Aquatic 300 

ecosystems are often considered physically well-defined. However the biological width of a stream or 301 

stream signature (which encompasses the aquatic insect subsidies on the terrestrial ecosystem) has 302 

been recently acknowledged (Muehlbauer et al. 2014; Gurnell et al. 2016; Kopp and Allen 2019). In 303 

this study, we considered not only streams but all the water bodies which can produce aquatic insects 304 

(e.g., pond, ditch, temporary tributaries) within a landscape mosaic. We included both the aquatic 305 

habitat for insect production and the terrestrial environment where the insects spread. We showed that 306 

aquatic insect fluxes to terrestrial environments cover the entire surrounding land, even for site located 307 

relatively far from water (several hundred meters). Furthermore, random forest analyses confirmed 308 

that the spatial distribution of adult EPTs is explained differently for each order.  309 
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Our results confirm that distance from water is a key factor explaining the inland distribution of 310 

aquatic insects and is one of the top three factors for all orders. Indeed, EPTs are more abundant near 311 

water bodies (Carlson et al. 2016; Peredo Arce et al. 2021). However, our analysis also highlights that 312 

while distance to water is a key parameter, other landscape factors also help explain the predictions for 313 

each order. For Ephemeroptera, the density of woodland within 25 m stands out. One explanation 314 

would be that the larvae of Habrophlebia fusca, the main species in our study, are shredders that 315 

consume leaf litter and are therefore common in wooded areas (Bauernfeind and Soldán 2013). The 316 

scale of 25 m for woodlands could therefore be related to larval habitat, as this species is known for its 317 

poor dispersal capability (Sarremejane et al. 2020). Ephemeroptera distribution also appears sensitive 318 

to potential insolation (PISR) between 5 and 25 m. This result is consistent with the hypothesis that an 319 

open environment promotes inland dispersal of aquatic insects. In an open environment, the absence 320 

of tall vegetation and exposure to higher wind speeds could lead to farther inland dispersal than that in 321 

forested landscapes (Delettre and Morvan 2000; Carlson et al. 2016). Potential insolation is also 322 

important for Trichoptera and Plecoptera, suggesting that open environments may also favor inland 323 

dispersal for these orders. This factor, which has not been examined in previous studies, may provide 324 

an interesting explanation for the inland movement of aquatic insects, probably because of its influence 325 

on flight. The amount of potential insolation may be stronger in open environments as is it highly 326 

negatively correlated with woodland density (rho = - 0.7, Supplementary information, Fig. S3). In 327 

forest, insolation values are very low and homogeneous due to the tree cover, which reduces its impact 328 

on insect distribution. For Trichoptera, we noticed a significant impact of the sampling session during 329 

the study. This result is probably due to the high diversity of species with very different biological 330 

traits and emergence times (Singh et al. 1984). The emergence of different species between each 331 

session may induce temporal and spatial heterogeneity between sessions which induces noise in our 332 

analyses.  333 
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To our knowledge, for the first time, we have provided a predictive map of the occurrence of 334 

some aquatic insects (i.e., Ephemeroptera and Plecoptera) at the landscape scale, thereby emphasizing 335 

the extent of stream influence (Gurnell et al. 2016; Gounand et al. 2018). According to the meta-336 

analysis from Muehlbauer et al. (2014), these two orders have a similar extent (10 % of abundances at 337 

140 m for Plecoptera and 160 m for Ephemeroptera), but Ephemeroptera tends to stay closer than 338 

Plecoptera (50 % of abundances at 2.7 m for Plecoptera and 0.9 m for Ephemeroptera). However, our 339 

models predict a highly divergent distribution of adult Plecoptera and Ephemeroptera at the landscape 340 

scale. The probability of occurrence decreases rapidly for Ephemeroptera but does not stabilize at low 341 

values to zero, in contrast to other studies (Muehlbauer et al. 2014; Raitif et al. 2022), while the extent 342 

for Plecoptera is large and the probability of occurrence remains high even away from water. This 343 

difference may be explained by several factors. For Ephemeroptera, almost all species included in the 344 

