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U NIVERSIDADE DE VIGO 

RESUMEN  

Tesis Doctoral 

Acidification and transports of water masses and CO
2
 in the North Atlantic 

por María Isabel García Ibáñez 

La atmósfera de la Tierra contiene gases que absorben la radiación infrarroja, los cuales son 

conocidos como gases de efecto invernadero. Entre ellos destaca el dióxido de carbono (CO
2
). Las 

actividades antropogénicas, es decir, las actividades humanas, han ido aumentando 

paulatinamente la concentración de este gas en la atmósfera desde la Revolución Industrial 

(1750). Las emisiones antropogénicas de CO
2
 alteran el ciclo natural del carbono que lo 

redistribuye entre la atmósfera, el océano y las tierras emergidas. La absorción de CO
2
 por el 

océano ha limitado el aumento de su concentración en la atmósfera y, por tanto, el calentamiento 

debido a los gases de efecto invernadero. Pero esta absorción ha dado lugar a una serie de cambios 

químicos conocidos colectivamente como acidificación oceánica, entre los que se incluyen la 

disminución del pH y del grado de saturación de carbonatos. Estos cambios pueden modificar los 

principales ciclos biogeoquímicos marinos, por lo que la acidificación oceánica tiene el potencial 

de afectar dramáticamente a organismos y ecosistemas marinos. La principal inquietud del 

colectivo científico es la tasa de cambio de pH, que supera cualquiera conocida durante los últimos 

cientos de miles de años. Estos cambios son tan rápidos que pueden reducir de forma significativa 

la capacidad tampón de los procesos naturales que han amortiguado los cambios en la química de 

los océanos en la mayor parte del tiempo geológico. Esta alta tasa de cambio también podría dar 

lugar a que ciertas especies formadoras de estructuras calcáreas no puedan adaptarse lo 

suficientemente rápido como para sobrevivir, alterando así las redes tróficas marinas. 

Aunque la acidificación oceánica tiene lugar en los océanos de todo el mundo, existen 

marcadas diferencias regionales debido a los diferentes procesos que afectan al sistema del CO
2
 

oceánico. Por ejemplo, los efectos de la acidificación oceánica tienden a ser más severos en los 

océanos de latitudes altas debido a las bajas temperaturas de sus aguas superficiales (que propician 

una mayor disolución del CO
2
 atmosférico), en combinación con sus altos factores de Revelle, es 

decir, a su baja capacidad tampón (que da lugar a mayores cambios de pH para una perturbación de 

CO
2
 atmosférico dada). De hecho, las aguas al norte de Islandia están acidificándose a una tasa del 

5% por década, mientras que las aguas del Océano Pacífico Norte occidental (al sur de Japón) lo 

hacen a una tasa del 3% por década. Por otra parte, mientras que la concentración de CO
2
 en las 

capas superficiales del océano aumenta conforme lo hace el CO
2
 en la atmósfera, su penetración en 

el océano profundo depende de la lenta mezcla vertical de la columna de agua y del transporte de 

las masas de agua. Alrededor de la mitad del CO
2
 antropogénico se encuentra en los primeros 400 

m de la columna de agua, mientras que la otra mitad penetra hacia las capas más profundas. Sin 

embargo, en algunas regiones donde los movimientos verticales son relativamente rápidos, como es 

el caso del Atlántico Norte Subpolar, la escala de tiempo necesaria para la penetración profunda 

del CO
2
 antropogénico es del orden de décadas en lugar de siglos, por lo que la exposición a los 

efectos de la acidificación oceánica de origen antropogénico es más rápida. 
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El Atlántico Norte lleva siendo un sumidero de CO
2
 desde antes de la Revolución 

Industrial debido a la acción de la circulación termohalina. La circulación termohalina es el 

resultado de los cambios de densidad que sufren las aguas oceánicas. En el Océano Atlántico las 

aguas superficiales del Hemisferio Sur fluyen hasta las latitudes polares del Hemisferio Norte en la 

rama superior de la circulación termohalina del Atlántico. Debido a los largos tiempos de 

residencia en las regiones subtropicales y ecuatoriales, las frías aguas procedentes del Hemisferio 

Sur se calientan y salinizan, y llegan prácticamente a estar en equilibrio con las concentraciones de 

CO
2
 atmosférico. Al norte de alrededor de los 15–20°N, estas aguas comienzan a enfriarse al ser 

transportadas hacia el norte por la Corriente del Golfo, tendiendo a captar más CO
2
 atmosférico. 

Gran parte de estas aguas alcanzan el Giro Subpolar del Atlántico Norte, el Mar de Labrador, el 

Océano Ártico y los mares nórdicos, donde se densifican lo suficientemente como para hundirse y 

comenzar un viaje sub-superficial hacia el sur en corrientes de fondo que conforman la rama 

inferior de la circulación termohalina del Atlántico, proceso conocido como circulación de 

retorno. El efecto neto de la circulación de retorno y de la ventilación termoclina es la captación 

de CO
2
 atmosférico y la liberación de calor hacia la atmósfera. Por lo tanto, la circulación 

termohalina juega un papel fundamental en la regulación del clima terrestre. 

Todo lo anteriormente expuesto motivó el estudio de la acidificación y la circulación del 

Atlántico Norte llevado a cabo en esta tesis. Concretamente, se estudiaron la acidificación y los 

transportes de masas de agua y de CO
2
 en el Giro Subpolar del Atlántico Norte. Los resultados de 

los estudios que conforman la presente tesis doctoral se estructuraron en tres grandes apartados. El 

primero apartado recoge los resultados del estudio de la distribución de las principales masas de 

agua del Giro Subpolar del Atlántico Norte, y su variabilidad entre 1997 y 2010; así como de la 

estimación de los transportes de las principales masas de agua y sus transformaciones dentro del 

Giro Subpolar. El segundo apartado recoge los resultados de la evaluación de la captación de CO
2
 

de origen antropogénico, y los cambios químicos derivados de ésta en las principales masas de agua 

de las cuencas del Irminger e Islandia durante el periodo 1981–2014. Por último, el tercer apartado 

recoge los resultados del estudio del transporte del CO
2
 de origen antropogénico en el Atlántico 

Norte Subpolar entre 1997 y 2010, poniendo el foco en comprender los mecanismos que controlan 

su variabilidad. 

Un componente importante de la circulación termohalina global se lleva a cabo en las 

altas latitudes del Atlántico Norte. Los procesos de formación de masas de agua en el Atlántico 

Norte Subpolar, el Mar de Labrador, el Océano Ártico y los mares nórdicos afectan a la circulación 

termohalina del Atlántico en escalas de tiempo largas. La Oscilación del Atlántico Norte (NAO), 

el modo dominante de la variabilidad atmosférica en la región subpolar del Atlántico Norte, 

influye en la formación de las masas de agua y, por lo tanto, en la intensidad de la circulación 

termohalina del Atlántico. En consecuencia, conocer la distribución de las masas de agua, su 

transporte y transformación es importante para determinar el efecto de los cambios en la 

circulación oceánica en la captación y almacenamiento del CO
2
 de origen antropogénico. En el 

primer apartado de esta tesis se discuten la distribución y el transporte de las principales masas de 

agua en la región subpolar del Atlántico Norte, concretamente en el Giro Subpolar, para la 

primera década de los 2000 (2002–2010); así como la variabilidad interanual en la estructura de las 

masas de agua entre 1997 y 2010. Las distribuciones de las principales masas de agua del Giro 

Subpolar del Atlántico Norte, cuantitativamente evaluadas por medio de un análisis 

multiparamétrico optimizado (OMP), se combinaron con los campos de velocidad (derivados de 
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modelos inversos previamente resueltos) con el fin de obtener los transportes de volumen de las 

masa de agua. También se evaluó la contribución relativa a la circulación termohalina del 

Atlántico de las principales masas de agua que caracterizan el Giro Subpolar del Atlántico Norte, 

identificando qué masas de agua contribuyeron a la variabilidad de la circulación termohalina del 

Atlántico entre 1997 y la década de los 2000. Este lapso temporal estuvo marcado por la transición 

entre un alto índice NAO (con una circulación horizontal asociada más intensa) y un índice NAO 

neutro/bajo (con una circulación horizontal asociada más débil). La reducción de la intensidad de 

la rama superior de la circulación termohalina del Atlántico entre 1997 y la década de los 2000 se 

asocia con la reducción en el transporte hacia el norte de las Aguas Centrales. Esta reducción del 

transporte hacia el norte de la rama superior de la circulación termohalina del Atlántico queda 

parcialmente compensada con la reducción del transporte hacia el sur de la rama inferior, asociada 

con la disminución de los transportes de Agua Polar Intermedia y Agua Modal Subpolar en la 

cuenca del Irminger. También se dedujo la transformación de las masas de agua dentro del Giro 

Subpolar del Atlántico Norte en base a un modelo de cajas. Las Aguas Centrales (2,1 ± 1,8 Sv; 1 

Sv = 10
6
 m

3
·s

–1
), el Agua del Mar de Labrador (2,4 ± 2,0 Sv), el Agua Intermedia Subártica (4,0 ± 

0,5 Sv) y el Agua de desbordamiento de Islandia–Escocia (0,9 ± 0,9 Sv) circulan desde la cuenca 

Este del Atlántico Norte hacia la cuenca del Irminger por encima del Reykjanes Ridge. Una vez 

llegadas a la cuenca del Irminger, estas masas de agua se transforman y/o densifican, pasando de la 

zona de aguas superiores e intermedias a la zona de aguas profundas. Los resultados también dan 

información acerca de las transformaciones de las Aguas Centrales (1,1 Sv) y el Agua Intermedia 

Subártica (2,2 Sv) en las diferentes variedades de Agua Modal Subpolar. 

La acidificación del océano provoca cambios en el equilibrio del sistema del CO
2
 oceánico, 

afectando a todas las especies químicas y a todos los parámetros medibles salvo uno. 

Concretamente aumenta el carbono inorgánico disuelto total (C
T
), la presión parcial de CO

2
 

(pCO
2
) y las concentraciones de CO

2
, iones bicarbonato (HCO

3

–
) y protones (H

+
); disminuye la 

concentración de iones carbonato (CO
3

2–
) y el pH (-log

10
[H

+
]); mientras que la alcalinidad total 

(A
T
) no cambia. En el segundo apartado de esta tesis se evaluaron las tendencias temporales en la 

captación del CO
2
 antropogénico y sus efectos sobre el pH y la saturación de CaCO

3
, así como los 

cambios en la A
T
 en las cuencas del Irminger e Islandia durante los tres últimos decenios, 

concretamente durante el periodo 1981–2014. Los cambios a largo plazo de la concentración del 

CO
2
 antropogénico, del pH, la A

T
 y la saturación de CaCO

3
, esta última en términos de saturación 

de aragonito (Ω
Arag

), se evaluaron en las principales masas de agua de las cuencas del Irminger e 

Islandia y se discutieron en el contexto de la circulación oceánica. Se observa que las aguas de las 

cuencas del Irminger e Islandia están ganando CO
2
 de origen antropogénico, lo que da lugar a que 

todas las masas de agua del Giro Subpolar del Atlántico Norte presenten tasas de acidificación 

significativas. Las mayores tasas de aumento de la concentración del CO
2
 antropogénico se 

encuentran en las capas superiores de ambas cuencas, como resultado de su contacto directo con la 

atmósfera, lo que se traduce unas tasas de descenso del pH de -0.011 ± 0.002 unidades de pH por 

década en ambas cuencas. Las aguas profundas de la cuenca del Irminger presentan unas tasas de 

acidificación muy similares a las de las capas superficiales, resultado de su reciente contacto con la 

atmósfera. La columna de agua de la cuenca del Irminger presenta unas tasas de aumento de la 

concentración de CO
2
 de origen antropogénico mayores que las encontradas en la cuenca de 

Islandia, lo que refleja la mayor proximidad de la cuenca del Irminger a las zonas de formación de 

masas de agua. Estas mayores tasas dan lugar a unos descensos de pH mayores en la cuenca del 

Irminger que los encontrados en la cuenca de Islandia. Para estudiar las causas de los cambios de 
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pH se evaluaron sus componentes antropogénico (derivado de la captación del CO
2
 

antropogénico; ΔpHCANT) y no antropogénico (no directamente relacionado con la captación de 

CO
2
 antropogénico; ΔpHVar). En estado estacionario, el término ΔpHVar sería constante y todos 

los cambios de pH se explicarían por el término ΔpHCANT. Sin embargo, en las capas superiores de 

ambas cuencas la acción del ΔpHVar (debida a la advección de aguas subtropicales) contrarresta el 

efecto del ΔpHCANT, dando lugar a que las tasas de acidificación observadas sólo representen un 

72–87% de las tasas esperadas derivadas de la captación de CO
2
 de origen antropogénico. En 

cambio, en las aguas intermedias de la cuenca del Irminger, el efecto del ΔpHVar (producido por el 

envejecimiento de las aguas) refuerza la acidificación derivada de la captación del CO
2
 

antropogénico, lo que da lugar a que la tasa de acidificación de estas aguas sea un 34% mayor que 

la esperada por la acción del ΔpHCANT. Los descensos de pH observados dan lugar a que la Ω
Arag

 

muestre tendencias de descenso significativas en todas las masas de agua de ambas cuencas. Las 

aguas intermedias de ambas cuencas presentan unas tasas de descenso de la Ω
Arag

 de entre -2,4 y -

3,8·10
–3
 año

–1
, lo que da lugar a un ascenso del horizonte de saturación de ~10 m·año

–1
. En base a 

los cambios de pH y de Ω
Arag

 observados durante el periodo 1981–2014, se infirieron los cambios 

esperados para final de siglo. Cuando la concentración de CO
2
 atmosférico alcance los 800 ppm se 

espera que el pH de las capas superiores descienda ~0,31 unidades de pH respecto a los valores de 

la era preindustrial. Las capas profundas de la cuenca del Irminger sufrirán descensos de pH 

similares a los de las capas superficiales. Estos descensos de pH alcanzados cuando la concentración 

de CO
2
 atmosférico sea de 800 ppm darán lugar a que toda la columna de agua de las cuencas del 

Irminger e Islandia esté sub-saturada en aragonito. Sin embargo, las aguas intermedias alcanzarán 

el estado de sub-saturación mucho antes, concretamente cuando la concentración de CO
2
 

atmosférico alcance los 500 ppm. Esta somerización del horizonte de saturación de las aguas del 

Atlántico Norte podría tener consecuencias nefastas para las poblaciones de corales de aguas frías 

que las habitan. Los datos aquí recopilados también muestran la influencia del aumento de la 

descarga de los ríos árticos en la A
T
 de las aguas profundas de la cuenca del Irminger, que presentan 

unas tendencias significativas de aumento de la A
T
. 

El Atlántico Norte se comporta como un sumidero de CO
2
, sin embargo no todo el CO

2
 

que almacena es de origen antropogénico. En las latitudes medias del Atlántico Norte, los 

intercambios de CO
2
 entre la atmósfera y el océano están dominados por el componente 

antropogénico; mientras que en la región subpolar del Atlántico Norte los intercambios de CO
2
 

están dominados por el componente natural, derivado de los procesos naturales del sistema 

terrestre. Es decir, la absorción de CO
2
 de origen antropogénico se produce casi exclusivamente en 

el giro subtropical, siendo luego lateralmente advectado hacia la región subpolar del Atlántico 

Norte, constituyendo este transporte lateral el principal suministro de CO
2
 antropogénico del 

Atlántico Norte Subpolar. Otro elemento importante en el almacenamiento de CO
2
 de origen 

antropogénico en el Atlántico Norte Subpolar es la advección de masas de agua recién ventiladas 

como el Agua del Mar de Labrador. Por lo tanto, es importante cuantificar y comprender la forma 

en que se transporta el CO
2
 antropogénico para así comprender cómo el océano lo almacena, y 

para modelar el papel del océano en la amortiguación del futuro aumento del CO
2
 atmosférico 

causado por las actividades humanas. En el tercer y último apartado de esta tesis se investiga la 

variabilidad interanual a decenal en el transporte de CO
2
 antropogénico a través del Atlántico 

Norte Subpolar durante el período 1997–2010. Este apartado se ha centrado en el estudio del 

aspecto físico del transporte de CO
2
 antropogénico en el Atlántico Norte Subpolar con el fin de 

comprender los mecanismos que lo controlan. Se obtuvo un transporte promedio de CO
2
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antropogénico de 254 ± 29 kmol·s
−1

 para el período 1997–2010. Para evaluar el efecto de los 

diferentes elementos de la circulación oceánica en el transporte de CO
2
 antropogénico, éste se 

dividió en sus componentes diapícnico (el transporte de CO
2
 antropogénico a través de las 

isopicnas) e isopícnico (el transporte de CO
2
 antropogénico a lo largo de las isopicnas). La 

concentración de CO
2
 antropogénico juega un papel importante en los dos componentes 

implicados en el transporte de CO
2
 de origen antropogénico: el gradiente horizontal de CO

2
 

antropogénico en el Atlántico Norte Subpolar es el responsable de su transporte isopícnico hacia 

el sur, principalmente en las aguas intermedias y profundas de la cuenca del Irminger; mientras que 

el flujo hacia el norte de las aguas cargadas de CO
2
 antropogénico es el responsable del alto 

transporte diapícnico de CO
2
 antropogénico hacia el norte. La descomposición del transporte de 

CO
2
 antropogénico en sus diferentes componentes también muestra que el componente de 

diapícnico es su principal contribuyente, cuyo valor medio durante el período 1997–2010 es de 400 

± 29 kmol·s
−1

, además de ser el principal responsable de la variabilidad del transporte de CO
2
 

antropogénico a través del Atlántico Norte Subpolar. Tanto la intensidad de la circulación 

termohalina como el aumento del CO
2
 antropogénico en la columna de agua afectan de forma 

importante a la variabilidad del componente diapícnico y al propio transporte de CO
2
 

antropogénico. A escalas de tiempo interanuales a decenales, la variabilidad de la circulación 

termohalina domina la variabilidad del transporte de CO
2
 antropogénico, pero a escalas de tiempo 

mayores es el aumento del CO
2
 antropogénico el que parece controlar el cambio del transporte de 

CO
2
 antropogénico, siendo muy probable que esto cause un aumento del transporte de CO

2
 

antropogénico a través del Atlántico Norte Subpolar conforme vaya aumentando la concentración 

de CO
2
 en la atmósfera. 

El continuo aumento de la concentración de CO
2
 en la atmósfera debido a las actividades 

humanas ha sido suavizado por la absorción oceánica. Pero, ¿cuánto tiempo va a seguir actuando el 

océano como sumidero de este gas de efecto invernadero?  y ¿qué consecuencias se esperan de esta 

absorción de CO
2
? La absorción de CO

2
 en el Giro Subpolar del Atlántico Norte da lugar a tasas 

de acidificación significativas en toda la columna de agua, que producen una somerización del 

horizonte de saturación del CaCO
3
. Se espera que la concentración de CO

2
 antropogénico en 

ambas ramas de la circulación termohalina del Atlántico se vincule a la variabilidad de la 

circulación termohalina, pero la escala de tiempo necesaria para ello depende de la advección de 

aguas subtropicales en la rama superior, y de los procesos de formación de aguas intermedias y 

profundas en la rama inferior. Extrapolando el aumento de la diferencia de concentración de CO
2
 

antropogénico observado en ambas ramas de la circulación termohalina del Atlántico y 

considerando la desaceleración del 25% de la circulación termohalina prevista para el año 2100, se 

espera que el transporte de CO
2
 antropogénico a través del Atlántico Norte Subpolar aumente en 

430 kmol·s
−1

 durante el siglo XXI. En consecuencia, se podría producir un aumento en la tasa de 

almacenamiento de CO
2
 antropogénico en el Atlántico Norte Subpolar, lo que conllevaría a un 

aumento de las tasas de acidificación de sus aguas. 
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Chapter 1.-  Introduction 

This introductory chapter starts with a general background of CO
2
 as a greenhouse gas, its 

atmospheric increase since the industrial revolution, and the consequences of this increase on the 

oceans. The physical perspective section of this chapter describes the main features of the North 

Atlantic Ocean, with an emphasis on the subpolar region that is the main area of study in this 

thesis. A brief description of the major topographical features is performed, as well as the main 

characteristics of the circulation and water masses present in the North Atlantic. The chemical 

perspective section describes the oceanic carbon system, considering its anthropogenic 

perturbation and its consequences on the ocean chemistry. 
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1.1.-  General Background  

A small portion of the Earth’s atmosphere is composed of gases that absorb and contain 

infrared radiation, which warm the Earth’s surface and atmosphere; they are referred to as 

greenhouse gases (GHGs). Water vapour is the most important GHG, followed by carbon dioxide 

(CO
2
), methane (CH

4
), nitrous oxide (N

2
O), sulphur hexafluoride (SF

6
) and ozone (O

3
). 

Anthropogenic activities have been gradually increasing the CO
2
 concentrations in the 

atmosphere since the Industrial Revolution, from ~277 parts per million (ppm) in 1750 (Joos and 

Spahni, 2008) to a global average of 400 ppm (2015; (Dlugokencky and Tans, 2015), i.e., the 

average content of CO
2
 has increased by more than 120 ppm in 265 years. However, the rate of 

increase has not been constant over time. The growth rate decreased between the 1960s (4.5%  

yr
–1
) and the 1990s (1.0% yr

–1
), and began to increase again in the 2000s (3.4% yr

–1
), decreasing 

slightly for the last decade (2004–2013; 2.5% yr
–1
) (Le Quéré et al., 2014). The continuous 

monitoring of the atmospheric CO
2
 in Mauna Loa Observatory (Hawaii) since 1958 (Keeling et 

al., 1976), and later in other observatories such as Barrow, Alaska Observatory; American Samoa 

Observatory or the South Pole Observatory highlights this CO
2
 increase (Figure 1). 

Anthropogenic CO
2
 (C

ANT
) emissions occur on top of an active natural carbon cycle that 

circulates carbon between the atmosphere, ocean and terrestrial biosphere reservoirs (Figure 2) on 

timescales from days to millennia, while exchanges with geologic reservoirs have even longer 

timescales (Archer et al., 2009). The ocean dominates the storage of CO
2
 due to its high solubility 

in seawater and its sequestration through seawater sinking. In fact, the global ocean contains ~50 

times the amount of CO
2
 in the atmosphere (Figure 2). The absorption of CO

2
 by the oceans has 

limited the rise in atmospheric CO
2
 concentrations and hence GHG warming. But this absorption 

leads to a suite of chemical changes collectively known as ocean acidification (e.g., Raven et al., 

2005; Doney et al., 2009; Feely et al., 2009). Because it is another consequence of C
ANT

 emissions, 

it has been dubbed “the other CO
2
 problem” (Turley, 2005) and “the evil twin of global warming” 

(Pelejero et al., 2010). Ocean acidification includes seawater chemical changes such as the 

lowering of seawater pH and carbonate saturation, and has the potential to dramatically affect 

marine organisms and ecosystems (e.g., Langdon et al., 2000; Riebesell et al., 2000; Pörtner et al., 

2004; Gattuso et al., 2014) and also to modify the major marine biogeochemical cycles (Gehlen et 

al., 2011; Matear and Lenton, 2014). The main concern is the rate of change of pH, which 

exceeds any known for at least hundreds of thousands of years (Feely et al., 2004; Raven et al., 

2005). These changes are so rapid that they can significantly reduce the buffering capacity of the 

natural processes that have moderated changes in the ocean chemistry over most of the geological 

time (Raven et al., 2005). Also this rapid rate of change could cause that certain calcifying species 

do not adapt fast enough to survive, thus altering the marine food webs (e.g., Orr et al., 2005; 

Doney et al., 2009). 

Since the industrial revolution, less than half of the C
ANT

 emitted to the atmosphere (555 

± 85 PgC; 1 PgC = 10
15

 gC) has remained in it (240 ± 10 PgC); the remaining has been absorbed 

by the ocean and terrestrial ecosystems, both of these known as “carbon sinks” (Ciais et al., 2013; 

Rhein et al., 2013). The oceans have absorbed ~30% of the C
ANT

 emitted to the atmosphere 

between 1750 and 2013 (DeVries, 2014; Le Quéré et al., 2014). But this C
ANT

 is not evenly 

distributed throughout the oceans (Sabine et al., 2004), entering preferentially in regions of 

upwelling and convective overturn (Maier-Reimer and Hasselmann, 1987; Sarmiento et al., 
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1992). The thermohaline circulation or Meridional Overturning Circulation (MOC) makes the 

North Atlantic one of the most important C
ANT

 sinks of the global ocean, storing 25% of the 

global oceanic C
ANT

 despite covering only 15% of the global ocean area (Sabine et al., 2004). The 

Atlantic MOC transports CO
2
-laden waters from the Equator to the northern North Atlantic 

(Watson et al., 1995; Wallace, 2001), where the water mass formation processes, i.e., the sinking 

of surface waters, provide the pathway for C
ANT

 to pass from the surface mixed layer to the deep 

ocean (Lazier et al., 2002; Pérez et al., 2008; Steinfeldt et al., 2009). The uptake and storage of 

C
ANT

 by the oceans depends on the ventilation, formation and transport of the water masses 

(Tanhua et al., 2006; Rhein et al., 2007; Steinfeldt et al., 2009; Pérez et al., 2013). In fact, the 

lateral advection of C
ANT

-laden water masses is an important contributor to the C
ANT

 storage in the 

Subpolar North Atlantic region (Pérez et al., 2013). 

 
Figure 1.- At the top, monthly average instrument data for atmospheric carbon dioxide (CO

2
) mixing ratios 

determined from the continuous monitoring programs at the four Baseline Observatories of Barrow (cyan triangle), 

Mauna Loa (red dot), American Samoa (green square) and South Pole (purple inverted triangle). At the bottom, 

locations of the observatories. Modified from Tans (2012). 
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This thesis focuses on the Subpolar North Atlantic that plays an important role in the 

European climate and in the absorption (sink) and transport of CO
2
 into the deep ocean through 

the thermohaline circulation. The subtropical warm waters carried northwards by the North 

Atlantic Current (NAC), release heat to the atmosphere contributing to temperate Western 

Europe winters (Stommel, 1958; Seager et al., 2002). The progressive cooling of these waters as 

they are transported to the Subpolar North Atlantic leads to their transformation into subpolar 

waters, which eventually reach the formation regions in the Labrador and Nordic Seas. The CO
2
 

sequestration occurred during this circulation and its subsequent transport to the ocean interior 

maintains the carbon absorption capacity of the North Atlantic waters. 

The remainder of Chapter 1 is separated into two sections. Firstly discussing the Physical 

Perspective, with respect to circulation within the North Atlantic at all depths, and secondly 

discussing the Chemical Perspective of this research for the assessment of changes in ocean carbon 

content. Both perspectives will provide the focus for the following thesis Chapters. 

 
Figure 2.- Scheme of the global carbon cycle. Numbers represent mass reservoirs in PgC (1 PgC = 10

15
 gC) and 

annual carbon exchange fluxes (in PgC·yr
–1

). Black numbers and arrows indicate mass reservoirs and exchange 

fluxes estimated for the time prior to the Industrial Era (~1750). Red arrows and numbers indicate annual 

anthropogenic fluxes averaged over the 2000–2009 time period. These fluxes are a perturbation of the carbon cycle 

during Industrial Era (post 1750). The red arrows parts of Net land flux and Net ocean flux are the uptake of 

anthropogenic CO
2
 by the ocean and by terrestrial ecosystems (carbon sinks). Red numbers in the reservoirs denote 

cumulative changes of anthropogenic carbon over the Industrial Period 1750–2011. By convention, a positive 

cumulative change means that a reservoir has gained carbon since 1750. Uncertainties are reported as 90% 

confidence intervals. Source: Ciais et al. (2013). 
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1.2.-  Physical Perspective: The North Atlantic Ocean 

The Atlantic Ocean occupies about 23% of the total world ocean area, extending from the 

Arctic Ocean to the Southern Ocean. The Equator artificially divides it into North Atlantic and 

South Atlantic. Within the North Atlantic domain (Figure 3), the Subpolar North Atlantic area 

is the best understood and most intensively studied of all the ocean basins. The Subpolar North 

Atlantic is the region north of 40ºN, south of the Greenland–Scotland Ridge and bordered to the 

east by the European continental shelf and to the west by the Davis Strait, the Hudson Strait and 

the Canadian continental shelf (Figure 3). The North Atlantic Ocean plays a key role in 

regulating the climate of the continents it washes, mainly because of the heat exchanges that 

happen during the northward flow of the warm tropical waters. Once these surface warm waters 

reach the Subpolar North Atlantic area, they cool, consequently increasing their density, and 

finally sink. This is the start process of the thermohaline circulation or Meridional Overturning 

Circulation (MOC). The complex system of surface and bottom currents that constitutes MOC 

not only moves water and salt around the planet but it also carries prodigious amounts of heat to 

various parts of the world thus significantly influencing the global climate (Figure 4). 

 

Figure 3.- A topographic and feature nomenclature map for the North Atlantic. The dotted white line between 

Greenland and Scotland represents the Greenland–Scotland Ridge. Modified from Schmithz and McCartney (1993). 



 CHAPTER 1.- INTRODUCTION  Physical Perspective: The North Atlantic Ocean 

17 

 

Figure 4.- Simplified sketch of the Meridional Overturning Circulation (MOC). The red lines represent the surface 

currents (MOC upper limb), and the blue and purple lines the deep and bottom currents (MOC lower limb) , 

respectively. The black arrows indicate the direction of the circulation. The dark areas indicate high salinity waters 

(> 36) and the white areas low salinity waters (< 34). The yellowish circles indicate the main regions of deep water 

formation. Source: Bollmann et al. (2010). 

1.2.1.- Topographic features 

The topographic features strongly affect ocean circulation, especially deep currents. The 

principal feature of the bottom topography of the Atlantic Ocean is the Mid–Atlantic Ridge 

(MAR), which is formed by the confluence of four tectonic plates: Eurasian, North American, 

South American and African. The MAR, with characteristic depths between 1500 and 2000 m, 

divides the North Atlantic Ocean into two main basins, eastern and western, constituting a barrier 

for the circulation of deep and bottom waters. Nevertheless, the existence of some deep passages 

crossing the MAR allows deep water transport between the eastern and western basins. Three of 

the most important ones are the Charlie–Gibbs Fracture Zone (CGFZ) at about 50ºN with a 

maximum depth of 3000 m, and the Vema (10ºN) and Romanche Fracture Zones at the Equator 

with a maximum depth of 4500 m (Figure 3). Concretely, the part of the MAR extending from 

Iceland to the southwest until the CGFZ is known as the Reykjanes Ridge. At about 57°N the 

Bight Fracture Zone crosses the ridge with sill depths of about 2000–2500 m. 

Another important topographic feature is the Greenland–Scotland Ridge (GSR; Figure 3). 

The GSR runs northwest to southeast through Iceland and forms the border between the North 

Atlantic Ocean and the Nordic and Arctic Seas. The sills along the GSR are generally less than 

500 m depth, and no greater than ~850 m in the deepest channels. These sills control the 

overflow of the waters coming from the Nordic and Arctic Seas. The part of the ridge between 

Iceland and the Faroes is known as the Iceland–Faroe Ridge. The threshold depths are 430 m off 

Iceland and 470 m off the Faroes. Between Iceland and East Greenland, the ridge is known as the 

Greenland–Iceland Ridge, which runs on the bottom of the Denmark Strait. 
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Transverse ridges running between the continents and the MAR divide the ocean floor 

into numerous basins. Some of the larger basins in the Subpolar North Atlantic area are, from 

north to south: Irminger, Iceland, Labrador, West European and Iberian. The Irminger and Iceland 

Basins are the northernmost regions of the North Atlantic Ocean. The Irminger Basin or Irminger 

Sea is located south of the Denmark Strait, between southeast Greenland and the Reykjanes 

Ridge. Its northern limit is the Greenland–Iceland Ridge, which connects the Irminger Basin with 

the Greenland Sea. To the southwest, the Irminger Basin reaches to Cape Farewell, the southern 

tip of Greenland, and meets the Labrador Basin at this point. The Iceland Basin with depths 

exceeding 2000 m is bordered by the Reykjanes Ridge in the northwest with depths less than 1000 

m, by the Icelandic margin in the north, and by the Iceland–Faroe Ridge in the northeast with 

depths less than 500 m. To the south-east the basin is bordered by several banks extending from 

the Faroes, at the west, to the Hatton Bank and Rockall Bank, at the east. The Labrador Basin, 

located between the Labrador Peninsula, Canada and Greenland, reaches depths of 3400 m. It 

connects to the north with the Baffin Bay through the Davis Strait, and to the west with the 

Hudson Bay through the Hudson Strait. The Iberian Basin is mainly constituted by the Iberian 

Abyssal Plain, located in front of the west coast of the Iberian Peninsula. The West European 

Basin is located north of the Iberian Basin, between the European coast and the Reykjanes Ridge, 

being its northern limit the Rockall Bank. It is constituted by two main abyssal plains: the 

Porcupine Abyssal Plain, adjacent to the Irish continental margin; and the Biscay Abyssal Plain or 

Bay of Biscay, located off the north coast of Spain and the west coast of France. 

1.2.2.- Large-scale circulation 

Ocean currents transport enormous amounts of heat around the world. This makes them 

one of the most important driving forces of climate. Ocean currents can be classified into surface 

currents and deep-ocean currents. The wind-driven surface currents are fast horizontally flows that 

move about 10% of all ocean water. In contrast, the slow deep-ocean currents have a significant 

vertical component, which is caused and driven by density differences that ultimately result in the 

MOC. It accounts for 90% of all ocean waters. 

1.2.2.1.- Surface Currents 

The upper ocean circulation is driven by the friction of wind on the atmosphere–ocean 

interface. Wind-driven currents decline with depth and are generally limited to the permanent 

pycnocline (100–400 m depth), but in some cases they may go as deep as 1000 m depth. Surface 

currents play a significant role in transporting heat from equatorial to polar latitudes. They are also 

involved in gas exchanges, especially oxygen (O
2
) and CO

2
. 

The combined action of the wind stress, the Coriolis Effect and the continental deflection 

causes that the surface currents form gyres, i.e., large circular-moving currents. Depending on its 

latitudinal position, those oceanic gyres are classified into subtropical (centred at about 30ºN or 

30ºS) and subpolar (centred at about 60ºN or 60ºS). The subtropical gyres dominate the 

circulation at midlatitudes in each one of the five ocean basins (North and South Atlantic, North 

and South Pacific and Indian), whereas the cyclonical subpolar gyres are smaller and fewer (Figure 

5). The subtropical gyres are not symmetrical and present a western intensification that leads to 

western boundary currents. Western boundary currents are narrower, deeper and faster than the 

eastern boundary currents. Some western boundary currents also carry waters as part of the 
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thermohaline circulation, involving inter-gyre and inter-basin exchanges as shown by green flow 

lines in Figure 5. 

 

Figure 5.- Surface circulation scheme. NEC and SEC denote the Northern and Southern Equatorial Currents, 

NEUC and NECC are the Northern Equatorial Under and Counter Currents, respectively. Source: Talley et al. 

(2011). 

The North Atlantic’s subtropical gyre, like all subtropical gyres, is asymmetric, with 

strong, narrow western boundary currents and broad southward flow throughout the central and 

eastern subtropics. The subtropical western boundary current is composed of two connected 

portions: the Gulf Stream System south of about 40°N, and part of the NAC system east of 

Newfoundland and north of 40°N. The Gulf Stream System consists of a series of poleward 

western boundary currents, whose main components are shown in Figure 6. The subtropical Gulf 

Stream System begins where the North Equatorial Current enters the Caribbean Sea, and leaves it 

through the Florida Straits as the Florida Current and the Gulf Stream. The Florida Current/Gulf 

Stream flows along the continental shelf break of the eastern United States to the latitude of Cape 

Hatteras (about 35ºN, 75º30’W), where it separates from the continental shelf and flows north-

eastwards as a single free jet. East of its separation at Cape Hatteras, the Gulf Stream is one of the 

most powerful currents in the world’s oceans in terms of volume transport (up to 140 Sv; 1 Sv = 

10
6
 m

3
·s

–1
), maximum velocity (up to 250 cm·s

–1
) and average velocity (about 150 cm·s

–1
). Near the 

Grand Banks and southeast the Newfoundland Ridge (40ºN, 50ºW), the Gulf Stream extends 

southwards into the abyssal plain, decreases in transport and splits into several branches, including 

the NAC. 

The NAC extends to the highest latitude among any of the world’s subtropical western 

boundary currents, about 52ºN (Figure 6). As such, it represents the continuation of the 

northward heat transport as part of the thermohaline circulation. The NAC begins as a northward 

western boundary current east of the Grand Banks of Newfoundland, fed by a branch of the Gulf 

Stream. Near 52°N, the NAC separates from the boundary and turns abruptly eastwards, in a 
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feature referred to as the Northwest Corner (Rossby, 1996, 1999), as a multibranched meandering 

flow towards the MAR. The southward branches become part of the North Atlantic’s anticyclonic 

subtropical circulation. The northward branches, which retain locally intense frontal structures, 

feed into the subpolar circulation and northwards into the Nordic Seas. Therefore the Subpolar 

Front constitutes the boundary between the warm waters in the subtropical gyre and the cooler 

and less saline waters in the subpolar gyre (Rossby, 1999). 

 

Figure 6.- Map of Absolute Dynamic Topography (in dynamic cm; colour shading) on September 21, 2011 for the 

western North Atlantic from AVISO (Archiving, Validation, and Interpretation of Satellite Oceanographic Data) 

Web site (http://www.aviso.oceanobs.com), with a scheme of the currents in the Gulf Stream System, including the 

Northern and Southern Recirculation gyres (NRG and SRG). Source: Imawaki et al. (2013). 

The subpolar gyre is less asymmetric and more strongly controlled by topography than the 

subtropical gyre. It is divided into western and eastern regimes at the Reykjanes Ridge. The 

western subpolar domain is characterized by a cyclonic gyre in the Labrador and Irminger Seas. On 

the western flank of the Reykjanes Ridge, there is a northward flow called the Irminger Current . 

In the northern part of the Irminger Basin, the Irminger Current splits into two, with a branch 

that continues northwards through the Denmark Strait and the other (almost 85% of the initial 

current; Pickart et al. (2005)) that recirculates cyclonically in the Irminger Basin and joins the 

southward flow of the East Greenland Current (EGC) coming from the Nordic Seas, the 

northward flow of the West Greenland Current and the southward flow of the Labrador Current 

along the Labrador coast. The eastern subpolar domain is influenced by the NAC and is 

characterized by the north-eastward surface flow of several topographically-controlled branches of 
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the NAC that continue northwards and crosses the Iceland–Faroe–Shetland ridge into the Nordic 

Seas. 

1.2.2.2.- Deep-ocean Currents or the Meridional Overturning Circulation 

Deep-ocean currents are driven by density changes, whose derived flow is known as 

thermohaline circulation or MOC. The global MOC is a key component of the Earth's climate 

system, acting as a heat redistribution modulator through the world’s ocean, and participating in 

the biogeochemical cycles and gas exchanges with the atmosphere, thus modulating the GHGs 

distribution (Rahmstorf, 2002). 

Surface seawaters are exposed to changes in salinity through evaporation, precipitation 

and sea-ice formation, and in temperature through heat exchange with the atmosphere. The 

density changes derived from the processes of mass and energy exchange with the atmosphere may 

occasionally produce surface waters denser than the underlying ones, thus forcing them to sink 

into the ocean interior. This process is known as water mass formation. The sinking of water in 

polar latitudes is balanced by the upwelling and return of water from ocean depths to the surface. 

The regions where water mass formation occurs are key points for the MOC. At large scale, there 

are three main regions where water mass formation takes place (Figure 4): the North Atlantic 

Ocean, the Ross Sea and the Weddell Sea (Rahmstorf, 2002). 

Within the context of the global MOC, the Atlantic Ocean is the place with the 

"youngest" waters, thus presenting the highest O
2
 and lowest nutrient concentrations 

(Worthington, 1976). In a very simplistic manner, the Atlantic MOC carries warm and salty 

upper waters to high latitudes of the North Atlantic (upper limb), where they become denser by 

cooling and sink, returning southward as deep and bottom waters (lower limb). The heat exchange 

that happens during this circulation results in the Atlantic MOC playing an active role in the 

regulation of the European climate. In addition, the water mass formation processes also 

contribute to the CO
2
 sequestration. In fact, the North Atlantic Ocean stores 25% of the C

ANT
 

stored in the oceans, despite representing only 15% of the global ocean surface (Sabine et al., 

2004). 

Figure 7 represents a very general outline of the North Atlantic MOC. The conversion of 

upper ocean waters to denser intermediate and deep waters in the northern North Atlantic is 

associated with a deep circulation, including Deep Western Boundary Currents (DWBCs). In the 

North Atlantic, the DWBC flows east of Greenland in the Irminger Sea between 700 and 4000 m 

depth, running southwards beneath the Gulf Stream and carrying dense waters from the Nordic 

Seas (overflowing the Greenland–Scotland Ridge). Then it flows around the Labrador Sea, 

incorporating water from this basin. This enhanced DWBC continues southwards towards the 

Equator, where part of the flow turns eastwards along the Equator and part continues into the 

South Atlantic, leaving the western boundary at 25°S to 40°S (Talley et al., 2011). 
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Figure 7.- Topographic map of the Nordic Seas and subpolar basins with schematic circulation of surface currents 

(solid curves) and deep currents (dashed curves) that form a portion of the Atlantic Meridional Overturning 

Circulation. Colours of curves indicate approximate temperatures. Source: R. Curry, Woods Hole Oceanographic 

Institution/Science/USGCRP. 

1.2.3.- Water masses 

A water mass is defined as a volume of water with a common formation history, whose 

physicochemical properties are distinct from the surrounding waters (Tomczak, 1999). The 

formation of a water mass is considered as the process by which surface waters become denser than 

the underlying ones, thus producing their sinking into the ocean interior. Three physical processes 

are known to produce water masses: 

- convection: formation process result of the modification of seawater properties by contact 

with the atmosphere and the subsequent homogenization by mixing in the convection 

region, which leads to extremely uniform water properties over a large depth range. During 

this process, surface seawaters densify by cooling or by evaporation and sink. The depth 

that an isolated convection event reaches tend to be around a few hundred meters, 

however, water mass formation through convection usually occurs by the cumulative effect 

of many convection events, which leads to greater convection depths. 

- subduction: process of water mass formation in the permanent picnocline through a 

combination of wind action and cooling. During this process, a convergence in the wind-



 CHAPTER 1.- INTRODUCTION  Physical Perspective: The North Atlantic Ocean 

23 

driven surface current field (Ekman pumping) pushes water down along isopycnal surfaces. 

Although subduction is a permanent process, water mass formation occurs only in late 

autumn and winter, so that the properties of the water subducted are determined by the 

surface water properties during late winter only (Tomczak and Godfrey, 1994). In practical 

situations convection and subduction are sometimes found to act together to form a water 

mass. 

- subsurface mixing: the only formation process which does not rely on air–sea exchange of 

properties. It occurs when two or more water masses mix so thoroughly that the mixing 

results in a water volume with well-defined properties distinctly different from those of the 

contributing water masses. The resulting water volume is then considered a newly formed 

water mass. 

After formation, the water masses retain their properties, in particular their potential 

temperature (θ ) and salinity (S) (Tomczak and Godfrey, 1994), thus allowing identifying them in 

a θ /S diagram. However, the water masses mix and interact throughout the ocean, so that these 

distinctive features are lost over time. 

The water mass formation processes lead to the ventilation and renewal of the deep ocean. 

Concretely, in the North Atlantic it constitutes a major pathway for the meridional transport at 

depth of heat, freshwater and chemical constituents, such as nutrients or O
2
 (Álvarez et al., 2002; 

Dickson et al., 2008). The regional water mass structure of the North Atlantic Ocean is extremely 

complex due to the inputs of intermediate and deep waters formed in marginal sea. This makes the 

North Atlantic a region with a large variety of water masses. Figure 8 shows a θ /S diagram with 

the main water masses of the Atlantic Ocean. 

The Atlantic waters are influenced by the Mediterranean Water (MW), which enters the 

North Atlantic from the Mediterranean Sea. MW is formed by the mixture of the Atlantic waters 

and the saline waters from the Strait of Gibraltar at 36ºN (Zenk, 1975). It is detected as a 

maximum in S (>36.1) and θ  (9–10°C) between 600 and 1700 m depth in the eastern North 

Atlantic (Harvey, 1982; Tsuchiya et al., 1992; van Aken and Becker, 1996; Álvarez et al., 2004). 

Its core is characterized by low relative concentrations of O
2
 and nutrients, due to its origin in the 

oligotrophic Mediterranean Sea (Tsuchiya et al., 1992). MW causes that the waters of the eastern 

Atlantic, between about 30 and 40°N and 1000 and 3000 m depth, are the most warm and saline, 

not only of the Atlantic Ocean (Wüst and Defant, 1936), but of the world's oceans (Levitus, 

1983). MW flows principally northwards along the European coast (at 1000 m depth in the 

NAC), with part of the flow being transported westwards due to the movement of the 

intermediate anticyclonic Mediterranean eddies, meddies (Shapiro and Meschanov, 1996; van 

Aken, 2000a). 

The warmer North Atlantic waters are influenced by the North Atlantic Central Water 

(NACW), whose well-defined characteristics derived mainly from air–sea interaction (Iselin, 

1936). East of the MAR in the North Atlantic, there are two varieties of this water mass: the west 

NACW (WNACW), closer to the ridge; and the east NACW (ENACW), in the eastern part of 

the basin (Harvey, 1982; Pollard et al., 1996; Read, 2000). ENACW is formed by winter 

convection in the intergyre region (Ríos et al., 1992; Pollard et al., 1996), being 0.1 units more 

saline than WNACW (Iselin, 1936; Harvey, 1982; Ríos et al., 1992; Pollard et al., 1996). Within 

ENACW two subclasses can be identified depending on their source area (Fiúza, 1984; Ríos et al., 
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1992), a colder subpolar variety (ENACW
P
), moving southwards offshore of the northwest of the 

Iberian Peninsula; and a warmer subtropical variety (ENACW
T
), moving north-eastwards towards 

the Iberian Peninsula as a salt wedge between Azores and Portugal (Barbero et al., 2010). 

ENACW
P
 forms between the Subpolar and Subtropical Gyres (40–50ºN) (McCartney and Talley, 

1982; Ríos et al., 1992), presenting θ  lower than 12.2ºC (Fraga et al., 1982; Harvey, 1982; Fiúza, 

1984; Pollard et al., 1996). ENACW
T
 is formed at the northern margin of the Azores Current 

(Pollard and Pu, 1985; Ríos et al., 1992), being characterized by higher θ  (>13ºC) than the 

ENACW
P
. There is a zone of permanent superficial convergence between both water varieties 

within the latitudinal range 43º –44ºN (Fraga et al., 1982; Ríos et al., 1992). 

 

Figure 8.- Potential temperature (°C) vs. salinity for the Atlantic Ocean. Colours indicate the latitude range. Data 

are from the World Ocean Circulation Experiment (1988–1997). Contours are potential density referenced to 0 

dbar. Acronyms indicate the principal water masses: Antarctic Bottom Water (AABW), Antarctic Intermediate 

Water (AAIW), Denmark Strait Overflow Water (DSOW), Iceland–Scotland Overflow Water (ISOW), Labrador 

Sea Water (LSW), Mediterranean Water (MW), North Atlantic Deep Water (NADW), North East Atlantic Deep 

Water (NEADW) and Subtropical Underwater (STUW). Source: Talley et al. (2011). 

Part of the Central Waters carried by the NAC recirculates in the West European Basin, 

and part of them spreads towards the Iceland Basin leading to the formation of Subpolar Mode 
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Water (SPMW) (McCartney and Talley, 1982; Tsuchiya et al., 1992; van Aken and Becker, 1996; 

Brambilla and Talley, 2008). The core of this water mass is vertically homogenized in a layer of 

low stability between the seasonal and permanent pycnoclines (van Aken and Becker, 1996). Due 

to its convective origin, SPMW can be recognised by its lower potential vorticity (van Aken and 

de Boer, 1995), with the lowest vorticity values on the north-western part of the Reykjanes Ridge 

(Brambilla and Talley, 2008). The hydrographic properties of SPMW vary spatially due to air–sea 

interaction processes, presenting the highest θ  and S on the Rockall Channel (9–11°C and 35.30–

35.50, respectively). In the Iceland Basin it is cooler, and is distributed over a wider range (5–9°C 

and 34.95–35.25), while when it reaches the Norwegian Sea near the Faroes Islands, the range of 

its parameters is more limited (7–9°C and 35.15–35.30) (van Aken and Becker, 1996). 

The last stage of the transformation of SPMW in the Subpolar Gyre is the Labrador Sea 

Water (LSW) (Talley and McCartney, 1982). It forms in the Labrador Sea by extreme winter heat 

loss combined with the Subpolar Gyre circulation (Álvarez et al., 2004; Read, 2000; Yashayaev et 

al., 2008), being the coldest and most dense modal water in the Atlantic Ocean (Yashayaev et al., 

2007a). LSW can be traced by its low potential vorticity, relatively low S and high O
2
 content (> 

275 µmol·kg
–1

, the largest of all the world's oceans) (McCartney and Talley, 1982; Tsuchiya et al., 

1992; van Aken and de Boer, 1995). Once formed, LSW is advected at intermediate depths in 

three main directions: northwards to the Irminger Sea; southwards to the DWBC; and south-

eastwards across the MAR south of the CGFZ and thence to the Iceland Basin and the Rockall 

Channel (Talley and McCartney, 1982; Read, 2000; Álvarez et al., 2004). LSW production is 

strongly affected by the phase and persistence of the North Atlantic Oscillation (NAO) (Dickson 

et al., 1996; Yashayaev et al., 2008), showing marked inter-annual and inter-decadal changes in its 

thickness and thermodynamic properties (Yashayaev et al., 2008). During the high NAO index 

period of 1987–1994, characterized by cold and stormy winters, a large volume of a LSW variety, 

known as classical LSW (cLSW), was formed (Lazier et al., 2002; Yashayaev, 2007). cLSW is the 

coldest, densest and deepest LSW since 1930s (Yashayaev et al., 2008). Then the NAO index 

shifted to very negative values and the formation of cLSW ceased. At the beginning of 2000 the 

NAO index fluctuated between slightly positive and slightly negative values, but the atmospheric 

forcing at the beginning of this period (1999–2000) was strong enough to trigger again the deep 

winter convection in the Labrador Sea, forming a less dense and shallower LSW variety, called 

upper LSW (uLSW) (Yashayaev, 2007; Yashayaev et al., 2007a). 

The Subarctic Intermediate Water (SAIW) originates in the western boundary of the 

Subpolar Gyre (Arhan, 1990). It presents θ  between 4 and 7°C and S below 34.9 (Bubnov, 1968), 

both characteristics reflecting its origin from Arctic waters (Read, 2000). Concretely, it is the 

result of the mixing between the warm and salty waters of the NAC with the cold and low-salinity 

waters of the Labrador Current (Iselin, 1936; Read, 2000). After its formation, SAIW subducts 

into the permanent thermocline and spreads southwards (Arhan, 1990), northwest of the Azores 

Plateau (25°W; Worthington (1976)), but it is also found south of the NAC as far as east of 

20°W, between 49 and 53°N (Harvey, 1982; Pollard et al., 1996). The thermohaline properties of 

SAIW vary due to its spreading and subduction in a region characterized by a complex circulation, 

with horizontal and vertical mixing, recirculation processes and mesoscale variability, among other 

processes (Bubnov, 1968; Arhan, 1990). 

Coming from the Arctic Ocean and the Nordic Seas, the Denmark Strait Overflow Water 

(DSOW) and the Iceland–Scotland Overflow Water (ISOW) are dense enough to reach the 
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bottom of the Atlantic Ocean. Both overflows are complex mixtures of several water masses. 

ISOW is formed when the Norwegian Sea waters overflow and entrain the overlying warm saline 

Atlantic waters (SPMW and LSW) (van Aken and de Boer, 1995; Dickson et al., 2002; Fogelqvist 

et al., 2003). After crossing the Iceland–Scotland sill, ISOW is advected westwards, flowing 

baroclinically following the topography (van Aken and de Boer, 1995). Part of it crosses the MAR 

by the CGFZ (Leffanue and Tomczak, 2004), and flows either southwards or northwards. In its 

norward flow, it enters the Irminger Sea, where it mixes with DSOW (Smethie and Fine, 2001). 

As for DSOW, it is a well-ventilated young water that flows through the Denmark Strait into the 

Atlantic Ocean. Due to the fact that the Denmark Strait is a dynamically active area with short -

term variability (e.g., Macrander et al., 2005) that hampers to trace the DSOW sources (Tanhua 

et al., 2008), the DSOW origin is still matter of discussion. On the one hand, it is assumed that 

the main formation area of this water mass is the EGC, but the source water could be either the 

Arctic Atlantic Water (Mauritzen, 1996), or a mixing of the Arctic Intermediate Water (AIW) 

and the recirculated Atlantic Water (Strass et al., 1993). On the other hand, some authors believe 

that the main precursor of DSOW is the water from the Iceland Basin (Swift and Aagaard, 1981; 

Smethie and Swift, 1989; Rudels et al., 2002; Jonsson and Valdimarsson, 2004), with either large 

proportions of AIW (Swift et al., 1980; Rudels et al., 1999) or of the densest fraction of the 

overflow waters of the Greenland Sea (Smethie and Swift, 1989). According to Rudels et al. 

(2003), the wind forcing is the variable that controls which is the source area, the Iceland Basin or 

the EGC, on timescales of months to years. While on longer timescales, the responsible for this 

control is the convection in the Greenland Sea (Köhl, 2010). In addition, some authors have 

reported dense Greenland shelf water cascading down to the DSOW layer in the Irminger Sea 

(Olsson et al., 2005; Tanhua et al., 2005, 2008; Falina et al., 2012). The characteristics of the 

cascading waters are very similar to those of the Polar Intermediate Water (PIW) (Tanhua et al., 

2005). 

The different entrainments that suffers ISOW along its journey through the Iceland Basin, 

lead to the formation of the North East Atlantic Deep Water (NEADW) (van Aken, 2000b). 

NEADW recirculates in the Iberian Basin and mixes with the surrounding waters, including the 

bottom waters coming from the Southern Ocean (Antarctic Bottom Water, AABW; also named 

Lower Deep Water, LDW) (van Aken and Becker, 1996). The θ /S properties of NEADW below 

2500 m depth in this basin can be approximated as a line (Saunders, 1986; Mantyla, 1994) whose 

end points represent the upper (NEADW
U
) and lower (NEADW

L
) varieties of NEADW. 

LSW together with the overflows (DSOW and ISOW) ultimately flow southwards in the 

DWBC and mainly compound the North Atlantic Deep Water (NADW), together with the 

modified AABW (Dickson and Brown, 1994). NADW represents the largest volume in the North 

Atlantic, whose formation, together with the formation of AABW, is perhaps the most important 

component of the global thermohaline circulation (Smethie and Fine, 2001; Lacan and Jeandel, 

2004). NADW can be detected as a maximum of S at 2500–3000 m depth (Read, 2000). Since the 

water masses that form NADW are influenced by the NAO, especially LSW, NADW could also 

vary with the NAO changes (Dickson et al., 1996, 1999; Biastoch et al., 2003). 

1.2.4.- The North Atlantic Oscillation (NAO) 

The NAO is the dominant mode of boreal winter climate variability over the North 

Atlantic sector (Walker and Bliss, 1932; Barnston and Livezey, 1987). The NAO is characterised 
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by a dipole oscillation in the North Atlantic sea-level pressure between the subpolar (Icelandic) 

low pressure and subtropical (Azores) high pressure regions (Saunders and Qian, 2002). An NAO 

index can be defined as the standardised difference in sea-level pressure between these regions: 

NAO = P
AH

 − P
IL
 

where P denotes standardised sea-level pressure anomalies at stations in the Azores High (AH) 

and the Icelandic Low (IL), respectively. Positive (negative) numerical values of the winter NAO 

index are associated with strong (weak) zonal flow between these stations (Rogers, 1984). 

The climatic impacts of changes in the phase (sign) of the winter NAO index are 

observed in winter temperature, precipitation and storminess over the whole North  Atlantic 

(Hurrell, 1995; Trigo et al., 2002). The local and teleconnected climatic impacts of these NAO 

variations are shown in Figure 9. During periods of positive NAO index the pressure centres are 

more intense, thus resulting in stronger and more frequent storms. In contrast, during periods of 

negative NAO index both pressure centres are weaker and storms are less frequent. 

Since the phase of the NAO index affects the wind field, atmospheric and oceanic effects 

associated with the winter NAO index are observed over a wide area surrounding the North 

Atlantic. Large-scale changes in the atmospheric forcing associated with multiyear changes in the 

NAO affect the ocean circulation and air–sea exchange of heat and freshwater. This results in 

changes in the upper-ocean hydrographic conditions and deep convection intensity in the 

Subpolar North Atlantic and Nordic Seas and therefore affects the properties of the intermediate 

and deep waters formed in the region (Dickson et al., 1996; Bersch, 2002; Sarafanov, 2009). 

During periods of positive NAO index, the north-eastward flow of the NAC intensifies, thus also 

intensifying the Subpolar Gyre (Flatau et al., 2003). The intensification of the Subpolar Gyre is 

manifested through its expansion, resulting in the strengthening and eastward displacement of the 

Subpolar Front and, in consequence, an intensification of the whole winter convection 

(Sarafanov, 2009). Sarafanov (2009) found that the changes in the NAO-related atmospheric 

forcing may account for up to two-thirds of the thermohaline changes at intermediate and deep 

levels in the Subpolar North Atlantic on a decadal timescale. Two factors dominate the link 

between the NAO and the decadal changes in θ  and S of the intermediate and deep-water in the 

region: (i) intensity of convection in the Labrador Sea controlling injection of relatively cold 

freshwater into the intermediate layer, and (ii) zonal extension of the Subpolar Gyre that regulates 

the relative contribution of cold fresh subpolar water and warm saline subtropical water to the 

formation of deep waters. 
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Figure 9.- Scheme showing the regional climatic impacts of the positive (left) and negative (right) phases of North 

Atlantic Oscillation (NAO). Surfaces mark sea surface temperatures and sea ice extension, arrows show the flow 

systems in ocean, atmosphere and rivers, blue and red lines indicate near-surface sea-level pressures and white 

rectangles describe characteristic climate conditions or important processes. Source: Fletcher (2005). 
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1.3.-  Chemical Perspective: The seawater CO
2
 system 

The global carbon system involves reactions within and exchange among the major global 

reservoirs: atmosphere, ocean and land (Figure 2). Exchange between each reservoir is facilitated 

by CO
2
 gas exchange, flow of total dissolved inorganic carbon (C

T
) in rivers and burial of 

inorganic forms, such as calcium carbonate (CaCO
3
) (Emerson and Hedges, 2008). Continuous 

interaction between the atmosphere and ocean allows CO
2
 to be readily absorbed into the surface 

ocean. The CO
2
 buffering property of the marine carbon reservoir provides a large uptake capacity 

for additional CO
2
, that is, C

ANT
. The complex internal dynamics of the ocean is the major 

determining factor for the atmospheric CO
2
 content over timescales of centuries and longer. 

Therefore even small changes in the natural components of the marine carbon cycle bear the 

potential to significantly feedback to the Earth’s climate system. 

1.3.1.- The role of the CO
2
 in the ocean 

The absorption of CO
2
 by seawater and the subsequent equilibrium reactions within this 

medium give rise to a complex chemical system, often referred to as the seawater CO
2
 system or 

marine carbonate system. The seawater CO
2
 system is responsible for about 95% of the acid–base 

buffering capacity of seawater and hence essentially controls the pH of ocean waters. This system 

has a major impact on key processes such as the precipitation and dissolution of CaCO
3
 in the 

ocean, predominantly in the form of particulate inorganic carbon. This complex chemical system 

is influenced by physical, chemical, biological and geological processes in the ocean, such as: 

- The solubility pump or physical pump, which is responsible for the exchange of CO
2
 in the 

ocean–atmosphere interface. It is controlled by thermodynamic and kinetic processes, and 

results from the combined action of the solubility of CO
2
 in seawater and the ocean buffer 

capacity (Zeebe and Wolf-Gladrow, 2001). The solubility pump is dependent on the 

MOC (Denman et al., 2007) through the enhancement of the CO
2
 solubility in high 

latitude. 

- The biological pump, which is constituted by processes such as photosynthesis, respiration 

and/or remineralisation of organic matter. 

- The carbonate pump, which is driven by the formation of carbonate particles through 

biological activity and its subsequent dissolution. 

The solubility of CO
2
 is the responsible of the physical pump. When CO

2
 dissolves in 

seawater to produce aqueous CO
2
 (CO

2
(aq)) it also forms carbonic acid (H

2
CO

3
), which rapidly 

dissociates into bicarbonate ions (HCO
3

–
), which in turn can also dissociate into carbonate ions 

(CO
3

2–
): 

CO2(g)
k0
⇔CO2(aq)

CO2(aq) +H2O ⇔H2CO3

H2CO3
k1
∗

⇔ H+ +HCO3
−

HCO3
−
k2
∗

⇔ H+ + CO3
2−
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where k
0
 is the temperature and salinity-dependent solubility coefficient of CO

2
 in seawater 

(Weiss, 1974) and k
1

*
 and k

2

*
 are the temperature and salinity-dependent first and second 

dissociation constants of carbonic acid, respectively. Both dissociation reactions produce hydrogen 

ions (H
+
) and therefore lower the pH of the solution. These reactions buffer the pH of surface 

seawater. Note that there is so little carbon in the form of H
2
CO

3
 at any one moment in time, that 

the concentrations of CO
2
(aq) and H

2
CO

3
 are usually combined as [CO

2
]. The seawater CO

2
 

system is thus comprised of four inorganic carbon species (CO
2
, H

2
CO

3
, HCO

3

–
 and CO

3

2–
) which 

are connected through chemical equilibria that have been thermodynamically characterized to 

rather high accuracy (e.g., refs in Dickson et al., 2007). 

The biological pump consists on the transformation in the ocean surface of dissolved 

inorganic carbon into organic matter, whose deposition creates a flow of organic carbon to the 

deep ocean. Phytoplankton, the base of the oceanic food webs, absorbs dissolved CO
2
 to synthesize 

organic matter. During all the steps of the food webs, the organic matter is transported to deeper 

layers of the oceans by sedimentation, being oxidized and decomposed. Part of this organic 

material reaches the seafloor, joining seabed sediments. 

The carbonate pump, on the contrary, releases CO
2
 in the ocean surface layer through the 

synthesis of CaCO
3
 skeletons carried out by some marine organisms such as coccolithophores and 

foraminifera. This CaCO
3
, found mainly as calcite or aragonite, precipitates during photosynthesis 

and sinks to the bottom. During the calcification process the total alkalinity (A
T
) decreases as 

CO
3

2–
 is consumed, while the CaCO

3
 dissolution increases A

T
: 

Ca2+ + CO3
2−

ksp
⇔ CaCO3 

where k
sp
 is the equilibrium constant defined as the solubility product (k

sp
 = [Ca

2+
]

sat
 · [CO

3

2–
]

sat
, 

where `sat´ means saturation). The fraction that remains undissolved can be determined by the 

saturation state (Ω) of seawater: 

Ω =
[Ca2+]in situ[CO3

2−]in situ
ksp

 

The Ω expression reflects the equilibrium point between the tendency of ions dissolved in 

seawater to attach to the crystal surface (precipitation) and ions detaching from the surface to 

enter solution (dissolution). Since in the open ocean [Ca
2+

] variations are rather small and closely 

related to variations in S, [CO
3

2–
] mainly determines Ω: 

Ω =
[CO3

2−]in situ
[CO3

2−]sat
 

Supersaturated (Ω > 1) conditions, with an excess of [CO
3

2–
], promote inorganic CaCO

3
 

precipitation, and undersaturated (Ω < 1) conditions promote inorganic CaCO
3
 dissolution. [CO

3

2–

] strongly depends on pressure, temperature, S and the C
T
:A

T
 ratio. All else being equal, [CO

3

2–
]

sat
 

decreases with increasing pressure, which leads to a transition of CaCO
3
 rich (Ω > 1) to CaCO

3
 

depleted (Ω < 1) waters with depth. The particular crystal structure form of CaCO
3
 is also 

important, being the aragonite form more soluble than the calcite form. 
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1.3.1.1.- Variables of the seawater CO
2
 system 

The seawater CO
2
 system or seawater carbonate system can be described by six 

fundamental parameters in thermodynamic equilibrium: C
T
, A

T
, [CO

2
], [HCO

3

−
], [CO

3

2−
] and [H

+
] 

(determined by the pH). The dissociation of water, the Henry’s law, the first and second 

dissociation constants of H
2
CO

3
 and the definitions of C

T
 and A

T
 (explained below) result in a 

system of four equations with six unknowns. Thus, the system can be solved by knowing the values 

of two parameters. Of all the carbonate species and parameters of the seawater CO
2
 system, only 

the partial pressure of CO
2
 (pCO

2
), pH, C

T 
and A

T
 can be determined analytically (Dickson et al., 

2007). However, if any two parameters and total dissolved boron are known, all the parameters 

(pCO
2
, [CO

2
], [HCO

3

−
], [CO

3

2−
], pH, C

T 
and A

T
) can be calculated for a given temperature, S and 

pressure (Zeebe and Wolf-Gladrow, 2001). 

The CO
2
 transfer from the atmosphere to the ocean surface occurs by molecular diffusion 

through the air–water interface and is directed by the differences in pCO
2
 between the two fluids. 

In thermodynamic equilibrium, the CO
2
 concentration in seawater ([CO

2
]) is related to the 

gaseous CO
2
 in the atmosphere via the Henry’s law: 

[CO
2
] = k

0
 · pCO

2
 

where k
0
 is the temperature and salinity-dependent solubility coefficient of CO

2
 in seawater 

(Weiss, 1974). The pCO
2
 assigned to a seawater sample refers to pCO

2
 in the gas phase that is in 

equilibrium with that seawater. pCO
2
 decreases with increasing temperature, since CO

2
 solubility 

decreases. In fact, pCO
2
 in the gas phase in equilibrium with seawater doubles with every 16ºC 

increase in temperature (Takahashi et al., 2002). 

The pH scale describes how acidic or basic a substance is, which is determined by the 

concentration of H
+
 (-log

10
[H

+
]). The principal weak acids and bases that can exchange H

+
 in 

seawater and are thus responsible for controlling its pH are inorganic carbon species and, to a 

lesser extent, borate (B(OH)
4

–
). Both pH and pCO

2
 are dependent on temperature, S and pressure 

(Dickson et al., 2007). 

Collectively, CO
2
, HCO

3

–
 and CO

3

2–
 are known as C

T
, which expression keeps track of the 

carbon: 

C
T
 = [CO

2
] + [HCO

3

–
] + [CO

3

2–
] 

Within the ocean, C
T
 is distributed according to both the solubility pump and the 

biological pump (Raven and Falkowski, 1999; Emerson and Hedges, 2008). The distribution of C
T
 

between the different species varies with seawater pH (Figure 10). Typically, the modern ocean 

surface waters have a relative contribution of each of the carbon species of 90:9:1 for HCO
3

–
, CO

3

2–
 

and CO
2
, respectively. Therefore, the CO

2
 involved in the air–sea exchange is a minor part of C

T
. 

A
T
 is related to the charge balance in seawater, and reflects the acid binding capacity of 

seawater. In a simple way, the alkalinity is the ability of the water to neutralize acids or to accept 

protons. The accepted alkalinity definition, proposed by Dickson (1981), is “the number of moles of 

H
+
 ions equivalent to the excess of proton acceptors (bases formed from weak acids with a dissociation 

constant K ≤ 10
–4.5

 at 25°C and zero ionic strength) over proton donors (acids with K > 10
–4.5

) in one 

kilogram of sample”. The expression of A
T
 in seawater following this definition is: 
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A
T
 = [HCO

3

–
] + 2[CO

3

2–
] + [B(OH)

4

–
] + [OH

–
] + [HPO

4

2–
] + 2[PO

4

3–
] + [SiO(OH)

3

–
] + [HS

–
] + 2[S

2–
] 

+ [NH
3
] – [H

+
]

F
 – [HSO

4

–
] – [HF] – [H

3
PO

4
] 

where the carbonate species define about 96% of the seawater A
T
. Both C

T
 and A

T
 are 

conservative quantities, i.e., their concentrations measured in gravimetric units (µmol·kg
–1

) are 

unaffected by changes in temperature or pressure, for instance, and they obey the linear mixing 

law. Therefore, they are the preferred tracer variables in numerical models of the ocean’s carbon 

cycle. 

 

Figure 10.- Bjerrum plot showing the relative proportions of [HCO
3

–
], [CO

3

2–
] and [CO

2
] to the total dissolved 

inorganic carbon in seawater at different salinities (S), temperatures (T), and pressures (P) (heavy curves are for S 

= 35, T = 25ºC, P = 0 dbar; narrow curves are S = 35, T = 0°C, P = 0 dbar; dashed curves are S = 35, T = 0°C, P 

= 3000 dbar). The shaded region reflects the range of modern ocean surface (annual average), with the hashed 

region reflecting the corresponding projected year 2100 range taken from the global ocean geochemistry model 

projections of Turley et al. (2010). Modified from Barker and Ridgwell (2012). 

Physical and biogeochemical processes affect the variables of the seawater CO
2
 system. 

The invasion of CO
2
 from (or release to) the atmosphere decreases (increases) pH and increases 

(decreases) C
T
, while A

T
 stays constant because the charge balance is not affected (Figure 11). 

CaCO
3
 precipitation (dissolution) decreases (increases) C

T
 and A

T
 in a ratio of 1:2, which results 

in higher (lower) CO
2
 levels and lower (higher) pH. Photosynthesis (respiration) reduces 

(increases) C
T
 and slightly increases (decreases) A

T
 due to nutrient release (uptake). Temperature 

and S also affect the seawater CO
2
 system variables, particularly in surface seawaters, since they 

influence the coefficient of solubility and the dissociation constants. For instance, CO
2
 is less 

soluble at higher temperatures, leading to outgassing to the atmosphere and hence to a local 

decrease of C
T
. Therefore, warm regions tend to have higher [CO

3

2–
] and be more saturated with 

respect to carbonate minerals than colder regions. S changes are also associated with the process of 

evaporation (precipitation) causing increases (reductions) of the concentration of C
T
 and A

T
 in a 

1:1 ratio. Pressure also influences CO
2
 solubility, increasing it when increasing pressure. For all 
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these reasons, the distribution of the variables of the seawater CO
2
 system in the ocean presents 

vertical and latitudinal gradients as well as temporal changes. 

The CO
2
 system is then the natural buffer of the seawater pH. The seawater pH buffer is 

mainly a result of the capacity of HCO
3

–
 and CO

3

2–
 ions to accept protons. One specific buffer 

factor, the so-called Revelle factor (Revelle and Suess, 1957), is important in the context of the 

oceanic uptake of CO
2
. The Revelle factor is given by the ratio of the relative change of [CO

2
] to 

the relative change of C
T
: 

Revelle factor =
∆[CO2] [CO2]⁄

∆CT CT⁄
 

Typical Revelle factor values in the ocean are between 8 and 15 (Figure 12), depending 

mainly on changes in pCO
2
 and on the ratio of C

T
 to A

T
. These Revelle factor values mean that 

upon an 1% increase of C
T
, the surface ocean [CO

2
] would increase by 8% to 15%, or what is the 

same, when the ocean takes up CO
2
, the relative increase in C

T
 is approximately 1/10 of the 

relative increase in [CO
2
]. A high Revelle factor indicates that, for a given atmospheric CO

2
 

perturbation, the oceanic equilibrium concentration of CO
2
 will be lower than that for low-

Revelle factor waters, i.e., the lower Revelle factor, the larger the buffer capacity of seawater. The 

current Revelle factors are about one unit higher than they were in the preindustrial ocean 

(Sabine et al., 2004). An underappreciated consequence of ocean carbonate chemistry is that the 

fractional uptake of CO
2
 (i.e., the amount of CO

2
 taken up per amount of CO

2
 emitted) will 

decrease significantly under high-pCO
2
 scenarios, since seawater CO

2
 chemistry leads to stronger 

rises in pCO
2
 for a given addition of CO

2
 when C

T
 is already high. 

 

Figure 11.- Effect of various processes on total dissolved inorganic carbon (C
T
) and total alkalinity (A

T
) at 1 atm, 

15ºC and salinity of 35. Solid lines indicate levels of constant dissolved CO
2
 (in µmol·kg

–1
) and dashed lines indicate 

levels of constant pH as a function of C
T
 and A

T
. Modified from Zeebe and Wolf-Gladrow (2001). 
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Figure 12.- The geographical distribution of the Revelle factor in ocean surface waters in 1994, averaged for the 

upper 50 m of the water column. Source: Sabine et al. (2004). 

1.3.2.- Ocean Acidification 

The exchange of CO
2
 at the air–sea interface is relatively fast, taking place on timescales 

from months to a year so that, on average, the concentration of CO
2
 in surface seawater remains 

approximately at equilibrium with the atmosphere. As atmospheric CO
2
 increases due to 

anthropogenic emissions, the CO
2
 dissolved in surface seawater increases proportionally. The 

uptake of the anthropogenic “excess” of CO
2
 by the global ocean causes shifts in the balance of the 

seawater CO
2
 system, which affects all species and all but one measurable parameter such that the 

concentration of CO
2
, HCO

3

–
, H

+
, C

T
, and pCO

2
 increases, CO

3

2–
 and pH decreases while A

T
 

remains unchanged. All these changes in seawater acid–base and inorganic carbon chemistry are 

termed ocean acidification (Feely et al., 2009). 

The seawater CO
2
 system is the natural buffer of the seawater pH. When CO

2
 dissolves in 

seawater it does not fully dissociate into CO
3

2–
 and the number of H

+
 produced (and the drop in 

pH) is therefore smaller than expected. Thanks to this buffering effect the ocean acidification is 

much smaller than for an un-buffered system. All else being equal, as more CO
2
 is added to 

seawater the pH will slowly decrease and the balance between the three carbonate species will 
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change, with [CO
2
] and [HCO

3

–
] increasing and [CO

3

2–
] decreasing (Figure 10). The ability of 

seawater to buffer changes in its pH as CO
2
 is added depends on [CO

3

2–
]. As more CO

2
 is added 

and CO
3

2–
 is progressively consumed, the buffering capacity of seawater will decrease. This 

produces an increase in the proportion of CO
2
 that remains as CO

2
(aq) as more CO

2
 is added, an 

effect quantified by the Revelle Factor (Revelle and Suess (1957); see Section 1.3.1.1.). The 

proportion of C
T
 present as CO

2
 is also affected by temperature (Figure 10). As the ocean warms, 

less C
T
 will be partitioned into the form of CO

2
 (and more as CO

3

2–
), hence enhancing the 

buffering and providing a negative feedback on rising atmospheric CO
2
. But the warming of the 

ocean surface decreases the solubility of the CO
2
 gas, which greatly outweighs the negative 

feedback described above. This means that as the ocean surface warms, even more of the emitted 

CO
2
 will remain in the atmosphere. 

Although acidification occurs in the world ocean, it presents marked regional differences 

due to the different processes that influence the seawater CO
2
 system. For example, the impacts of 

ocean acidification tend to be stronger in the high latitude oceans due their higher Revelle factors 

in combination with their colder surface temperatures (Orr et al., 2005; McNeil and Matear, 

2008). In fact, the waters north of Iceland are acidifying at a rate of 5% per decade (Olafsson et 

al., 2009), whereas the waters from the western North Pacific Ocean (south of Japan) acidify at a 

rate of 3% per decade (Midorikawa et al., 2010). Moreover, while the CO
2
 concentration in the 

surface ocean tracks the increasing values in the atmosphere, the CO
2
 penetration into deep water 

depends on the slow vertical mixing of the water column and the transport of water masses. About 

half of the C
ANT

 is found in the upper 400 m, while the other half penetrates to deeper layers of the 

ocean (Feely et al., 2004). However, in some regions where the vertical movement is relatively 

fast, i.e., in regions of water mass formation such as the North Atlantic, the timescale for deep 

penetration of C
ANT

 is on the order of decades instead of centuries (Sabine et al., 2004), thus being 

faster exposed to the acidification effects. 

Recent studies show that the current uptake of CO
2
 by the oceans and subsequent 

acidification is about a hundred times faster than during the last Ice Age (20,000 years ago) (Feely 

et al., 2004; Raven et al., 2005). In fact, according to models, the average pH of ocean surface 

waters has decreased by about 0.1 units (equivalent to ~30% increase in [H
+
]) since the 

preindustrial era (Orr et al., 2005). Continuing emissions into the future may drive an additional 

0.3–0.4 drop by the end of the century, even under optimistic scenarios (Caldeira and Wickett, 

2005; Orr et al., 2005) (Figure 13). This projected decline in seawater pH might be three-times 

larger than the observed glacial–interglacial variability in seawater pH, and will probably occur 

~100-times faster than during glacial terminations, when globally averaged surface seawater pH 

changed fastest over the last two million years (Pelejero et al., 2010). This rate of decrease far 

exceeds the regulation capability of natural Earth system feedbacks to restore the system to pre-

industrial conditions, suggesting that the perturbation in ocean chemistry from the release of C
ANT

 

will take up to a million years to complete (Archer, 2005; Ridgwell and Zeebe, 2005). It also 

highlights the overwhelming challenge that faces the biology of the ocean in terms of adapting to 

changes which are several orders of magnitude greater than any seen over the past several million 

years (Hoegh-Guldberg et al., 2007). 

The pH decrease results in a readjustment of all minor acid–base species, in addition to 

inorganic carbon and borate. These include a myriad of trace organic compounds, inorganic 

species such as phosphate and ammonium, and trace metals bound to inorganic or organic 
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compounds. The effect of pH on these chemical species is of interest because several are important 

nutrients and the chemical forms affect bioavailability. Therefore, there is growing concern about 

how ocean acidification may impact marine organisms at a range of levels, from molecular to 

physiological and developmental processes, and competitive interactions among organisms to food 

web dynamics and hence global biogeochemical cycles, and climate. However, the better studied, 

and potentially more serious, implication of ocean acidification on marine life is that affecting the 

calcifying marine organisms, such as coccolithophores, foraminifera and corals. Those organisms 

produce CaCO
3
 skeletons that can dissolve as ocean acidification proceeds. While modern surface 

ocean waters (where the majority of carbonate-secreting organisms live) are generally 

supersaturated (Ω > 1), there are regions of the ocean surface which are already close to 

undersaturation (Figure 14). The area covered by undersaturated waters is increasing due to 

shoaling of the CaCO
3
 saturation horizon (Ω = 1) by around 1 m·yr

–1
 caused by ocean acidification 

(Turley et al., 2010), ultimately reaching the surface in certain regions. High latitude surface 

waters will be some of the first to become undersaturated, later this century (Orr et al., 2005). In 

addition, because CaCO
3
 saturation decreases with increasing pressure, organisms living at depth 

in areas with fast CO
2
 uptake will on average be exposed to undersaturated waters before surface 

dwelling organisms, a process which is predicted to start to occur by 2080 (Guinotte et al., 2006). 

 

Figure 13.- Global ocean surface average of atmospheric partial pressure of CO
2
 (pCO

2
) (left) and pH at Seawater 

Scale (pH
SWS

) (right). Source: Turley et al. (2010). 

1.3.3.- Anthropogenic Carbon and Seawater 

With the onset of the Industrial Revolution in the eighteenth century, humanity has 

released large amounts of CO
2
 into the atmosphere (C

ANT
), resulting in a progressive increase of 

the atmospheric CO
2
 levels. The global ocean has absorbed ~30% of the C

ANT
 emitted to the 

atmosphere between 1750 and 2013 (DeVries, 2014; Le Quéré et al., 2014), thus minimizing the 

GHG effect, and reducing potential heating by emissions. The prediction of the amount of C
ANT

 

that can be absorbed by the ocean needs the determination of the oceanic uptake of C
ANT

 and the 

net air–sea CO
2
 fluxes at regional and global scales. Quantifying the uptake and storage of C

ANT
 in 

the interior ocean requires a distinction between the natural and anthropogenic contributions to 

changes in C
T
 over time. But estimating the storage of C

ANT
 in the ocean is a difficult task for a 

variety of reasons. First, C
ANT

 is not a directly measurable quantity, since it is not distinguishable 

from natural CO
2
 (except for its isotopic signature); it has to be inferred using indirect means. 

Second, the C
ANT

 signal in the ocean is only a small perturbation (of the order of ~3%) on the 
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natural or preindustrial background distribution of carbon. A further complication is that carbon 

in the ocean participates in complex in situ biogeochemical processes. Lastly, the C
ANT

 distribution 

in the ocean is rather heterogeneous. As a consequence, unlike the atmosphere, which is relatively 

well mixed and where observations (both direct and from ice cores) extend back many thousands 

of years, the ocean is much more challenging in this regard. Reason why much effort has been 

devoted to study the accumulation, spatiotemporal distribution and transport of C
ANT

 in the ocean. 

 

Figure 14.- The climatological mean distribution of aragonite saturation level (omega) in the global ocean surface 

water in August for the reference year 2005. The pink curves indicate the positions of the mean equatorward front 

of seasonal ice fields. The “+” symbol indicates the box areas affected by the El Niño events, and no value is given. 

The boxes with black dots indicate transition zones between oceanographic regimes (such as subtropical to subpolar 

regimes), where the omega values are highly variable. These values are interpolated from the adjacent box values. 

Note that the Arctic Ocean is slightly undersaturated (omega < 1), whereas the seasonal ice zone in the Southern 

Ocean is 10% to 20% above the saturation. Source: Takahashi et al. (2014). 

Several methods have therefore been developed to estimate C
ANT

. Fundamentally, these 

calculations are approached either by (1) back-calculation methods based on measurements of the 

seawater CO
2
 system, together with biogeochemical variables such as O

2
 and nutrients, or (2) 

based on measurements of transient tracers that provide information about the ventilation 

characteristics of the interior ocean. All observationally based C
ANT

 methodologies to date rely on 

the assumption that C
ANT

 penetrates the ocean as a passive, inert tracer responding to an evolving 

history in surface waters. 

Back-calculation methods attempt to separate the small anthropogenic perturbation from 

the large background distribution of carbon based on the premise that the C
ANT

 concentration can 

be isolated from measured C
T
 values (C

m
) by subtracting the contribution of the biological pumps 

(ΔC
bio

) and the physical processes involving the preindustrial end-members and the effects of the 

solubility pump (C
phys

): 

C
ANT

 = C
m
 − ΔC

bio
 − C

phys
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This general approach is based on the assumption that ocean circulation and the 

biological pump have operated in steady state since preindustrial times. These approaches correct 

for the biological term using changes in A
T
 to estimate the CaCO

3
 effect and apparent oxygen 

utilization (AOU; the difference between the O
2
 at saturation and the measured O

2
 concentration 

(Ito et al., 2004)) together with a Redfield ratio to correct for changes due to organic matter 

decomposition. Back-calculation methods include the ΔC* method (Gruber et al., 1996), and 

variations thereof such as the φC
T

0
 method (Vázquez-Rodríguez et al., 2009a) and the TrOCA 

(tracer combining O
2
, C

T
 and A

T
) method (Touratier et al., 2007). 

The ΔC* and φC
T

0
 methods are mainly based on the principles of the back-calculation C

T
° 

method established by Brewer (1978) and Chen and Millero (1979). The main difference between 

C
T
° and the other two techniques is in how the C

phys
 term is handled. The first fundamental 

difference between them is how they approach the changes in the properties of the subsurface 

waters. In the C
T
° method the changes of the properties of the subsurface layer are referenced to 

the mean deep-water values. In the ΔC* approach the water column is divided into isopycnal 

intervals and the changes of the properties of the subsurface layer are referenced back to the 

outcrop region for each interval. In the φC
T

0
 method the data of the sub-surface layer (100–200 m) 

is used as reference, thus avoiding biases due to the seasonal variability of surface properties. The 

ΔC* and φC
T

0
 techniques also take a different approach to estimating the C

phys
. Rather than 

attempting to determine a preformed C
T
 (𝐶𝑇

0) concentration based on an empirical relationship 

between temperature and C
T
, as the C

T
° method does, the C

phys
 term is divided into two terms: (i) 

the amount of C
T
 that the waters would have in equilibrium with a preindustrial atmosphere (C

eq
) 

and (ii) a term that corrects for the fact that, because CO
2
 gas exchange is slow relative to the 

surface water biological and physical processes that can change CO
2
, surface waters are rarely in 

complete equilibrium with the atmosphere (C
diseq

). 

C
ANT

 = C
m
 − ΔC

bio
 − C

phys
− C

eq
 − C

diseq
 = C* − C

diseq
 

where C*
 
= C

m
 − ΔC

bio
 − C

phys
− C

eq
, as defined by Gruber et al. (1996). 