Muehlbauer et al. (2014) meta-analysis are good dispersers and are more likely to be found far from 345 

water, unlike Habrophlebia fusca (Sarremejane et al. 2020), which dominated the Ephemeroptera 346 

assemblages in our study. This low dispersal capability of this species is also congruent to its body 347 

stores consisting primarily of triglycerides for reproduction and less glycogen and proteins for long-348 

distance flight (Gerber et al. 2022b). Another possibility is the unsuitable sampling methods used to 349 

study dispersal and distribution at the landscape scale. Indeed, most emergence studies have sampled 350 

along transects from stream to terrestrial habitats. This protocol is efficient to study the linear dispersal 351 

from the stream but does not account for i) alternative sources of insects (pool, ditch, temporary 352 

running waters) (Gerber et al. 2022a) and ii) erratic insect movements due to wind and other landscape 353 

elements (e.g., woodland density). For example, in Muehlbauer et al. (2014), most studies were 354 

conducted in forests with homogeneous conditions that may favor dispersal over a longer distance from 355 

streams. Raitif et al. (2022) conducted a similar study but their furthest sampling point from the aquatic 356 

source was 50 m. They cannot therefore conclude anything about the real dispersal distance of 357 
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individuals beyond 50 m. Our sampling strategy was chosen to be suitable for studying dispersal at the 358 

landscape scale (i.e., beyond 50 m). 359 

For Plecoptera, we found a very large extent of inland occurrence. The probability of occurrence 360 

could be relatively high up to 60 m around each water body. This result is surprising because most of 361 

Plecoptera species tend to be weak dispersers (Sarremejane et al. 2020). This result suggests that 362 

Plecoptera may disperse farther from the water than previously thought. As with Ephemeroptera, this 363 

difference with the literature may be explained by our sampling protocol, which is more adapted to 364 

studying spatial distribution at the landscape scale. Furthermore, this result is also in line with the 365 

higher fuels for flight in Plecoptera than in Ephemeroptera found by Gerber et al. (2022b).  366 

The quality of the predictions differed strongly between Trichoptera, Plecoptera, and 367 

Ephemeroptera. Predictions for Plecoptera and Ephemeroptera were strong but remained weak for 368 

Trichoptera. We can make three suggestions to explain this. First, we observed that between the two 369 

sampling periods (i.e., 2020 and 2021), the taxonomical composition changed significantly for 370 

Trichoptera (11 species belonging to 9 genera in 2020 and only 4 belonging to 3 genera in 2021) and 371 

to a lesser extent for Plecoptera (the proportion of Amphinemoura standfussi strongly increased in 2021 372 

while the proportion of Nemoura lacustris decreased in samples). Within an order, different species 373 

may vary in flight ability (Goldsworthy and Wheeler 1989), behavior (Steyn et al. 2016), biological 374 

traits (Gerber et al. 2022b) and larval habitats (Tachet et al. 2000). These differences could explain the 375 

poor quality of predictions for Trichoptera. Second, the quality of the prediction could depend on the 376 

movement ability of the organisms. Indeed, most of the Trichoptera are considered good dispersers 377 

(Sarremejane et al. 2020), good flyers (Graham et al. 2017) and are frequently found far from water 378 

(Peredo Arce et al. 2021). In contrast, when organisms like Ephemeroptera and Plecoptera remain close 379 

to water (Muehlbauer et al. 2014), their distribution can be more easily modeled. Third, some 380 

explanatory variables could still be missing or need to be refined. For instance, hedgerow permeability, 381 
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defined by vegetation structure and density, could limit insect dispersal differently from one species to 382 

another. The use of other sensors, such as Lidar, would be highly contributive to provide additional 383 

explanatory variables. In the same way, measurements of surface temperature using a thermal camera 384 

may be interesting to explore. PISR could also be refined from one period to another by accounting for 385 

irradiance measurements available from weather station near the study site. Indeed, as shown, 386 

insolation seems to influence EPTs distribution although we did not account for real insolation during 387 

each of the sampling sessions. One sunny/cloudy period may positively or negatively affect the 388 

magnitude of EPTs distribution compared to another. One way to improve our predictions would be to 389 

adjust the resolution of our models, the sampling strategy (e.g., by considering later emergence periods) 390 

or even the drone flight surveys according to the flight ability of the species, as we did with the best 391 

hydrographic network for each sampling session. Indeed, in highly mobile organisms, the choice of 392 

spatial and temporal resolution greatly influences distribution models (Guisan et al. 2017). However, 393 

to our knowledge, no studies have attempted to model inland distribution of aquatic insects, limiting 394 

the information available on which resolution to use. 395 

In conclusion, our results show that the spatial extent of emergent aquatic EPTs is much wider 396 

than expected in the literature, likely because sampling along linear transects is not suitable for 397 

studying the distribution of aquatic insect at the landscape scale with multiple aquatic sources. 398 