The disequilibrium term is by far the largest fraction of the preformed concentration and 

can be calculated using the equilibrium inorganic carbon constants, preformed A
T
, and the 

preindustrial atmospheric CO
2
 concentration. The main difference between the ΔC* and φC

T

0
 

methods lies in the treatment of A
T
 and the disequilibrium term. While the ΔC* method assumes 

A
T
 and the disequilibrium to be constant, the φC

T

0
 method takes into account the temporal 

variability of both terms. 

The TrOCA method, which means Tracer combining Oxygen, C
T
 and A

T
, estimates C

ANT
 

based on one equation valid for the world ocean: 

CANT =
TrOCA − TrOCA0

a
 

where TrOCA is a tracer which temporal variation is directly related to the C
ANT

 accumulation, 

TrOCA
0
 is a quasi-conservative tracer similar to TrOCA, and 𝑎 is a constant, which value is 1.279 

± 7.3 · 10
–3
. The TrOCA tracer can be determined by the expression: 

TrOCA = O2 + 1.279(CT −
1

2
AT) 
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The quasi-conservative tracer TrOCA
0
 is the surface boundary condition of the artificial 

tracer TrOCA, i.e., the TrOCA value that a water mass would have at the time of its formation in 

pre-industrial atmospheric conditions. The quasi-conservative tracer is similar to those of NO and 

PO (Broecker, 1974). The TrOCA
0
 value was estimated by regressing TrOCA against θ  and A

T
: 

TrOCA0 = e
[7.511−(1.087·10−2)θ

7.81· 105

AT
2 ]

 

Equation proposed by Touratier et al. (2007) based on the study of the distributions of Δ
14
C and 

CFC-11 in the Indian Ocean. The TrOCA method assumes that (i) A
T
 is constant over time; (ii) 

the surface layers of the ocean present an O
2
 concentration equal to saturation; and (iii) the values 

of A
T
 and O

2
 are not affected by the rise in atmospheric CO

2
. 

Transient tracer-based methods treat C
ANT

 as a passive tracer with a well-known input 

function that can be calculated with the knowledge of the ocean ventilation rates. These 

approaches uses the fact that the C
ANT

 concentration at any point in the ocean interior should be 

related to the history of the C
ANT

 concentration at the surface and the spectrum of times it took 

the water to reach the interior ocean location. These methods are based on measures of other 

tracers to estimate the transport from the surface mixed layer into the ocean. However, it is 

difficult to find a tracer that behaves like CO
2
. Most of the considered tracers are non-reactive 

gases, unlike CO
2
. Moreover, many of the tracers used are post-C

ANT
 and, therefore, their 

penetration and transport to certain regions will depend much on the year of introduction. The 

most commonly used transient tracer-based approaches are the transit time distribution (TTD) 

method (e.g., Hall et al., 2002, 2004; Waugh et al., 2004) and the more complex variation thereof, 

i.e., the “Green Function method” (Khatiwala et al., 2009). The transient tracer-based methods 

are based in the radioactive transient tracers (
39
Ar, 

14
C or tritium) or in the so-called transient 

anthropogenic tracers (CFCs, SF
6
 or CCl

4
). By measuring the concentration of these tracers it is 

possible to estimate the age of the water masses and, therefore, their C
ANT

 concentration at the 

time they were formed. These methods assume that the tracer concentration in the ocean interior 

reflects the surface concentration at the time of the water mass formation. The surface history is 

estimated using the equilibrium inorganic carbon chemistry equations, temperature, the preformed 

A
T
 (estimated from S), and the atmospheric CO

2
 record. Thus, the age of a water mass is 

determined by the difference between the sampling year and the year in which the tracer’s surface 

concentration was equal to the sample concentration. Taking into account the ocean mixing 

processes, the age is determined through a probability function of transit times or TTD (e.g., Hall 

and Plumb, 1994; Beining and Roether, 1996; Delhez et al., 1999; Haine and Hall, 2002), which 

are approximated by inverse Gaussian functions, known as Green’s function, i.e., a solution to the 

advection–diffusion equation for the ocean with an impulse boundary condition at the surface of 

the ocean. Each tracer, due to their different boundary conditions or decay rates, will result in 

different ages. The approach then only requires measurements of temperature, S and a transient 

tracer if one assumes that biology is not involved, that circulation is in steady state, and that a 

single surface source region dominates the interior water so there is no spatial dependency in the 

source waters. Based on the TTD technique, Khatiwala et al. (2009) developed an inverse 

technique to apply the full Green function formalism known as “Green function method”. 

Specifically, they (i) applied a maximum entropy deconvolution technique (Tarantola, 2005) to 

constrain the Green function with multiple steady and transient tracers and thus account for the 

mixing of waters of both different ages and different end-member types and (ii) allowed the air–sea 
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disequilibrium to evolve in space and time. In order to estimate the C
ANT

 surface history, they 

impose the condition that the rate of change of inventory of C
ANT

 is equal to the instantaneous 

air–sea flux of C
ANT

. The latter flux is proportional to the change in surface disequilibrium of CO
2
 

relative to the preindustrial disequilibrium, which, in turn, is assumed to be proportional to the 

C
ANT

 perturbation in the atmosphere (Matsumoto and Gruber, 2005). Khatiwala et al. (2009) 

applied this method to gridded fields of six different tracers from the GLODAP data set (CFC-11, 

CFC-12, natural 
14

C, S, temperature, and PO
4
* (Broecker et al., 1998)) to arrive at the first data-

based estimate of the time-evolving, three-dimensional history of C
ANT

 in the ocean over the 

industrial period. 

Another methodologies estimate directly the C
ANT

 inventory. One of them is based on 

multiple linear regression (MLR) techniques (Wallace, 1995) or extended MLR (eMLR) 

techniques (Friis et al., 2005). The MLR/eMLR techniques compare the C
T
 changes from two 

hydrographic occupations along the same transect separated in time, thus allowing the assessment 

of C
T
 and C

ANT
 changes along isopycnal surfaces. These techniques take advantage of the 

exponential nature of the atmospheric C
ANT

 increase and explore the transient steady state concept 

(Gammon et al., 1982). An exponentially changing tracer will, after a certain time, reach 

transient steady state, meaning that, e.g., a depth profile of C
ANT

 will have constant shape over 

time, and the concentrations will increase proportionally to the surface layer increase. This way of 

calculating the C
ANT

 concentration has the advantage that assumptions such as the preindustrial 

air–sea disequilibrium become irrelevant, since it will cancel out in the comparison. The MLR 

method creates a predictive equation for C
T
 from the available hydrographic and chemical 

parameters, and C
ANT

 is estimated as the residual between the predicted and the observed C
T
. 

Firstly, for the earlier cruise, a mathematical relationship is derived between the measured C
T
 and 

the values of the ancillary properties, which are independent of increasing C
ANT

 and represent the 

natural processes affecting C
T
: water mass mixing, organic matter formation/remineralisation and 

CaCO
3
 formation/dissolution. The derived MLR is used to compute the residuals 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙,1

𝑀𝐿𝑅 . 

Subsequently, for the latter cruise, the MLR relationship of the first cruise is combined with the 

ancillary values of the second cruise to derive 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙,2
𝑀𝐿𝑅 . Finally, by comparison of the depth 

profiles of 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙,1
𝑀𝐿𝑅  and 𝐶𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙,2

𝑀𝐿𝑅  the apparent increase due to C
ANT

 is derived. The eMLR 

approach extends the MLR approach by creating a second predictor equation for the more recent 

cruise dataset. The eMLR is favoured for minimising the error propagation and providing a 

smoother spatial structure, eliminating the effect of water mass motion on the predictor variables. 

However, the resulting non-Gaussian residual distributions suggest that part of the real C
T
 signal 

remains in the residuals (Brown et al., 2010). As described in Brown et al. (2010), the value of an 

eMLR generated anthropogenic signal relies on the ability in the selection of the predictor 

variables. The main caveat is the necessity to assume that the ocean is in steady state, i.e., the 

relationships between the predictors and C
T
 are time invariant. For instance, C

ANT
 input causes C

T
 

change without affecting the concentration of the predictor variables. 

Although substantial differences were observed between the results obtained with the 

different methodologies, it is still very difficult to determine which method gives the best 

estimates. Vázquez-Rodríguez et al. (2009b) compared the C
ANT

 estimates for the Atlantic Ocean 

resulting from different methodologies and conclude that the C
ANT

 inventory estimates obtained 

with the φC
T

0
 method are in close agreement with those resulting from the TTD method and in 

reasonable agreement with the ΔC* estimates. Based on this, in this thesis, the C
ANT
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concentrations were estimated by the φC
T

0
 method, and contrasted with the estimated by the ΔC* 

method. 
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Chapter 2.-  Acidification and transports of water 

masses and CO
2
 in the North Atlantic: Aim 

of the PhD 

The oceans are an essential part of the Earth’s climatic system by virtue of their large 

capacity to store and transport heat. Additionally, they have an immense capacity to absorb and 

store the excess of (or anthropogenic) CO
2
 in the atmosphere derived from human activities. 

The CATARINA (CArbon Transport and Acidification Rates In the North Atlantic) 

project proposes an innovative research to study the oceanic perturbation and its consequences in 

response to the rise of the atmospheric CO
2
 due to human activities at different timescales. The 

main goals of the CATARINA project are organized in two main activities: (i) circulation in the 

North Atlantic and the anthropogenic CO
2
 (C

ANT
) uptake, and (ii) past and recent acidification 

impacts. Concretely, the main objectives are: 

- To quantify the Meridional Overturning Circulation (MOC) and water mass 

ventilation changes and their effect on the changes in the oceanic uptake of C
ANT

 and 

storage capacity. 

- To evaluate the effect of present and past atmospheric CO
2
 concentrations in the 

production and preservation of CaCO
3
 in the North Atlantic. 

This dissertation is part of the CATARINA project and directly contributes to accomplish 

the CATARINA objectives since it thoroughly analyses the water mass structure, circulation and 

transformation in the Subpolar North Atlantic, as well as the contribution of each water mass to 

the Atlantic MOC. It also quantifies the acidification trends for the Irminger and Iceland Basins 

and its impacts on the CaCO
3
 saturation. 

The CATARINA project contributes to continue the sampling along the WOCE (World 

Ocean Circulation Experiment) A25 Greenland–Portugal hydrographic section whose first 

occupation was in 1997 and then it was repeated every other year from 2002 to 2010 within the 

OVIDE (Observatoire de la Variabilité Interannuelle et DÉcennale en Atlantique Nord) project. 

The CATARINA cruise was carried out in June−July 2012. 

Each chapter of this PhD is designed as an independent entity, and structured as a typical 

publication in a scientific journal, through sections such as abstract; introduction; data set and 

methods; results and discussion; and conclusions. All of them are also preceded by a summary in 

Spanish. Each chapter contributes to the accomplishment of the specific objectives of this 

dissertation: 

- Determination of the water mass distribution, transport and transformation in the 

Subpolar North Atlantic region (Chapter 4). The water mass structure of the WOCE 

A25 Greenland–Portugal hydrographic sections was solved by an Optimum 

MultiParameter (OMP) analysis, performing a detailed study of the inter-annual to 

decadal variability of the most prominent water masses of the Subpolar North Atlantic 
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region. The results from the OMP analysis were combined with the velocity fields 

(calculated by the LPO-IFREMER group) to obtain the water mass transports and 

their contributions to the Atlantic MOC. The results also give insights about the 

water mass transformations within the Subpolar North Atlantic region. 

- Evaluation of the trends of the stressors of the seawater CO
2
 system in the Subpolar 

North Atlantic region (Chapter 5). The trends of C
ANT

 and its effects on pH and 

CaCO
3
 saturation, as well as the changes in alkalinity were evaluated in the Irminger 

and Iceland Basins for the last three decades, concretely for the period 1981−2014. In 

order to disentangle the drivers of the pH changes, the pH changes were decomposed 

into those directly related to the C
ANT

 absorption and those indirectly related to the 

C
ANT

 uptake or caused by natural processes. 

- Evaluation of the C
ANT

 transports (Chapter 6). The inter-annual to decadal variability 

of the C
ANT

 transport across the Subpolar North Atlantic region was studied by 

coupling the results of geostrophic inverse models with the C
ANT

 estimates of the 

WOCE A25 sections. The transport of C
ANT

 was decomposed according to the net, the 

diapycnal and the isopycnal circulation in order to understand the mechanisms 

controlling the variability of the C
ANT

 transport. 

This dissertation ends with the main conclusions derived of this work. 
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Chapter 3.-  Oceanographic cruises in the North 

Atlantic 

An important component of the Meridional Overturning Circulation (MOC) takes place 

at high latitudes of the North Atlantic Ocean. The warm and salty upper waters transported 

northwards by the Gulf Stream and the North Atlantic Current (NAC) gain CO
2
 as they cool. 

Once they reach the North Atlantic Subpolar Gyre, these CO
2
-laden waters are transformed into 

subpolar waters and eventually reach the Labrador and Nordic Seas, where they sink transporting 

CO
2
 to the ocean interior where it remains sequestered for centennial timescales. The heat and 

CO
2
 exchanges that happen during this circulation result in the Atlantic MOC playing an active 

role in the regulation of the European climate and in the North Atlantic Ocean as one of the 

greatest CO
2
 sinks of the global ocean. 

For all these reasons, there are an increasing number of cruises conducted in the North 

Atlantic Ocean (Figure 15) to study in more detail, not only the biogeochemical cycles and their 

possible disruption, but also the physical processes, such as currents, transports and formation rates 

of the water masses. Since repeated sections allow studying the patterns and/or changes in the 

circulation and transport of both the water masses and the most relevant biogeochemical variables, 

the main scientific effort has been directed to the research programs focused on the repetition of 

oceanographic sections (Figure 16). Concretely, this dissertation focuses on the study of the 

Greenland to Portugal WOCE (World Ocean Circulation Experiment) A25 section that has been 

repeated eight times thanks to the joint action of the OVIDE (Observatoire de la Variabilité 

Interannuelle et DÉcennale en Atlantique Nord), CATARINA (CArbon Transport and 

Acidification Rates In the North Atlantic) and GEOVIDE (An international GEOTRACES 

study along the OVIDE section in the North Atlantic and in the Labrador Sea) projects. 

 

Figure 15.- Cruises conducted in the North Atlantic Ocean included in the international database CARINA 

(CARbon dioxide IN the Atlantic Ocean). Source: http://cdiac.ornl.gov/oceans/CARINA. 
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Figure 16.- Repeated sections conducted in the North Atlantic Ocean included in the international database 

CCHDO (CLIVAR and Carbon Hydrographic Data Office). Source: http://cchdo.ucsd.edu. 
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3.1.-  WOCE A25 section 

The WOCE A25 Greenland–Portugal hydrographic section crosses the main currents of 

the North Atlantic Subpolar Gyre and some regions where water mass formation takes place 

(Figure 17). This section also crosses the main currents of the Subpolar Gyre, i.e., the NAC and 

the East Greenland Current, as well as the overflows from the Nordic Seas and the Arctic Ocean. 

Therefore, this oceanographic section allows studying a wide variety of water masses coming from 

the Greenland, Norway, Labrador and Mediterranean Seas, even from the Antarctic Ocean. The 

long-term time-series of this section allows evaluating the inter-annual to decadal variability in 

the surface currents, the Atlantic MOC, the ventilation of the water masses, and the 

anthropogenic carbon (C
ANT

) storage and transport. The WOCE A25 section is part of the 

CLIVAR/IOCCP (Climate and Ocean: Variability, Predictability, and Change / International 

Ocean Carbon Coordination Project) and GOSHIP (Global Ocean Ship-based Hydrographic 

Investigations Project) international programs. 

 

Figure 17.- Location of the 4x and OVIDE hydrographic stations and major topographical features of the Subpolar 

North Atlantic. 

The first sampling of the WOCE A25 section was conducted during the 4x section in 

August 1997 as part of the WOCE. The cruise was called 4x because it is a repeat of the section 4 

sampled during the International Geophysical Year (Dietrich, 1969). In summer 2002 the cruise 
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was repeated again in the frame of the OVIDE project, slightly changing the section pathway to 

better characterize the main currents in the Subpolar North Atlantic. The OVIDE line was 

specially designed to run perpendicularly across the main North Atlantic currents to minimize the 

transports due to eddies. Since then, it has been repeated every other summer until 2014. The 

2012 cruise was held by the CATARINA project and the 2014 cruise by the GEOVIDE project. 

The section is going to be repeated again in 2016 in the frame of the BOCATS (Biennial 

Observation of Carbon, Acidification, Transport and Sedimentation in the North Atlantic) 

project led by the CSIC (Consejo Superior de Investigaciones Científicas). Cruise data is available 

in the CCHDO (CLIVAR & Carbon Hydrographic Data Office) webpage 

(http://cchdo.ucsd.edu). 

The main goal of WOCE is to determine the large-scale oceanic circulation as a basis for 

developing and testing ocean circulation models and coupled climate-change models. 

The OVIDE project, led by IFREMER (Institut Français de Recherche pour l'Exploitation 

de la MER), aims to document and understand the variability of both the circulation and the 

properties of the water masses in the northern North Atlantic within the context of global change. 

The OVIDE project contributed to PNEDC (Programme National d’Etude de la Dynamique du 

Climat) and to the international program CLIVAR. 

The CATARINA project, led by CSIC, aims to study the MOC and the ventilation of the 

water masses in the North Atlantic, as well as the consequences of the C
ANT

 uptake at different 

timescales. The CATARINA project is part of the international program IMBER (Integrated 

Marine Biogeochemistry and Ecosystem Research). 

The main scientific objectives of the GEOVIDE project are: (i) to better know and 

quantify the MOC and the carbon cycle in a decadal variability context, adding new key tracers; 

(ii) to map the distribution of the trace elements with their physical and chemical speciation; (iii) 

to investigate the link between the trace elements and the production, export and 

remineralisation of particulate organic matter; (iv) to identify the trace element sources and sinks 

and quantify their fluxes at the ocean boundaries; and (v) to better understand and quantify the 

paleoproxies 
231

Pa/
230

Th, eNd and d
30

Si. The GEOVIDE project is part of the GEOTRACES 

international program, and also contributes to other international programmes, such as SOLAS 

(Surface Ocean Lower Atmosphere Study), IMBER, CARBOCHANGE and CLIVAR. The 

project was led by LEMAR (Laboratoire des sciences de l’Environnement MARin), CNRS 

(Centre National de la Recherche Scientifique), UBO (Université de Bretagne Occidentale), IRD 

(Institut de Recherche pour le Développement) and IFREMER. 

The biennial repetition of the WOCE A25 section, with measurements of hydrographic 

and biogeochemical properties, allow to study the low-frequency fluctuations of the water masses, 

their circulation and transports, the MOC and the tracer transports; and also to estimate the C
ANT

 

inventory (Lherminier et al., 2007, 2010; Thierry et al., 2008; Pérez et al., 2008). 

3.1.1.- Measurements 

At each station, continuous profiles of temperature, salinity (S) and dissolved oxygen (O
2
) 

were acquired from the surface to 15 m from the sea floor by using a Conductivity–Temperature–

Depth (CTD) instrument incorporated to a rosette equipped with 24–28 Niskin bottles and 

http://cchdo.ucsd.edu/
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acoustic current meters. Measurements of geo-chemical variables were also performed from the 

sampling of the rosette Niskin bottles closed at different depths in the water column during the 

way up of the rosette. The depths at which the Niskin bottles were closed were distributed 

throughout the water column ensuring that all the water masses were sampled, which also allowed 

a better calibration of the CTD sensors. These measurements were supplemented by the velocity 

profiles performed with Acoustic Doppler Current Profilers (ADCPs). 

Following the sampling procedures proposed during WOCE, the sequence of seawater 

samples was: O
2
, pH, total dissolved inorganic carbon (C

T
), total alkalinity (A

T
), nutrients and S. 

3.1.1.1.- CTD measurements 

During the cruises, the temperature, S and O
2
 were continuously recorded from the full 

water column at each station by using a CTD instrument. In the cruises prior to 2008 a Neil 

Brown Mark III CTD probe was used, while in the subsequent cruises a SBE911plus (Sea-Bird 

Electronics) CTD probe was used. The CTD unit was equipped with dual temperature and 

conductivity sensors, a Digiquartz with TC pressure sensor, a SBE-43 oxygen probe, a SeaPoint 

fluorometer, a SeaPoint turbidimeter and an altimeter. The pressure sensor was calibrated in a 

metrology laboratory using 3 cycles of increasing–decreasing pressure between 0 and 6000 dbar. 

The static and dynamic effects of temperature on the pressure sensor were also estimated and 

corrected (Branellec and Thierry, 2013). The conductivity and O
2
 sensors were calibrated using 

seawater S and O
2
 samples. Overall, the CTD measurement accuracies were 1 dbar for pressure, 

0.002°C for temperature, 0.003 for S and 1 μmol·kg
−1

 for O
2
 (Billant et al., 2004; Branellec and 

Thierry, 2013). 

3.1.1.2.- Oxygen (O
2
) sampling and measurement 

To calibrate the O
2
 sensor, a minimum of 16 seawater samples at each station were used 

whose O
2
 concentration was determined on board. The samples were drawn through short pieces 

of silicon tubing into clear, precalibrated, 120 mL glass bottles with plunger stopper. Sampling 

bottles were rinsed three times before taking the sample by filling the flask from the bottom, 

overflowing three times the equivalent volume of the vial, carefully avoiding the entry of bubbles. 

During the overflowing, the sample temperature was measured using a hand held electronic 

thermometer probe. Then, the sample was fixed (precipitation) with 0.6 mL of manganese 

chloride (MnCl
2
 · 4H

2
O) and 0.6 mL of alkali-iodide solution (NaOH + NaI) iodide dispensed 

using precise repeat bottle top dispensers. Samples were then capped and shaken to ensure the 

complete chemical reaction. Samples were transferred to the analysis laboratory at a controlled 

temperature of 20°C (± 1°C), and then shaken again and stored in darkness for at least 24 hours 

until analysis to enable them to reach thermal equilibrium. 

The O
2
 concentration was determined by Winkler potentiometric titration following the 

WOCE standards (Culberson, 1991). Blank measurements were determined at the start of each 

run to account for the introduction of O
2
 with the reagents and impurities in the MnCl

2
, as 

described in the WOCE Manual of Operations and Methods (Culberson, 1991). The samples were 

acidified prior to titration and stirred using a magnetic stir bar set at a constant spin. The titration 

was performed with a 0.02 N sodium thiosulphate solution, which normality was determined daily 

by comparison with a solution of potassium iodate with normality of 0.020013 N. Thiosulfate 

standardisation was carried out by adding the iodate after the other reagents and following on 
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directly from the blank measurements in the same flask. The dosing of the sodium thiosulfate 

solution was controlled by a titroprocessor associated with a platinum electrode, which measures 

the potential of the reaction. The volume of thiosulfate required for reduction of iodine was 

determined by the automatic determination of the inflection point in the curve of equivalence 

potential.  

The uncertainty of the methodology was determined through the analysis of sample 

duplicates, i.e., by analysing two independent samples of the same depth in the water column, 

along the sections. The standard deviation of the duplicate differences was 0.014 ml·L
–1

. The 

precision of the O
2
 determination was better than 1 μmol·kg

–1
. 

3.1.1.3.- Total dissolved inorganic carbon (C
T
) sampling and measurement 

Seawater samples for C
T
 were collected at selected depths of specific stations. Samples for 

C
T
 were taken directly from the Niskin bottles into 600 mL borosilicate glass bottles. Sampling 

bottles were washed twice with sample before filling the bottle from the bottom using a silicone 

pipe, overflowing half the equivalent volume of the bottle, while carefully avoiding the entry of 

bubbles. Then 0.3 mL of saturated aqueous solution of mercuric chloride was added to the sample 

to prevent biological alterations. The bottle was sealed with glass stoppers covered with Apiezon-L 

grease, leaving a headspace of 1% of the bottle volume. The samples were stored in the dark at 

room temperature until their analysis on land.  

C
T
 measurements were performed using the SOMMA (Single-Operator Multiparameter 

Metabolic Analysers) system (Johnson et al., 1987, 1993; Johnson and Wallace, 1992) coupled 

with a CM101_093 coulometer. Prior to analyses, the samples were stored in the dark and 

thermally equilibrated at 25°C within the thermostated SOMMA system. The seawater sample 

was drawn into a calibrated pipette and dispensed into a stripping chamber, where it was acidified 

with 8.5% H
3
PO

4
. The resulting CO

2
 gas was carried by a free-CO

2
 gas (N

2
) into a coulometric 

cell, where the coulometrical titration with ethanolamine was performed with photometric 

endpoint detection (Johnson et al., 1993). Following standard procedure, Certified Reference 

Materials (CRMs, distributed by A.G. Dickson from the Scripps Institution of Oceanography) 

were routinely analysed according to Dickson and Goyet (1994). The overall precision of the C
T
 

analyses was 1.6 μmol·kg
–1
. 

C
T
 was also determined from A

T
 and pH, using the equilibrium constants of the carbonic 

system of Mehrbach et al. (1973) refitted by Dickson and Millero (1987). The maximum error of 

the estimated C
T
 was 2 μmol·kg

–1
, considering the uncertainties of A

T
 (1 μmol·kg

–1
) and pH 

(0.0014), which is within the error of the C
T
 analysis (Lamb et al., 2001). 

3.1.1.4.- pH sampling and measurement 

Seawater samples for pH were collected at every depth level of each station. pH samples 

were taken directly from the Niskin bottles into special optical glass spectrophotometric cells of 28 

mL of volume and 100 mm of pathlength. The cells were filled to overflowing and immediately 

stopped. Then they were stored in a thermostatic bath at 25.0ºC around one hour before the 

analysis to ensure their stabilization at 25ºC.  
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Seawater pH was measured using a double-wavelength spectrophotometric procedure 

(Clayton and Byrne, 1993). This method consists on adding an indicator solution to the seawater 

sample, so that the ratio between two absorbances at two different wavelengths is proportional to 

the sample pH. The indicator was an m-cresol purple solution prepared in seawater. All the 

absorbance measurements were obtained in the thermostated (25 ± 0.2ºC) cell compartment of a 

double beam spectrophotometer (Beckman DU-730 in 1997; CECIL 3041 in 2002; SHIMADZU 

UV-2401PC in 2004, 2006, 2008, 2010 and 2014; Perkin Elmer Lambda 800 UV-VIS in 2012). 

After blanking with the seawater sample without dye, 75 μL of the dye solution were added to 

each sample using an adjustable repeater pipette. The absorbance was measured at three different 

fixed wavelengths (434, 578 and 730 nm), and pH, on the total hydrogen ion concentration scale 

(pH
T
), was calculated using the formula of Clayton and Byrne (1993): 

pH
T
 = 1245.69/T + 3.8275 + 2.11·10

–3
(35 – S) + log((R – 0.0069)/(2.222 – R*0.133)) 

where R is the ratio of the absorbances of the acidic and basic forms of the indicator corrected for 

baseline absorbance at 730 nm (R = A
578

/A
434

), T is temperature in Kelvin scale and S is salinity. 

pH values were given following the equations described in Dickson et al. (2007), which include a 

correction due to the difference between seawater and the acidity indicator. 

The replicability of the method was evaluated between 0.0015 and 0.0024 by the 

measurement of replicate samples along the cruises. Based on the former series of analysis, the pH 

uncertainty was determined at 0.0014 pH units (the mean of the standard deviations obtained in 

the reproducibility analyses). 

3.1.1.5.- Total alkalinity (A
T
) sampling and measurement 

A
T
 samples were usually taken every other station. Eighteen samples were taken at all the 

bottle levels from bottom up to 500 m depth, and every two levels from 500 m depth up to the 

surface. Samples for A
T
 were taken directly from the Niskin bottles into 600 mL borosilicate glass 

bottles. Sampling bottles were washed twice with sample before filling the bottle from the bottom 

using a silicone pipe, overflowing half the equivalent volume of the bottle, and immediately 

stoppered. The samples were stored for at least 24 hours before the analyses. 

Measurements of A
T
 were done by using an automatic potentiometric Metrohm titrator 

(“titrino” in the cruises prior to 2006, and “titrando” in subsequent cruises) with a Metrohm 

6.0233.100 combination glass electrode and a Pt-1000 probe to check the temperature (Pérez and 

Fraga, 1987). A Knudsen pipette (~195 mL) was used to transfer the samples into an open 

Erlenmeyer flask in which the potentiometric titration was carried out with hydrochloric acid 

([HCl] = 0.1 M). Potentiometric titrations were carried out to a final pH of 4.40 (Pérez and Fraga, 

1987). The electrodes were standardised using a buffer of pH 4.42 made in CO
2
 free seawater 

(Pérez et al., 2000). The final volume of titration was determined by means of two pH endpoints 

(Mintrop et al., 2000). The 0.1 N HCl was prepared by mixing 0.5 mol (18.231 g) of commercially 

HCl supplied by Riedel-deHaën® (Fixanal 38285) with milli-Q water into a graduated 5-L beaker 

at controlled temperature conditions. The HCl normality is refereed to 20ºC. The variation of 

salinity after the titration is lower than 0.1 units, which is taken into account in the final A
T
 

calculation. 

Usually, each sample was analysed twice to quality control purposes. The average standard 

deviation of the replicates was about 1.0 μmol·kg
–1

. The reproducibility of the method was also 



 WOCE A25 section CHAPTER 3.- OCEANOGRAPHIC CRUISES IN THE NORTH ATLANTIC 

54 

checked by measuring 24 samples taken at the same depth. The standard deviation of all the A
T
 

determinations was 0.8 μmol·kg
–1

. In order to estimate the accuracy of the A
T
 method, CRM 

(distributed by A.G. Dickson from the Scripps Institution of Oceanography) analysis were also 

performed. Accordingly, the final pH of every batch of analyses was corrected to obtain the closest 

mean A
T
 to the certified value of the CRM. Surface seawater was used as a “quasi-steady” seawater 

substandard (SB) to check the precision of the A
T
 measurements. It consists in surface seawater 

taken from the non-toxic supply and stored in the dark into a large container (25–75 L) during 2 

days before use. This SB was analysed at the beginning and at the end of each batch of analyses. 

The reproducibility of these SB measurements was better than 0.05% and the estimated drift for 

each day was very low. From the former series of analyses the A
T
 uncertainty was determined at 1 

μmol·kg
–1
. 

3.1.1.6.- Nutrients sampling and measurement 

Seawater samples for nutrients (nitrate (NO
3
), phosphate (PO

4
) and silicate (SiO

2
)) were 

collected at every depth level of each station. Samples for nutrients were taken directly from the 

Niskin bottles into 125 mL solid-polyethylene containers. Sampling containers were washed three 

times with sample before filling. Samples were preserved in the dark at 4ºC when analyses started 

more than one hour after sampling, and they were analysed no more than 24 hours after 

collection. 

The nutrients were simultaneously analysed using an SOC Chemlab AAII type Auto-

Analyser coupled with a Digital-Analysis Microstream data capture and a reduction system, 

following the methods described by Aminot and Chaussepied (1983) and Hansen and Grassoff 

(1983). At the beginning and at the end of the measurement of each set of samples, a series of 

standard solutions (daily prepared) were analysed to calibrate the system. The standard solutions 

consisted of two mixed solutions (one for NO
3
 and SiO

2
 and other for PO

4
 and nitrite), whose 

concentrations covered the range of the measured nutrient concentrations. The standards of 

nutrient salts were prepared from nutrient salt minerals dried at 105°C for 3 hours. Primary 

solutions were performed with deionized water in calibrated volumetric flasks. Determination 

procedure was settled as a cycle of 2-3 minutes of sample pumping followed by 1-2 minutes of 

milli-Q water pumping. The precision for NO
3
, PO

4
 and SiO

2
 was evaluated at 0.2, 0.02 and 0.1 

μmol·kg
–1
, respectively. 

3.1.1.7.- Salinity (S) sampling and measurement 

To calibrate the conductivity sensor, a minimum of 16 seawater samples at each station 

were sampled and the S content was determined on board. Seawater samples for S were taken 

directly from the Niskin bottles into 125 mL glass bottles closed by a rubber seal. Sampling bottles 

were washed three times with sample before filling. The samples were placed in the analysis 

laboratory at a controlled temperature of 20 ± 1°C, from 20 to 30 hours to enable them to reach 

thermal equilibrium. 

Seawater S samples were analysed via a Guildline 8400A salinometer following the 

WOCE standards (Culberson, 1991). The salinometer was standardised with IAPSO Standard 

Seawater at the start of each crate of 24 samples. Salinometer operating temperature was 21°C. S 

was determined from the equation PSS 78 (UNESCO, 1981). The standard deviation was 0.0018. 

The uncertainty of the methodology was determined through the analysis of sample replicates 
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from pressure greater than 980 dbar along the sections. The standard deviation of the replicates 

was 0.0017. 

3.1.1.8.- Acoustic Doppler Current Profiler (ADCP) measurements 

ADCP measurements were compiled along the cruise track in order to determine the 

velocity field of the sections. Velocity measurements between 32 m and 600 m were obtained 

using four-beam Shipboard ADCP (SADCP). The four beams of the instruments pinged every 2 or 

3 seconds, and velocity profiles were calculated as ensemble averages of 20 values, after removing 

the ship velocities. A high level of quality was obtained by using combined navigation data from a 

differential GPS and two gyrocompasses. The correlation between the ship velocity and the 

current component along the trajectory during acceleration phases was then minimized by 

correcting the ADCP alignment. The estimated errors on the ensemble mean velocity are of the 

order of 0.03 m·s
−1

. 

The rosette was also equipped with a downward-looking and an upward-looking Lowered 

ADCP (LADCP). Using the inverse method developed by Visbeck (2002), the two data sets were 

combined to estimate the horizontal velocity profiles at station locations. Velocity profiles were 

then studied one by one and compared with the SADCP station-averaged to check the quality of 

the data. 

The velocity fields were obtained from the implementation of linear box inverse models 

(Lherminier et al., 2007, 2010; Gourcuff et al., 2011; Mercier et al., 2015). The inverse model was 

constrained by the SADCP measurements and by an overall mass balance of 1 ± 3 Sv to the North 

(Lherminier et al., 2007, 2010). 

  



 WOCE A25 section CHAPTER 3.- OCEANOGRAPHIC CRUISES IN THE NORTH ATLANTIC 

56 

  



 

 

 



 

 

  



 CHAPTER 4.- STRUCTURE, TRANSPORTS AND TRANSFORMATIONS OF THE WM IN THE NASPG 

59 

Chapter 4.-  Structure, transports and transformations 

of the water masses in the Atlantic 

Subpolar Gyre 

4.1.-  Resumen 

En este capítulo se discuten las distribuciones y transportes de las principales masas de agua 

del Giro Subpolar del Atlántico Norte (GSPAN) durante el período 2002–2010 (secciones 

OVIDE 2002–2010 cada dos años), así como la variabilidad interanual de la estructura de las masas 

de agua entre 1997 (secciones 4x y METEOR) y 2010. La estructura de las masas de agua del 

GSPAN, cuantitativamente evaluada por medio de un análisis óptimo multiparamétrico (con 14 

masas de agua), se combinó con los campos de velocidad resultantes de estudios anteriores 

utilizando modelos inversos para así obtener los transportes de volumen por masa de agua. 

También se evaluó la contribución relativa a la circulación termohalina del Atlántico (AMOC) 

de las principales masas de agua que caracterizan el GSPAN, identificando las masas de agua que 

contribuyen a la variabilidad de la AMOC. La reducción de la magnitud de la rama superior de la 

AMOC entre 1997 y la década de 2000 se asocia con la reducción en el transporte hacia el norte 

de las Aguas Centrales. Esta reducción del transporte hacia el norte de la AMOC está 

parcialmente compensada por la reducción del transporte hacia el sur de la rama inferior de la 

AMOC, asociada con la disminución del transporte del Agua Polar Intermedia y del Agua Modal 

Subpolar (SPMW) en la cuenca del Irminger. El flujo sobre el Reykjanes Ridge desde la cuenca 

Este del Atlántico Norte a la cuenca del Irminger (9,4 ± 4,7 Sv) se dividió en las contribuciones 

de Aguas Centrales (2,1 ± 1,8 Sv), Agua del Mar de Labrador (LSW; 2,4 ± 2,0 Sv), Agua 

Intermedia Subártica (SAIW; 4,0 ± 0,5 Sv) y Agua de desbordamiento de Islandia–Escocia 

(ISOW; 0,9 ± 0,9 Sv). Una vez que LSW e ISOW cruzan sobre el Reykjanes Ridge, flujo 

favorecido por la fuerte mezcla alrededor de este accidente geográfico, salen de la cuenca del 

Irminger como aguas intermedias y de fondo. Los resultados también dan información acerca de las 

transformaciones que sufren las masas de agua dentro del GSPAN, como por ejemplo la 

contribución de las Aguas Centrales y SAIW en la formación de las diferentes variedades de 

SPMW gracias a la interacción océano–atmósfera. 

4.2.-  Abstract 

In this chapter the distributions and transports of the main water masses in the North 

Atlantic Subpolar Gyre (NASPG) are discussed for the mean of the period 2002–2010 (OVIDE 

sections 2002 to 2010 every other year), as well as the inter-annual variability of the water mass 

structure from 1997 (4x and METEOR sections) to 2010. The water mass structure of the 

NASPG, quantitatively assessed by means of an Optimum MultiParameter analysis (with 14 water 

masses), was combined with the velocity fields resulting from previous studies using inverse models 

to obtain the water mass volume transports. The relative contribution to the Atlantic Meridional 

Overturning Circulation (AMOC) of the main water masses characterizing the NASPG is also 

evaluated, identifying the water masses that contribute to the AMOC variability. The reduction of 
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the magnitude of the upper limb of the AMOC between 1997 and the 2000s is associated with the 

reduction in the northward transport of the Central Waters. This reduction of the northward flow 

of the AMOC is partially compensated by the reduction of the southward flow of the lower limb of 

the AMOC, associated with the decrease in the transports of Polar Intermediate Water and 

Subpolar Mode Water (SPMW) in the Irminger Basin. The flow over the Reykjanes Ridge from 

the East North Atlantic Basin to the Irminger Basin (9.4 ± 4.7 Sv) is also decomposed into the 

contributions of the Central Waters (2.1 ± 1.8 Sv), Labrador Sea Water (LSW, 2.4 ± 2.0 Sv), 

Subarctic Intermediate Water (SAIW, 4.0 ± 0.5 Sv) and Iceland–Scotland Overflow Water 

(ISOW, 0.9 ± 0.9 Sv). Once LSW and ISOW cross over the Reykjanes Ridge, favoured by the 

strong mixing around it, they leave the Irminger Basin through the deep-to-bottom levels. The 

results also give insights into the water mass transformations within the NASPG, such as the 

contribution of the Central Waters and SAIW to the formation of the different varieties of 

SPMW due to air–sea interaction. 

4.3.-  Introduction 

The North Atlantic Subpolar Gyre (NASPG) is one of the key regions of the global ocean 

circulation, where interactions with the atmosphere contribute to warm-to-cold water mass 

transformations (e.g., Bersch et al., 2007; Yashayaev et al., 2007a; Sarafanov, 2009; Sarafanov et 

al., 2012). The North Atlantic Current (NAC) carries warm and salty waters from the subtropics 

towards the north-eastern Atlantic Ocean (Figure 18). East of the Charlie–Gibbs Fracture Zone 

(CGFZ) the NAC bifurcates into two branches, one flowing towards the Nordic Seas, and the 

other flowing towards the Iceland Basin (Read, 2000), where the Subpolar Mode Water (SPMW) 

is formed (McCartney and Talley, 1982; Tsuchiya et al., 1992; van Aken and Becker, 1996; 

Brambilla and Talley, 2008). The densest variety of SPMW is formed in the Labrador Sea 

(McCartney and Talley, 1982; Yashayaev, 2007), where intense winter heat loss leads to deep 

convection and formation of the Labrador Sea Water (LSW) (Tsuchiya et al., 1992; Bersch et al., 

2007; Yashayaev, 2007). Afterwards, LSW joins the Deep Western Boundary Current (Bersch et 

al., 2007), where it flows over the Denmark Strait Overflow Water (DSOW) and the Iceland–

Scotland Overflow Water (ISOW) (both derived from waters from the Arctic Ocean and the 

Nordic Seas; Rudels et al., 2002; Tanhua et al., 2008) and these altogether constitute the North 

Atlantic Deep Water (NADW) (Dickson and Brown, 1994). 

The processes of water mass formation in the Subpolar North Atlantic, the Arctic Ocean 

and the Nordic Seas affect the Atlantic Meridional Overturning Circulation (AMOC) on long 

timescales (Böning et al., 1996; Willebrand et al., 2001; Marsh et al., 2005; Josey et al., 2009). 

The AMOC transports heat and anthropogenic carbon from the southern hemisphere of the 

Atlantic Ocean to the subtropics and the high northern latitudes, playing an active role in the 

climate variability. The North Atlantic Oscillation (NAO) is the dominant mode of the 

atmospheric variability in the NASPG (Hurrell, 1995), which influences both its strength and 

circulation (Curry and McCartney, 2001; Häkkinen and Rhines, 2004) and its shape (Bersch, 

2002). Both direct observations (Flatau et al., 2003; Häkkinen and Rhines, 2004) and model 

results (Böning et al., 2006) confirm a spin down of the circulation of the NASPG between the 

mid-1990s and the 2000s due to the shift from high to low NAO indices, based on high-frequency 

time-series. The NAO also influences the AMOC strength (e.g., Eden and Willebrand, 2001; 

Marsh et al., 2005; Balmaseda et al., 2007; Böning et al., 2006), which has decreased over the last 
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decade (Balmaseda et al., 2007; Desbruyères et al., 2013; Xu et al., 2013; Mercier et al., 2015) and 

resulted in reductions in the poleward heat transport (Bryden et al., 2014; Mercier et al., 2015) 

and in the uptake of atmospheric carbon dioxide (Pérez et al., 2013). 

 

Figure 18.- Location of the 4x and OVIDE hydrographic stations plotted on bathymetry (500 m intervals). The 

North Atlantic circulation scheme, the major topographical features of the Subpolar North Atlantic, as well as the 

main water masses are also shown: East Greenland Current (EGC), West Greenland Current (WGC), Labrador 

Current (LC), Deep Western Boundary Current (DWBC), North Atlantic Current (NAC), Denmark Strait 

Overflow Water (DSOW), Iceland–Scotland Overflow Water (ISOW), Labrador Sea Water (LSW), Mediterranean 

Water (MW), North East Atlantic Deep Water (NEADW), Charlie–Gibbs Fracture Zone (CGFZ), Bight Fracture 

Zone (BFZ), Mid-Atlantic Ridge (M.A.R.) and Iberian Abyssal Plain (I.A.P.). Schematic diagram of the large-scale 

circulation compiled from Schmitz and McCartney (1993), Dengler et al. (2006), Schott and Brandt (2007, Plate 1), 

Sutherland and Pickart (2008, Figure 16), Lherminier et al. (2010, Fig. 1b) and Sarafanov et al. (2012). 

The main objective of this chapter is to discuss the distributions and transports of the 

main water masses in the North Atlantic region for the first decade of the 2000s. The inter-annual 

variability of the water mass structure from 1997 to 2010 is also evaluated. For this purpose data 

from six repeats of the WOCE (World Ocean Circulation Experiment) A25 hydrographic section 

located at the southern boundary of the NASPG (Figure 18; Table 1) is used. The data include the 

4x section taken in 1997 and the five repeats of the OVIDE (Observatoire de la variabilité 

interannuelle et décennale en Atlantique Nord) section taken every other year from 2002 to 2010. 

The distributions of the main water masses in each section were obtained by using an Optimum 

MultiParameter (OMP) analysis (Thompson and Edwards, 1981; Tomczak, 1981; Mackas et al., 

1987; Tomczak and Large, 1989). Then they were combined with the velocity fields (from inverse 

models previously implemented (Lherminier et al., 2007, 2010; Gourcuff et al., 2011; Mercier et 

al., 2015)) in order to estimate the transport of each water mass across the sections. Although this 
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methodology has been applied before (Álvarez et al., 2004; Carracedo et al., 2014), this is the first 

time that it has been used to evaluate the inter-annual variability of the water mass distributions, 

specifically from 1997 to 2010. In addition, the water mass contributions to the AMOC and the 

water mass transformations that take place in the NASPG are also investigated. 

Table 1.- Hydrographic cruises. 

Cruise Name Month/Year Vessel Reference 

METEOR 1997 08–09/1997 R/V Meteor Rhein et al. (2002) 

4x 1997 08–09/1997 R/V Discovery Álvarez et al. (2002) 

OVIDE 2002 06–07/2002 N/O Thalassa Lherminier et al. (2007) 

OVIDE 2004 06–07/2004 N/O Thalassa Lherminier et al. (2010) 

OVIDE 2006 05–06/2006 R/V Maria S. Merian Gourcuff et al. (2011) 

OVIDE 2008 06–07/2008 N/O Thalassa Mercier et al. (2015) 

OVIDE 2010 06–07/2010 N/O Thalassa Mercier et al. (2015) 

The present chapter is organized as follows. In Section 4.4 it is described: the cruise data; 

the methodology followed in the OMP analysis, including a description of the 14 water masses 

considered; the velocity field obtained from earlier studies; and the methodology used to combine 

the velocity fields with the water mass distributions. The water mass distributions for the OVIDE 

period (2002–2010) are described and discussed in Section 4.5. In Section 4.6 the inter-annual 

variability of the water mass structure from 1997 to 2010 is described and discussed. The volume 

transports of the water masses are described and discussed in Section 4.7. This section also 

includes an estimation of the circulation and transformation of the water masses in the Subpolar 

North Atlantic as well as of the budget of water mass volume transports across the Reykjanes 

Ridge. The chapter is concluded in Section 4.8. 

4.4.-  Data and methods 

4.4.1.- Biogeochemical data 

The 4x and OVIDE sections were conducted across the southern boundary of the NASPG 

from the Iberian Peninsula to Cape Farewell (South Greenland), during the spring–summer 

periods of 1997 (4x section), 2002, 2004, 2006, 2008 and 2010 (OVIDE sections) (Figure 18; 

Table 1). Cruise data is available in the CCHDO (CLIVAR & Carbon Hydrographic Data Office) 

webpage (http://cchdo.ucsd.edu). These cruises are suitable for examining the inter-annual to 

decadal water mass variability because they were carried out at approximately the same time of the 

year –from June to August– and, except for the near-surface layers, the seasonal differences are 

expected to be smaller than the inter-annual changes. In addition, the monthly variability of the 

AMOC is weaker between June and August (Mercier et al., 2015). 

http://cchdo.ucsd.edu/
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During the cruises, the temperature and salinity (S) were continuously recorded at each 

station by using a Conductivity–Temperature–Depth (CTD) instrument. In the cruises prior to 

2008 a Neil Brown Mark III CTD probe was used, while in the subsequent cruises a Sea-bird 

Electronics 911plus CTD probe was used. To calibrate the conductivity sensor, seawater S samples 

were analysed on board via a Guildline 8400A salinometer calibrated with IAPSO Standard 

Seawater following the WOCE standards (Culberson, 1991). The pressure sensor was calibrated in 

a metrology laboratory using 3 cycles of increasing–decreasing pressure between 0 and 6000 dbar. 

The static and dynamic effects of temperature on the pressure sensor were also estimated and 

corrected (Branellec and Thierry, 2013). Overall, the CTD measurement accuracies were 1 dbar 

for pressure, 0.002°C for temperature and 0.003 for S. 

Seawater samples for nutrients (nitrate (NO
3
), phosphate (PO

4
) and silicate (SiO

2
)) and 

oxygen (O
2
) were also taken and analysed on board. The nutrients were analysed using an SOC 

Chemlab AAII type Auto-Analyser coupled with a Digital-Analysis Microstream data capture and 

a reduction system, following the classic protocols and methods described by Aminot and 

Chaussepied (1983) and Hansen and Grassoff (1983). The precision for NO
3
, PO

4
 and SiO

2
 was 

evaluated at 0.2, 0.02 and 0.1 μmol·kg
–1
, respectively. The O

2
 was determined by Winkler 

potentiometric titration following the WOCE standards (Culberson, 1991), with a precision better 

than 1 μmol·kg
–1

. 

For further reference, the vertical sections of the mean properties (potential temperature 

(θ), S, O
2
, NO

3
, SiO

2
 and PO

4
) are shown in Figure 19. 

4.4.2.- Optimum MultiParameter (OMP) analysis 

An Optimum MultiParameter (OMP) analysis (Thompson and Edwards, 1981; Tomczak, 

1981; Mackas et al., 1987; Tomczak and Large, 1989) was used to resolve the water mass structure 

along the sections. The water masses are described by the so-called Source Water Types (SWT), 

which are points in the 𝑛-dimensional parameter space (𝑛 is the number of properties that 

characterize SWTs) (Tomczak, 1999). In this work, the SWTs are characterized by 𝜃, S, 𝑂2
0, 𝑁𝑂3

0, 

𝑃𝑂4
0 and 𝑆𝑖𝑂2

0 (where the superscript 0 means preformed variables) (Table 2). Given a number of 

SWTs, the goal of an OMP analysis is to find the fractions of each SWT (𝑋𝑖) in each water 

sample. The 𝑋𝑖s strongly depend on the characterization of the SWTs (Tomczak, 1981), the 

choice of which is a key step of the analysis. In the following subsection the SWTs included in the 

analysis and their properties are described. 

4.4.2.1.- Water mass characterization 

The Subpolar North Atlantic presents a large variety of water masses. In this study, 14 

SWTs were considered as the main water masses explaining the physicochemical variability of this 

area and which encompass all the water samples of the sections (Figure 20a, b). 

The saltiest waters of the sections are influenced by the Mediterranean Water (MW), 

which enters the North Atlantic from the Mediterranean Sea. MW is detected as a maximum in S 

(> 36.1) and θ (9–11°C) between 600 and 1700 m depth in the eastern North Atlantic (Harvey, 

1982; Tsuchiya et al., 1992; van Aken and Becker, 1996; Álvarez et al., 2004). Following Castro et 

al. (1998) and Álvarez et al. (2004), I used the θ/S properties of MW reported by Wüst and Defant 



  CHAPTER 4.- STRUCTURE, TRANSPORTS AND TRANSFORMATIONS OF THE WM IN THE NASPG 

64 

(1936) near Cape St. Vicente (Figure 20a; Table 2). In this way I avoid solving the mixing 

processes between the Mediterranean Outflow Water (overflowing from the Mediterranean Sea) 

and the central and intermediate waters of the East North Atlantic, which lead to the formation 

of MW (Ambar and Howe, 1979; Baringer and Price, 1997). 

 

Figure 19.- Mean (a) potential temperature (θ), (b) salinity, (c) oxygen, (d) nitrate, (e) silicate and (f) phosphate 

along the OVIDE section, from the Iberian Peninsula (right) to Greenland (left). 

The warmer waters are influenced by the North Atlantic Central Waters (Iselin, 1936). 

East of the Mid-Atlantic Ridge in the North Atlantic, the predominant variety of these waters is 

the East North Atlantic Central Water (ENACW) (Harvey, 1982; Pollard et al., 1996; Read, 

2000), which is formed by winter convection in the intergyre region (Pollard et al., 1996). The θ/S 

characteristics of ENACW can be fitted to a straight line from 12 to 16°C (Pollard et al., 1996). 

The end points from this line are defined by: ENACW
16
, whose θ/S characteristics match those 

from the warmer central waters of Pollard et al. (1996); and ENACW
12
, which represents the 

upper limit of ENACW defined by Harvey (1982) (Figure 20a; Table 2). Here, I considered these 

two SWTs together as the Central Waters. 

Part of the Central Waters carried by the NAC recirculates in the West European Basin 

(Figure 18), and part of them spreads towards the Iceland Basin, leading to the formation of 

SPMW (McCartney and Talley, 1982; Tsuchiya et al., 1992; van Aken and Becker, 1996; 

Brambilla and Talley, 2008). The hydrographic properties of SPMW change due to air–sea 

interaction processes (McCartney and Talley, 1982; Brambilla and Talley, 2008). Since this 

variability cannot be accounted by the OMP analysis, three SWTs were defined to characterize 

SPMW: two corresponding to SPMW present in the Iceland Basin (SPMW
8
 and SPMW

7
), and 
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another one that accounts for the variety found in the Irminger Basin (IrSPMW, sometimes 

denoted as Irminger Sea Water (Krauss, 1995)). SPMW
8
 and SPMW

7
 were selected to characterize 

the thermohaline range of SPMW in the Iceland Basin (6–9°C and 35.1–35.25) (Stoll et al., 

1996; van Aken and Becker, 1996) and are going to be considered together as IcSPMW. The θ/S 

properties of SPMW
7
 (Figure 20a; Table 2) were chosen close to the mean properties of SPMW 

over the eastern flank of the Reykjanes Ridge found by Thierry et al. (2008) in a box including the 

OVIDE section, while the θ/S properties of SPMW
8
 correspond to the SPMW variety formed 

within the Iceland Basin (Brambilla and Talley, 2008). Since the 8ºC limit between the Central 

Waters and SPMW
8
 (Brambilla and Talley, 2008; Brambilla et al., 2008) cannot be directly 

obtained by the OMP analysis, the OMP analysis was constrained by not allowing the presence of 

Central Waters east of the western branch of the NAC (Figure 18). In the northern part of the 

Irminger Basin, SPMW is characterized by θ and S usually lower than 7ºC and 35.1, respectively 

(Thierry et al., 2008). To characterize the SWT for IrSPMW, its θ/S properties were chosen close 

to those of the Irminger Sea Water described by Krauss (1995) (Figure 20a; Table 2). These 

properties were also found by Brambilla and Talley (2008) in the NW Irminger Basin, which could 

indicate that this is the region of formation of IrSPMW. 

 

Figure 20.- (A) Potential temperature (θ)/Salinity (S)-diagram including the Source Water Types (Table 2) used in 

the analysis and (B) zoomed for bottom waters. The mixing figures are shown in the (C) legend (see Table 2 for the 

acronyms of the source water types). The isopycnals referenced in the chapter are also plotted, i.e., σ
1
 = 32.15 and 

σ
1
 = 32.42 (where is σ

1
 potential density referenced to 1000 dbar). 

Table 2.- Main properties of each of the Source Water Types (SWTs, see footnote 
a
) considered in the study with 

their corresponding standard deviation. The weights of each equation are also given, together with the square of 

correlation coefficients (r
2
) between the observed and estimated properties, the Standard Deviation of the Residuals 

(SDR) and the SDR/ε  ratios from the data below 400 dbar. The ε  used to compute the SDR/ε  ratios are the 
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accuracies of the measured properties listed in section 4.4.2.2. The last column accounts for the uncertainties in the 

SWTs contributions. Values expressed on a per one basis. 

 

Potential 

temperature 

(𝜃𝑆𝑊𝑇) 

Salinity (𝑆𝑆𝑊𝑇) 
Silicate 

(𝑆𝑖𝑂2
0 𝑆𝑊𝑇)

 b
 

Nitrate 

(𝑁𝑂3
0 𝑆𝑊𝑇)

 b
 

Phosphate 

(𝑃𝑂4
0 𝑆𝑊𝑇)

 b
 

Oxygen 

(𝑂2
0 𝑆𝑊𝑇)

 b
 Uncertainty 

 ºC 
 

μmol·kg
–1

 

ENACW
16

 16.00±0.13 36.20±0.02 0.85±0.12 0.00±0.16 0.00±0.01 241±7 0.04 

ENACW
12

 12.30±0.18 35.66±0.03 1.6±0.8 7±1 0.31±0.07 251±8 0.04 

MW 11.7±0.2 36.500±0.011 4.88±0.15 10.9±0.2 0.70±0.03 210±8 0.015 

SAIW
6
 6.0±0.2 34.70±0.03 6.3±2.2 13±1 0.86±0.07 287±9 0.04 

SAIW
4
 4.5±0.2 34.80±0.03 1.4±2.2 0±1 0.05±0.07 290±9 0.05 

SPMW
8
 8.00±0.11 35.230±0.016 3.2±2.2 11±1 0.68±0.01 289±6 0.07 

SPMW
7
 7.07±0.07 35.160±0.006 5.38±0.16 13.70±0.16 1.06±0.01 280±9 0.08 

IrSPMW 5.00±0.02 35.014±0.013 7.1±0.4 15.0±0.4 0.98±0.02 300±9 0.13 

LSW 3.00±0.19 34.87±0.02 10.0±0.8 16.5±0.8 1.05±0.12 287±10 0.10 

ISOW 2.60±0.08 34.980±0.003 10±1 15.5±0.6 1.20±0.04 289±10 0.08 

DSOW 1.30±0.06 34.905±0.006 7.8±0.5 14.1±0.8 1.10±0.06 309±10 0.05 

PIW 0.0±0.2 34.65±0.03 8.4±2.2 9±1 0.25±0.07 310±11 0.06 

NEADW
U
 2.50±0.08 34.940±0.007 29.2±0.6 19.2±0.6 1.32±0.05 269±10 – 

c
 

NEADW
L
 1.98±0.03 34.895±0.003 48.0±0.4 22.6±0.5 1.50±0.04 252±10 0.02 

Weights 20 10 2 3
 d
 2

 d
 2  

r
2
 0.9991 0.9891 0.9975 0.9784 0.9477 0.9926  

SDR 0.02 0.006 0.5 0.5 0.07 2  

SDR/ε 2 1 2 3 3 2  

a
 ENACW

16
 and ENACW

12
 = Eastern North Atlantic Central Waters; MW = Mediterranean Water; SAIW

6
 

and SAIW
4
 = Subarctic Intermediate Waters; SPMW

8
 and SPMW

7
 = Subpolar Mode Waters of the Iceland Basin 

and IrSPMW = of the Irminger Basin; LSW = Labrador Sea Water; ISOW = Iceland–Scotland Overflow Water; 

DSOW = Denmark Strait Overflow Waters; PIW = Polar Intermediate Water; and NEADW
U
 = North East 

Atlantic Deep Water upper and NEADW
L
 = lower. 

b
 O

2
 and nutrients represent preformed values; note that O

2
 values are close to saturation and nutrient values are 

low. 
c
 NEADW

U
 has no uncertainty value since it is considered as a composed SWT (MW + LSW + ISOW + 

NEADW
L
, see section 4.5). 

d
 The weights for NO and PO are the same as for 𝐍𝐎𝟑

𝟎  and 𝐏𝐎𝟒
𝟎 , respectively. 

Once SPMW reaches the Labrador Sea, it is involved in deep convection processes which 

lead to the formation of LSW (Talley and McCartney, 1982). These episodes of deep convection 

are forced by the extreme winter heat loss combined with the cyclonic circulation in the Labrador 

Sea (Lazier et al., 2002). LSW is traceable by its low potential vorticity, relatively low S and high 

O
2
 content (Figure 19) (Talley and McCartney, 1982; Harvey and Arhan, 1988; Pickart, 1992; 

Tsuchiya et al., 1992). The classical LSW (Bersch et al., 2007; Yashayaev et al., 2008) is built by 

intense winter convection, when the mixing layer reaches ~2000 m depth. Deep winter 

convection at these latitudes is controlled by the phase of the NAO and its persistence (Dickson 

et al., 1996; Bersch et al., 2007). Indeed, it is favoured during persistent phases of the high NAO 

index, such as the period 1987–1994, when the winter convection reached 2400 m depth (Lazier 

et al., 2002; Yashayaev, 2007), where the LSW properties reached extremal values of 2.9ºC and 

34.84 (Álvarez et al., 2004; Yashayaev, 2007). The thermohaline properties of the corresponding 
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SWT are consistent with the characteristic values for the classical LSW as a long-term average 

(Lazier, 1973; Dickson et al., 1996) (Figure 20a, b; Table 2). 

The left limit of the θ/S-diagram is characterized by the Subarctic Intermediate Water 

(SAIW), which originates in the western boundary of the NASPG (Arhan, 1990) from the 

mixture of the warm and salty waters of the NAC with the cold and low-salinity waters of the 

Labrador Current (Iselin, 1936; Read, 2000). The thermohaline properties of SAIW (4–7ºC and S 

< 34.9) vary due to its spreading and subduction in a region characterized by a complex 

circulation, with horizontal and vertical mixing, recirculation processes and mesoscale variability, 

among other processes (Bubnov, 1968; Arhan, 1990). Similarly to what was done in the case of 

SPMW and in order to better depict SAIW, I defined two SWTs: SAIW
6
, which represents the 

fresher and relatively warm variety resulting from the progressive warming of the fresher Arctic 

waters while mixing with central waters (Figure 20a; Table 2); and SAIW
4
, which represents the 

saltier and relatively cold variety resulting from the cooling of the saltier central waters while 

mixing with the Arctic waters. The thermohaline properties of both SWTs follow the descriptions 

of Bubnov (1968) and Harvey and Arhan (1988). 

The bottom part of the θ/S-diagram shows DSOW and ISOW, which are complex 

mixtures of several water masses. The Norwegian Sea waters overflow and entrain the overlying 

warm saline Atlantic waters (SPMW and LSW) forming ISOW (van Aken and de Boer, 1995; 

Dickson et al., 2002; Fogelqvist et al., 2003). To avoid the parameterization of this mixing process 

(as in the case of MW), the ISOW thermohaline properties were defined by considering this 

overflow as the final result of those mixing processes, and according to the definition of van Aken 

and Becker (1996) (Figure 20a, b; Table 2). As for DSOW, it is formed after the Nordic Seas deep 

waters overflow and entrain Atlantic waters (SPMW and LSW) (Read, 2000; Yashayaev and 

Dickson, 2008). In addition, some authors have reported dense Greenland shelf water cascading 

down to the DSOW layer in the Irminger Sea (Olsson et al., 2005; Tanhua et al., 2005, 2008; 

Falina et al., 2012). According to this and following van Aken and de Jong (2012), DSOW was 

modelled by two SWTs: a relatively saline one (DSOW) and a relatively fresh one (the Polar 

Intermediate Water; PIW) (Figure 20a, b; Table 2). The θ/S characteristics chosen for DSOW are 

in agreement with the characteristics of the saline variety of van Aken and de Jong (2012) and 

with the characteristics of DSOW after crossing the sill found by Tanhua et al. (2005). PIW is an 

SWT with characteristics close to the low-salinity variety of the overflow (Tanhua et al., 2005). I 

substituted the relatively fresh end-member proposed by van Aken and de Jong (2012) by PIW to 

take into account the dense shelf water intrusions, since these intrusions lie on a mixing line 

between PIW and the Irminger Current Water (Rudels et al., 2002; Falina et al., 2012). The θ/S 

characteristics selected for PIW are in agreement with those proposed by Malmberg (1972) and 

Rudels et al. (2002). 

The North East Atlantic Deep Water (NEADW) is formed as a result of different 

entrainments that occur along the journey of ISOW through the Iceland Basin (van Aken, 

2000b). NEADW recirculates in the Iberian Basin and mixes with the surrounding waters, 

including the bottom waters coming from the Southern Ocean (Antarctic Bottom Water; van 

Aken and Becker, 1996). The θ/S properties of NEADW below 2500 m depth in this basin can be 

approximated as a line (Saunders, 1986; Mantyla, 1994) whose end points define the SWTs here 

used representing the upper (NEADW
U
) and lower (NEADW

L
) varieties of NEADW (Figure 20a, 
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b; Table 2). The θ/S properties of these two SWTs are close to those defined by Castro et al. 

(1998). 

Having selected the θ/S properties for each SWT from the literature, the OMP analysis 

was run taking the remaining chemical properties (𝑁𝑂3
0, 𝑃𝑂4

0 and 𝑆𝑖𝑂2
0) from the work of Álvarez 

et al. (2004) and the 𝑂2
0 equal to saturation as a first guess. For those SWTs not defined in Álvarez 

et al. (2004), their first-guess chemical properties were taken as equal to those properties of the 

nearest SWT in Álvarez et al. (2004) (𝑂2
0 equal to saturation). The final chemical properties for 

each SWT (those that best fit the measured data) were obtained from an iterative procedure 

(section 4.4.2.2). Some of the values of 𝑂2
0 were adjusted so as not to get negative values for either 

respiration or nutrients, and to account for the disequilibrium between the O
2
 content in the 

atmosphere and in the water mass at its time of formation (in the surface ocean) (Najjar and 

Keeling, 2000; Ito et al., 2004). The uncertainties in the properties were obtained as explained in 

section 4.4.2.2. 

4.4.2.2.- Methodology of the analysis 

An OMP analysis is a simple mathematical approach based on measured data that solves 

the mixing between SWTs by a least square method constrained to be positive definite. The OMP 

analyses consider the properties (physical and/or chemical) of a given water sample to be the result 

of linear combinations of a finite number of water masses represented by the SWTs. They compute 

the fractions of each SWT (Xi) in each water sample. In the OMP analyses, the SWT properties 

are assumed to be independent and equally affected by mixing. In addition, SWTs are considered 

to be time invariant; hence, changes in the properties of the water masses over time are reflected 

through water mass redistributions. 

The methodology of the analysis here applied consists of two OMP steps (Pardo et al., 

2012). In the first step a classical OMP (cOMP) was solved for each water sample. The cOMP 

analysis is based on conservative variables; in particular, in this study I used θ, S, SiO
2
, “NO” and 

“PO” (where “NO” = 10.5 ∗ NO
3
 + O

2
, “PO” = 175 ∗ PO

4
 + O

2
; Broecker, 1974; Takahashi et al., 

1985; Anderson and Sarmiento, 1994): 

∑ Xi ∗ θi
SWT = θsample + Rθ

n
i=1

∑ Xi ∗ Si
SWT = Ssample + RS

n
i=1

∑ Xi ∗ SiO2i
SWT = SiO2

sample + RSiO2
n
i=1

∑ Xi ∗ NOi
SWT = NOsample + RNO

n
i=1

∑ Xi ∗ POi
SWT = POsample + RPO

n
i=1

∑ Xi = 1 + Rmass
n
i=1

(Eq. 4.1)  

where Rp is the residual of each property p (θ, S, SiO
2
, NO and PO) measured (psample) that the 

OMP tries to minimize and pi
SWT is the property of each SWT i. The last equation accounts for 

the mass conservation. Before solving the system (minimization through a non-negative least 

square method), the equations were normalized (Tomczak and Large, 1989) and weighted (Pardo 

et al., 2012) (Table 2). The assignment of weights was, as a first step, directly related to the 

accuracy of the property and/or to the variability in the region of study. Weights were also adjusted 

so that the ratios between the Standard Deviations of the Residuals and the analytical error (ε , 

accuracy of the measured properties) were almost the same for all the SWT properties (Table 2). 
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The weights of θ and S are higher than those of the other properties because both have the lowest 

ε . The mass equation has the highest weight to ensure its conservation. 

The cOMP analysis was solved for each water sample in each one of the 11 mixing figures 

(Figure 20c). The mixing figures are groups of SWTs that are susceptible to mix together, and are 

set considering the characteristics and/or dynamics of the SWTs in the region of study. The term 

figure refers to the geometrical space in the θ/S plane formed by 2 SWTs (line segment), 3 SWTs 

(triangle), 4 SWTs (square), etc. Actually, the mixing figures are 𝑛-dimensional spaces. Each 

mixing figure is constituted by a maximum of four SWTs in order to solve the system of 6 

equations (Eq. 4.1) with at least two degrees of freedom. The mixing figures are vertically and 

horizontally sequenced, sharing at least one SWT with the adjacent mixing figures. The cOMP 

analysis is applied to assign the mixing figure where the water sample is best included (lowest 

residuals). 

In the second step an extended OMP (eOMP) analysis was solved with the same set-up as 

the cOMP except that the eOMP considers conservative and non-conservative variables. I used θ 

and S as conservative variables and SiO
2
, NO

3
, PO

4
 and O

2
 as non-conservative variables. A new 

unknown has to be considered, ΔO, in order to account for the biogeochemical process of 

remineralisation of the organic matter. By taking into account the biogeochemical process of 

remineralisation of the organic matter, non-conservative variables can be included. The system of 

equations remains as follows: 

∑ Xi ∗ θi
SWT = θsample + Rθ

n
i=1

∑ Xi ∗ Si
SWT = Ssample + RS

n
i=1

∑ Xi ∗ SiO2i
SWT + ΔO rSi⁄ = SiO2

sample + RSiO2
n
i=1

∑ Xi ∗ O2
0
i

SWT
− ΔO = O2

sample + RO2
n
i=1

∑ Xi ∗ NO3
0
i

SWT
+ ΔO rN⁄ = NO3

sample + RNO3
n
i=1

∑ Xi ∗ PO4
0
i

SWT
+ ΔO rP⁄ = PO4

sample + RPO4
n
i=1

∑ Xi = 1 + Rmass
n
i=1

(Eq. 4.2)  

where rSi is 12, rN is 10.5 and rP is 175 (Takahashi et al., 1985; Anderson and Sarmiento, 1994). 

The final result from the eOMP analysis is the Xis in each water sample in the 

corresponding mixing figure selected through the cOMP analysis. 

The cOMP analysis selects the mixing figure based on conservative water mass tracers, 

avoiding the complexity added by the non-conservative variables. Even though this analysis does 

not consider the variability associated with biological processes, it is accurate enough to select the 

appropriate mixing figure. Once the mixing figures are selected, the estimates of the Xis are given 

by the eOMP analysis, which does take into account the effect of the biology in the measured 

variables. 

The whole OMP analysis (cOMP and eOMP) was restricted to the water samples with 

pressure ≥ 50 dbar, to avoid the non-conservative behaviour of θ and S in the surface layer due to 

air–sea interactions after the last maximum of winter convection. Additionally, special SWTs for 

the regions of intense air–sea interactions were also included (section 4.4.2.1). To avoid the input 
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of high percentages of fresh water over the Greenland shelf in this region the analysis was 

restricted to water samples with S > 34.7 (Daniault et al., 2011). 

Some of the SWTs were geographically constrained (Álvarez et al., 2004) according to the 

spreading of the water masses: MW was restricted south of the NAC front; DSOW and IrSPMW 

were restricted to the Irminger Basin; PIW was restricted to stations over the Greenland slope (in 

mixing figure 1; Figure 20c) since it is part of the East Greenland Current (Pickart et al., 2005), 

and within the DSOW mixing figure (in mixing figure 3) since it is assumed to contribute to 

DSOW (Falina et al., 2012); and LSW was not allowed in the East Greenland Current (Falina et 

al., 2012; von Appen et al., 2014). 

To reduce the error of the whole OMP analysis, an iterative process was performed for 

nutrients (Álvarez et al., 2004), since they accumulate the highest errors. At each iteration we 

obtained new values of the nutrients for each SWT from 𝑋𝑖s and the measured data (eOMP 

equations). These new estimated values were assigned to the SWTs and the methodology was re-

run. The process finishes when an asymptote is found in the value of the total residual of the 

analysis (eOMP) (in this work five iterations were performed). The iterative process improves the 

definition of the SWTs, thereby also improving the accuracy of the methodology. 

The robustness of the methodology was tested through a perturbation analysis of 

uncertainties (Lawson and Hanson, 1974), where the physicochemical properties of each SWT 

(Álvarez et al., 2004; Pardo et al., 2012) and of each water sample (Álvarez et al., 2014) were 

modified by introducing normally distributed random numbers. This allows to check the 

sensitivity of the model to variations in the SWTs, due to environmental variability, and in the 

water samples, due to measurement errors (Leffanue and Tomczak, 2004). To apply this procedure, 

it is assumed that the property distributions follow a normal distribution constructed with the 

mean equal to the property value at each point and a standard deviation (STD) (Álvarez et al., 

2004; Pardo et al., 2012). The perturbation process lies in varying the property values within the 

normal distribution. All the STDs used in perturbing the SWTs are shown in Table 2. The STDs 

of the water sample properties (ε  in Table 2) were obtained by considering ε  almost equal to the 

accuracy of each water sample property (εθ 0.01, εS 0.01, εSiO2 0.3, εNO3 0.2, εPO4 0.02 and εO2 1). 

The STDs of the properties of the SWTs were obtained within the realm of the SWT (Xi > 75–

95%) by one of the following methods: 

a) Following Karstensen and Tomczak (1998), the water samples with more than 95% of 

contribution of a certain SWT (𝑋𝑖) were selected and the STD calculated for each 

property. This method was only used when the number of water samples that could be 

selected for a certain SWT was more than 50. This procedure was applied to LSW, ISOW 

and NEADW
L
. 

b) For the water masses that were modelled by various SWTs (multi-SWTs), as the Central 

Waters, DSOW and SPMW, the multi-SWT contributions were obtained by adding the 

contributions of their respective components. Then the water samples with Xi of the 

multi-SWT greater than 95% were selected. The property values of each component of 

the multi-SWT were then subtracted from the values of the water samples and linear 

regressions between θ and the rest of the resulting properties were performed. The STDs of 

the multi-SWT properties were assumed to be equal to the error of the intercept. The 



 CHAPTER 4.- STRUCTURE, TRANSPORTS AND TRANSFORMATIONS OF THE WM IN THE NASPG 

71 

properties of each component of the multi-SWT had the same STDs as the corresponding 

ones in the multi-SWT. With this methodology the variability due to the θ variability was 

removed. 

c) A modification of the methodology in (b) was applied to MW, where samples with Xi > 

75% were selected and used for the linear regressions. 

The STDs of the properties of SAIW were assigned equal to those of the Central Waters, 

because not enough water samples presented Xi > 95% of this water mass. The STD of NEADW
U
 

was computed using the errors of the SWTs in which it is assumed to decompose (section 4.5). 

The STDs for the O
2
 were set as a value equal to 3% of the saturation value, since when a 

water mass is formed the content of O
2
 is not exactly the saturation value (Najjar and Keeling, 

2000; Ito et al., 2004). 

100 perturbations were performed and the OMP analysis was solved for each perturbed 

system. Uncertainties in the Xis are computed from the results of the perturbations. Then, the 

STD of the 100 SWT distribution matrixes was calculated. The mean of the STD matrix is shown 

in Table 2. The resulting uncertainties in the Xis range were between 0.015 and 0.13, indicating 

that the methodology is robust. The SWTs with higher mean STD values are those that belong to 

a mixing figure that covers a small property range, where the variability of the SWTs has a greater 

effect. 

The least square method constrained to non-negative solutions returns the total residual, 

i.e., the squared largest singular value for the set of residuals resulting from the eOMP equation 

system (Eq. 4.2). These residuals give insights about the reliability of the proposed mixing model, 

and indicate the quality of the solution for each depth range. The total and individual residuals for 

the water samples are shown in Figure 21. 

The total residual of the eOMP analysis is almost zero from 500 m depth to the bottom 

(Figure 21a). The individual residuals present the same pattern (Figure 21b, c, d). In the surface 

layer, the assumption of conservativeness is not justified because this layer is subject to seasonal 

variability. Nevertheless, as θ and S have the highest weights in the analysis (Table 2), the 

majority of the positive residuals of θ in the surface–subsurface layer are compensated by the 

corresponding negative residuals of S. 

Therefore, the model is consistent since its residuals lack a tendency with depth (Figure 

21) and the Standard Deviations of the Residuals remain low, slightly higher than the 

corresponding measurement error (Table 2). Besides, the model’s ability to reproduce the 

measured values is given as the correlation coefficient (r
2
) between the measured (water samples) 

and the expected values for the SWTs properties (values of the properties of each water sample 

obtained by substituting Xis in the system of equations). The model is proved to be reliable since it 

explains almost 99% of the variability of the conservative tracers, and more than 97% of all the 

non-conservative tracers except PO
4
 (94%) (Table 2). The Standard Deviations of the Residuals 

provide an estimation of the goodness of the proposed mixing model. 
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Figure 21.- Total residual from the extended Optimum MultiParameter (eOMP) analysis (a) and individual 

residuals from each eOMP equation (see Eq. 4.2): (b) potential temperature (θ, in ºC) and salinity (S); (c) silicate 

(SiO
2
) and nitrate (NO

3
) (both in μmol·kg

–1
); and (d) phosphate (PO

4
) and oxygen (O

2
) (both in μmol·kg

–1
). 

When evaluating the water mass distributions derived from an OMP analysis, it should be 

taken into account that the properties that define the SWTs are time invariant; hence, changes in 

the properties of the water masses over time are reflected through water mass redistributions. 

Therefore, it is possible that some of the changes in the distribution of the SWTs may actually 

reflect inter-annual variations in the water mass properties not taken into account in the OMP 

set-up, and not only an increase/reduction of its extension. This affects water masses such as LSW 

and SPMW, whose properties vary from year to year due to formation processes and air–sea 

interaction differences. 

4.4.3.- Velocity field 

The velocity fields in the sections are required to compute the volume transports by water 

mass. The velocity fields were obtained from the results of previous studies realized over the same 

sections using linear box inverse models. The inverse model configurations for 4x and OVIDE 

2002 have been described by Lherminier et al. (2007), for OVIDE 2004 by Lherminier et al. 

(2010), for OVIDE 2006 by Gourcuff et al. (2011), and for OVIDE 2008 and 2010 by Mercier et 

al. (2015). 

The inverse model is based on the least-squares formalism, which provides errors on the 

velocities and associated quantities such as the magnitude of AMOC (estimated in density 

coordinate) and the heat flux (Lherminier et al., 2010). The inverse model was constrained by 

direct Acoustic Doppler Current Profiler velocity measurements and by an overall mass balance of 

1 ± 3 Sv to the North (Lherminier et al., 2007, 2010). 

The inverse model computes the absolute geostrophic transports orthogonal to the section. 

The Ekman transport is deduced from the wind fields averaged over the cruise period and added 

homogeneously in the first 40 metres (Mercier et al., 2015). The transport estimates of the inverse 
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model across OVIDE have been validated by favourable comparisons with independent 

measurements (Daniault et al., 2011; Gourcuff et al., 2011; Mercier et al., 2015). 

4.4.4.- Combining the water mass distributions with the velocity fields 

The combination of the 𝑋𝑖s (i = 1–14) obtained using the OMP analysis with the velocity 

fields allowed obtaining the volume transport of each SWT in the whole water column (Álvarez et 

al., 2004). 

The 𝑋𝑖s were obtained at each measured point (i.e., bottle depth) for each hydrographic 

station, whereas the geostrophic and Ekman components of the flow were estimated at mid-

distance between two hydrographic stations (defining a station pair) with a vertical resolution of 1 

dbar. To match the velocity field, the SWT distributions were linearly interpolated at each dbar, 

and averaged in station pairs. The velocity field was obtained from the CTD downcast and the 

biogeochemical measurements (leading to the 𝑋𝑖s) were performed during the CTD upcast. To 

better match up both fields and compensate for vertical displacements of the water masses between 

the CTD downcast and upcast, I used density coordinates instead of pressure coordinates to 

interpolate the 𝑋𝑖s. To obtain 𝑋𝑖s until the bottom depth of each station pair, the shallower 

station profile in each station pair was extended until the maximum depth of the station pair by 

copying down the 𝑋𝑖 values of the deepest measured point available. 

Data of the upper layer (pressure ≤ 50 dbar) and of the Greenland shelf waters with S < 

34.7, excluded from the OMP analysis, were appropriately reconstructed. The shallowest mixing 

contributions at each station of the upper layer were extrapolated up to the surface by keeping the 

same 𝑋𝑖 values. In areas close to the Greenland shelf, water samples with S < 34.7 were substituted 

by the nearest water sample included in the analysis. 

4.5.-  Water mass distributions for the first decade of the 2000s 

The water mass distributions were obtained for each repeat of the OVIDE section by 

means of an OMP analysis (section 4.4.2). It is important to remember that the water mass 

distributions here presented should be regarded as a best estimate and serve to illustrate the 

relative importance of the water masses, since the definitions of the SWTs in the OMP analysis 

mostly condition the distribution and the maximum contribution achieved by each SWT. 

Additionally, NEADW
U
 is not shown because it was considered as a composite SWT (Álvarez et 

al., 2004; Carracedo et al., 2012) that can be derived from the mixing of 1.5% of MW, 18.4% of 

LSW, 29.5% of ISOW and 50.5% of NEADW
L
 (decomposition based on θ, S and SiO

2
 content in 

the different water masses and on the work of van Aken (2000b)). In this section, the relevant 

features of the distributions of each SWT for the mean result of the OVIDE period (2002–2010) 

are described and discussed (Figure 22). 
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Figure 22.- Water mass distributions of the mean result for the OVIDE sections (2002–2010), from the Iberian 

Peninsula (right) to Greenland (left). The water mass contributions are expressed on a per unit basis (see Table 2 

for the acronyms of the source water types). The dashed horizontal lines represent isopycnals: σ
1
 = 32.15 (plot a), 

which marks the limit between the upper and lower limb of the Atlantic Meridional Overturning Circulation; and 

σ
1
 = 32.42 (very similar to σ

0
 = 27.8; plot e), which marks the lower limit of Labrador Sea Water (LSW) on the 

classic works and approximately crosses the potential temperature/salinity definition of the source water type for 

LSW (Figure 20a). σ
1
 = 32.42 has the advantage of not varying rapidly in the eastern half of the sections. 
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4.5.1.- Upper waters 

The Central Waters (ENACW
16
 + ENACW

12
) occupy the upper eastern part of the 

OVIDE section from the Iberian Peninsula until the Reykjanes Ridge (Figure 22a), representing 

an average of 14.58 ± 0.14% of the total volume of the five sections. They follow the θ maximum 

and the SiO
2
 minimum over the Iberian Basin (Figure 19a, e). Their distribution is associated with 

the circulation of the NAC, being the θ/S front caused by the northern branch of the NAC 

(located at 25ºW in the OVIDE sections, Figure 19a, b) the western limit of the Central Waters 

distribution. The Central Waters main core extends westwards, reflecting the cyclonic circulation 

of the Central Waters in the Iceland Basin and their southward flow over the eastern flank of the 

Reykjanes Ridge (Read, 2000; Pollard et al., 2004). 

The main core of IcSPMW (SPMW
8
 + SPMW

7
) is over the Reykjanes Ridge (Figure 22c). 

IcSPMW reaches the surface in the Irminger Basin, although it is formed in  the Iceland Basin by 

the transformation (air–sea interactions) of the Central Waters (Thierry et al., 2008). This 

indicates that, at the time of OVIDE sections (summer), the surface waters in the Iceland Basin 

were warmer than 8ºC. Furthermore, SAIW is also present in the surface waters of this basin, 

where it mixes with IcSPMW and the Central Waters. The distribution of IcSPMW also shows 

the transport of SPMW from the Iceland Basin to the Irminger Basin by the NAC (Irminger 

Current) (Brambilla and Talley, 2008). 

IrSPMW extends from the Greenland slope until the Reykjanes Ridge (Figure 22d), with 

its main core over the Greenland slope. This distribution could indicate that the major region of 

formation of IrSPMW could be the NW of the Irminger Basin (Brambilla and Talley, 2008), from 

where the East Greenland Irminger Current would transport it until the OVIDE section. This 

SWT can be treated as a precursor of the upper LSW (Pickart et al., 2003). The continuity of the 

distributions of the Central Waters, IcSPMW and IrSPMW indicates that IrSPMW is the final 

product of the transformation of the Central Waters due to air–sea interaction processes 

(McCartney and Talley, 1982; Brambilla and Talley, 2008), IcSPMW being the intermediate 

point of the transformation. 

4.5.2.- Intermediate waters 

SAIW (SAIW
6
 + SAIW

4
) is present in the upper layers of the northern half of the OVIDE 

sections (Figure 22b). The distribution of SAIW shows a maximum in the Iceland Basin associated 

with its advection from the Labrador Sea within the NAC and its subduction beneath the Central 

Waters (Bubnov, 1968; Arhan, 1990; Read, 2000). SAIW suffers a sharp decline once it 

encounters the NAC, but its contribution is significant until 600 m depth, where it still represents 

percentages greater than 25%. East of the Rockall Bank (Figure 18), SAIW deepens until 

intermediate water depths, where it overlies MW (Pollard et al., 1996). In fact, SAIW and MW 

contribute together to their surrounding waters in the region southeast of the NAC (Figure 18 and 

Figure 22b, d) (Harvey and Arhan, 1988). 

The main core of MW is located around 1200 m depth off the shelf of the Iberian Basin 

(Figure 22d, see the tongue of maximum S and minimum O
2
 in Figure 19b, c), with a maximum of 

83.4 ± 0.9% coinciding with the S maximum of 36.28 ± 0.01 (n = 5; where n is the number of 

cruises). This main core is associated with the northward flow of MW (Reid, 1979) and its 
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westwards extension could be associated with its transport by meddies (Mazé et al., 1997) and by 

the Azores countercurrent (Carracedo et al., 2014). 