Moreover, the analysis of new landscape elements in our study confirms the role of distance to the 399 

water, independent of aquatic habitat type and of woodland for some species. It also highlights the role 400 

of new and untested variables such as the PISR. Finally, our models have been successfully used to 401 

predict the distribution of Ephemeroptera and Plecoptera at the landscape scale. This opens the door to 402 

studying their impacts in terrestrial ecosystems in terms of fertilization, pollination, or as food source 403 

for terrestrial predators at the landscape scale.  404 

 405 
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List of figures 604 

605 

Fig. 1 Sampling site. A: Location of Brittany, the Zone Atelier Armorique (ZAAr) and the study site. 606 

B: Sticky trap locations. The colors represent the sampling years (yellow: 2020, 56 traps; red: 2021, 607 

64 traps). The elements indicated in blue are the water bodies (dark blue: main stream, Le Guyoult and 608 

its tributaries, light blue: ponds). C: Picture of a sticky trap. 609 

 610 
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611 

Fig. 2. Occurrence frequency per session and order. The occurrence frequency is the number of sticky 612 

traps with individuals of the considered order divided by the total number of sticky traps for a session. 613 

 614 

615 

Fig. 3 Plot of variable importance selected from random forest models for Ephemeroptera (A), 616 

Plecoptera (B) and Trichoptera (C). The mean decrease accuracy is a measure of variable importance 617 

and expresses how much accuracy the model losses by excluding each variable. It represents the 618 

average increase in the error of a tree in the forest when random permutations are made in the out-of-619 
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bag (OOB) samples. The greater the increase in the error generated by the random permutations of an 620 

explanatory variable, the more important the variable is. 621 

 622 

Fig. 4 Area 623 

under the curve (AUC). For each order, models were calibrated using a random forest algorithm on the 624 

dataset 2020. The AUC was calculated from the predicted model on environmental variables and order 625 

occurrence of 2021. Sensitivity is the proportion of true occurrence. Specificity is the proportion of 626 

true absence. 627 

 628 
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629 

Fig. 5 Prediction of the probability of occurrence for Ephemeroptera (A) and Plecoptera (B). Dark blue 630 

areas represent high probabilities of occurrence and white areas represents low probabilities of 631 

occurrence. 632 

 633 



Supplementary materials 

S1. Hydrographic networks 

For each year and each order, we selected the hydrographic network that best explained the 

distribution of the aquatic insects following Gerber et al. (2022a). For the year 2020, the 

hydrographic networks used were directly extracted from Gerber et al. (2022a). For 2021, fourteen 

hydrographic networks were considered in the analyses (Table S1). As the hydrographic network 

usually decreases from spring to summer, we mapped manually all the water bodies at 4 periods 

(April 12th, May 5th, May 27th and June 29th). Wetland and puddle were not considered. For 

networks mapped manually in the field for each date, we distinguished 4 aquatic habitats (the main 

stream, the tributaries, the ditches with running/standing water and the ponds, Table S1). We also 

considered and tested all the hydrographic networks, with and without ponds.  

 

Table S1. Description of the fourteen hydrographic networks based on aquatic habitats. 