LSW is the dominant SWT in the sections (35.0 ± 0.6% of the section volume, n = 5; 

Figure 22e). It mainly extends from 1000 to 2500 m depth, coinciding with the S minimum (34.91 

± 0.02) and a relative O
2
 maximum (285 ± 2 μmol·kg

–1
) found in all the three basins (Figure 19b, 

c). LSW presents two main cores separated by the Reykjanes Ridge, which correspond to the 

different pathways of its circulation (Pickart et al., 2003; Álvarez et al., 2004) . This “gap” 

separating the two LSW cores suggests a relatively strong mixing around and over the Reykjanes 

Ridge (Ferron et al., 2014), where the presence of fractions greater than 20% of ISOW and 

IcSPMW induces a decrease in LSW. This erosion of the LSW core is also reflected by a reduction 

of the S minimum over the Reykjanes Ridge (Figure 19b). Moreover, this is the location of the 

water mass described as the Icelandic Slope Water by Yashayaev et al. (2007a), which is defined as 

a result of the direct mixing of ISOW with Atlantic waters, mixing represented in our work by the 

mixing figure 4 (Figure 20c). In agreement with the work of Read (2000), the depth of the LSW 

core in the Irminger Basin is shallower than the one spreading across the Iceland and Iberian 

Basins, although they stay at the same density (see isopycnal σ
1
 = 32.42, dashed line on Figure 22e; 

where σ
1
 is potential density referenced to 1000 dbar). The contribution of LSW in the south-

eastern part of the sections is high (reaching maximum values of 76 ± 1%, n = 5), emphasizing the 

influence of LSW until areas close to the Iberian Peninsula (Tsuchiya et al., 1992; Arhan et al., 

1994a; Paillet et al., 1998). Moreover, the volume occupied by LSW gradually decreases from the 

Irminger Basin to the Iberian Basin. It represents 45 ± 1% (n = 5) of the volume of the Irminger 

Basin (defined between the Greenland slope and the Reykjanes Ridge), 45 ± 1% of the volume of 

the Iceland Basin (defined from the Reykjanes Ridge until 25.5ºW) and 30.3 ± 0.5% of the 

volume of the Iberian Basin (note that the volumes of the basins refer to the volumes at the 

section location, and the volumes per water mass are computed by weighting the volume of the 

basin by the SWT contribution). 

4.5.3.- Overflows and deep waters 

ISOW comes from the Iceland–Scotland sills and flows southwards along the eastern flank 

of the Reykjanes Ridge, where its main core is found (Figure 22b). This main core is located at 

depths greater than 2300 m, with maximum percentages of 90 ± 2% (n = 5), where the θ/S 

properties are 2.59 ± 0.03ºC and 34.979 ± 0.002, respectively. From this region the core extends 

eastwards between ~2000 and 4000 m depth, reaching values of 10% in the Iberian Abyssal Plain 

(Figure 18). This eastward extension could reveal that some ISOW must bypass the CGFZ and 

flow into the West European Basin. This feature is captured by the OMP analysis, since it is 

capable of capturing the significant fractions of the water masses better than the classical water 

mass descriptions. ISOW is also detected at the bottom in the central and eastern regions of the 

Irminger Basin, associated with its northward spreading after crossing the CGFZ (Dickson and 

Brown, 1994; Saunders, 2001). These findings could also be related to the northward flow of 

ISOW mainly in the interior part of the Irminger Basin (Sarafanov et al., 2012). 

The deepest part of the Greenland continental slope is occupied by DSOW (Figure 22a). 

The distribution of this water mass can be traced in the vertical sections of the OVIDE mean 

properties (Figure 19) as a minimum of θ (< 2ºC), a maximum of O
2
 (> 280 μmol·kg

–1
) and a 

relative minimum of nutrients. The inclusion of PIW in the analysis is an attempt to model the 
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entrainment of shelf waters into the deep waters of the Irminger Basin (Tanhua et al., 2008; Falina 

et al., 2012; von Appen et al., 2014). The presence of PIW (Figure 22f), even though in a very 

narrow area, supports the statement of the existence of certain dynamical processes that link the 

East Greenland shelf waters with the deep overflows. 

NEADW
L
 is the dominant water mass in the Iberian Basin from 2000 m depth to the 

bottom, with the main core below ~3500 m depth (Figure 22f). The distribution of this water mass 

follows the high SiO
2
 concentrations at the bottom of the Iberian Basin (> 20 μmol·kg

–1
; Figure 

19e), which are coupled with high concentrations of NO
3
 and PO

4
 (Figure 19d, f, respectively). 

The high SiO
2
 levels reflect the influence of Antarctic Bottom Water (van Aken and Becker, 

1996). The NEADW
L
 isolines shallow eastwards due to the general deep eastern boundary 

upwelling of this water mass along the coast of the Iberian Peninsula (Arhan et al., 1994b). The 

northern part of the distribution of NEADW
L
 is affected by the influences of LSW and ISOW. 

4.6.-  Time variability of the water mass distributions between 

1997 and 2010 

In this section, the variability from 1997 to 2010 of SPMW (IcSPMW + IrSPMW), LSW 

and the deep overflows (DSOW and ISOW) is described and discussed (Figure 23). It should be 

mentioned that the different section pathways (Figure 18) could generate differences in the SWT 

distribution patterns between the 4x and OVIDE sections. The overlapping of the METEOR and 

OVIDE sections allows distinguishing between the differences in the SWTs distributions due to 

the different section pathways, and the inter-annual variability. 

From the comparison of the LSW distributions in both cruises of 1997, it can be 

concluded that for the Irminger Basin the difference in the section pathway between the 4x and 

OVIDE sections is negligible, whereas for the Iceland Basin and around the Reykjanes Ridge it is 

an important component of the variability of the LSW distributions (Figure 23). In the Irminger 

Basin, from 1997 to 2010 the contribution of LSW gradually decreases, which is in agreement with 

the almost complete disappearance of the LSW signal found in 2007 by de Jong et al. (2012). 

LSW represents 58% of the volume of the Irminger Basin in 1997, then its importance decreases 

over time, representing 50% for 2002, with a sharp decrease in 2006 when it drops to 43%, a 

percentage that remains until 2010. The LSW maximum in the Iceland Basin decreases more 

slowly than the one in the Irminger Basin, meaning that in 2004 the fractions of the core in the 

Iceland Basin are higher (> 95%) than those of the core in the Irminger Basin (< 90%). This 

contrast is most noticeable in 2006 due to the sharp decrease in the fractions of LSW in the 

Irminger Basin. In the West European Basin (Figure 18) the greatest change in the fractions of 

LSW takes place in 2008, when the extension of the core is reduced in both the Iceland and the 

West European Basins, a reduction that continues in 2010. However, the volume occupied by 

LSW in the Iberian Basin is almost constant over time (30.3 ± 0.5% for the period 2002–2010), 

which indicates that the large inter-annual variability of the properties in its formation region 

attenuates due to mixing over the length and timescales of the transit from the Labrador Sea 

(Cunningham and Haine, 1995; Paillet et al., 1998). The difference in years between the 

deepening and total extension of LSW could be related to the changes in the volume of LSW 

formed. Between 1987 and 1995 the change in the NAO index led to the diminution in volume 
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and also the warming and salinization of LSW over time (Lazier et al., 2002; Yashayaev, 2007). 

These changes in the LSW properties are solved by the OMP analysis by adding more SPMW. 

 

Figure 23.- Water mass distributions along the WOCE A25 sections, from 1997 (4x section, upper plots) to 2010 

(OVIDE section, lower plots), from the Iberian Peninsula (right) to Greenland (left). The water mass contributions 

are expressed on a per unit basis. Note that SPMW = IrSPMW + IcSPMW. The dashed white line on the DSOW 

plots represents the limit of the PIW contributions (5% isoline) (see Table 2 for the acronyms of the source water 

types). 

The SPMW (IcSPMW + IrSPMW) distribution presents the greatest change between the 

two sections carried out in 1997 (Figure 23), which indicates that the section pathway influences 

the SPMW distribution since both cruises took place in the same time frame. The main path of 

the NAC around the Reykjanes Ridge is located north of the 4x section location (Figure 18) so 

that the fractions of SPMW observed at the 4x location are lower than at the OVIDE location. 

Meanwhile, the METEOR section presents an SPMW distribution similar to those of the OVIDE 

sections. Between 1997 (METEOR) and 2010, the importance of SPMW increases, rising from 

24% to 30% of the volume of the Irminger Basin, with a rate of increase of 0.5% per year (r
2
 = 
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0.93), driven mainly by the increase in the upper 1000 m over the Reykjanes Ridge (0.7% per 

year, r
2
 = 0.95). This change may be related to the difference in the properties of the water masses 

at their formation regions. Since the end of the 1990s, the upper-ocean and upper intermediate 

waters of the NASPG have been getting saltier and warmer due to the redistribution of subpolar 

and subtropical waters caused by the NAO-induced slowdown and contraction of the NASPG 

(Bersch, 2002; Hátún et al., 2005; Sarafanov, 2009; de Boisséson et al., 2012). Thus, the 1997 

section presents fresher waters than the 2000s sections, and the OMP emplaces there less SPMW 

and more LSW. Moreover, the increasing amount of SPMW in the centre of the Irminger Basin 

could be associated with the reduction of the deep convection in the Labrador Sea, which resulted 

in a shallower variety of LSW (Pickart et al., 1996; Stramma et al., 2004; Bersch et al., 2007). The 

thickening observed in the SPMW distributions could indicate a salinization of LSW, solved by 

the OMP by adding greater fractions of SPMW. 

The inter-annual variability of the depth, location and importance of LSW and SPMW 

seems to be connected. These results are in agreement with the interplay that exists between these 

water masses (Bersch et al., 1999). The upper parts of the Irminger Basin gain SPMW and lose 

LSW over time, demonstrating the ability of our OMP methodology to capture the different 

vintages of LSW formed over time (Yashayaev et al., 2008). 

The distribution of ISOW is also influenced by the section pathway that is reflected by the 

differences in its distribution between the two 1997 cruises. For the 4x section the percentages of 

the ISOW core located over the eastern flank of the Reykjanes Ridge fall below 70%, whereas for 

the METEOR section it reaches percentages greater than 80% (Figure 23). This difference could 

be explained by the flow of part of ISOW through gaps in the Reykjanes Ridge located north of 

the CGFZ, between the METEOR and 4x sections, as found by Xu et al. (2010). The existence of 

various deep passages between the locations of the sections (Figure 18) may reduce the arrival of 

ISOW to the 4x section. The distribution of ISOW in the Irminger Basin also differs between the 

4x and METEOR sections. The 4x section is located just after the CGFZ, so that the ISOW 

distributions on both sides of the ridge are similar. Meanwhile, in the METEOR section, the great 

distance between the fracture zone and the section causes ISOW to arrive more diluted at the 

section location after flowing anticyclonically around the ridge. For the same section pathway 

(METEOR-OVIDE), slight inter-annual changes in the distributions of ISOW are found on both 

sides of the Reykjanes Ridge. The core over the eastern flank of the ridge expands and contracts 

between cruises, which could reflect the inter-annual variability of the properties and sources of 

ISOW (Sarafanov et al., 2010). For the Irminger Basin, the ISOW influence increases over time, 

with the greatest change between 1997 (2% of volume) and 2002 (10%), increasing in importance 

until 2010 (15%), although with some inter-annual variability. The great difference between the 

ISOW distributions of the Irminger Basin in 1997 (METEOR) and 2002 could be related to the 

different LSW distribution on the two cruises. In 1997, after a period of high NAO index when 

large amounts of LSW were formed (Lazier et al., 2002; Yashayaev, 2007), LSW occupied almost 

the whole Irminger Basin, leaving little space for ISOW. In 2002, the reduction of the percentages 

of LSW allowed more ISOW to enter the Irminger Basin. These results are also supported by the 

increase of S in the Irminger Basin in the density range of ISOW found by Sarafanov et al. (2010). 

Since the properties that define an SWT are time invariant, the OMP analysis solves this increase 

of S by giving more presence to ISOW and less to LSW. This is also consistent with the increase 

of S in LSW (Lazier et al., 2002; Pickart et al., 2003; Kieke et al., 2007). 
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For 1997, DSOW seems to be colder at the 4x location than at the OVIDE location, 

which is reflected by lower percentages of DSOW and higher of PIW (Figure 23). This could 

indicate that (i) at 4x location the spill jet, represented by PIW, is not completely mixed with 

DSOW and the two SWTs can be more easily distinguished; and (ii) the existence of strong 

mixing between the two section locations led to a well-defined DSOW at the OVIDE location. 

Between METEOR and 2010, the DSOW distributions present no apparent trend at inter-annual 

timescales. In 2002 and 2004 the PIW influence in the DSOW layer is greater than in the other 

years, which is in agreement with the entrainment events observed by Falina et al. (2012). Adding 

the PIW contributions of mixing figure 3 (Figure 20c) to those of DSOW, this increase in the 

overflow volume can be observed. In both years, the DSOW contributions are greater, reaching 

more than 5.0% of the volume of the Irminger Basin, while in the other cruises its percentages do 

not exceed 4.5%. Probably, these changes could be associated with inter-annual variability in the 

water sources and transports of the overflows (Falina et al., 2012), which could ultimately be 

related to changes in the atmospheric forcing (Macrander et al., 2005), but the date here used is 

insufficient to relate these changes to a given timescale. 

4.7.-  Water mass volume transports, recirculation and 

transformations in the Subpolar North Atlantic 

For each OVIDE cruise the 𝑋𝑖s were combined with the absolute geostrophic velocity field 

(section 4.4.4) to obtain the water mass volume transports. Then the mean water mass volume 

transports were computed for the period 2002–2010 and integrated them along the section to 

obtain the net water mass volume transports (represented in Sverdrup; 1 Sv = 10
6
 m

3
·s

–1
) (Figure 

24). The water mass volume transports were calculated perpendicular to the sections and are 

positive northwards. Errors were computed by weighting the velocity errors by the 𝑋𝑖s. The 

velocity errors were computed at the reference level using the error covariance matrix of the 

inversion (Mercier, 1986; Lherminier et al., 2007, 2010). It is important to note that the water 

mass volume transport estimates are sensitive to the distribution of the SWTs. 

The water masses that contribute to the northward transport in the section are the Central 

Waters (11.6 ± 1.2 Sv), IcSPMW (2.6 ± 1.5 Sv), SAIW (2.2 ± 0.4 Sv) and MW (0.2 ± 0.4 Sv) 

(Figure 24). These are the first estimates of the transports of the Central Waters, SPMW and 

SAIW in the Subpolar North Atlantic apart from the transports of the Central Waters and SAIW 

reported for the 4x section by Álvarez et al. (2004) (10.3 and 2.9 Sv, respectively). The MW 

transport here obtained is lower than that reported by Álvarez et al. (2004) and Schmitz (1996). 

This may be due to the variability derived from its transport by meddies (Arhan and King, 1995; 

Mazé et al., 1997). 

The transformation of the above-cited water masses leads to the formation of IrSPMW, 

which transport (-8.8 ± 0.9 Sv; Figure 24) is concentrated in the East Greenland Irminger 

Current. This water mass represents an important fraction of the -22.1 ± 3.2 Sv of the East 

Greenland Irminger Current estimated for the OVIDE sections of 2002 and 2004 by Lherminier et 

al. (2010). IrSPMW is the precursor of LSW, whose net transport across the OVIDE section is 

southwards (-0.9 ± 1.8 Sv). This net southward transport of LSW, in agreement with a moderate 

formation of LSW in the Irminger Basin (Pickart et al., 2003), is explained by the strong 

southward transports found in the East Greenland Irminger Current, where small amounts of LSW 



 CHAPTER 4.- STRUCTURE, TRANSPORTS AND TRANSFORMATIONS OF THE WM IN THE NASPG 

81 

lead to great southward transports. Lherminier et al. (2007) reported a net northward export of 

LSW in the OVIDE section, while Bacon (1997) found a net transport of -1 Sv of LSW in a 

section close to the OVIDE section. The most likely explanation for the difference between the 

results here obtained and the two previous ones could lie in the specificities of the distributions 

obtained from the OMP analysis. The SWTs distributions are not defined by isopycnal ranges but 

as dilution from a “pure” SWT, so the OMP methodology assesses all the water mass contributions, 

even those outside the core of the water mass. This feature together with the inter-relation 

between LSW, SPMW and ISOW in the Irminger Basin (sections 4.4 and 4.5) could result in this 

kind of difference in the transport estimates. 

 

Figure 24.- Net water mass volume transports perpendicular to the OVIDE section for the mean result of the period 

(2002–2010). Transports (in Sv; 1 Sv = 10
6
 m

3
·s

−1
) are positive northwards (see Table 2 for the acronyms of the 

source water types). 

The water masses coming from the sills are PIW, DSOW and ISOW. The PIW transports 

were split into two main cores: a shallow one associated with mixing figure 1, and a deep one 

associated with mixing figure 3 (Figure 20c; section 4.4.2.2). For the shallow core of PIW the net 

transport is -1.3 ± 0.1 Sv (Figure 24). This transport is slightly lower than those reported by 

Pickart et al. (2005) (barely -2 Sv) and Falina et al. (2012) (-2.4 ± 0.3 Sv as mean transport for 
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2002–2004). This could be because the transports associated with the deep core of PIW were 

added to those of DSOW. Nevertheless, it is in agreement with the -1.3 Sv of upper waters 

estimated to enter the Irminger Basin from the Nordic Seas (Hansen and Österhus, 2000). The 

transport of DSOW across the OVIDE section is -2.5 ± 0.3 Sv, which is in good agreement with 

the estimates of Ross (1984) (from -2 to -3 Sv), Eden and Willebrand (2001) (-2.5 Sv), and 

Lherminier et al. (2010) (-2 Sv, for the OVIDE sections of 2002 and 2004). However, this 

estimate is slightly lower than the -3 Sv found by Dickson and Brown (1994), the -3.5 ± 1.6 Sv 

found by Macrander et al. (2005) and the -3.4 ± 1.4 Sv found by Jochumsen et al. (2012). Since in 

this study the assessment of the water mass volume transports is based on dilutions of a “pure” 

SWT, it would be expected to have lower volume transports than those estimated by isopycnals. 

These underestimates are compensated by the mixing with other SWTs (ISOW and LSW). The 

net transport of ISOW is -2.7 ± 0.8 Sv, a result supported by the -3.2 ± 0.5 Sv reported by 

Saunders (1996), the -3.6 ± 0.5 Sv reported by van Aken and Becker (1996), the -2.5 ± 0.9 Sv 

reported by Lherminier et al. (2007) and the -3.7 ± 0.8 Sv reported by Sarafanov et al. (2012). 

Finally, NEADW
L
 also contributes to the net pull of the deep waters in the NASPG. The net 

transport of this water mass (0.6 ± 1.2 Sv) is comparable with the 1.1 Sv reported by van Aken 

and Becker (1996). 

In a recent study, Mercier et al. (2015) estimated the magnitude of the upper and lower 

limbs of the AMOC (in density coordinates) for the OVIDE sections. These authors reported a 

magnitude of the upper limb of the AMOC of 16.2 ± 2.4 Sv; and of -15.5 ± 2.4 Sv for the AMOC 

lower limb for the OVIDE period (2002–2010). Considering the isopycnal that separates the upper 

and lower limbs in Mercier et al. (2015) (σ
1
 = 32.15), the upper limb of the AMOC in the present 

study is represented by the Central Waters, IcSPMW and SAIW. The net northward transport of 

MW (Figure 24) was also included in the AMOC upper limb. These flows altogether result in an 

AMOC upper limb of 16.6 ± 1.5 Sv for the OVIDE period. These upper AMOC contributors 

resemble the subtropical (Central Waters) and subpolar (SAIW and IcSPMW) components of the 

AMOC at the OVIDE sections described by Desbruyères et al. (2013). The lower limb of the 

AMOC is constituted by IrSPMW, PIW, LSW, ISOW, DSOW and NEADW
L
, resulting in a 

southward transport of -15.6 ± 2.5 Sv. Although in the present study the water masses that 

contribute to the upper and lower limbs of the AMOC may overlap both limbs, the resulting 

approach is in good agreement with the findings of Mercier et al. (2015). Combining the 𝑋𝑖s of 

the 4x section, obtained using the OMP methodology, with the velocity field of the section 

(Lherminier et al., 2007), the water mass volume transports of the 4x section reported by Álvarez 

et al. (2004) were revaluated. For this section, the magnitudes of the upper and lower limbs of the 

AMOC obtained from the water masses contributing to each limb are 23.3 ± 1.2 Sv and -21.1 ± 

1.8 Sv, respectively. The difference with respect to the magnitude of the AMOC for the OVIDE 

period is explained by the greater transports in 1997 of the Central Waters (17.4 ± 1.2 Sv), 

IrSPMW (-12.0 ± 0.3 Sv) and PIW (-3.1 ± 0.1 Sv). The results of the present study support the 

findings of Mercier et al. (2015), who concluded that the decrease in the northward subsurface 

transport of the AMOC from 1993 to 2010 was balanced, at least partially, by a decrease in the 

southward export of the intermediate waters in the western Irminger Basin. These changes could 

be linked to a change in the circulation in response to a transition from previously high to low 

NAO indices over this time span (1997–2000s). 
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Taking advantage of the estimated water mass volume transports, the water mass 

circulation and transformation in the Subpolar North Atlantic was inferred based on four boxes 

defined following Lherminier et al. (2010) and limited to the south by the OVIDE section and to 

the north by the Greenland–Iceland–Scotland sills (Figure 25). The region east of the Reykjanes 

Ridge will be referred to as the East North Atlantic (ENA) Basin and the region west of the 

Reykjanes Ridge as the Irminger Basin. The final four boxes were obtained by dividing both basins 

vertically by the isopycnal σ
2
 = 36.94, which traditionally defines the upper bound of the deep 

waters. Considering that no passages deeper than this isopycnal exist in the ridge between Iceland 

and the OVIDE section, this isopycnal also separates the water masses that can cross the 

Reykjanes Ridge (upper boxes) from those that cannot (lower boxes), which sets an additional 

constraint on the volume budgets. The water mass volume transports are considered positive when 

entering the boxes. 

In order to obtain the volume budgets of the boxes, I considered the volume transports 

estimates through the Greenland–Iceland–Scotland sills available in the literature (Figure 25, grey 

numbers). In the ENA Basin, -7 Sv of relatively warm water (> 7ºC) flow north-eastwards past the 

Faroes (Figure 18) (Schmitz and McCartney, 1993; van Aken and Becker, 1996; Hansen and 

Österhus, 2000), while 3 Sv enter the basin via the overflow waters (Olsen et al., 2008). In the 

Irminger Basin, 1.3 Sv of upper waters (Hansen and Österhus, 2000) and 3 Sv of overflow waters 

(Olsen et al., 2008) enter this basin from the Nordic Seas, whereas -1 Sv of Atlantic water exits 

this basin toward the Nordic Seas (Hansen and Österhus, 2000). The volume transports at the 

southern limit of the boxes (OVIDE section) are the mean volume transports across the OVIDE 

sections (section 4.5.3). 

The net volume transport in the ENA Basin across the OVIDE section is 13.4 ± 4.7 Sv 

and across the Iceland–Scotland sills is -4 Sv (Figure 25a, c). As a result, 9.4 ± 4.7 Sv should flow 

from the ENA Basin to the Irminger Basin over the Reykjanes Ridge. This is corroborated by the 

volume budget of the Irminger Basin, where the difference between the net volume transport 

across the OVIDE section (-12.6 ± 4.7 Sv) and that across the Greenland–Scotland sills (3.3 Sv) 

is -9.5 ± 4.7 Sv. These estimates are very similar to the 11.7 ± 2.1 Sv estimated by Lherminier et 

al. (2010) for the mean of the 2002–2004 OVIDE sections and to the 9.1 ± 1.8 Sv estimated by 

Sarafanov et al. (2012) for the region between 59.5°N and the Greenland–Iceland–Scotland sills. 

Of the 3 Sv of overflow waters entering the lower ENA box, only -1.3 ± 2.6 Sv exit this 

box across the OVIDE section (Figure 25c). This implies that 1.7 ± 2.6 Sv should upwell and 

become part of the upper ENA box. In fact, these 1.7 ± 3.9 Sv are necessary in the upper ENA box 

to balance the volume transports (Figure 25a). For the upper Irminger box, 0.3 Sv enter via the 

Greenland–Iceland sills and 9.4 ± 4.7 Sv enter over the Reykjanes Ridge. Only -6.2 ± 4.2 Sv exit 

the box across the OVIDE section, thus implying that 3.5 ± 6.3 Sv should sink and become part of 

the lower Irminger box. In this lower Irminger box, 3 Sv enter via the overflow waters and -6.4 ± 

2.2 Sv exit across the OVIDE section, thereby 3.4 ± 2.2 Sv are missing, and would be those from 

the upper Irminger box (Figure 25c). This is in agreement with the mean results for the 2002–

2004 OVIDE sections of Lherminier et al. (2010), who estimated that 3.9 ± 1.8 Sv cross from the 

upper to the lower box of the Irminger Basin. 
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Figure 25.- Schematic diagram of the water mass circulation, transformation and transports in the North Atlantic 

Subpolar Gyre, based on a two-layer box model in between the OVIDE section and the Greenland–Iceland–Scotland 

sills (GISS). The transports (in Sv; 1 Sv = 10
6
 m

3
·s

−1
) at the southern boundary are the mean transports across the 

OVIDE sections as obtained in the present study. The transports at the northern boundary (GISS) are defined as 

explained in section 4.7. The boundary between the western (East North Atlantic (ENA) Basin) and eastern 

(Irminger Basin) boxes is the Reykjanes Ridge (RR). RR is closed (open) for the deep (upper-ocean and mid-depth) 

circulation. The diapycnal volume fluxes (crossed and point circles) and the transports across the RR are inferred 

from the condition of volume conservation. The uncertainties are shown in grey. Note that CW accounts for 

Central Waters, AW for Atlantic waters (see Table 2 for the acronyms of the source water types) and I.P. for 

Iberian Peninsula. 

The OMP-based water mass distributions allow disaggregating the water masses that are 

involved in each of those volume transports. The 1.7 ± 2.6 Sv upwelling from the lower to the 
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upper ENA box should be ISOW, since from the 3 Sv of overflow waters entering the lower ENA 

box, only -1.4 ± 1.0 Sv leave the box across the OVIDE section. Thus, the remaining 1.6 ± 1.0 Sv 

should upwell to the upper ENA box, which is proved by the net southward transport of -0.7 ± 0.2 

Sv of ISOW in the upper ENA box across the OVIDE section (Figure 25b). The remaining 0.9 ± 

0.9 Sv should cross over the Reykjanes Ridge, which is consistent with the net southward export 

of -0.6 ± 0.9 Sv of ISOW in the Irminger Basin across the OVIDE section. 

In order to estimate the other water mass components of the 9.4 ± 4.7 Sv crossing over the 

Reykjanes Ridge the composition of the -7 Sv crossing the Iceland–Scotland sills northwards 

should be determined. Since this flow has temperatures over 7ºC (Schmitz and McCartney, 1993; 

van Aken and Becker, 1996), only the Central Waters, IcSPMW and MW (New et al., 2001) are 

possible sources. IcSPMW is excluded from this group because it is formed in the Iceland Basin 

close to the Reykjanes Ridge (McCartney and Talley, 1982; Tsuchiya et al., 1992; van Aken and 

Becker, 1996). Considering that the Central Waters and MW account for 11.8 ± 1.3 Sv in the 

ENA Basin across the OVIDE section and that -7 Sv cross the Iceland–Scotland sills northwards, 

4.8 ± 1.3 Sv are available to flow over the Reykjanes Ridge. MW flows northwards through the 

Rockall trough due to mixing with the Central Waters (Pollard et al., 1996; McCartney and 

Mauritzen, 2001; New et al., 2001) and does not reach the Reykjanes Ridge, thus the 4.8 ± 1.3 Sv 

are attributed to the Central Waters. Once the Central Waters reach the Iceland Basin they 

transform into IcSPMW (-2.7 ± 1.3 Sv), leaving only 2.1 ± 1.8 Sv of Central Waters available for 

crossing over the Reykjanes Ridge. The rest of the flow over the ridge corresponds to those waters 

colder than 7ºC entering the upper ENA box through the OVIDE section, i.e., 4.0 ± 0.5 Sv of 

SAIW, 2.4 ± 2.0 Sv of LSW and the 0.9 ± 0.9 Sv of ISOW above estimated. Intensified vertical 

mixing at the Reykjanes Ridge (Ferron et al., 2014) could explain the appearance and transports 

of LSW and ISOW over the ridge. 

After crossing the Reykjanes Ridge, LSW and ISOW intrude in the deep-to-bottom levels 

of the Irminger Basin, being the main components of the 3.5 Sv downwelling from the upper to 

the lower Irminger box. In fact, the net flows of LSW and ISOW in the Irminger Basin are almost 

compensated by their corresponding flows over the Reykjanes Ridge (Figure 25b). In the lower 

Irminger box, the -2.5 ± 0.3 Sv of DSOW leaving this box are slightly lower than the 3 Sv of 

overflow waters entering this box. The deficit in the DSOW volume transport, as explained 

before, is compensated by the excess of LSW and ISOW. This disagreement in the volume 

transports could be explained by two facts. First, the mixing between IrSPMW and PIW leads to 

waters with properties similar to those of LSW, which the OMP analysis assigned as LSW. Second, 

the contributions of the spill jet are very difficult to separate from those of LSW (von Appen et 

al., 2014), so that part of the spill jet that should be contributing to the DSOW volume transport 

would be attributed to the LSW volume transport. 

In the upper Irminger box, the transport of PIW across the OVIDE section matches the 

1.3 Sv entering this box from the Nordic Seas. The remaining water masses present in this box 

undergo significant transformations. From the 4.0 ± 0.5 Sv of SAIW entering the Irminger Basin 

over the Reykjanes Ridge, -1.8 ± 0.3 Sv exit this basin through the OVIDE section. Besides, 

considering that -1 Sv of Atlantic waters leaves the Irminger Basin towards the Nordic Seas, 3.2 ± 

1.8 Sv of Central Waters and SAIW should have been lost or transformed into other water masses. 

Considering that IrSPMW derives from IcSPMW, and that the inputs from the latter only account 

for 5.3 ± 1.2 Sv in the Irminger Basin (Figure 25b), the 3.2 ± 1.8 Sv of Central Waters and SAIW 
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should have contributed to the IrSPMW volume transport. The net southward export of -8.8 ± 0.8 

Sv of IrSPMW across the OVIDE section is most probably the further precursor of LSW in the 

Labrador Sea (Talley and McCartney, 1982). 

The high variability of the water mass transports around Cape Farewell (Daniault et al., 

2011) hinders a consensus on the estimation of the formation of NADW (Clarke, 1984; Dickson 

and Brown, 1994; Bacon, 1997). The classical study of Dickson and Brown (1994) states that 

NADW is formed by the merger of ISOW, DSOW, Lower Deep Water (here represented by 

NEADW
L
) and minor contributions of LSW. Dickson and Brown (1994) state that the ISOW 

transport would increase due to the contribution of the Lower Deep Water and that LSW would 

contribute to the increase of the transport of DSOW from the sills until Cape Farewell, which is 

corroborated in the present study by the net southward transport of LSW in the Irminger lower 

box (Figure 25d). If the transports of all the contributors of NADW (net transport of DSOW, 

ISOW, NEADWL across the OVIDE section, and the net transport of LSW in the Irminger lower 

box across the OVIDE section) are added, I obtain a production of 9.0 ± 0.9 Sv, a result slightly 

lower than the ~10 Sv reported by Bacon (1997) at Cape Farewell. 

Although the water mass volume transports given by the water mass distributions are 

sensitive to the distribution of the SWTs, which are subject to the definition of the SWTs, the 

volume transports estimated through the water mass distributions are more realistic than those 

obtained between density layers. In the studies performed between density layers, the volume 

transports between certain isopycnals are assigned entirely to a water mass, while the methodology 

described here allows this volume transport to be split between the different water masses found in 

this density range, which could lead to water mass volume transports lower than those estimated 

through the isopycnal method. 

4.8.-  Conclusions 

In this study I show an application of the OMP analysis to identify temporal variations and 

transformations of the water masses along the WOCE A25 hydrographic sections (southern 

boundary of the NASPG). The choice of SWTs and mixing figures here performed is appropriate 

to describe all the cruise samples, as evidenced by the low residuals of the model. Water mass 

transformation through air–sea interactions is taken into account in the OMP set-up by specifying 

several varieties of SPMW. This novelty leads to realistic water mass distributions, confirming 

generally accepted knowledge of the Subpolar North Atlantic circulation. In particular, our water 

mass distributions evidence the subduction of SAIW below the NAC and the PIW cascading to 

the density of the Deep Western Boundary Current. The relative contribution from each water 

mass to the transports across the sections is also provided by combining the results from the OMP 

analysis with the velocity fields of the sections. The assessment of the water mass volume 

transports based on dilutions of a “pure” SWT (OMP-based) is particularly useful for areas of 

complex currents and relevant processes of water mass transformation, where this combined 

methodology can provide robust insights on the circulation features, improving the understanding 

of the regional oceanography. 

The transport estimates by water mass are in good agreement with previous studies and 

match the main features of the northern North Atlantic Circulation. Considering the isopycnal 
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that separates the upper and lower limbs of the AMOC (σ
1
 = 32.15), each SWT is associated with 

the corresponding AMOC limb. In the present study, the upper limb of the AMOC is represented 

by the Central Waters, IcSPMW, SAIW and MW; and the lower limb of the AMOC is 

constituted by IrSPMW, PIW, LSW, ISOW, DSOW and NEADW
L
. This allows associating the 

reduction of the magnitude of the upper limb of the AMOC between 1997 and the 2000s (from 

23.3 ± 1.2 Sv to 16.5 ± 1.5 Sv) with the reduction in the northward transport of the Central 

Waters. This reduction of the northward flow of the upper limb of the AMOC is partially 

compensated by the reduction of the southward flow of the lower limb of the AMOC, associated 

with the decrease in the transports of IrSPMW and PIW. 

The assessment of the box model budgets allows disentangling the transformation pathway 

of the Central Waters. In the ENA Basin, 2.7 Sv of Central Waters are transformed into 

IcSPMW. This flow recirculates around the Reykjanes Ridge and joins IcSPMW advected from 

the south (possibly through a branch of the NAC as suggested by Pollard et al. (2004)), leading to 

a northward transport of 5.3 Sv of IcSPMW in the Irminger Sea. These 5.3 Sv combine with 1.1 

Sv of Central Waters and 2.2 SAIW (crossing over the Reykjanes Ridge) to give 8.8 Sv of 

IrSPMW through air–sea interaction. 

LSW is the main water mass across the sections (35.0 ± 0.6% of the section volume). The 

inter-annual variability observed in the upper layers of the Irminger Basin reflects the interplay 

between LSW and SPMW, the mixing of which emulates the presence of the upper LSW. In the 

lower layers at both sides of the Reykjanes Ridge it is possible to notice an interaction between 

LSW and ISOW, with an increasing presence of ISOW responding to the progressive dilution of 

LSW. The OMP results also reveal that LSW is strongly mixed with the surrounding waters 

mainly in two regions: (i) at and upstream of the Reykjanes Ridge, and (ii) in the Deep Western 

Boundary Current, where the contribution of LSW is significant (σ
0
 > 27.80). The slightly 

negative net transport of LSW across the OVIDE section is in agreement with a moderate 

formation of LSW in the Irminger Basin. 

Waters from the ENA Basin cross over the Reykjanes Ridge and enter the Irminger Basin, 

where they are transformed and/or densified, passing from the upper and intermediate water 

domains to the deep water domain. The OMP analysis allowed decomposing the 9.4 Sv of flow 

across the Reykjanes Ridge into Central Waters, SAIW, LSW and ISOW; SAIW being the main 

contributor. 

The distributions and transports of ISOW allow inferring that in the course of the ISOW’s 

journey from the Iceland–Scotland sills to the CGFZ, part of it upwells and flows through gaps in 

the Reykjanes Ridge between the OVIDE and 4x sections. Once ISOW arrives at the CGFZ some 

fractions continue to flow into the West European Basin while the main stream crosses the 

fracture to the Irminger Basin, flowing northwards and joining the fractions that previously crossed 

the ridge. 

The extension of this methodology to wide areas of the ocean could provide a useful basis 

for this kind of study or more ambitious ones dealing with the cycle of biogeochemical 

components in the ocean. 
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Chapter 5.-  Observed trends of the stressors of the CO
2
 

system in the Irminger and Iceland Basins 

5.1.-  Resumen 

La repetición de secciones hidrográficas proporciona datos y conocimiento acerca de los 

cambios en la química del CO
2
 en agua de mar a nivel de cuenca oceánica para escalas de tiempo 

multidecenales. En este capítulo se utilizan datos de mediciones de carbono inorgánico de alta 

calidad de doce campañas que siguen el mismo trayecto para analizar las consecuencias a largo 

plazo de la absorción del CO
2
 antropogénico (C

ANT
) en las cuencas del Irminger e Islandia para el 

período 1981–2014. Los cambios en el C
ANT

, pH, alcalinidad total (A
T
) y la saturación de CaCO

3
, 

este último en términos saturación de aragonito (Ω
Arag

), fueron evaluados en las principales masas 

de agua de las cuencas y discutidos en el contexto de la circulación oceánica. Todas las masas de 

agua de las cuencas del Irminger e Islandia están ganando C
ANT

, lo que da lugar a tasas de 

acidificación significativas. Las altas tasas de aumento de la concentración de C
ANT

 que se 

encuentran en las capas superiores de ambas cuencas (0,66 ± 0,06 μmol·kg
–1

·yr
–1
 en la cuenca del 

Irminger y 0,50 ± 0,06 μmol·kg
–1

·yr
–1
 en el cuenca de Islandia) responden al aumento del CO

2
 en la 

atmósfera, lo que se traduce en unas tendencias de acidificación de -0,011 ± 0,002 unidades de pH 

por década en ambas cuencas. Las aguas profundas de la cuenca del Irminger presentan unas tasas 

de acidificación muy similares a las de las capas superficiales, resultado de su reciente contacto con 

la atmósfera. La columna de agua de la cuenca del Irminger presenta unas tasas de aumento de la 

concentración de C
ANT

 mayores que las encontradas en la cuenca de Islandia, lo que refleja la 

mayor proximidad de la cuenca del Irminger a las zonas de formación de masas de agua. Estas 

mayores tasas dan lugar a unos descensos de pH mayores en la cuenca del Irminger que en la 

cuenca de Islandia. Para averiguar las causas de los cambios de pH, éstos se dividieron en dos 

componentes: uno derivado de la captación de C
ANT

 (ΔpHCANT) y otro no directamente 

relacionado con la captación de C
ANT

 (ΔpHVar). En las capas superiores de ambas cuencas, la 

acción del ΔpHVar (debida a la advección de aguas subtropicales) contrarresta el efecto del 

ΔpHCANT, dando lugar a que las tasas de acidificación observadas sólo representan un 72–87% de 

las tasas esperadas por la captación de C
ANT

. En cambio, en las capas intermedias de la cuenca del 

Irminger, el efecto del ΔpHVar (producido por el envejecimiento de las aguas) refuerza la 

acidificación derivada de la captación de C
ANT

, lo que da lugar a que la tasa de acidificación de 

estas aguas sea un 34% mayor que la esperada por la acción del ΔpHCANT. Los descensos de pH 

observados causan que la Ω
Arag

 muestre tendencias de descenso significativas en todas las masas de 

agua de ambas cuencas. Las aguas intermedias de ambas cuencas presentan unas tasas de descenso 

de la Ω
Arag

 de entre -2,4 y -3,8·10
–3
 año

–1
, lo que da lugar a un ascenso del horizonte de saturación 

con una tasa de ~10 m·año
–1
. En base a los cambios de pH y Ω

Arag
 observados durante el periodo 

1981–2014, se infirieron los cambios esperados para el final del siglo. Se espera un descenso del pH 

de las capas superiores de ~0,31 unidades de pH respecto a los valores de la era preindustrial 

cuando la concentración de CO
2
 atmosférico alcance los 800 ppm, lo cual es consistente con las 

predicciones del RCP8.5 del IPCC. La capa profunda de la cuenca del Irminger sufrirá un descenso 

de pH similar al de la capa superficial (~0,27 unidades de pH). Estos descensos de pH alcanzados 

cuando la concentración de CO
2
 atmosférico sea de 800 ppm darán lugar a que toda la columna de 
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agua de las cuencas del Irminger e Islandia este sub-saturada en aragonito, tal como ya lo indicaron 

los modelos. Sin embargo, las aguas intermedias alcanzarán el estado de subsaturación mucho 

antes, llegando a este estado cuando la concentración de CO
2
 atmosférico alcance los ~500–560 

ppm. Los datos aquí recopilados también muestran la influencia del aumento de la descarga de los 

ríos árticos en la A
T
 de las aguas profundas de la cuenca del Irminger, que presentan unas 

tendencias significativas de aumento de la A
T
. 

5.2.-  Abstract 

Repeated hydrographic sections provide critically needed data and understanding about 

changes in the basin-wide seawater CO
2
 chemistry over multi-decadal timescales. In this chapter 

high-quality data of inorganic carbon measurements from twelve cruises along the same track are 

used to discuss the long-term impacts of the uptake of anthropogenic CO
2
 (C

ANT
) in the Irminger 

and Iceland Basins for the period 1981–2014. The changes in C
ANT

, pH, total alkalinity (A
T
) and 

CaCO
3
 saturation, the latter in terms of aragonite (Ω

Arag
), were evaluated in the main water masses 

of the basins and discussed in the context of the basin-wide circulation. All the water masses from 

both the Irminger and Iceland Basins are gaining C
ANT

, which results in significant acidification 

rates. The highest rates of increase in the C
ANT

 concentration found in the upper layer of both 

basins (0.66 ± 0.06 μmol·kg
–1

·yr
–1

 in the Irminger Basin and 0.50 ± 0.06 μmol·kg
–1
·yr

–1
 in the 

Iceland Basin) respond to the atmospheric CO
2
 increase, resulting in acidification trends of -0.011 

± 0.002 pH units per decade in both basins. The acidification rates of the deep waters of the 

Irminger Basin are close to those found in the upper layers, which is indicative of their recent 

contact with the atmosphere. The entire water column of the Irminger Basin presents higher rates 

of increase of the C
ANT

 concentration than those found in the Iceland Basin, reflecting the greater 

proximity of the former to the areas of water mass formation. These higher rates lead to greater pH 

drops in the Irminger Basin than in the Iceland Basin. In order to disentangle the drivers of the 

pH changes, they were decomposed into two components: one derived from the C
ANT

 uptake 

(ΔpHCANT) and another not directly related to the C
ANT

 uptake (ΔpHVar). In the upper layer of 

both basins, the ΔpHVar action (driven by the advection of subtropical waters) counteracts the 

effect of the ΔpHCANT, causing the observed acidification rates only represent a 72−87% of the 

expected rates due to the C
ANT

 uptake. By contrast, in the intermediate layers of the Irminger 

Basin, the effect of the ΔpHVar (derived from the aging of the waters) reinforces the acidification 

derived from C
ANT

 sequestration, being the observed acidification rates a 34% higher than those 

expected only by the ΔpHCANT. The decreases in pH cause that the Ω
Arag

 shows significant decrease 

trends in all the water masses of both basins. The decreasing trends of Ω
Arag

 between -2.4 to  

-3.8·10
–3
 yr

–1
 observed in the intermediate waters of both basins correspond with an upward 

migration of ~10 m·yr
–1

 in the saturation horizon. Taking advantage of the observed pH and Ω
Arag

 

changes for the period 1981–2014, the future changes for the end of the century were inferred. 

The upper layer will suffer a pH drop of ~0.31 pH units with respect to the pre-industrial era by 

the time atmospheric CO
2
 reaches 800 ppm, which is consistent with the predictions for the IPCC 

RCP8.5. A similar pH decrease is expected for the deep layer of the Irminger Basin (~0.27 pH 

units). These pH drops derived from the 800 ppm of atmospheric CO
2
 cause that the whole water 

column of the Irminger and Iceland Basins becomes undersaturated in aragonite in agreement with 

the results of numerical models. However, the intermediate waters would become undersaturated 

in aragonite faster, reaching that state by the time the atmospheric CO
2
 reaches ~500–560 ppm. 
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The data here compiled also show the influence of the increase of the arrival of Arctic fresh waters 

in the A
T
 content of the deep waters of the Irminger Basin, which present significant increases in 

A
T
. 

5.3.-  Introduction 

The oceanic uptake of a large fraction of the anthropogenic CO
2
 (C

ANT
; CO

2
 released from 

humankind’s combined industrial and agricultural activities)  has produced the well-known ocean 

acidification (e.g., Raven et al., 2005; Doney et al., 2009; Feely et al., 2009). This phenomenon 

includes seawater chemical changes such as reduction in pH and saturation states for calcium 

carbonate (CaCO
3
) minerals. It has the potential to dramatically affect marine organisms and 

ecosystems (e.g., Langdon et al., 2000; Riebesell et al., 2000; Pörtner et al., 2004; Gattuso et al., 

2014) and to modify the major marine biogeochemical cycles (Gehlen et al., 2011; Matear and 

Lenton, 2014). The average pH (-log
10
[H

+
]) of ocean surface waters has decreased by about 0.1 pH 

units since the beginning of the industrial revolution (1750), with model projections showing an 

additional 0.1–0.4 drop by the end of the century, even under optimistic scenarios (Caldeira and 

Wickett, 2005; Orr, 2011; Ciais et al., 2013). This rate of change is probably one hundred times 

higher than at any time since the last Ice Age (Feely et al., 2004; Raven et al., 2005). These 

changes are so rapid that they can significantly reduce the buffering capacity of the natural 

processes that have moderated changes in ocean chemistry over most of geological time (Raven et 

al., 2005). Also, this rapid rate of change could cause certain calcifying species do not adapt fast 

enough to survive, thus altering the marine food webs (e.g., Orr et al., 2005; Doney et al., 2009). 

Oceans have absorbed ~30% of the C
ANT

 emitted to the atmosphere between 1750 and 

2013 (DeVries, 2014; Le Quéré et al., 2014). However, this C
ANT

 is not evenly distributed 

throughout the oceans (Sabine et al., 2004), entering preferentially in regions of upwelling and 

convective overturn (Maier-Reimer and Hasselmann, 1987; Sarmiento et al., 1992; Lazier et al., 

2002). The Meridional Overturning Circulation (MOC) makes the North Atlantic one of the 

most important C
ANT

 sinks of the global ocean, storing 25% of the global oceanic C
ANT

 despite 

covering only 15% of the global ocean area (Sabine et al., 2004). The MOC transports CO
2
-laden 

waters from the Equator to the northern North Atlantic (e.g., Watson et al., 1995; Wallace, 2001; 

Álvarez et al., 2003; Quay et al., 2007), where the water mass formation processes provide the 

pathway for the C
ANT

 to pass from the surface mixed layer to the deep ocean (Lazier et al., 2002; 

Pérez et al., 2008; Steinfeldt et al., 2009). The Irminger and Iceland Basins are very appropriate 

places to monitor temporal changes in the Atlantic MOC, since the overflows from the Arctic 

Ocean and the Nordic Seas, and the Labrador Sea Water from the Labrador Sea flow into these 

basins. These newly formed waters are laden with C
ANT

 and other anthropogenic tracers (Azetsu-

Scott et al., 2003; Kieke et al., 2007; Rhein et al., 2007, 2015). Moreover, the intense heat loss 

occurring in these basins makes them areas of water mass transformation, where surface and 

intermediate waters sink into the deep layers, particularly in the Irminger Basin (García-Ibáñez et 

al., In Press; see also Chapter 4 of this thesis), thus homogenizing the properties of the water 

column. Therefore, these basins are good locations to (1) follow the C
ANT

 penetration to the deep 

ocean and its consequences; and (2) detect changes in the formation rates of the water masses 

related to changes in the North Atlantic Oscillation (NAO), which can modify the expected rates 

of oceanic C
ANT

 uptake (Pérez et al., 2008). 
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The assessment of rates of ocean CO
2
 uptake over multi-decadal timescales across ocean 

basins provides observational tests for ocean-atmosphere models. Repeated hydrographic sections 

provide a mean of quantifying basin-wide ocean uptake of C
ANT

 (e.g., Friis et al., 2005; Brown et 

al., 2010; Wanninkhof et al., 2010; Guallart et al., 2015b). In the present work high-quality direct 

observations of the seawater CO
2
 system variables taken from twelve cruises along the Irminger 

and Iceland Basins are examined. Previous studies have focused on the C
ANT

 uptake and its effects 

in the Irminger and Iceland Basins (e.g., Pérez et al., 2008; Olafsson et al., 2009; Bates et al., 2012; 

Vázquez-Rodríguez et al., 2012). Nevertheless, the study here presented tries to give a more 

detailed view of the stressors of the CO
2
 system in the water masses of the Irminger and Iceland 

Basins for the last three decades, concretely for the period 1981–2014, based on direct 

observations. 

The present chapter is organized as follows. In Section 5.4 the dataset and the 

methodology followed, including the pH changes deconvolution into anthropogenic and non-

anthropogenic components are described. The temperature, salinity and oxygen fields and trends 

are described and discussed in Section 5.5. Then, the changes in alkalinity (Section 5.6), C
ANT

 

concentration (Section 5.7), pH (Section 5.8) and saturation state for the aragonite form of 

CaCO
3
 (Ω

Arag
) (Section 5.9) are described and discussed. The reason of choosing the aragonite 

form of CaCO
3
 is twofold. First, aragonite is approximately 50% more soluble than calcite (Mucci, 

1983), so its saturation horizon is more susceptible to pH changes. And second, the aragonite is 

the main constituent of the skeletons of the cold-water corals Lophelia pertusa and Madrepora 

oculata, which are important hotspots of biodiversity in the Atlantic Ocean (Movilla et al., 2013; 

Lunden et al., 2014), many of them proposed as sites of marine protected areas. Predictions of the 

future changes in pH and Ω
Arag

 are given in Section 5.10. The chapter is concluded in Section 5.11. 

5.4.- Material and Methods 

5.4.1.- Dataset 

A total of twelve cruises along the same track were selected, spanning over 33 years 

(1981–2014), to study the temporal evolution of C
ANT

, pH, total alkalinity (A
T
) and Ω

Arag
 in the 

Irminger and Iceland Basins (Figure 26; Table 3). The data was accessed from the Global Data 

Analysis Project (GLODAP) v2 website (http://cdiac.ornl.gov/oceans/GLODAPv2), except for 

the data of the OVIDE 2012 and 2014 cruises, which are not publicly available yet. The data of 

the 1991 cruises were merged to obtain more robust data for that year. All cruise data here used are 

compliant with the latest carbon system analytical recommendations for seawater. Only bottle 

data including CO
2
 system analysis were used in this study. 

 

http://cdiac.ornl.gov/oceans/GLODAPv2
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Figure 26.- Tracks of the twelve cruises of seawater CO
2
 system measurements used in this study (1981−2014). 

The black line represents the boundary between the Irminger and the Iceland Basins constituted by the Reykjanes 

Ridge. CGFZ = Charlie-Gibbs Fracture Zone. 

 

Table 3.- List of selected hydrographic cruises (Figure 26). P.I. denotes principal investigator, and #St the number 

of stations selected. 

Cruise Name Expocode Month/Year Vessel P.I. #St Reference 

TTO-NAS L6 316N19810821 08-09/1981 Knorr W.J. Jenkins 11 Takahashi and Brewer (1986) 

AR07E 64TR91_1 04-05/1991 Tyro H.M. van Aken 12  

A01E 06MT18_1 09/1991 Meteor J. Meincke 15  

A01E 06MT30_3 11-12/1994 Meteor J. Meincke 27  

AR07E 06MT39_5 08/09-1997 Meteor A. Sy 32 Rhein et al. (2002) 

OVIDE 2002 35TH20020610 06/07-2012 Thalassa H. Mercier 38 Lherminier et al. (2007) 

OVIDE 2004 35TH20040604 06-07/2004 Thalassa T. Huck 56 Lherminier et al. (2010) 

OVIDE 2006 06MM20060523 05-06/2006 
Maria S. 

Merian 
P. Lherminier 44 Gourcuff et al. (2011) 

OVIDE 2008 35TH20080610 06-07/2008 Thalassa H. Mercier 45 Mercier et al. (2015) 

OVIDE 2010 35TH20100610 06/2010 Thalassa 
T. Huck;  

H. Mercier 
46 Mercier et al. (2015) 

CATARINA* 29AH20120623 06-07/2012 
Sarmiento de 

Gamboa 
A.F. Ríos 44 This work 

GEOVIDE* 35PQ20140517 05-06/2014 Pourquoi Pas? G. Sarthou 31 This work 

* Both the CATARINA (http://catarina.iim.csic.es/en) and GEOVIDE (http://www.geovide.obs-vlfr.fr) cruises 

contain the OVIDE section (http://wwz.ifremer.fr/lpo/La-recherche/Projets-en-cours/OVIDE), and are referred in 

the chapter as OVIDE 2012 and 2014, respectively. 

http://catarina.iim.csic.es/en
http://www.geovide.obs-vlfr.fr/
http://wwz.ifremer.fr/lpo/La-recherche/Projets-en-cours/OVIDE
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At least two variables of the seawater CO
2
 system were measured on all the cruises, but the 

measured pairs varied between cruises. The A
T
 samples were analysed by potentiometric titration 

and determined by developing either a full titration curve (Millero et al., 1993; Dickson and 

Goyet, 1994; Ono et al., 1998) or from single point titration (Pérez and Fraga, 1987; Mintrop et 

al., 2000), with an overall accuracy of 4 μmol·kg
–1
. The total dissolved inorganic carbon (C

T
) 

samples were analysed with Single Operator Multiparameter Metabolic Analysers (SOMMA) 

based on coulometric titration techniques (Johnson et al., 1993) and were calibrated with 

Certified Reference Materials (CRMs), achieving an overall accuracy of 2 μmol·kg
–1
. The 

exception to the latter is the 1981 TTO-NAS cruise, where C
T
 was determined potentiometrically 

(Bradshaw et al., 1981) and no CRMs were used, which led to an accuracy of 4 μmol·kg
–1
. The pH 

was determined either potentiometrically (Dickson, 1993a, b) using pH electrodes or, more 

commonly, with a spectrophotometric method (Clayton and Byrne, 1993) adding m-cresol purple 

as indicator in either scanning or diode array spectrophotometers. The spectrophotometric pH 

determination has a typical precision range of 0.0002–0.0004 pH units (Clayton and Byrne, 1993; 

Liu et al., 2011). However, Carter et al. (2013) reported an accuracy of the spectrophotometric pH 

determination of 0.0055 pH units. When direct pH measurements were not performed, it was 

computed from A
T
 and C

T
 using the thermodynamic equations of the seawater CO

2
 system 

(Dickson et al., 2007) and the CO
2
 dissociation constants of Mehrbach et al. (1973) refitted by 

Dickson and Millero (1987). An uncertainty of 0.006 pH units was estimated for these calculated 

pH by random propagation of the reported A
T
 and C

T
 accuracies. The exception to the latter is the 

1981 TTO-NAS cruise, whose C
T
 accuracy caused the estimated uncertainty for calculated pH to 

be slightly higher (0.008 pH units). The pH values here reported are at 25ºC and on the Seawater 

Scale (pHSWS25). Some of the data from the older cruises were adjusted to overcome the effects on 

the precision due to differences in the analytical procedures (Pérez et al., 2008, 2010; Vázquez-

Rodríguez et al., 2012). 

The C
ANT

 concentrations were estimated applying the φCT
0 method (Pérez et al., 2008; 

Vázquez-Rodríguez, 2009a), which produces good estimations over the whole latitudinal range of 

the Atlantic Ocean (Vázquez-Rodríguez et al., 2009b). The φCT
0 method is a process-oriented 

geochemical approach that considers the processes controlling the C
ANT

 uptake by the ocean: from 

the biogeochemistry of the seawater CO
2
 system to the mixing and air-sea exchanges. It also 

considers the spatiotemporal variability of the preformed A
T
 (A

T

0
) and air-sea CO

2
 disequilibrium 

(ΔC
dis

) since the pre-industrial era. The subsurface layer reference for water mass formation 

conditions produces parameterizations of A
T

0
 and ΔC

dis
 that serve to estimate C

ANT
 without the 

need for any additional zero-C
ANT

 reference (Vázquez-Rodríguez et al., 2012a). The procedure 

requires as input parameters C
T
 and A

T
. The overall uncertainty of the method has been estimated 

in 5.2 μmol·kg
–1
 (Pérez et al., 2008; Vázquez-Rodríguez, 2009a). The trends of C

ANT
 estimated by 

the φCT
0 method were contrasted with those of the parameter C* obtained with the ΔC* method 

(Gruber et al., 1996), whose main difference with the φCT
0 method is the assumption of constant 

ΔC
dis

 (Matsumoto and Gruber, 2005). 

The Ω
Arag

 was also calculated as function of A
T
 and C

T
, using the equation of Mucci 

(1983). The CaCO
3
 saturation state is defined as the ratio between the observed and the expected 

ion product of the concentrations of calcium and carbonate ions when the solution is in 

equilibrium with a particular CaCO
3
 mineral. Since in the open ocean the variations in the 

calcium ion concentration are rather small and closely related to variations in salinity, the 
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carbonate ion concentration mainly determines the Ω
Arag

. This characteristic makes the Ω
Arag

 an 

optimum indicator of the environmental availability of dissolved carbonate ions. Seawater is in 

equilibrium with a CaCO
3
 mineral when Ω = 1, supersaturated when Ω > 1, and undersaturated 

when Ω < 1. The saturation horizon refers to the depth at which the saturation is 1, and separates 

supersaturated waters (above) from undersaturated waters (below). 

5.4.2.- pH change deconvolution: anthropogenic and non-anthropogenic 

components 

To estimate how much of the change in pH is due to the uptake of C
ANT

 from gas exchange 

with the atmosphere, pH changes were decomposed into those related to the C
ANT

 uptake 

(∆pHCANT) and those not directly related to the C
ANT

 uptake (∆pHVar), as in Byrne et al. (2010), 

Guallart et al. (2015a) and Ríos et al. (Submitted). 

To compute both components of the pH change, first the C
T
 that the water masses would 

have without the presence of C
ANT

 was estimated subtracting the C
ANT

 values estimated by the φCT
0 

method (Pérez et al., 2008; Vázquez-Rodríguez, 2009a) from the measured C
T
. Then the associated 

pH change (∆pHVar) was calculated based on the resulting C
T
 (C

T
 – C

ANT
) using the 

thermodynamic equations of the seawater CO
2
 system (Dickson et al., 2007) and the CO

2
 

dissociation constants of Mehrbach et al. (1973) refitted by Dickson and Millero (1987). Finally, 

the ∆pHCANT resulted from the subtraction of the ∆pHVar to the measured pHSWS25. 

The uncertainties related with the reproducibility or the precision of the pH 

measurements and the C
ANT

 estimates are the ones that directly affect the accuracy of the estimates 

of the ∆pHCANT and the ∆pHVar, or even of the rates of change of C
ANT

 and pHSWS25. Most of the 

more relevant terms for the accuracy of spectrophotometric determination of pH are related to the 

accuracy in the determination of the equilibrium constant of the m-cresol and not to the accuracy 

of the absorbance measurements (Carter et al., 2013). Besides, an important part of the 

uncertainty of the C
ANT

 estimation is related to the accuracy of the constant terms (preformed 

variables and Redfield ratios). However, when the changes in pH and C
ANT

 are determined, the 

uncertainties in the constants terms are cancelled out. Therefore, the real precision in the 

determination of the ∆pHSWS25 and their components can be determined by determining the 

standard deviation (STD) of the values in the almost C
ANT

-free deep waters that present negligible 

CO
2
 variability. Sampling of deep waters in the Iberian Abyssal Plain during the seven repeats of 

the OVIDE line enables the determination of the reproducibility and uncertainty of the main 

variables (Table 4). The uncertainties of the Apparent Oxygen Utilization (AOU; the difference 

between the saturated concentrations of oxygen calculated using the equations of Benson and 

Krause (1984) and the measured concentrations of oxygen), A
T
 and pHSWS25 in the seven OVIDE 

cruises are very similar and the reproducibility between cruises is even better. The uncertainty of 

the φCT
0 estimates (5.2 μmol·kg

–1
) and the accuracy of the spectrophotometric pH measurements 

(0.0055 pH units) are larger than the STDs of the values of C
ANT

 (1.2–1.6 μmol·kg
–1
) and pHSWS25 

(0.002–0.003 pH units), so the STDs may be the errors for the C
ANT

 and the ∆pHSWS25. It is 

corroborated by the observed uncertainties of the ∆pHCANT and the ∆pHVar, whose uncertainties 

are very similar in the seven OVIDE cruises. The STDs of the C
ANT

 values in Table 4 are lower 

than the 2.4 μmol·kg
–1

 reported by Ríos et al. (2003) in the South Atlantic (meridional transect 
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from 4ºN to 23ºN along 9ºW), the 2.7 μmol·kg
–1
 reported by Guallart et al. (2015a) from a 

transect across the Equatorial Atlantic (24ºN), and the 2.7 μmol·kg
–1

 reported by Ríos et al. 

(Submitted) from a transect along the Atlantic Ocean (50ºS–36ºN), all based in the same back-

calculation technique. Based on the STDs of the C
ANT

 estimates in these almost C
ANT

-free abyssal 

waters, these authors estimate an uncertainty of 0.005 in pH, which is estimated as the maximum 

error for the ∆pHCANT and the ∆pHVar in this work. 

Table 4.- Mean values ± standard deviation of pressure (in dbar), potential temperature (θ, in ºC), salinity, 

Apparent Oxygen Utilization (AOU, in μmol·kg
–1

), total alkalinity (A
T
, in μmol·kg

–1
), anthropogenic CO

2
 estimated 

with the 𝛗𝐂𝐓
𝟎 method (C

ANT
, in μmol·kg

–1
), pH in seawater scale at 25ºC (𝐩𝐇𝐒𝐖𝐒𝟐𝟓), pH change not derived from the 

C
ANT

 uptake (∆𝐩𝐇𝐕𝐚𝐫) and concentration of carbonate ions ([CO
3

2–
], in μmol·kg

–1
) for the bottom waters of the 

Iberian Abyssal Plain sampled during the OVIDE cruises. “n” represents the number of data considered in each 

cruise. 

Year (n) Pressure θ Salinity AOU A
T
 C

ANT
 𝐩𝐇𝐒𝐖𝐒𝟐𝟓 ∆𝐩𝐇𝐕𝐚𝐫 [CO

3

2–
] 

2002 (144) 4205 ± 526 2.182 ± 0.080 34.913 ± 0.008 86.1 ± 2.0 2351 ± 3 6.4 ± 1.3 7.731 ± 0.003 7.716 ± 0.005 104.0 ± 1.0 

2004 (158) 4263 ± 499 2.162 ± 0.075 34.908 ± 0.007 87.1 ± 1.4 2352 ± 3 6.2 ± 1.2 7.731 ± 0.003 7.717 ± 0.006 104.0 ± 0.9 

2006 (132) 4252 ± 529 2.170 ± 0.082 34.913 ± 0.008 85.4 ± 1.6 2350 ± 3 6.2 ± 1.3 7.732 ± 0.003 7.717 ± 0.005 104.1 ± 1.0 

2008 (125) 4206 ± 511 2.179 ± 0.075 34.911 ± 0.007 84.9 ± 1.8 2353 ± 4 7.0 ± 1.6 7.734 ± 0.003 7.718 ± 0.006 104.9 ± 1.1 

2010 (131) 4312 ± 524 2.163 ± 0.077 34.908 ± 0.008 85.9 ± 1.6 2351 ± 3 7.0 ± 1.2 7.730 ± 0.002 7.714 ± 0.004 103.8 ± 0.8 

2012 (102) 4397 ± 526 2.149 ± 0.077 34.909 ± 0.008 87.9 ± 1.6 2352 ± 3 5.1 ± 1.2 7.733 ± 0.002 7.721 ± 0.004 104.1 ± 0.8 

2014 (54) 4441 ± 477 2.141 ± 0.069 34.904 ± 0.007 87.4 ± 1.3 2353 ± 3 5.5 ± 1.5 7.733 ± 0.003 7.720 ± 0.006 104.2 ± 0.8 

5.4.3.- Water mass characterization 

The changes in the variables of the seawater CO
2
 system were assessed in the main water 

masses of the Irminger and Iceland Basins, so that the variability of the properties within each 

defined layer is keep to a minimum. The predominant water masses in the study region are 

Subpolar Mode Water (SPMW), upper and classical Labrador Sea Water (uLSW and cLSW, 

respectively), Iceland–Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water 

(DSOW) (Figure 27). The water masses were defined by potential density following the limits 

suggested by Azetsu-Scott et al. (2003), Kieke et al. (2007), Pérez et al. (2008) and Yashayaev et 

al. (2008). 

To achieve more robust and consistent mean property values for each water mass, the 

cruise data was linearly interpolated at each dbar, an improvement with respect to the works of 

Pérez et al. (2008, 2010) and Vázquez-Rodríguez et al. (2012b). To obtain property values until 

the bottom depth of each station, the station profiles were extended until the bottom by copying 

down the values of the deepest measured depth. Data of the upper layer (pressure ≤ 100 dbar) was 

homogenized with the mean value of the pressure range 50–100 dbar to reduce the seasonal 

influence on the inter-annual trends (Vázquez-Rodríguez et al., 2012a). Then, the interpolated 

station profiles of each cruise were divided into the different water mass density intervals for each 

basin (Figure 27). The data assigned to each water mass density range at each station was finally 

averaged for each cruise and weighted by the area of the corresponding layer. The mean values of 

the properties for each water mass and their STDs are listed in Table 5. 
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Figure 27.- Limits of the layers and basins considered in this study plotted on the mean salinity of the sections. The 

boundary isopycnals are represented in potential density (σ, in kg·m
−3

), and the vertical white line represents the 

limit (Reykjanes Ridge) between the Irminger (left) and Iceland Basins (right). The acronyms of the layers account 

for: Subpolar Mode Water (SPMW), upper and classical Labrador Sea Water (uLSW and cLSW, respectively), 

Iceland−Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW).  

For further reference, the vertical sections of the mean properties (potential temperature 

(θ ), salinity, AOU, A
T
, pHSWS25, CANT

, ∆pHVar and Ω
Arag

) for the period 1981–2014 are shown in 

Figure 28. The AOU was used instead of oxygen because it accounts for the changes in water mass 

ventilation and the organic matter remineralization, which are linked to the decrease of the 

∆pHVar (Brewer, 1978; Guallart et al., 2015a). 

5.5.- Temperature, Salinity and AOU fields 

The vertical section mean profiles of θ  and salinity (S) show the relatively warm (θ  > 

5ºC) and saline (S > 35) central waters (here represented as SPMW) occupying the first 1000 m 

of the water column (Figure 28a,b). The SPMW is warmer and saltier in the Iceland Basin than in 

the Irminger Basin, which reflects the circulation of this water mass from the former to the latter 

transported by the North Atlantic Current (NAC) (Brambilla and Talley, 2008). The mixing of 

SPMW with the surrounding waters around the Reykjanes Ridge, in conjunction with the air-sea 

interaction, results in a colder and fresher SPMW in the Irminger Basin. 

The S values in the SPMW layer present no significant long-term trend, neither in the 

Irminger Basin nor in the Iceland Basin, but high inter-annual variability (Figure 29a,b). 

Especially significant is the sharp increase in S of this water mass in the Iceland Basin between 

1994 and 1997, from average S values of 34.981 ± 0.108 (n = 96) to 35.093 ± 0.095 (n = 98) 

(Table 5). This S change could be generated by a greater arrival of subtropical waters due to the 

contraction of the North Atlantic Subpolar Gyre related to the shift in the winter NAO index 

from positive to neutral/negative values between both cruises (Bersch, 2002; Hátún et al., 2005; 

Sarafanov et al., 2008; de Boisséson et al., 2012). In the Irminger Basin, it stands out the S 

decrease between 1991 and 1994 (Figure 4a), from 34.984 ± 0.055 (n = 45) to 34.881 ± 0.365 (n = 

84), and the subsequent recovery in 1997 to the intermediate value of 34.950 ± 0.133 (n = 104). 

From 1997 onwards, the influence of the subtropical waters arriving from the Iceland Basin can be 
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also detected although less pronounced, with a slight increase from 1997 to 2006. The maximum S 

found in 2006 could be indicative of the maximum contraction of the Subpolar Gyre. From 2006 

onwards, the S values present a decreasing trend of -0.010 ± 0.004 yr
–1
 (r

2
 = 0.84, p-value < 0.05). 

It may be the result of the recovery of the extension of the gyre in the subsequent years that would 

lead to the ventilation of SPMW (Sarafanov, 2009; de Boisséson et al., 2012), reaching the uLSW 

layer in the region closest to Greenland (Pickart et al., 2003). The changes in AOU of SPMW are 

less clear (Figure 29c,d), but in the Irminger Basin its AOU changes follow those of the uLSW 

layer, which may indicates a possible ventilation of the latter in the Irminger Basin (Pickart et al., 

2003; Kieke et al., 2006). 

Below SPMW is LSW (uLSW and cLSW), which is characterized by θ  between 3 and 4ºC 

and S between 34.85 and 35 (Figure 28a,b). The waters of both the uLSW and the cLSW layers 

present higher θ , S and AOU in the Iceland Basin than in the Irminger Basin, due to their mixing 

with the surrounding waters during their flow from the Labrador Sea (their formation region) to 

the Iceland Basin (Bersch et al., 1999; García-Ibáñez et al., In Press; see also Chapter 4 of this 

thesis). The mixing around the Reykjanes Ridge is clearly evident in the S fields of uLSW and 

cLSW, where relatively high S values can be found (Figure 28b). 

In the Irminger Basin, the S values in the uLSW layer show a significant long-term trend 

of 0.0010 ± 0.0003 yr
–1

 (r
2
 = 0.53, p-value < 0.01), influenced by inter-annual variability (Figure 

29a). Whereas the cLSW layer present no significant long-term trend due to the high S values 

encountered in 1981 and 1991. If these cruises are excluded, a significant increasing trend of 

0.0039 ± 0.0004 yr
–1

 (r
2
 =0.94, p-value < 0.01) is found. This S increase is in agreement with the 

progressive salinization of cLSW due to lateral mixing coinciding with a period of weak winter 

convection at the Labrador Sea (e.g., Lazier et al., 2002; Kieke et al., 2006; Rhein et al., 2007; 

Yashayaev et al., 2008). This is also evident in the increasing AOU values from 1994 (when AOU 

values are at its minimum, 28 ± 7 μmol·kg
–1
) to 2014 (when AOU values are at its maximum, 45 ± 

3 μmol·kg
–1
) (Figure 29c), result of the re-stratification of the water column that lead to an aging 

of the water masses due to isopycnal mixing. The S an AOU minimum found in the cLSW layer of 

the Irminger Basin in 1994–1997 is coherent with the S minimum found in 1994 in the Labrador 

Sea (Yashayaev et al., 2008). The salinization of cLSW is the responsible of the increase in S of 

uLSW from 1997 onwards, although the formation of uLSW during that period (e.g., Rhein et al., 

2015) keeps its S values lower than those of cLSW. However, the aging of cLSW is not patent in 

uLSW because uLSW has been ventilated during the OVIDE period (2002–2014). Interestingly, 

from 2010 onwards the S values of cLSW are higher than those of the layers above (uLSW) and 

below (ISOW) it. Hence, this salinization should be the result of the mixing of cLSW and SPMW 

in the Labrador Sea (Lazier et al., 2002; Yashayaev, 2007). 

In the Iceland Basin, no significant long-term trends in the S values of uLSW and cLSW 

are found (Figure 29b) due to the attenuation of the variability caused by the mixing occurred 

from the Irminger Basin to the Iceland Basin (Cunningham and Haine, 1995; Paillet et al., 1998). 

However, the pattern of AOU of uLSW clearly reflects the formation history of this water mass. 

uLSW losses oxygen from 1981 to 1997, and gains oxygen thereafter, reaching its maximum 

ventilation in 2010 (Figure 29d). This AOU minimum is in agreement with the enhanced 

production of LSW in the Labrador Sea in 2008 (Yashayaev and Loder, 2009). The deep 

convection in 2008 could explain why uLSW and cLSW present similar S and AOU values from 

2010 onwards. 
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Table 5.- Temporal evolution (1981–2014) of the values (average ± standard deviation) of potential temperature 

(θ, in ºC), salinity, Apparent Oxygen Utilization (AOU, in μmol·kg
–1

), salinity normalized total alkalinity (NA
T
, in 

μmol·kg
–1

), anthropogenic CO
2
 estimated with the 𝛗𝐂𝐓

𝟎 method (C
ANT

, in μmol·kg
–1

), pH in seawater scale at 25ºC 

(𝐩𝐇𝐒𝐖𝐒𝟐𝟓), pH change not derived from the C
ANT

 uptake (∆𝐩𝐇𝐕𝐚𝐫) and saturation state of aragonite (Ω
Arag

) for the 

water masses considered in the Iceland Basin (Table 5a) and the Irminger Basin (Table 5b). All values listed here 

were obtained by vertically and horizontally integrating each property within each water mass. xCO
2
 represents the 

atmospheric CO
2
 excess (in ppm) with respect to the preindustrial atmospheric CO

2
 concentration (278.5 ppm). See 

water mass acronyms in Figure 27. 

Year xCO
2
 θ Salinity AOU NA

T
 C

ANT
 𝐩𝐇𝐒𝐖𝐒𝟐𝟓 ∆𝐩𝐇𝐕𝐚𝐫 Ω

Arag
 

SPMW (σ
0
 < 27.68 kg·m

–3
) 

1981 62 6.231 ± 1.655 35.003 ± 0.064 32.3 ± 18.3 2308 ± 4 30.3 ± 3.1 7.772 ± 0.057 7.839 ± 0.057 1.7 ± 0.3 

1991 77 6.420 ± 1.067 35.004 ± 0.083 40.8 ± 20.3 2309 ± 2 33.3 ± 7.0 7.756 ± 0.032 7.830 ± 0.043 1.7 ± 0.2 

1994 80 6.553 ± 1.380 34.981 ± 0.108 42.1 ± 21.9 2310 ± 2 34.7 ± 6.9 7.757 ± 0.048 7.833 ± 0.055 1.7 ± 0.3 

1997 85 7.376 ± 2.506 35.093 ± 0.095 44.9 ± 23.6 2308 ± 2 35.8 ± 9.3 7.797 ± 0.083 7.872 ± 0.092 1.9 ± 0.5 

2002 95 7.217 ± 1.577 35.083 ± 0.083 39.6 ± 29.9 2307 ± 2 37.4 ± 10.5 7.764 ± 0.064 7.844 ± 0.077 1.7 ± 0.3 

2004 99 7.173 ± 1.882 35.068 ± 0.113 45.6 ± 31.5 2307 ± 3 38.4 ± 10.4 7.751 ± 0.064 7.835 ± 0.077 1.7 ± 0.3 

2006 103 7.359 ± 1.774 35.058 ± 0.090 45.4 ± 32.8 2307 ± 2 39.5 ± 10.3 7.752 ± 0.067 7.838 ± 0.080 1.7 ± 0.3 

2008 107 7.069 ± 2.019 35.079 ± 0.113 38.8 ± 26.5 2310 ± 2 44.3 ± 10.0 7.749 ± 0.066 7.845 ± 0.076 1.7 ± 0.4 

2010 111 6.920 ± 1.999 35.029 ± 0.113 42.9 ± 28.0 2310 ± 2 43.2 ± 10.1 7.740 ± 0.066 7.836 ± 0.076 1.6 ± 0.3 

2012 115 6.892 ± 2.298 35.025 ± 0.088 43.1 ± 28.2 2308 ± 2 44.4 ± 10.9 7.735 ± 0.070 7.834 ± 0.080 1.6 ± 0.4 

2014 120 6.811 ± 1.560 35.051 ± 0.079 38.2 ± 29.9 2310 ± 2 47.2 ± 10.7 7.739 ± 0.059 7.843 ± 0.071 1.6 ± 0.3 

uLSW (27.68 < σ
0
 < 27.76 kg·m

–3
) 

1981 62 4.010 ± 0.233 34.916 ± 0.015 39.5 ± 12.6 2308 ± 4 25.3 ± 3.1 7.738 ± 0.018 7.796 ± 0.023 1.4 ± 0.1 

1991 77 4.132 ± 0.341 34.934 ± 0.031 51.3 ± 4.3 2309 ± 0 23.4 ± 1.9 7.726 ± 0.007 7.780 ± 0.005 1.4 ± 0.0 

1994 80 4.119 ± 0.306 34.933 ± 0.021 54.6 ± 5.5 2310 ± 0 24.5 ± 1.9 7.721 ± 0.006 7.778 ± 0.005 1.4 ± 0.0 

1997 85 4.181 ± 0.267 34.942 ± 0.017 55.1 ± 4.6 2310 ± 0 24.7 ± 1.5 7.757 ± 0.005 7.811 ± 0.004 1.5 ± 0.0 

2002 95 4.198 ± 0.348 34.944 ± 0.032 53.0 ± 4.2 2307 ± 1 25.9 ± 1.6 7.716 ± 0.005 7.777 ± 0.004 1.3 ± 0.0 

2004 99 4.075 ± 0.327 34.927 ± 0.028 51.2 ± 5.8 2308 ± 2 28.0 ± 1.6 7.711 ± 0.004 7.777 ± 0.005 1.3 ± 0.0 

2006 103 4.135 ± 0.385 34.936 ± 0.033 49.3 ± 6.2 2307 ± 3 30.2 ± 2.4 7.710 ± 0.007 7.781 ± 0.007 1.3 ± 0.0 

2008 107 4.084 ± 0.365 34.928 ± 0.036 45.5 ± 5.4 2311 ± 2 33.4 ± 2.0 7.711 ± 0.004 7.789 ± 0.005 1.3 ± 0.0 

2010 111 4.093 ± 0.347 34.929 ± 0.034 43.9 ± 5.0 2310 ± 2 34.8 ± 1.7 7.709 ± 0.005 7.790 ± 0.004 1.3 ± 0.0 

2012 115 4.135 ± 0.313 34.934 ± 0.025 47.9 ± 4.3 2308 ± 1 33.4 ± 1.3 7.704 ± 0.004 7.783 ± 0.003 1.3 ± 0.0 

2014 120 4.138 ± 0.296 34.934 ± 0.023 45.5 ± 4.2 2310 ± 1 36.3 ± 2.0 7.704 ± 0.004 7.789 ± 0.004 1.3 ± 0.0 

cLSW (27.76 < σ
0
 < 27.81 kg·m

–3
) 

1981 62 3.548 ± 0.259 34.939 ± 0.054 43.7 ± 1.9 2309 ± 3 19.8 ± 3.0 7.742 ± 0.010 7.787 ± 0.007 1.2 ± 0.4 

1991 77 3.333 ± 0.231 34.924 ± 0.071 44.7 ± 4.0 2310 ± 1 20.4 ± 3.4 7.735 ± 0.009 7.783 ± 0.007 1.2 ± 0.3 

1994 80 3.277 ± 0.187 34.916 ± 0.070 44.5 ± 3.4 2310 ± 1 21.1 ± 3.0 7.730 ± 0.006 7.779 ± 0.005 1.2 ± 0.4 

1997 85 3.249 ± 0.214 34.913 ± 0.115 42.4 ± 3.5 2310 ± 1 25.1 ± 2.5 7.775 ± 0.005 7.828 ± 0.004 1.4 ± 0.6 

2002 95 3.241 ± 0.251 34.915 ± 0.098 43.2 ± 3.4 2308 ± 1 23.4 ± 2.7 7.727 ± 0.005 7.782 ± 0.004 1.1 ± 0.4 

2004 99 3.218 ± 0.234 34.908 ± 0.112 44.2 ± 2.6 2309 ± 2 24.4 ± 2.5 7.723 ± 0.004 7.780 ± 0.003 1.1 ± 0.4 

2006 103 3.280 ± 0.248 34.917 ± 0.087 42.5 ± 2.0 2308 ± 2 25.8 ± 3.4 7.722 ± 0.005 7.783 ± 0.004 1.1 ± 0.4 

2008 107 3.289 ± 0.248 34.920 ± 0.119 41.9 ± 2.3 2312 ± 2 28.1 ± 2.8 7.722 ± 0.004 7.787 ± 0.004 1.1 ± 0.4 

2010 111 3.310 ± 0.270 34.923 ± 0.089 43.0 ± 2.2 2311 ± 1 27.9 ± 3.2 7.720 ± 0.004 7.785 ± 0.005 1.1 ± 0.4 

2012 115 3.376 ± 0.247 34.934 ± 0.073 46.9 ± 1.4 2309 ± 1 26.3 ± 2.9 7.716 ± 0.004 7.778 ± 0.004 1.1 ± 0.4 

2014 120 3.369 ± 0.264 34.934 ± 0.085 46.8 ± 1.7 2312 ± 2 27.6 ± 3.2 7.716 ± 0.004 7.781 ± 0.004 1.1 ± 0.4 

ISOW (27.81 < σ
0
 < 27.88 kg·m

–3
) 

1981 62 2.738 ± 0.205 34.968 ± 0.035 52.9 ± 2.8 2312 ± 2 13.5 ± 1.3 7.737 ± 0.006 7.769 ± 0.005 1.0 ± 0.0 

1991 77 2.726 ± 0.169 34.962 ± 0.064 56.6 ± 6.2 2317 ± 6 14.5 ± 2.7 7.733 ± 0.005 7.767 ± 0.007 1.0 ± 0.1 

1994 80 2.705 ± 0.146 34.958 ± 0.067 56.0 ± 5.5 2317 ± 6 15.4 ± 5.5 7.732 ± 0.011 7.768 ± 0.006 1.0 ± 0.1 

1997 85 2.712 ± 0.158 34.958 ± 0.117 52.6 ± 5.0 2316 ± 5 22.2 ± 1.6 7.784 ± 0.003 7.830 ± 0.006 1.4 ± 0.1 

2002 95 2.690 ± 0.152 34.960 ± 0.097 54.0 ± 5.4 2315 ± 6 17.3 ± 2.2 7.728 ± 0.004 7.768 ± 0.005 1.0 ± 0.1 

2004 99 2.669 ± 0.155 34.952 ± 0.111 55.0 ± 7.7 2315 ± 9 17.7 ± 3.7 7.724 ± 0.004 7.766 ± 0.008 1.0 ± 0.1 

2006 103 2.700 ± 0.153 34.960 ± 0.086 54.0 ± 5.9 2314 ± 7 18.2 ± 3.0 7.724 ± 0.004 7.766 ± 0.006 0.9 ± 0.1 

2008 107 2.723 ± 0.122 34.961 ± 0.117 51.8 ± 5.4 2319 ± 4 22.0 ± 3.5 7.723 ± 0.005 7.774 ± 0.007 0.9 ± 0.1 

2010 111 2.726 ± 0.158 34.960 ± 0.087 52.0 ± 6.3 2317 ± 5 21.9 ± 4.3 7.720 ± 0.004 7.772 ± 0.009 0.9 ± 0.1 

2012 115 2.757 ± 0.160 34.968 ± 0.069 54.7 ± 4.7 2315 ± 5 20.7 ± 2.7 7.718 ± 0.004 7.767 ± 0.006 0.9 ± 0.1 

2014 120 2.720 ± 0.149 34.964 ± 0.086 56.2 ± 6.7 2320 ± 8 21.6 ± 3.1 7.718 ± 0.004 7.769 ± 0.006 0.9 ± 0.1 

 

 

 

 



  CHAPTER 5.- OBSERVED TRENDS OF THE STRESSORS OF THE CO
2
 SYSTEM 

100 

Table 5b.- The same as Table 5a for the Irminger Basin. 