Network Source Description 

1 
OpenStreetMap (OSM) 

hydrographic map 

It includes the drainage of the Guyoult stream and 

two permanent ponds 

2 

The complete drainage of the 

Guyoult stream, obtained by 

manual mapping (compilation of 

networks 3, 6 and 9) during the 

field period (April-June) 

It includes the drainage of the Guyoult stream with 

its intermittent and permanent tributaries 

(unmapped by OSM), and all the full-water ponds 

during the sampling period 

    Main stream Tributaries 

Ditches with 

running/standing 

water 

3 

April 12th 

Yes Yes Yes 

4 Yes Yes No 

5 Yes No No 

6 May 5th Yes Yes Yes 



7 Yes Yes No 

8 Yes No No 

9 

May 27th 

Yes Yes Yes 

10 Yes Yes No 

11 Yes No No 

12 

June 29th 

Yes Yes Yes 

13 Yes Yes No 

14 Yes No No 

 

Abundance of Plecoptera in 2020 is best explained by the network 1 without ponds, 

(pseudo R2 = 0.43), and in 2021, by the full network surveyed the 27th of May, ponds included 

(pseudo R2 = 0.22). Abundance of Trichoptera in 2020 is best explained by the network surveyed 

the 5th of May, ponds excluded (pseudo R2 = 0.27) and in 2021 by the network 2, ponds included 

(pseudo R2 = 0.22). Abundance of Ephemeroptera in 2020 is best explained by the network 3 

including the main stream only (pseudo R2 = 0.71), and in 2021 by the network 2, ponds excluded 

(pseudo R2 = 0.55). For Megaloptera, the best network (3) includes the main stream and the ponds 

(pseudo R2 = 0.63). 

 

  



Table S2. List of the 19 factors derived from the environmental maps. 

Variables names Description 

Aquatic habitat density 5 m 
The number of aquatic habitat pixels divided by the area in a 5 m 

buffer radius 

Aquatic habitat density 25 

m 

The number of aquatic habitat pixels divided by the area in a 5 m 

to 25 m radius ring buffer  

Aquatic habitat density 50 

m 

The number of aquatic habitat pixels divided by the area in a 25 

m to 50 m radius ring buffer  

Distance from the nearest 

wooded area 
Distance from the nearest wooded area (m) 

Distance from the nearest 

aquatic habitat 
Distance from the nearest aquatic habitat (m) 

Elevation Elevation (m) of the sticky trap 

Elevation mean 5 m Mean elevation (m) in a 5 m buffer radius 

Elevation mean 25 m Mean elevation (m) in a 5 m to 25 m radius ring buffer  

Elevation mean 50 m Mean elevation (m) in a 25 m to 50 m radius ring buffer  

PISR mean 5 m 
Potential Incoming Solar Radiation mean (kWh.m-2) in a 5 m 

buffer radius 

PISR mean 25 m 
Potential Incoming Solar Radiation mean (kWh.m-2) in a 5 m to 

25 m radius ring buffer  

PISR mean 50 m 
Potential Incoming Solar Radiation mean (kWh.m-2) in a 25 m to 

50 m radius ring buffer  

PISR var 5 m 
Potential Incoming Solar Radiation variance (kWh.m-2) in a 5 m 

buffer radius 

PISR var 25 m 
Potential Incoming Solar Radiation variance (kWh.m-2) in a 5 m 

to 25 m radius ring buffer  

PISR var 50 m 
Potential Incoming Solar Radiation variance (kWh.m-2) in a 25 m 

to 50 m radius ring buffer  

Session Sampling session 

Wood density 5 m 
Number of wooded pixels divided by the area in a 5 m buffer 

radius 

Wood density 25 m 
Number of wooded pixels divided by the area in a 5 m to 25 m 

radius ring buffer  

Wood density 50 m 
Number of wooded pixels divided by the area in a 25 m to 50 m 

radius ring buffer  



  



 

Fig. S3 Correlation matrix of variables. Numbers are the Pearson correlation 

coefficients. The higher the coefficient, the larger the circle. Squares are blank (i.e. no circle) when 

the coefficient is zero.  The colors of the legend represent the 3 categories of variables considered, 

red for topography, green for woodland and yellow for the potential insolation.  

  



Fig. S4 Area under curve (AUC) For each order, models were calibrated using random 

forest algorithm. Then the AUC were calculated from the predicted model on environmental 

variables and order occurrence. A: AUC obtained with all the variables, calibration on dataset of 

2021 and prediction on dataset of 2020. B: AUC obtained with all the variables, calibration on 

dataset of 2020 and prediction on dataset of 2021 dataset. C: AUC obtained from variables selected 

with the VSURF procedure, calibration on dataset of 2021 and prediction on dataset of 2020. 

Sensitivity is the proportion of true presence; specificity is the proportion of true absence. 