Year xCO
2
 θ Salinity AOU NA

T
 C

ANT
 𝐩𝐇𝐒𝐖𝐒𝟐𝟓 ∆𝐩𝐇𝐕𝐚𝐫 Ω

Arag
 

SPMW (σ
0
 < 27.68 kg·m

–3
) 

1981 62 5.842 ± 1.674 34.957 ± 0.095 24.8 ± 18.1 2306 ± 3 30.0 ± 3.1 7.771 ± 0.051 7.837 ± 0.051 1.7 ± 0.3 

1991 77 5.510 ± 0.668 34.984 ± 0.055 24.6 ± 10.6 2308 ± 1 34.4 ± 4.2 7.763 ± 0.015 7.839 ± 0.020 1.7 ± 0.1 

1994 80 5.488 ± 1.290 34.881 ± 0.365 24.8 ± 12.0 2311 ± 8 33.9 ± 4.4 7.771 ± 0.025 7.845 ± 0.028 1.7 ± 0.1 

1997 85 5.841 ± 2.111 34.950 ± 0.133 27.5 ± 17.2 2310 ± 3 35.9 ± 7.2 7.771 ± 0.071 7.868 ± 0.076 1.8 ± 0.4 

2002 95 5.843 ± 1.732 34.981 ± 0.319 25.9 ± 21.3 2309 ± 8 40.2 ± 5.6 7.756 ± 0.050 7.844 ± 0.052 1.7 ± 0.3 

2004 99 5.834 ± 1.926 34.964 ± 0.533 25.1 ± 18.9 2309 ± 6 43.0 ± 6.1 7.751 ± 0.038 7.847 ± 0.043 1.7 ± 0.2 

2006 103 6.072 ± 1.531 35.003 ± 0.268 25.3 ± 19.0 2306 ± 5 42.4 ± 6.3 7.753 ± 0.048 7.847 ± 0.052 1.7 ± 0.2 

2008 107 5.913 ± 2.530 34.991 ± 0.748 18.6 ± 22.0 2310 ± 13 48.2 ± 6.1 7.751 ± 0.053 7.857 ± 0.053 1.7 ± 0.3 

2010 111 5.943 ± 2.235 34.972 ± 0.689 23.9 ± 19.6 2310 ± 12 47.1 ± 7.1 7.747 ± 0.048 7.851 ± 0.050 1.7 ± 0.2 

2012 115 5.476 ± 2.840 34.920 ± 0.827 21.7 ± 24.7 2311 ± 15 49.5 ± 7.0 7.737 ± 0.053 7.847 ± 0.055 1.6 ± 0.3 

2014 120 5.419 ± 1.933 34.935 ± 0.542 21.3 ± 21.3 2311 ± 11 49.7 ± 5.5 7.736 ± 0.048 7.847 ± 0.049 1.6 ± 0.2 

uLSW (27.68 < σ
0
 < 27.76 kg·m

–3
) 

1981 62 3.690 ± 0.505 34.887 ± 0.059 32.6 ± 12.5 2307 ± 2 24.9 ± 4.0 7.743 ± 0.013 7.800 ± 0.015 1.4 ± 0.1 

1991 77 3.830 ± 0.397 34.910 ± 0.030 32.2 ± 8.5 2309 ± 1 29.1 ± 4.0 7.740 ± 0.009 7.807 ± 0.011 1.5 ± 0.1 

1994 80 3.685 ± 0.378 34.891 ± 0.034 36.0 ± 7.0 2310 ± 0 29.4 ± 4.7 7.733 ± 0.007 7.801 ± 0.008 1.5 ± 0.1 

1997 85 3.655 ± 0.390 34.884 ± 0.036 35.1 ± 8.5 2310 ± 0 32.1 ± 5.4 7.743 ± 0.014 7.841 ± 0.010 1.6 ± 0.1 

2002 95 3.839 ± 0.356 34.903 ± 0.031 36.7 ± 9.0 2309 ± 1 31.9 ± 4.0 7.725 ± 0.007 7.799 ± 0.014 1.4 ± 0.1 

2004 99 3.791 ± 0.403 34.898 ± 0.037 38.8 ± 7.5 2310 ± 2 33.6 ± 3.2 7.716 ± 0.006 7.794 ± 0.008 1.3 ± 0.1 

2006 103 3.909 ± 0.358 34.913 ± 0.030 36.1 ± 6.8 2307 ± 1 33.5 ± 3.4 7.720 ± 0.005 7.798 ± 0.009 1.4 ± 0.1 

2008 107 3.956 ± 0.324 34.915 ± 0.027 29.4 ± 8.8 2310 ± 2 39.7 ± 4.8 7.720 ± 0.006 7.812 ± 0.015 1.4 ± 0.1 

2010 111 3.963 ± 0.357 34.919 ± 0.033 34.6 ± 7.2 2310 ± 1 38.4 ± 3.8 7.715 ± 0.005 7.804 ± 0.010 1.4 ± 0.1 

2012 115 4.010 ± 0.331 34.925 ± 0.027 29.5 ± 8.5 2309 ± 1 42.3 ± 4.8 7.714 ± 0.005 7.811 ± 0.014 1.4 ± 0.1 

2014 120 3.917 ± 0.276 34.909 ± 0.026 30.1 ± 9.0 2310 ± 1 42.3 ± 5.5 7.712 ± 0.003 7.809 ± 0.013 1.4 ± 0.1 

cLSW (27.76 < σ
0
 < 27.81 kg·m

–3
) 

1981 62 3.432 ± 0.208 34.934 ± 0.026 40.5 ± 3.0 2306 ± 1 19.6 ± 3.7 7.744 ± 0.010 7.789 ± 0.005 1.2 ± 0.1 

1991 77 3.272 ± 0.259 34.900 ± 0.036 34.2 ± 5.9 2309 ± 1 25.6 ± 4.0 7.738 ± 0.007 7.797 ± 0.006 1.3 ± 0.1 

1994 80 3.008 ± 0.291 34.871 ± 0.034 28.5 ± 7.3 2309 ± 1 26.5 ± 6.0 7.737 ± 0.009 7.798 ± 0.008 1.3 ± 0.1 

1997 85 3.041 ± 0.304 34.875 ± 0.032 31.3 ± 6.7 2309 ± 0 29.1 ± 5.2 7.746 ± 0.008 7.819 ± 0.007 1.3 ± 0.1 

2002 95 3.269 ± 0.324 34.907 ± 0.033 39.9 ± 3.9 2309 ± 1 26.0 ± 1.7 7.727 ± 0.004 7.788 ± 0.003 1.2 ± 0.1 

2004 99 3.328 ± 0.277 34.914 ± 0.028 42.0 ± 3.6 2310 ± 2 27.7 ± 1.5 7.721 ± 0.004 7.786 ± 0.002 1.2 ± 0.1 

2006 103 3.446 ± 0.232 34.931 ± 0.028 41.4 ± 2.5 2307 ± 1 27.0 ± 1.4 7.723 ± 0.002 7.786 ± 0.003 1.2 ± 0.1 

2008 107 3.444 ± 0.198 34.929 ± 0.016 40.1 ± 2.8 2310 ± 2 30.1 ± 1.9 7.721 ± 0.002 7.791 ± 0.004 1.2 ± 0.0 

2010 111 3.502 ± 0.280 34.935 ± 0.028 41.7 ± 2.4 2311 ± 2 29.9 ± 1.8 7.720 ± 0.003 7.790 ± 0.003 1.2 ± 0.0 

2012 115 3.527 ± 0.183 34.940 ± 0.020 44.2 ± 1.9 2310 ± 1 30.2 ± 1.8 7.714 ± 0.002 7.785 ± 0.003 1.2 ± 0.0 

2014 120 3.551 ± 0.195 34.943 ± 0.017 44.7 ± 3.1 2310 ± 1 29.8 ± 2.3 7.715 ± 0.003 7.785 ± 0.004 1.2 ± 0.1 

ISOW (27.81 < σ
0
 < 27.88 kg·m

–3
) 

1981 62 3.044 ± 0.392 34.952 ± 0.031 43.9 ± 3.7 2306 ± 1 14.8 ± 3.4 7.747 ± 0.007 7.781 ± 0.004 1.1 ± 0.1 

1991 77 2.933 ± 0.245 34.938 ± 0.016 46.1 ± 3.4 2310 ± 2 16.1 ± 3.0 7.741 ± 0.008 7.779 ± 0.005 1.1 ± 0.1 

1994 80 2.747 ± 0.327 34.917 ± 0.020 44.8 ± 4.5 2310 ± 1 19.1 ± 7.0 7.738 ± 0.015 7.782 ± 0.004 1.0 ± 0.1 

1997 85 2.724 ± 0.226 34.910 ± 0.014 41.0 ± 3.7 2311 ± 1 22.2 ± 3.4 7.749 ± 0.007 7.799 ± 0.005 1.1 ± 0.1 

2002 95 2.770 ± 0.305 34.918 ± 0.021 43.9 ± 3.5 2309 ± 1 19.5 ± 2.4 7.733 ± 0.002 7.778 ± 0.005 1.0 ± 0.1 

2004 99 2.754 ± 0.386 34.916 ± 0.030 44.4 ± 4.8 2311 ± 2 22.6 ± 2.4 7.726 ± 0.002 7.778 ± 0.004 1.0 ± 0.1 

2006 103 2.863 ± 0.289 34.930 ± 0.015 43.3 ± 4.7 2309 ± 2 22.1 ± 2.6 7.728 ± 0.002 7.779 ± 0.006 1.0 ± 0.1 

2008 107 2.889 ± 0.248 34.932 ± 0.012 41.7 ± 2.9 2311 ± 1 24.9 ± 2.2 7.726 ± 0.002 7.784 ± 0.004 1.0 ± 0.1 

2010 111 2.861 ± 0.277 34.930 ± 0.016 43.3 ± 3.4 2312 ± 2 24.8 ± 2.2 7.724 ± 0.002 7.782 ± 0.004 1.0 ± 0.1 

2012 115 2.901 ± 0.269 34.935 ± 0.014 46.1 ± 3.1 2311 ± 1 24.6 ± 2.2 7.720 ± 0.002 7.777 ± 0.004 1.0 ± 0.1 

2014 120 2.911 ± 0.280 34.937 ± 0.017 46.7 ± 4.9 2311 ± 1 24.2 ± 3.6 7.720 ± 0.004 7.777 ± 0.005 1.0 ± 0.1 

DSOW (σ
0
 > 27.88 kg·m

–3
) 

1981 62 1.788 ± 0.323 34.892 ± 0.012 36.6 ± 2.4 2305 ± 1 13.3 ± 2.5 7.746 ± 0.006 7.777 ± 0.002 1.0 ± 0.1 

1991 77 1.872 ± 0.347 34.899 ± 0.011 38.4 ± 3.4 2309 ± 2 15.0 ± 2.2 7.743 ± 0.008 7.778 ± 0.004 0.9 ± 0.1 

1994 80 1.712 ± 0.350 34.876 ± 0.008 37.0 ± 2.3 2308 ± 1 17.8 ± 3.8 7.736 ± 0.008 7.778 ± 0.002 0.9 ± 0.1 

1997 85 1.838 ± 0.352 34.890 ± 0.009 36.7 ± 1.8 2309 ± 1 25.3 ± 2.3 7.767 ± 0.008 7.822 ± 0.003 1.2 ± 0.0 

2002 95 1.704 ± 0.330 34.886 ± 0.014 39.4 ± 3.7 2308 ± 1 17.7 ± 1.6 7.731 ± 0.003 7.773 ± 0.004 0.9 ± 0.1 

2004 99 1.508 ± 0.374 34.868 ± 0.023 36.2 ± 4.8 2309 ± 2 21.9 ± 1.1 7.723 ± 0.003 7.774 ± 0.003 0.9 ± 0.1 

2006 103 1.972 ± 0.293 34.907 ± 0.004 38.6 ± 3.6 2309 ± 1 21.2 ± 1.6 7.727 ± 0.002 7.776 ± 0.004 0.9 ± 0.0 

2008 107 1.992 ± 0.354 34.913 ± 0.005 37.3 ± 3.4 2311 ± 2 25.0 ± 1.8 7.723 ± 0.003 7.781 ± 0.003 0.9 ± 0.0 

2010 111 1.876 ± 0.344 34.896 ± 0.011 34.6 ± 4.3 2311 ± 1 25.7 ± 1.6 7.723 ± 0.003 7.783 ± 0.004 0.9 ± 0.1 

2012 115 1.964 ± 0.357 34.909 ± 0.008 39.5 ± 4.3 2311 ± 1 25.9 ± 2.1 7.715 ± 0.003 7.776 ± 0.003 0.9 ± 0.1 

2014 120 1.823 ± 0.415 34.905 ± 0.015 37.9 ± 4.9 2310 ± 1 26.7 ± 2.5 7.713 ± 0.004 7.776 ± 0.004 0.9 ± 0.1 
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Figure 28.- Mean properties for the studied period (1981−2014) along the cruise track, from Greenland (left) to 

the Iceland Basin (right): (a) Potential temperature (θ, in ºC), (b) salinity, (c) Apparent Oxygen Utilization (AOU, 

in μmol·kg
–1

), (d) total alkalinity (AT, in μmol·kg
–1

), (e) pH in seawater scale at 25ºC (pHsws), (f) anthropogenic 

CO
2
 estimated with the 𝛗𝐂𝐓

𝟎 method (Cant, in μmol·kg
–1

), (g) pH change not derived from the Cant uptake 

(pH_var) and (h) saturation of CaCO
3
 in terms of aragonite (Ω_arag). 

With θ  < 3ºC and S between 34.9 and 35, ISOW is located beneath cLSW (Figure 

28a,b). ISOW presents higher θ , S and AOU values in the Iceland Basin than in the Irminger 

Basin (Figure 29a,b,c), which reflects the circulation of this water mass. ISOW comes from the 

Iceland–Scotland sill and flows southwards into the Iceland Basin. Then, it crosses the Reykjanes 

Ridge across the Charlie-Gibbs Fracture Zone, where it mixes with the recently ventilated cLSW 

and DSOW, becoming colder, fresher and more oxygenated. 

The influence of cLSW over ISOW is evident in the Irminger Basin, where their S and 

AOU values show similar patterns (Figure 29a,c). The salinization and aging of cLSW from 1994 

onwards is transmitted to ISOW from 1997 onwards. In the Iceland Basin, ISOW is influenced by 

the lower North Atlantic Deep Water, which causes the attenuation of the ISOW signal. 

Therefore, the mean values of S and AOU of the ISOW layer of the Iceland Basin are higher than 

those found in the Irminger Basin (Figure 29). 

In the bottom of the Irminger Basin, a fifth water mass can be distinguished, DSOW. 

DSOW is the coldest and freshest water mass of the sections, with θ  < 2ºC and S < 34.9 (Figure 

28a,b). It is also traceable by its relative AOU minimum at the bottom of the western part of the 

Irminger Basin (Figure 28c). The variability of the S and AOU of DSOW (Figure 29a,c) is linked 
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to that of the entrainment downhill of the sills (Rudels et al., 2002; Tanhua et al., 2005; Pérez et 

al., 2008; Falina et al., 2012). 

The AOU decrease observed in SPMW, uLSW, cLSW and ISOW in the Irminger Basin 

in 2008 (Figure 29a,c) may indicate that the enhanced convection episode occurred in the 

Labrador Sea that year could also have had its replicate in the Irminger Basin. 

 

Figure 29.- Temporal evolution between 1981 and 2014 of the average values of (a and b) Salinity and (c and d) 

Apparent Oxygen Utilization (AOU, in μmol·kg
–1

) in main water masses of the Irminger (a and c) and Iceland (b 

and c) Basins. Each point represents the average property of a particular water mass (SPMW (red dots), uLSW 

(blue dots), cLSW (black dots), ISOW (green dots) and DSOW (magenta dots)) at the time of each cruise (Table 

5). The error bars represent the error of the mean. The inset boxes give the trends ± standard error of the estimate 

and the correlation coefficients (r
2
). ** denotes that the trend is statistically significant at the 95% level (p-value < 

0.05). See water mass acronyms in Figure 27. 

5.6.- Alkalinity trends 

The waters of the Irminger and Iceland Basins present an almost homogeneous value of A
T
 

between 2300 and 2310 μmol·kg
–1

 (Figure 28d). However, SPMW and ISOW in the Iceland Basin 

present values of A
T
 higher than 2310 μmol·kg

–1
. The high A

T
 values of ISOW come from the 

influence of the lower North Atlantic Deep Water, which is also reflected by the high silicate 

values found in the ISOW layer in the Iceland Basin (not shown). The high A
T
 values of SPMW 

are the result of the high S of this water mass (Figure 28b). 

The mean A
T
 values for each layer were normalized (NA

T
) to an S value of 35 to eliminate 

the influence of the S on the A
T
. There are other methods to normalize A

T
 that take into account 

other factors that affect this variable, especially in surface waters (Friis et al., 2003; Carter et al., 

2014), however we used the normalization method most widely applied to analyse the variability 

of the whole water column and that is still used nowadays (e.g., Millero et al., 2010). The NA
T
 

values of the Irminger waters in 2006 seem to be negatively biased (Figure 30a). From the data of 

the deep waters of the Iberian Abyssal Plain, the bias seems to be -2.3 μmol·kg
–1
 (Table 4). This 
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value is within the range of no correction accepted by the CARINA data base (Key et al., 2010), 

so the 2006 data was not corrected. 

In the Irminger Basin, cLSW, ISOW and DSOW show significant long-term trends of 

increase in NA
T
 (Figure 30a). The NA

T
 trends were also calculated excluding the cruises of 1981 

and 2006, which are outliers. The faster NA
T
 increase observed in the DSOW layer with respect to 

the other layers is consistent with its Arctic origin, since the Arctic Ocean is gaining NA
T
 due to 

the increase in river discharge (Anderson et al., 2004; Smith et al., 2007; Cooper et al., 2008; 

Haine et al., 2015). The ISOW layer presents similar rates of increase in NA
T
 in both basins 

(Figure 30a,b). The cLSW layer only presents significant trends of NA
T
 increase in the Irminger 

Basin, which could be related to the fact that this layer includes waters resulting from the mixing 

between SPMW and Arctic waters (Polar Intermediate Water) (von Appen et al., 2014; García-

Ibáñez et al., In Press; see also Chapter 4 of this thesis). Consequently, the NA
T
 increases in the 

Irminger Basin here observed may be related to the arrival of waters of Arctic origin (Anderson et 

al., 2004; Smith et al., 2007; Cooper et al., 2008; Haine et al., 2015). 

 

Figure 30.- Temporal evolution between 1981 and 2014 of the average salinity normalized total alkalinity (NA
T
, in 

μmol·kg
–1

) values in main water masses of the Irminger (a) and Iceland (b) Basins. Each point represents the 

average NA
T
 of a particular water mass (SPMW (red dots), uLSW (blue dots), cLSW (black dots), ISOW (green 

dots) and DSOW (magenta dots)) at the time of each cruise (Table 5). The error bars represent the error of the 

mean. The inset boxes give the trends ± standard error of the estimate and the correlation coefficients (r
2
). * 

denotes that the trend is statistically significant at the 90% level (p-value < 0.1), ** at the 95% level (p-value < 

0.05), and *** at the 99% level (p-value < 0.01). See water mass acronyms in Figure 27. 

In the Iceland Basin, the inter-annual variability of the NA
T
 values of uLSW and cLSW is 

very similar throughout the entire studied period (Figure 30b). During the OVIDE period (2002–

2014) the inter-annual variability of the NA
T
 values of SPMW is similar to that of uLSW and 

cLSW. The NA
T
 values of ISOW show an increasing trend statistically significant at 90% level, 

whose rate is similar to that found in DSOW, which suggests that the cause of these increasing 

NA
T
 trends may be the increased runoff of the Siberian rivers with high A

T
 content (Anderson et 

al., 2004; Smith et al., 2007; Cooper et al., 2008; Haine et al., 2015). 

5.7.- C
ANT

 trends 

The waters from both the Irminger and Iceland Basins are gaining C
ANT

 in response to the 

increasing C
ANT

 concentrations in the atmosphere (Figure 28f, and Figure 31a,b). The convection 

processes occurred in these basins (Pickart et al., 2003; García-Ibáñez et al., In Press; see also 

Chapter 4 of this thesis) and in the surrounding ones (i.e., Labrador and Nordic Seas) provides an 
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important pathway for the C
ANT

 to pass from the surface mixed layer to the intermediate and deep 

layers. The C
ANT

 concentrations follow an opposite similar pattern to that of the AOU (Figure 

28c): high values, close to saturation (80% of saturation), near the surface that decrease when 

increasing depth (Figure 28f). 

The SPMW layer shows the greatest rates of C
ANT

 increase, owned to its direct contact 

with the atmosphere (Figure 31a,b; Table 6). In the Irminger Basin, the C
ANT

 levels of SPMW keep 

rising in response to the atmospheric CO
2
 increase at about 85% of the expected rate if saturation 

with the atmospheric CO
2
 is assumed (~0.45 µmol-C·kg

–1
·(ppm-CO2

atm)
–1
). This could be 

explained by the fact that surface waters reach balance with the atmosphere within ~5 years 

(Biastoch et al., 2007). Besides, the rate of C
ANT

 increase in the SPMW layer in the Irminger Basin 

here reported (0.66 ± 0.03 μmol·kg
–1
·yr

–1
; Figure 31a) is very similar to that found by Pérez et al. 

(2010) (0.62 ± 0.03 μmol·kg
–1

·yr
–1

), even though the present study has a larger time range (8 years 

more) , meaning that the rate of C
ANT

 uptake observed until 2006 was maintained until 2014. In 

the Iceland Basin, the rate of C
ANT

 increase is about 64% of the expected rate if saturation with the 

atmospheric CO
2
 is assumed, which is in concordance with the higher AOU values found in 

SPMW in this basin (Figure 28c). This difference is derived from the thicker SPMW layer found 

in the Iceland Basin, which includes poorly ventilated waters with low content in oxygen and C
ANT

 

(Figure 28c). The rate of C
ANT

 increase of SPMW in the Iceland Basin (0.50 ± 0.06 μmol·kg
–1
·yr

–1
; 

Figure 31a) is lower than that reported by Perez et al. (2010) (0.70 ± 0.08 μmol·kg
–1

·yr
–1
), because 

these authors delimited the surface layer by σ0 = 27.60, thus not including the poorly ventilated 

waters between σ0 = 27.60 and σ0 = 27.68. The expected decrease in the rate of increase of the 

C
ANT

 concentration due to the reduction in the convection processes related with the shift of the 

NAO index is not observed. The rate of C
ANT

 increase is maintained during the OVIDE period 

(2002–2014) due to the increase in the atmospheric xCO
2
. During the OVIDE period the 

atmospheric C
ANT

 anomaly (i.e., the CO
2
 increase in the atmosphere since the industrial 

revolution) is 33% higher than during the high NAO index period (the mean xCO
2
 for the period 

1991–1997 was 359 ppm, while for the period 2002–2014 it was 386 ppm). This is in agreement 

with the prediction of Byrne et al. (2010), who expected a steadily increase of the C
ANT

 

concentration in seawater as atmospheric levels keep rising. 

The uLSW and cLSW layers behave similarly in both basins (Figure 31a,b), although the 

C
ANT

 values are higher in the Irminger Basin than in the Iceland Basin (Figure 28f). However, 

uLSW gains C
ANT

 faster than cLSW from 2006 onwards in the Irminger Basin, being its tendency 

more similar to that of its upper bound SPMW layer. This change in tendency is also detected in 

the Iceland Basin. This is in agreement with the enhancement of the formation of uLSW due to 

the shift in the NAO index between the late 1990s and the 2000s (Pickart et al., 2003; Yashayaev, 

2007; Rhein et al., 2015). The sharp increase in the C
ANT

 concentration in uLSW in 2008 may be 

related the enhanced convection in the Labrador Sea in 2008 (Yashayaev and Loder, 2009), but 

may also indicate that uLSW was renewed in the Irminger Basin. The rate of C
ANT

 increase of 

uLSW in the Iceland Basin (0.39 ± 0.09 μmol·kg
–1
·yr

–1
; Figure 31a) is in agreement with that 

reported by Perez et al. (2010) (0.40 ± 0.06 μmol·kg
–1
·yr

–1
). 

In the Irminger Basin, the cLSW layer gains C
ANT

 rapidly from 1981 to 1997 (0.58 ± 0.09 

μmol·kg
–1
·yr

–1
; r

2
 = 0.99; p-value < 0.01), reaching its maximum concentration in 1997 (Figure 

31a; Table 5). Between 1997 and 2002 the C
ANT

 concentration of cLSW in the Irminger Basin 

decreases significantly. From 2002 onwards, this layers gains again C
ANT

, although at a lower rate 
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(0.35 ± 0.12 μmol·kg
–1

·yr
–1

; r
2
 = 0.74; p-value = 0.01) than that observed between 1981 and 1997. 

All these changes may be linked to the circulation changes occurred in the North Atlantic 

Subpolar Gyre related to the changes in the NAO index. The period 1987–1994 was characterized 

by a persistent phases of high NAO index, that lead to deep winter convection in the Labrador 

Sea and the formation of a large volume of cLSW (e.g., Lazier et al., 2002; Azetsu-Scott et al., 

2003; Kieke et al., 2007; Yashayaev, 2007). The change in the NAO index in 1995 hindered the 

ventilation of cLSW, which led to the dilution of the C
ANT

 in the cLSW layer. During the period 

of weak convection that followed, cLSW was slowly enriched in C
ANT

 due to the permanently 

active isopycnal mixing with the recently ventilated uLSW. These tendencies are less clear in the 

Iceland Basin since the large inter-annual variability in its formation region attenuates due to 

mixing over the length and timescales of the transit from the Labrador Sea (Cunningham and 

Haine, 1995; Paillet et al., 1998). 

 

Figure 31.- Temporal evolution between 1981 and 2014 of the average values of (a and b) anthropogenic CO
2
 

estimated with the 𝛗𝐂𝐓
𝟎 method (C

ANT
-𝛟𝑪𝑻

𝟎, in μmol·kg
–1

) and (c and d) the parameter C* obtained with the ΔC* 

method (in μmol·kg
–1

) in main water masses of the Irminger (a and c) and Iceland (b and c) Basins. Each point 

represents the average property of a particular water mass (SPMW (red dots), uLSW (blue dots), cLSW (black 

dots), ISOW (green dots) and DSOW (magenta dots)) at the time of each cruise (Table 5). The error bars represent 

the error of the mean. The inset boxes give the trends ± standard error of the estimate and the correlation 

coefficients (r
2
). *** denotes that the trend is statistically significant at the 99% level (p-value < 0.01). See water 

mass acronyms in Figure 27. 

The C
ANT

 concentration in the ISOW layer increases continuously in both basins (Figure 

31a,b) suggesting incorporation of young water by entrainment downhill of the Iceland–Scotland 

sills. The mean C
ANT

 concentration observed in the ISOW layer is lower in the Iceland Basin than 

the Irminger Basin (Figure 31a,b), which is related with the dilution of the ISOW signal with 

important portions of the almost C
ANT

-free lower North Atlantic Deep Water (Figure 28f). The 

rapid increase in the C
ANT

 concentrations observed in ISOW in 1997 was already observed by 

Perez et al. (2008), who related it with the combination of the effects of the increase in the C
ANT
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storage associated with the strong ventilation occurred during the large period of high NAO 

indices (late 1980s-mid 1990s) and the low AOU values. 

Table 6.- Long-term trends (1981–2014) of anthropogenic CO
2
 estimated with the 𝛗𝐂𝐓

𝟎 method (C
ANT

, in μmol·kg
–

1
), parameter C* obtained with the ΔC* method (in μmol·kg

–1
), saturation state of aragonite (Ω

Arag
), pH in seawater 

scale at 25ºC (𝐩𝐇𝐒𝐖𝐒𝟐𝟓), pH change related to the C
ANT

 penetration (∆𝐩𝐇𝐂𝐀𝐍𝐓) and pH change not derived from the 

C
ANT

 uptake (∆𝐩𝐇𝐕𝐚𝐫) versus atmospheric xCO
2
 excess (in ppm; difference between the atmospheric CO

2
 

concentration at the time of the cruise and the preindustrial atmospheric CO
2
 concentration (278.5 ppm)) for the 

water masses considered in the Irminger and Iceland Basins. The column “Preindustrial” compiles the intercepts of 

the trends. See layer acronyms in Figure 27. 

  Irminger Basin   Iceland Basin   

Variable Layer 
Preindustrial ± 

Standard Error 

Slope ±  

Standard Error 
r

2
 

Preindustrial ± 

Standard Error 

Slope ±  

Standard Error 
r

2
 

 
 μmol·kg

–1
 μmol·kg

–1
·ppm

-1
  μmol·kg

–1
 μmol·kg

–1
·ppm

-1
  

1
C

ANT
 SPMW 5.7 ± 2.9 0.37 ± 0.03 0.96*** 11.5 ± 2.7 0.29 ± 0.03 0.95*** 

uLSW 4.8 ± 3.7 0.31 ± 0.04 0.92*** 7.7 ± 4.7 0.22 ± 0.05 0.79*** 

cLSW 11.9 ± 2.8 0.16 ± 0.03 0.84*** 8.9 ± 2.2 0.16 ± 0.02 0.89*** 

ISOW 2.9 ± 2.4 0.19 ± 0.02 0.91*** 2.7 ± 2.3 0.16 ± 0.02 0.89*** 

DSOW 3.2 ± 2.9 0.25 ± 0.03 0.92***    

C* SPMW 4.4 ± 5.4 0.36 ± 0.06 0.86*** 8.9 ± 3.4 0.30 ± 0.04 0.91*** 

uLSW -3.0 ± 3.8 0.34 ± 0.04 0.91*** -0.5 ± 5.0 0.25 ± 0.05 0.78*** 

cLSW 4.2 ± 3.1 0.17 ± 0.03 0.81*** 0.9 ± 2.3 0.17 ± 0.02 0.88*** 

ISOW -7.0 ± 2.8 0.21 ± 0.03 0.88*** -6.6 ± 3.2 0.16 ± 0.03 0.78*** 

DSOW -14.8 ± 5.3 0.27 ± 0.05 0.78***    
 

  ppm
-1
   ppm

-1
  

1
Ω

Arag
 SPMW 1.84 ± 0.04 -0.0018 ± 0.0004 0.78*** 1.83 ± 0.05 -0.0017 ± 0.0005 0.66*** 

uLSW 1.59 ± 0.07 -0.0020 ± 0.0008 0.53** 1.52 ± 0.01 -0.0021 ± 0.0001 0.98*** 

cLSW 1.36 ± 0.05 -0.0014 ± 0.0005 0.57** 1.33 ± 0.01 -0.0019 ± 0.0001 0.99*** 

ISOW 1.15 ± 0.03 -0.0011 ± 0.0003 0.64*** 1.07 ± 0.01 -0.0012 ± 0.0001 0.97*** 

DSOW 1.03 ± 0.02 -0.0011 ± 0.0002 0.86***    
 

  pH units·ppm
-1
   pH units·ppm

-1
  

1
pHSWS25   SPMW 7.814 ± 0.009 -0.0006

1
 ± 0.0000

9
 0.88*** 7.805 ± 0.011 -0.0005

5
 ± 0.0001

1
 0.80*** 

uLSW 7.781 ± 0.006 -0.0005
9
 ± 0.0000

6
 0.93*** 7.769 ± 0.005 -0.0005

6
 ± 0.0000

5
 0.96*** 

cLSW 7.778 ± 0.004 -0.0005
3
 ± 0.0000

4
 0.97*** 7.767 ± 0.003 -0.0004

3
 ± 0.0000

3
 0.97*** 

ISOW 7.777 ± 0.004 -0.0004
8
 ± 0.0000

4
 0.97*** 7.760 ± 0.002 -0.0003

5
 ± 0.0000

2
 0.99*** 

DSOW 7.784 ± 0.006 -0.0005
7
 ± 0.0000

6
 0.94***    

1
∆pHCANT  SPMW -0.011 ± 0.007 -0.0008

4
 ± 0.0000

7
 0.96*** -0.025 ± 0.007 -0.0006

4
 ± 0.0000

7
 0.94*** 

uLSW -0.010 ± 0.008 -0.0007
2
 ± 0.0000

8
 0.93*** -0.016 ± 0.010 -0.0005

5
 ± 0.0001

0
 0.82*** 

cLSW -0.026 ± 0.006 -0.0003
9
 ± 0.0000

6
 0.87*** -0.020 ± 0.005 -0.0003

9
 ± 0.0000

5
 0.91*** 

ISOW -0.006 ± 0.006 -0.0004
5
 ± 0.0000

6
 0.92*** -0.006 ± 0.005 -0.0003

8
 ± 0.0000

5
 0.90*** 

DSOW 0.009 ± 0.007 -0.0005
9
 ± 0.0000

7
 0.92***    

1
∆pHVar  SPMW 7.035 ± 0.288 0.0004

1
 ± 0.0001

4
 0.57** 7.547 ± 0.377 0.0001

5
 ± 0.0001

9
 0.09 

uLSW 7.361 ± 0.441 0.0002
2
 ± 0.0002

2
 0.14 7.922 ± 0.513 -0.0000

7
 ± 0.0002

6
 0.01 

cLSW 8.282 ± 0.303 -0.0002
5
 ± 0.0001

5
 0.31* 7.966 ± 0.241 -0.0000

9
 ± 0.0001

2
 0.09 

ISOW 7.883 ± 0.176 -0.00005 ± 0.00009 0.05 7.660 ± 0.199 0.0000
5
 ± 0.0001

0
 0.05 

DSOW 7.710 ± 0.230 -0.00003 ± 0.00011 0.01    

* Statistically significant at the 90% level (p-value < 0.10); ** statistically significant at the 95% level (p-value < 

0.05); *** statistically significant at the 99% level (p-value < 0.01). 
1
 Trends without considering the 1997 cruise. 
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The C
ANT

 concentration of DSOW shows a similar pattern than that of ISOW in the 

Irminger Basin (Figure 31a). This similar behaviour likely derive from vigorous mixing processes, 

but it may also reflect the common origin of the water masses present in these layers, which in last 

instance traces the C
ANT

 increase in their Arctic source waters. In fact, Azetsu-Scott et al. (2003) 

reported CFC concentrations for the ISOW layer lower than for the DSOW layer in the Labrador 

Sea, being the CFC concentration increased at a rate 25% lower in the ISOW layer for the period 

1991–2000. 

The C
ANT

 rates estimated using the conservative tracer C* show similar rates to those 

obtained from the φCT
0 method (Figure 31; Table 6), thus corroborating the results here obtained. 

The absolute difference between both methods (ΔC* and φCT
0) is the ΔCdis term, which is water 

mass dependent and should be nearly constant in each water mass unless there are long-term 

changes in the disequilibrium (Matsumoto and Gruber, 2005; Khatiwala et al., 2009). In the 

Iceland Basin both sets of trends are not significantly different at 95% level. In the Irminger Basin 

the trends resulting from the φCT
0 method are significantly lower than those from ΔC* method in 

the uLSW and ISOW layers. This difference is explained by the fact that the φCT
0 method 

considers a term proportional to the C
ANT

 concentration of the water mass, while the ΔC* method 

considers a constant ΔC
dis

 term (Matsumoto and Gruber, 2005). Since the ΔC
dis

 term used by the 

φCT
0 method increases slightly with time, the rate of change of C

ANT
 determined by the φCT

0 

method is slightly lower than that determined by the ΔC* method. 

5.8.- Acidification trends 

The general pattern of pHSWS25 follows the expected distribution, with high-surface values 

higher than 7.85, which rapidly decrease with increasing depth until a pH minimum zone at ~500 

m depth (Figure 28e). The high values of pHSWS25 above the uppermost ~200 m respond to the 

photosynthetic activity of primary producers that withdraw dissolved CO
2
 from seawater. The 

prominent pH decrease in the first 500 m is largely associated with remineralization of sinking 

organic matter by microorganisms (Millero, 2007), which is corroborated by the gradient found in 

the ∆pHVar (Figure 28g). The pHSWS25 minimum (< 7.7), which coincides with a maximum of 

AOU, is associated to an area of slower circulation (Pérez et al., 1993)where the products of the 

remineralization of the organic matter accumulate. Below 500 m depth, the whole section shows 

relatively homogeneous low pHSWS25  values of about 7.70–7.75. However, the ISOW layer in the 

Iceland Basin shows slightly lower pHSWS25 values than in the Irminger Basin. These lower values 

may derive from the fact that ISOW is more “pure” in the Iceland Basin than in the Irminger 

Basin, thus being its anthropogenic signal higher in the Iceland Basin. 

The net effect of the absorption of C
ANT

 by the oceans is the increase in the concentrations 

of H
+
 in seawater, i.e., the decrease in seawater pH. This decrease in pHSWS25 is observed in all the 

layers and in both basins (Figure 32a,b; Table 6), being more pronounced in all the layers of the 

Irminger Basin due to the presence of younger waters. The general pattern seems to be a decrease 

of the acidification rates with increasing depth, except in the DSOW layer that presents 

acidification rates similar to those found in the upper layers. This indicates that DSOW is a newly 

formed water that has been recently in contact with the atmosphere. The general trends of 

decreasing pHSWS25 are disrupted by the data of the 1997 cruise, which are outliers. 
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Figure 32.- Temporal evolution between 1981 and 2014 of the average values of (a and b) pH in seawater scale at 

25ºC (pH
sws25

) and (c and d) pH change derived from the uptake of anthropogenic CO
2
 (pH

Cant
) in main water masses 

of the Irminger (a and c) and Iceland (b and c) Basins. Each point represents the average property of a particular 

water mass (SPMW (red dots), uLSW (blue dots), cLSW (black dots), ISOW (green dots) and DSOW (magenta 

dots)) at the time of each cruise (Table 5). The error bars represent the error of the mean. The inset boxes give the 

trends ± standard error of the estimate and the correlation coefficients (r
2
). ** denotes that the trend is statistically 

significant at the 95% level (p-value < 0.05), and *** at the 99% level (p-value < 0.01). See water mass acronyms 

in Figure 27. 

The observed rate of pHSWS25 decrease in SPMW of the Iceland Basin (-0.0010 ± 0.0002 

pH units yr
–1
; Figure 32b) is in agreement with that observed in the Iceland Sea time-series (68ºN, 

12.66ºW; Olafsson et al. (2009, 2010)) for the period 1983–2014 (-0.0014 ± 0.0005 pH units yr
–1
; 

Bates et al. (2014)). the rates of pHSWS25 decrease here observed in SPMW in the Irminger Basin 

(-0.0011 ± 0.0002 pH units·yr
–1
) is half that observed in the sea surface waters of the Irminger Sea 

time-series (64.3ºN, 28ºW; Olafsson et al. (2010)) for the period 1983–2014 (-0.0026 ± 0.0006 

pH units·yr
–1
; Bates et al. (2014)). Our rates in SPMW of both basins are slightly lower than those 

observed in the Subtropical Atlantic time-series stations ESTOC (29.04ºN, 15.50ºW; Santana-

Casiano et al. (2007), González-Dávila et al. (2010)) for the period 1995–2014 (-0.0018 ± 0.0002 

pH units yr
–1
; Bates et al. (2014)) and BATS (32ºN, 64ºW; Bates et al. (2014)) for the period 

1983–2014 (-0.0017 ± 0.0001 pH units·yr
–1

; Bates et al. (2014)). The difference between the 

acidification rates here estimated for SPMW and those reported for the Irminger Sea and the 

Subtropical North Atlantic may rely on the fact that our acidification rates are based on pHSWS25 

data, whereas the others are based on pH reported at in situ temperature. Consequently, some of 

the pHSWS25 changes reported by the time-series stations may be associated with changes in 

temperature rather than changes in A
T
 and C

T
. Comparing with the acidification rates observed in 

the Pacific Ocean, the results here obtained are slightly lower than those reported in the Central 

North Pacific by the time-series station HOT (22.45ºN, 158ºW; Dore et al. (2009)) for the period 

1988–2014 (-0.0016 ± 0.0001 pH units·yr
–1

; Bates et al. (2014)). However, the acidification rates 

here reported are in agreement with those found by Wakita et al. (2013) in the winter mixed of 

the Subarctic Western North Pacific (time-series stations K2 and KNOT) for the period 1997–
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2011 (-0.0010 ± 0.0004 pH units·yr
–1
). Those authors argued that the lower acidification rates 

found in their study region were due to an increase in A
T
. 

The decomposition of the pH changes into the ∆pHCANT and the ∆pHVar allows inferring 

the possible causes of the acidification trends here reported. The ∆pHVar field shows a similar 

pattern to that of the pHSWS25 (Figure 28g). However, the ∆pHVar values are slightly higher than 

those of the pHSWS25, meaning that the water masses of the sections are clearly exposed to the 

acidification caused by the C
ANT

 uptake. 

In a steady state ocean, the ∆pHVar would be constant and all the pH decrease would be 

explained by the ∆pHCANT. However, the ∆pHVar shows long-term trends, some of them 

statistically significant (Figure 33; Table 6). The observed acidification rates of SPMW represents 

only 72−87% of the expected pH change due to the C
ANT

 uptake (∆pHCANT). This is explained by 

the positive trends of the ∆pHVar observed in this layer that counteract the effect of the ∆pHCANT, 

resulting in a net dampening of the acidification signal. This would contribute to explain the 

difference between the pHSWS25 trends for the upper layer here reported and those observed in the 

time-series stations above mentioned. The buffering of the acidification is caused by the arrival of 

salty and alkaline subtropical waters transported by the NAC to the study region. Wakita et al. 

(2013) reported similar results for the Western Subarctic Gyre in the North Pacific Ocean where 

the increasing trend of A
T
 for the period 1997–2011 inhibited 50% of the acidification. 

 

Figure 33.- Temporal evolution between 1981 and 2014 of the average pH change not derived from the uptake of 

anthropogenic CO
2
 (pH

Var
) values in main water masses of the Irminger (a) and Iceland (b) Basins. Each point 

represents the average pH
Var

 of a particular water mass (SPMW (red dots), uLSW (blue dots), cLSW (black dots), 

ISOW (green dots) and DSOW (magenta dots)) at the time of each cruise (Table 5). The error bars represent the 

error of the mean. The inset boxes give the trends ± standard error of the estimate and the correlation coefficients 

(r
2
). * denotes that the trend is statistically significant at the 90% level (p-value < 0.1), ** at the 95% level (p-

value < 0.05), and *** at the 99% level (p-value < 0.01). See water mass acronyms in Figure 27. 

The cLSW layer in the Irminger Basin present a reduction in pH 34% higher than that 

directly related to the C
ANT

 uptake (∆pHCANT; Figure 32a,c; Table 6). This is explained by the 

reinforcement of the negative ∆pHCANT trend due to the negative ∆pHVar trend (Figure 33). The 

decreasing trend of ∆pHVar is related to the aging of this water mass corroborated by the increasing 

trends of S and AOU. The reinforcement of the acidification trends by natural processes was also 

found in the North Pacific Ocean (Wakita et al., 2013). 

In the same region, Vázquez-Rodríguez et al. (2012b) studied the pHSWS25 changes in the 

different water masses of the basins. These authors normalized the average pHSWS25 values of each 
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layer taking into account the climatological values compiled in WOA05 

(http://www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html). The steps for their normalization 

were: (1) to calculate for each layer the differences between the mean values of θ , S, silicate and 

AOU from the cruise data and those derived from the WOA05 data; (2) to calculate the 

atmospheric CO
2
 concentration at the time of each cruise; (3) to perform for each layer a multiple 

linear regression between the observed average pHSWS25 value and the variables resulting from 

steps 1 and 2; (4) finally, the normalized pHSWS25 (pH
N
) was obtained by subtracting the result of 

step 3 (using only those variables statistically significant in the regression) from the observed 

average pHSWS25 value in each layer. The rates of pH
N
 would closely reflect those of the ∆pHCANT 

here obtained, because the normalization probably remove an important part of the natural 

variability (if any). The ∆pHCANT trends here obtained (Figure 32) are in agreement with the pH
N
 

trends reported by Vázquez-Rodríguez et al. (2012b), except in SPMW and uLSW in the Irminger 

Basin, and cLSW in the Iceland Basin. In the cLSW layer in the Iceland Basin the pH
N
 rate is (-

1.57 ± 0.20)·10
–3
 pH units·yr

–1
, which is nearly twice the rates of ∆pHCANT or pHSWS25 here 

observed. This high rate may be the result of the timeframe used to estimate the pH
N
 rate (1991–

2008) that is nearly half of the period of time here used, which also coincides with the timeframe 

where rapid changes in the convection processes leading to the formation of cLSW took place 

(transition from high to low NAO periods). These facts could drove to a very high rate of 

acidification in cLSW estimated by Vázquez-Rodríguez et al. (2012b). In the Irminger Basin, the 

pH
N
 rates of (-1.85 ± 0.09)·10

–3
 pH units·yr

–1
 estimated for SPMW and (-1.71 ± 0.05)·10

–3
 pH 

units·yr
–1
 for uLSW (Vázquez-Rodríguez et al., 2012b) are slightly higher than the ∆pHCANT rates 

of (-1.48 ± 0.15)·10
–3
 pH units·yr

–1
 and of (-1.26 ± 0.17)·10

–3
 pH units·yr

–1
, respectively. These 

discrepancies may result from the different cruises used for the decade of 1990s in combination 

with the interpolation procedure here used and the different timeframe of both studies. 

The differences in the C
ANT

 estimates due to different treatment of the ΔC
dis

 term in the 

ΔC* and φCT
0 methods could generate an extra acidification up to 0.04 pH units·yr

–1
 if the 

∆pHCANT is calculated in base of the C* estimates. This would suggest that using an ΔCdis term 

that varies over time, like the proposed in the φCT
0 method, produces ∆pHVar closer to the steady-

state than the resulting from the application of the C* parameter. It is especially important for the 

SPMW layer, where a higher rate of increase in the C
ANT

 estimates would lead to a greater 

contribution of the ∆pHVar to the observed acidification rates. 

5.9.- Changes in the CaCO
3
 saturation horizon 

Spatial and temporal changes in the saturation estate of CaCO
3
 are important for 

understanding how ocean acidification might impact future ecosystems. The Ω
Arag

 decreases with 

increasing depth, being the surface and intermediate waters supersaturated (Ω
Arag

 > 1) and the 

waters of the ISOW and DSOW layers below 2500 dbar undersaturated in the aragonite form of 

CaCO
3
 (Ω

Arag
 < 1) (Figure 28h). Despite the differences in the pHSWS25 fields between the 

Irminger and Iceland Basins (Figure 28e,g), there are no appreciable differences in the Ω
Arag

 fields 

of both basins. This is due to the important influence of the pressure field in the Ω
Arag

 that causes 

similar profiles in both basins. The study region is an area of low vertical Ω
Arag

 gradient compared to 

the tropics and subtropics (Chung et al., 2004). The Ω
Arag

 values in the winter mixed layer depth 

here observed are lower than those observed in subtropical and tropical areas (Ω
Arag

 ≈ 4). 

http://www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html
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The Ω
Arag

 shows significant decreasing trends in all the water masses when excluding the 

data of the 1997 cruise (Figure 34). The greatest rate of Ω
Arag

 decrease is located in the uLSW layer 

with a mean value for both basins of -0.0036 ± 0.0007 yr
–1

. The rates of Ω
Arag

 decrease of the 

SPMW layer in the Iceland Basin here reported (-0.0030 ± 0.0009 yr
–1
; Figure 34) is higher than 

that observed in the Iceland Sea time-series for the period 1983–2014 (-0.0018 ± 0.0027 yr
–1
; Bates 

et al. (2014)). However, the rate of Ω
Arag

 decrease in SPMW in the Irminger Basin here reported (-

0.0030 ± 0.0007 yr–1) is more than two times lower than that observed in the Irminger Sea time-

series for the period 1983–2014 (-0.0080 ± 0.0040 yr
–1
; Bates et al. (2014)). Comparing the rates 

here reported with those in other time-series stations, they are also lower than that reported in the 

ESTOC time-series stations for the period 1995–2014 (-0.0115 ± 0.0023 yr
–1
; Bates et al. (2014)), 

in the BATS time-series stations for the period 1983–2014 (-0.0095 ± 0.0007 yr
–1

; Bates et al. 

(2014)), and in the HOT time-series station for the period 1988–2014 (-0.0084 ± 0.0011 yr
–1
; 

Bates et al. (2014)). The rates of Ω
Arag

 decrease found in the upper waters of the Atlantic Ocean are 

one order of magnitude lower than those found in the subtropical South Pacific at 400 dbar 

horizon between 1994 and 2009 by Murata et al. (2015). These authors associate the rapid 

decreasing rates with the increase in the organic matter remineralization and the weakening of the 

water mass ventilation. 

 

Figure 34.- Temporal evolution between 1981 and 2014 of the average saturation of CaCO
3
 in terms of aragonite 

(Ω
Arag

) values in main water masses of the Irminger (a) and Iceland (b) Basins. Each point represents the average 

Ω
Arag

 of a particular water mass (SPMW (red dots), uLSW (blue dots), cLSW (black dots), ISOW (green dots) and 

DSOW (magenta dots)) at the time of each cruise (Table 5). The error bars represent the error of the mean. The 

inset boxes give the trends ± standard error of the estimate and the correlation coefficients (r
2
). * denotes that the 

trend is statistically significant at the 90% level (p-value < 0.1), ** at the 95% level (p-value < 0.05), and *** at 

the 99% level (p-value < 0.01). See water mass acronyms in Figure 27. 

The decreasing trends between -2.4 and -3.8·10
–3
 yr

–1
 observed in intermediate waters 

(uLSW and cLSW; Figure 34) correspond with a shoaling of the saturation horizon (isopleth 

where Ω
Arag

 = 1) at a rate of ~10 m·yr
–1
, which is more than twice the shoaling trend found in the 

Iceland Sea time-series station for the period 1985–2008 (Olafsson et al., 2009), and almost twice 

the shoaling trend found in the subtropical South Pacific between 1994 and 2009 (Murata et al., 

2015) at 400 dbar horizon. The shoaling of the saturation horizon may affect aragonitic cold-water 

corals (e.g., Langdon et al., 2000), although some authors argued that the calcification rates of 

these corals are unaffected by the shoaling of the aragonite saturation horizon (Guinotte et al., 

2006; Jackson et al., 2014; Rodolfo-Metalpa et al., 2015). 
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5.10.- Future changes in the variables of the seawater CO
2
 

system  

From the set of observations here used, projections of future changes in pHSWS25 and Ω
Arag

 

levels were estimated. The projections were calculated under the assumption that the general 

circulation of the ocean and the observed trends for the period 1981−2014 here reported (Table 6) 

will behave similarly for the rest of the 21st century, which is rather tentative. Such linear 

extrapolation is not constrained, but several works have demonstrated that the decline in the 

parameters of the seawater CO
2
 system, like bicarbonate ions, is almost linear for predictions made 

between 2000 and 2050 (e.g., Zeebe et al., 1999; Hauck et al., 2010). The buffering effect of the 

CaCO
3
 dissolution in deep waters can be disregarded since it tends to occur over timescales at least 

one order of magnitude larger than the one here considered. Therefore it can be assumed that on 

decadal timescales pH and Ω
Arag

 will evolve in the future analogously to what it is observed in the 

present study. 

The expected increasing stratification of the surface layers (Friedlingstein and Prentice, 

2010) could possibly hamper the processes of water mass ventilation and reduce the effectiveness 

in the transport of C
ANT

 towards the ocean interior via deep convection (Pérez et al., 2010). 

Therefore, assuming a steady state for the general circulation can potentially cause overestimates 

in the projected pH values for surface and intermediate waters. Nevertheless, this slowdown in the 

acidification process due to the decrease in the C
ANT

 uptake could be counterbalanced by the 

enhanced remineralization of the organic matter propitiated by the increase in the stratification. 

According to the projections here obtained, the pHSWS25 of SPMW could drop ~0.31 pH 

units with respect to the pre-industrial era (from ~7.81 to ~7.50) by the time atmospheric CO
2
 

reaches 800 ppm (about twice the present atmospheric CO
2
 concentration), which is consistent 

with the predictions for the IPCC representative concentration pathway 8.5 (RCP.5) (Ciais et al., 

2013), which is the worst scenario within the predicted. According to RCP8.5, the atmospheric 

CO
2
 reaches 800 ppm by the year ~2065 (van Vuuren et al., 2011). The projected pH drop for 

uLSW (~0.30 pH units, from ~7.78 to ~7.48) is similar to that in the SPMW layer. In the case of 

cLSW, the linear projection predicts a pH decrease of ~0.25 pH units with respect to the pre-

industrial pH by the time atmospheric CO
2
 reaches 800 ppm (from ~7.77 to ~7.57). The expected 

pH drop for ISOW is ~0.20 pH units (from ~7.77 to ~7.52), whereas the pH decrease projected 

for DSOW (~0.27 pH units, from ~7.78 to ~7.51) is similar to that of the upper layers. It is 

noteworthy that the projected acidification rates for the waters of the Irminger Basin are between 

0.06 (ISOW) and 0.10 (SPMW) pH units higher than for the Iceland Basin. 

Nowadays, the overflow waters ISOW and DSOW are already undersaturated in aragonite 

(Ω
Arag

 < 1), albeit their preindustrial values of Ω
Arag

 were 1.11 and 1.03, respectively (Table 6). The 

projections of the Ω
Arag

 levels here obtained suggest that the whole water column will be 

undersaturated in aragonite by the time atmospheric CO
2
 reaches 800 ppm (~2065), which is in 

agreement with numerical models results (Feely et al., 2009; Matear and Lenton, 2014). The Ω
Arag

 

of SPMW in both basins would change from its preindustrial value of 1.83 to 0.93. However, the 

uLSW and cLSW layers would reach aragonite undersaturation faster. The uLSW layer would 

reach the undersaturation state by the time the atmospheric CO
2
 reaches ~560 ppm, and cLSW by 
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the time atmospheric CO
2
 reaches ~500 ppm and not 900 ppm as previously suggested by 

numerical models (Orr et al., 2005). Those atmospheric CO
2
 concentrations would be achieved 

between ~2035 and ~2045 according to RCP8.5 (van Vuuren et al., 2011). The preindustrial Ω
Arag

 

value of 1.56 estimated for uLSW is higher than that of cLSW (1.34); however uLSW would reach 

undersaturation levels at a similar atmospheric CO
2
 concentration at which cLSW would reach it 

due to the greater influence of the anthropogenic acidification on uLSW. The rapid decrease of 

the Ω
Arag

 levels in cLSW is explained by its formation history. The high-NAO enhanced 

ventilation occurred towards the mid-late 1980s fostered the fast formation of a massive vintage of 

cLSW that transported C
ANT

 from the surface into intermediate waters. The shutdown of the 

cLSW production due to the shift of the NAO index in the late 1990s (e.g., Lazier et al., 2002; 

Kieke et al., 2006; Rhein et al., 2007; Yashayaev et al., 2008) cause the aging of this water mass, 

fostering the acidification of this layer (34% faster as found in Section 5.8), and thus lowering its 

Ω
Arag

 values. The early undersaturations in aragonite of uLSW and cLSW could produce negative 

impacts for the cold-water corals that inhabit the depths at which these water masses are located 

(Strömgren, 1971; Zibrowius, 1980; Freiwald et al., 2004). 

5.11.- Conclusions 

The net effect of the C
ANT

 uptake by the oceans is the decrease in its pH and carbonate ion 

concentration, thus lowering the buffering capacity of seawater. The progressive acidification of 

the North Atlantic waters has been assessed from direct observations spanning the last three 

decades (1981–2014). By separating the observed pH changes into an anthropogenic and a non-

anthropogenic component, an attribution to the underlying drivers is provided. The increasing 

atmospheric CO
2
 concentrations have significantly decreased the pH of the whole water column 

of the Irminger and Iceland Basins, with the greatest pH changes observed in surface and 

intermediate waters. The C
ANT

 concentration of the upper layer increases roughly keeping pace 

with rising atmospheric CO
2
, whereas the pH drop does not follow this trend. The salty and 

alkaline subtropical waters transported by the NAC to the study region buffer the acidification 

caused by the C
ANT

 increase in the upper layer. Intermediate waters exhibit acidification rates 

similar to those found in the surface waters, which are caused by a combination of anthropogenic 

and non-anthropogenic components. In the Irminger Basin, the acidification rate of cLSW due to 

the C
ANT

 uptake is reinforced by the aging of this water mass from the end of the 1990s onwards. 

The deep waters of the Irminger Basin present a clear evidence of significant acidification from 

anthropogenic forcing. 

Calcification or dissolution of both planktonic and benthic calcifying organisms 

commonly depends on the carbonate ion concentration, often expressed by the degree of 

saturation of the biominerals aragonite and calcite. The addition of C
ANT

 during the last 33 years 

has caused the aragonite saturation horizons to shoal towards the surface in the Irminger and 

Iceland Basins at a rate of ~10 m·yr
–1
, which is more than twice the shoaling trend previously 

found in the Iceland Sea. 

Taking advantage of the observed pH and Ω
Arag

 changes for the period 1981–2014, the 

future changes of these variables are inferred. SPMW would experience a pH drop of ~0.31 pH 

units with respect to the pre-industrial value by the time atmospheric CO
2
 reaches 800 ppm (about 

twice the present atmospheric concentration of CO
2
), which is in agreement with the projections 
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of the RCP8.5. Similar pH decrease is projected for DSOW (~0.27 pH units). The estimated 

projections also suggest that the whole water column of both basins will be undersaturated in 

aragonite by the time atmospheric CO
2
 reaches 800 ppm (~2065), which is in agreement with the 

results of numerical models. However, uLSW and cLSW would reach aragonite undersaturation 

levels more rapidly, by the time atmospheric CO
2
 reaches ~560 ppm (~2045) and ~500 ppm 

(~2035), respectively. 

The data here compiled also show significant long-term trends of increasing alkalinity in 

the deep waters of the Irminger Basin, which may be related to increase in river discharge in the 

Arctic Ocean. 

Ocean acidification has emerged as a key topic of concern regarding the potential of the 

changes in the seawater CO
2
 system to create feedbacks to global climate in a myriad of ways. 

Studies of full-depth data of the variables of the seawater CO
2
 system across ocean basins, as this 

study, are necessary to put any future change in the context of the changes that have already 

occurred. 
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Chapter 6.-  Variability of the transport of 

anthropogenic CO
2
 at the Greenland–

Portugal OVIDE section: controlling 

mechanisms 

6.1.- Resumen 

En este capítulo se investiga la variabilidad interanual a decenal en el transporte de CO
2
 

antropogénico (C
ANT

) a través del Atlántico Norte Subpolar (ANSP). Para ello se utilizan datos de 

alta resolución de las secciones transoceánicas 4x y OVIDE, llevadas a cabo entre Groenlandia y 

Portugal durante seis veranos entre 1997 y 2010. El transporte de C
ANT

 través de estas secciones 

(TCANT) es hacia el norte, con un valor medio de 254 ± 29 kmol·s
–1
 para el período 1997–2010. No 

existe una tendencia temporal de TCANT para este período debido a su variabilidad interanual. A fin 

de comprender los mecanismos que controlan la variabilidad del TCANT a través del ANSP, se 

propone un nuevo método para cuantificar el TCANT causado por la circulaciones diapicna e 

isopicna. El componente diapícnico produce un alto TCANT hacia el norte (400 ± 29 kmol·s
–1

) que 

es parcialmente compensado por un TCANT hacia el sur causado por el componente isopícnico  

(-171 ± 11 kmol·s
–1
), localizado principalmente en el Mar de Irminger. Gracias a esta 

descomposición se concluye que el componente diapícnico es el principal responsable de la 

variabilidad del TCANT a través del ANSP. Tanto la circulación termohalina (calculada en 

coordenadas de densidad, MOCσ) como el aumento del C
ANT

 en la columna de agua tienen un 

efecto importante en la variabilidad del componente diapícnico y del TCANT en sí. En base a este 

análisis, se propone un estimador simplificado para la variabilidad del TCANT basado en la 

intensidad de la MOCσ y en la diferencia en la concentración de C
ANT

 de las ramas superior e 

inferior de la MOCσ (ΔCANT). Este estimador es consistente con el componente diapícnico del 

TCANT y ayuda a separar el efecto de la variabilidad de la circulación en la variabilidad del TCANT 

del causado por el aumento de C
ANT

. La ΔCANT ha estado aumentando durante la última década, y 

es muy probable que el aumento continuo de C
ANT

 en las masas de agua provoque un aumento en el 

TCANT a través del ANSP a largo plazo. Sin embargo, en la escala de tiempo analizada (1997–2010) 

es la MOCσ la que controla la variabilidad del TCANT, enmascarando cualquier tendencia en el 

TCANT. Extrapolando la tasa de aumento de la ΔCANT observada y considerando la ralentización del 

25% de la MOCσ predicha para finales de siglo, se espera que el TCANT a través del ANSP aumente 

430 kmol·s
–1
 durante el siglo XXI. En consecuencia, podría preverse un aumento de la tasa de 

almacenamiento de C
ANT

 en el ANSP. 

6.2.- Abstract 

The inter-annual to decadal variability in the transport of anthropogenic CO
2
 (C

ANT
) 

across the Subpolar North Atlantic (SPNA) is investigated in this chapter, using summer data of 

the 4x and OVIDE high-resolution transoceanic sections, from Greenland to Portugal, occupied 
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six times from 1997 to 2010. The transport of C
ANT

 across this section (TCANT) is northwards, with 

a mean value of 254 ± 29 kmol·s
−1

 over the 1997–2010 period. The TCANT undergoes inter-annual 

variability, masking any trend different from 0 for this period. In order to understand the 

mechanisms controlling the variability of the TCANT across the SPNA, a new method that 

quantifies the TCANT caused by the diapycnal and isopycnal circulation is proposed. The diapycnal 

component yields a large northward TCANT (400 ± 29 kmol·s
−1

) that is partially compensated by a 

southward TCANT caused by the isopycnal component (-171 ± 11 kmol·s
−1

), mainly localised in the 

Irminger Sea. Most importantly, the diapycnal component is found to be the main driver of the 

variability of the TCANT across the SPNA. Both the Meridional Overturning Circulation 

(computed in density coordinates, MOCσ) and the C
ANT

 increase in the water column have an 

important effect on the variability of the diapycnal component and of the TCANT itself. Based on 

this analysis, a simplified estimator for the variability of the TCANT is proposed based on the 

intensity of the MOCσ and on the difference of C
ANT

 between the upper and lower limb of the 

MOCσ (ΔCANT). This estimator shows a good consistency with the diapycnal component of the 

TCANT and helps to disentangle the effect of the variability of both the circulation and the C
ANT

 

increase on the variability of the TCANT. The ΔCANT keeps increasing over the past decade, and it 

is very likely that the continuous C
ANT

 increase in the water masses will cause an increase in the 

TCANT across the SPNA at long timescale. Nevertheless, at the timescale analysed here (1997–

2010), the MOCσ controls the variability of the TCANT, blurring any trend of the TCANT. 

Extrapolating the observed ΔCANT increase rate and considering the predicted slow-down of 25% 

of the MOCσ, the TCANT across the SPNA is expected to increase by 430 kmol·s
−1

 during the 21st 

century. Consequently, an increase in the storage rate of C
ANT

 in the SPNA could be envisaged. 

6.3.- Introduction 

The ocean acts as an important sink for the CO
2
 emitted by human activities. It has stored 

approximately one third of the total anthropogenic CO
2
 (C

ANT
) emissions since the beginning of 

the industrial era (Sabine et al., 2004). The C
ANT

 is uptaken by the air–sea interface and its 

distribution depends on mixing processes and transport into the ocean interior; this is the reason 

why the C
ANT

 concentration generally decreases with increasing depth. The storage of C
ANT

 in the 

deep ocean depends on the ventilation and formation of intermediate and deep waters (Tanhua et 

al., 2006; Rhein et al., 2007; Steinfeldt et al., 2009). 

Among all oceans, the highest rate of C
ANT

 storage is found in the North Atlantic Ocean, 

mainly in the subpolar region (Sabine et al., 2004; Khatiwala et al., 2013). An increase in the C
ANT

 

storage is associated with an increase in the C
ANT

 concentration of the water masses. The rate at 

which the C
ANT

 concentration increases in the different water masses depends on both their ages 

and their positions in the water column. In the Subpolar North Atlantic (SPNA), the upper layers 

that contain Subantarctic Intermediate Water (SAIW), Subpolar Mode Water (SPMW) and 

North Atlantic Central Water (NACW) present the highest C
ANT

 increase trends, changing from 

average values of 35–40 μmol·kg
−1

 in 1991–1993 to up to 55 μmol·kg
−1

 in 2006 (Pérez et al., 2010). 

Besides, the production of Labrador Sea Water (LSW) fosters a fast injection of C
ANT

 in the 

intermediate and deep waters, so that this water mass also presents a high trend of C
ANT

 increase. 
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Otherwise, the deeper water masses of the Eastern North Atlantic show no significant tendencies 

in their C
ANT

 content between 1991 and 2006 (Pérez et al., 2010). 

In the North Atlantic Ocean the highest air–sea fluxes of C
ANT

 are detected at mid-

latitude (Mikaloff-Fletcher et al., 2006). Besides, Pérez et al. (2013) have inferred that the C
ANT

 is 

the main component of the air–sea CO
2
 fluxes at mid-latitude in the North Atlantic Ocean, while 

the natural component is the dominant one in the SPNA. They also detected a decrease in the 

storage rate of C
ANT

 between 1997 and 2006 in the SPNA that was related to the reduction in the 

intensity of the Meridional Overturning Circulation (computed in density coordinates, MOCσ). 

Based on those findings, they elucidated the important contribution of the lateral advection of 

C
ANT

 from middle to high latitudes to the C
ANT

 storage in the SPNA. The other important element 

of the C
ANT

 storage in the SPNA is the advection of water masses recently ventilated such as the 

different vintages of LSW. Consequently, how the C
ANT

 is transported in the SPNA is a crucial 

issue for understanding how the ocean is storing C
ANT

 and for modelling the future role of the 

ocean damping the atmospheric CO
2
 increase caused by humankind. 

Nowadays, there is an important international effort in understanding how the ocean 

uptakes, distributes and stores C
ANT

. There are estimations of CO
2
 fluxes computed from sea surface 

pCO
2
 measurements, ocean (model) inversions, atmospheric inversions and/or ocean 

biogeochemical models. Some of these methods also provide an estimation of the transport of C
ANT

 

(TCANT) in the ocean (Mikaloff-Fletcher et al., 2006; Gruber et al., 2009; Tjiputra et al., 2010), but 

unfortunately, direct estimations of the TCANT are not abundant and they are concentrated in the 

Atlantic Ocean. In the North Atlantic Ocean, the TCANT has been estimated from observational 

data across 24ºN and across a transversal section between 40ºN and 60ºN. The TCANT is larger at 

mid-latitudes than in the northernmost latitudes (Table 7). The large differences between the 

uncertainties given for the TCANT estimations (Table 7) are very likely due to the different methods 

used to compute the volume transport since most of the TCANT errors come from the volume 

transport uncertainties. The observation-based TCANT estimations are in general larger than the 

TCANT estimated by ocean (model) inversions or by biogeochemical models (Table 7), but all of 

them present large errors. This shows that further improvements are necessary to provide more 

realistic TCANT estimations. To bridge the gap between observations and models, it is necessary to 

understand better which circulation mechanisms control the TCANT and its temporal variability. 

For example, following the results of Pérez et al. (2013), it seems crucial that models reproduce a 

realistic variability of the Atlantic Meridional Overturning Circulation. 

In this work, data measured between 1997 and 2010 from Greenland to Portugal (4x and 

OVIDE sections; Figure 35) are used to analyse the TCANT variability across the SPNA. The 

circulation across this section was described by Lherminier et al. (2007, 2010) and Mercier et al. 

(2015). Briefly, at gyre scale, the structures intersecting the section are a cyclonic circulation in 

the Irminger Sea, a cyclonic circulation in the Iceland Basin, the North Atlantic Current (NAC) 

flowing directly northwards east of Eriador Seamount (ESM), and lastly, an anticyclonic 

circulation dominating the Western European Basin (WEB). Beside this gyre-scale circulation, the 

MOCσ is an important feature of the circulation across the OVIDE section, which upper limb 

transports warm C
ANT

-laden surface waters northwards, mainly by the NAC. North of the section, 

the waters are cooled, thus being depleted in C
ANT

, and then flow southwards at depth (the lower 
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limb) mainly close to Greenland, in the Deep Western Boundary Current (DWBC). The limit 

between the upper and lower limbs of the MOCσ is defined by σ
1
 (potential density referenced to 

1000 dbar) equal to 32.14 ± 0.03 kg·m
−3

 (called σ
MOC

; Mercier et al., 2015). 

Table 7.- Estimations of transport of anthropogenic CO
2
 (𝐓𝐂𝐀𝐍𝐓; in kmol·s

−1
) in the North Atlantic Ocean from 

literature. The 𝐓𝐂𝐀𝐍𝐓 is often given in PgC·yr
−1

 (1 Pg·Cyr
−1

 = 2642 kmol·s
−1

). 

Reference Latitude Time Method TCANT (kmol·s−1
) 

Mikaloff-Fletcher et al. (2006) 18ºN 1765–1995 Ocean (model) inversion 317 ± 26 

Gruber et al. (2009) 24.5ºN 1765–1995 Ocean (model) inversion 211 

Tjiputra et al. (2010) 24.5ºN 1990s–2000s Biogeochemical model 396 ± 106 

Rosón et al. (2003) 24.5ºN 1992 Observations 634 ± 211 

Macdoland et al. (2003) 24.5ºN 1992–1998 Observations 502 ± 211 

Pérez et al. (2013) 40–60ºN 2002–2006 (referred to 2004) Observations 195 ± 24 

Mikaloff-Fletcher et al. (2006) 49ºN 1765–1995 Ocean (model) inversion 53 ± 26 

Tjiputra et al. (2010) 49ºN 1990s–2000s Biogeochemical model ~100 

The MOCσ has been identified as the element of the circulation mainly driving the heat 

transport across several transoceanic sections in the North Atlantic Ocean; meanwhile, the 

isopycnal heat transport has a minor impact (Ganachaud and Wunsch, 2003; Mercier et al., 

2015). Recently, Pérez et al. (2013) evaluated the C
ANT

 storage rate and the variability of the 

TCANT across the subpolar gyre, finding a significant impact of the MOCσ on both of them. 

Following Pérez et al. (2013) and using a longer time-series, this study goes further. First, 

the variability of the TCANT across the SPNA at inter-annual to decadal timescales is evaluated for 

the first time. Second, a new method is proposed in order to evaluate the effect of the different 

elements of the ocean circulation on the variability of the TCANT. Third, a simplified estimator for 

the TCANT across the SPNA is proposed based on the factors chiefly responsible of its variability. 

Finally, the influence of the increase in C
ANT

 in the ocean in the variability of the TCANT is 

analysed. The chapter is organized as follows: data and the main water masses circulating across 

the OVIDE section are detailed in Section 6.4; the TCANT computation as well as the new method 

to clarify the effect of the different component of the circulation on the TCANT are explained in 

Section 6.5; the main results of this study are exposed in Section 6.6; finally, results are discussed 

in Section 6.7. 

6.4.- Data sets 

The data used in the present study were acquired during the 4x and OVIDE cruises along 

the A25 line (Figure 35, Table 8), where full-depth hydrographic stations were carried out 

between Greenland and Portugal. An overview of the instruments and calibrations associated with 

the physical parameters is presented by Mercier et al. (2015) and summarized hereafter. The CTD-

O2 measurement accuracies are better than 1 dbar for pressure, 0.002ºC for temperature, 0.003 for 
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salinity S and 1 μmol·kg
−1

 for dissolved oxygen O
2
 (Billant et al., 2004; Branellec and Thierry, 

2013). The current velocities perpendicular to the section were estimated by combining the 

geostrophic currents and the velocities measured by the Shipboard Acoustic Doppler Current 

Profilers in an inverse model using the generalized least squares (Mercier, 1986; Lux et al., 2001). 

The specificities associated with the A25 section are detailed by Lherminier et al. (2007, 2010). 

 

Figure 35.- Schematic circulation in the North Atlantic Ocean. The main pathways of warm and salty waters 

originating from the Subtropical Atlantic Ocean are shown in red lines while the deep currents are displayed in dark 

blue. The cyan lines represent the fresh and cold currents over the shelves (Eastern Greenland Coastal Current 

(EGCC) and Labrador Current (LC)). The grey lines indicate the spreading of the Labrador Sea Water (LSW). The 

hydrographic stations of the OVIDE and 4x (FOUREX) sections are represented with black dots. The other 

abbreviations are DSOW = Denmark Strait Overflow Water, ISOW = Iceland–Scotland Overflow Water, WBC = 

Western Boundary Current, NAC = North Atlantic Current, GS = Gulf Stream, ESM = Eriador Seamount, and 

IAP = Iberian Abyssal Plain. 

The measurements relative to the CO
2
 system were all obtained from bottle samples. The 

pH was determined with a spectrophotometric method (Clayton and Byrne, 1993), resulting in an 

accuracy of 0.003 pH units or better. The total alkalinity (A
T
) was analysed with potentiometric 

titration and determined by single point titration (Pérez and Fraga, 1987; Mintrop et al., 2000), 

with an accuracy of 4 μmol·kg
−1

. The total dissolved inorganic carbon (C
T
) was calculated from pH 

and A
T
. Then the concentration of C

ANT
 is determined from C

T
, A

T
, O

2
, nutrients, temperature and 

S, applying the φC
T

0
 method (Pérez et al., 2008; Vázquez-Rodríguez et al., 2009a). A random 

propagation of the errors associated with the input variables yielded an overall uncertainty of 5.2 

μmol·kg
−1

 in the C
ANT

 concentration. 
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Table 8.- Hydrographic cruises. 

Cruise Name Month/Year Vessel Reference 

4x 1997 08–09/1997 R/V Discovery Álvarez et al. (2002) 

OVIDE 2002 06–07/2002 N/O Thalassa Lherminier et al. (2007) 

OVIDE 2004 06–07/2004 N/O Thalassa Lherminier et al. (2010) 

OVIDE 2006 05–06/2006 R/V Maria S. Merian Gourcuff et al. (2011) 

OVIDE 2008 06–07/2008 N/O Thalassa Mercier et al. (2015) 

OVIDE 2010 06–07/2010 N/O Thalassa Mercier et al. (2015) 

The vertical sections of properties (potential temperature (θ), S, C
ANT

) are shown for 2002 

and 2010 in Figure 36. They show the gradient of surface properties from cold and fresh waters in 

the Irminger Sea to warm, salty and C
ANT

-rich waters towards Portugal. The strongest surface fronts 

east of the ESM mark the branches of the NAC (Lherminier et al., 2010). Note however that the 

penetration of C
ANT

 in the first 1000 m is comparable in the Irminger Sea and in the Iberian 

Abyssal Plain (IAP). 

At intermediate depth, the minimum of S that marks LSW is observed from the 

Greenland slope to the Azores–Biscay Rise. Following Yashayaev et al. (2007b), two vintages of 

LSW can be distinguished: the upper LSW (uLSW; 32.32 < σ
 1
 < 32.37), and the classical LSW 

(cLSW; 32.40 < σ
1
 < 32.44). Both varieties of LSW are marked by a relative maximum in C

ANT
 

due to their recent ventilation in the Labrador Sea, although it is much less clear for cLSW in 

2010, consistent with the fact that this water mass was not ventilated between 1994 and 2008 

(Yashayaev and Loder, 2009). 

Deep and bottom waters below LSW have very different properties in the SPNA and in 

the inter-gyre region. Northwest of the ESM, those waters are rich in overflow waters coming from 

the Nordic Seas: the Iceland–Scotland Overflow Water (ISOW, below cLSW) and the Denmark 

Strait Overflow Water (DSOW, below σ
1
 = 32.53; Tanhua et al., 2005). Southeast of the ESM, 

the deep and bottom waters are rich in Antarctic Bottom Water (AABW), which has not been in 

contact with the atmosphere for several decades and presents the lowest concentration of C
ANT

 in 

the whole section. This distribution creates a horizontal gradient of C
ANT

 at the bottom, from  

C
ANT

-free waters in the southeast to intermediate C
ANT

 concentration in overflow waters in the 

northwest. 

Between 2002 and 2010, the concentration of C
ANT

 increased dramatically over the whole 

section (Figure 36), except in the AABW-derived waters where the C
ANT

 concentration is very 

low. As it will be explained in the results, this increase has a big impact on the variability of the 

TCANT across the section. 

All the trends given in the present study were estimated fitting a straight line by means of 

least squares. Confidence intervals were calculated considering a T  student distribution at the 95% 
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confidence level. The mean values estimated for a period of time are given with the standard error, 

i.e., ± σ/√𝑁, where N is the number of cruises. 

 

Figure 36.- OVIDE sections of 2002 and 2010 of (a, d) potential temperature in ºC, (b, e) salinity and (c, f) 

anthropogenic CO
2
 (CANT) in μmol·kg

−1
. The isopycnals referenced in the chapter are plotted in all the figures; 

their specific values are indicated in (b) and (e). All the water masses cited in the chapter are localized in the section 

in (c) and (f): DSOW = Demark Strait Overflow Water, ISOW = Iceland–Scotland Overflow Water, LSW = 

Labrador Sea Water, MW = Mediterranean Water, AABW = Antarctic Bottom Water. The other abbreviations in 

(a) and (d) are RR = Reykjanes Ridge, ESM = Eriador Sea Mount and ABR = Azores–Biscay Ridge. The numbers 

at the top of each plot indicate the station numbers. 
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Figure 36.- Continued. 
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6.5.- Method: transport of anthropogenic CO
2
 and its 

decomposition 

The transport of any property across the Greenland to Portugal section can be computed 

as 

TPROP = ∫ ∫ 𝜐𝜌[PROP] 𝑑𝑥 𝑑𝑧

surface

bottom

Portugal

Greenland

(Eq. 6.1) 

where 𝜐 is the velocity orthogonal to the section, 𝜌 is the in situ density and [PROP] is the 

concentration of any property. Note that 𝑥 is the horizontal coordinate along the section and 𝑧 is 

the vertical coordinate. The error of the transport of any property is calculated taking into account 

the co-variance matrix of errors of the volume transport obtained from the inverse model; 

therefore, the errors in the transport of any property come mainly from the volume transport 

uncertainties. 

Understanding the processes by which the ocean transports heat, freshwater and C
ANT

 is an 

important issue in climate modelling. In order to evaluate the elements of the circulation that 

influence the heat transport across transoceanic sections, several authors, for example Böning and 

Herrman (1994) or Bryden and Imawaki (2001), suggested the decomposition of heat transport 

into three components. This methodology has been widely applied for both heat and salt fluxes in 

the majority of the oceans, but in the case of C
ANT

, it has only been applied by Álvarez et al. 

(2003). Following the previous authors, for a transoceanic section velocity (V), the C
ANT

 can be 

split into 

V(x, z) = V0 + 〈υ〉〈z〉 + υ′(x, z) (Eq. 6.2) 

CANT(x, z) = 〈CANT〉〈z〉 + CANT′(x, z) (Eq. 6.3) 

where υ =  V (x, z) − V0, V0 representing the section-averaged velocity corresponding to the net 

transport across the section. 〈υ〉〈z〉 is the mean vertical profile of velocity anomalies and 〈CANT〉〈z〉 

is the mean vertical profile of C
ANT

. υ′(x, z) and CANT′(x, z) are the deviations from the 

corresponding mean vertical profiles. In the same way the TCANT computed following Eq. (6.1) can 

be decomposed into three components (Eq. 6.4): 

TCANT = ρV0〈CANT〉〈z〉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + ρ〈υ〉〈z〉〈CANT〉〈z〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + ρυ′(x, z)CANT(x, z)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (Eq. 6.4) 

where the overbar denotes the area integration. 

Álvarez et al. (2003) carried out the decomposition of the TCANT across the 4x section 

using pressure as vertical coordinate, the same way as heat and salt transport  decompositions are 

usually done. Because of the strong horizontal density gradient and the general circulation patterns 

across the section, it is preferable to do the decomposition in density coordinates (z = σ
1
). Indeed, 

along the OVIDE section, the upper and lower limbs of the Meridional Overturning Circulation, 

namely, the northward NAC and the southward Western Boundary Current (WBC), respectively, 

overlap in the depth coordinate, while they have nearly distinct density properties. Therefore, 

when the Meridional Overturning Circulation is computed in a pressure coordinate for the A25 



  CHAPTER 6.- VARIABILITY OF THE TRANSPORT OF ANTHROPOGENIC CO
2
 

124 

section, its intensity is underestimated (Lherminier et al., 2010; Mercier et al., 2015). Thus, the 

TCANT computation and decomposition should be done in a density coordinates. 

It is the very first time that the TCANT decomposition exposed in Eq. (6.4) is computed in 

density coordinates. Regarding the order of the different terms, Eq. (6.4) can be written as 

TCANT = TCANT
net + TCANT

diap
+ TCANT

isop
(Eq. 6.5) 

where 

TCANT
net = 𝜌𝑉0〈CANT〉(𝜎1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (Eq. 6.6)

TCANT
diap

= 𝜌〈𝜐〉(𝜎1)〈CANT〉(𝜎1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (Eq. 6.7)

TCANT
isop

= 𝜌𝜐′(𝑥, 𝜎1)CANT′(𝑥, 𝜎1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (Eq. 6.8)

 

being TCANT
net  the net transport of C

ANT
 across the section related to a northward transport of about 1 

Sv associated with the Arctic mass balance (Lherminier et al., 2007). TCANT
diap

 is the transport of 

C
ANT

 linked to the diapycnal circulation that accounts for the light to dense water mass conversion 

north of the section (Grist et al., 2009) related to the overturning circulation. Lastly, TCANT
isop

 

quantifies the transport of C
ANT

 due to the isopycnal circulation, i.e., the integration of how C
ANT

 

and transport co-vary in each layer. This term is usually called horizontal circulation when the 

decomposition is done in pressure coordinates (e.g., Böning and Herrmann, 1994); however, in 

the present study, it is not the horizontal circulation, since isopycnals present important slopes all 

along the section (Figure 36). 

Using the same methodology as Álvarez et al. (2003) but changing the vertical coordinate 

from pressure to density, it is expected to find a larger contribution of the overturning component 

to the total TCANT in the same way that the Meridional Overturning Circulation intensity across 

the section increases when it is computed in density coordinates. 

6.6.- Results 

6.6.1.- Transport of anthropogenic CO
2
 across the Greenland–Portugal 

section 

The TCANT across the Greenland–Portugal section from 1997 to 2010 is shown in Figure 37 

(black line). The mean value for the whole period is 254 ± 29 kmol·s
−1

. The standard deviation is 

71 kmol·s
−1

 (while the errors in each estimate average to 48 kmol·s
−1

). Note that a positive TCANT 

value means a northward transport of C
ANT

 while a negative value points to a southward transport. 

At the beginning of the period, in 1997, the TCANT was 289 ± 32 kmol·s
−1

. This value is far off the 

one estimated by Álvarez et al. (2003; 116 ± 126 kmol·s
−1

). Because both results correspond to the 

same data, the difference between them comes from the methodology: on the one hand because of 

the constrains considered for computing the volume transport across the section in Álvarez et al. 

(2003) and in the present study are different (Lherminier et al., 2007); on the other hand because 

they did not use the φC
T

0
 approximation for calculating the C

ANT
. Later, Pérez et al. (2013) 

computed the TCANT across the OVIDE section between 2002 and 2006; their mean value for that 
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period is 195 ± 24 kmol·s
−1

. For the same period, in the present study it is obtained a mean value of 

208 ± 40 kmol·s
−1

, a compatible result considering the error bars. 

 

Figure 37.- Transport of anthropogenic CO
2
 (T

cant
; in kmol·s

–1
) (black) and its components (diapycnal in blue, 

isopycnal in red and net in green) across the A25 section as a function of time. The dashed grey line is the T
cant

 due 

to the Ekman transport, which is dispatched between the other three components. The cyan lines are the mean 

value (2002–2006) and the error bars of the T
cant

 representative of the mid-2000s. 

The evolution of the TCANT between 1997 and 2010 (black line in Figure 37) presents 

inter-annual variability, with a decrease from 1997 to the mid-2000s (see the mean value for 

2002–2006 displayed in cyan in Figure 37) and a recovery thereafter. This TCANT recovery and the 

significant highest value in 2010 (380 ± 64 kmol·s
−1

) have never been reported before. The trend 

for the whole period of time is 4.0 ± 15.5 kmol·s
−1

·yr
−1

. This result is statistically not different from 

0 since the inter-annual variability blurs the longer timescale variability, at least over this 14-year 

period. 

6.6.2.- Decomposition of the transport of anthropogenic CO
2
 across the 

Greenland–Portugal section 

The evolution of each of the TCANT components (TCANT
diap

, TCANT
isop

 and TCANT
net ) are also 

displayed in Figure 37. The sum of these three components is exactly the total C
ANT

 flowing across 

the A25 section. The 1997–2010 mean values of TCANT
diap

, TCANT
isop

 and TCANT
net  are 400 ± 29 kmol·s

−1
,  
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-171 ± 11 kmol·s
−1

 and 26 ± 9 kmol·s
−1

, respectively. For all the years the TCANT
diap

 is larger than the 

TCANT; meanwhile, the TCANT
isop

 is always negative. Finally, the net transport is the smallest 

contribution to the TCANT since the net transport of volume across the section is very low, less 

than 1 Sv, and because the section average C
ANT

 concentration is around 26 μmol·kg
−1

. 

By definition, the TCANT
isop

 is the TCANT along isopycnals. It is the area integration of the  

co-variance of the anomalies of volume transport and C
ANT

 at each station and density level across 

the section (Eq. 6.8). The TCANT
isop

 shows a non-negligible southward TCANT across the A25 section. 

The result contrasts with the isopycnal transport of heat (Mercier et al., 2015) that has a minor 

contribution to the total heat flux in the North Atlantic Ocean (Ganachaud and Wunsch, 2003). 

The spatial distribution of the TCANT
isop

 is analysed to understand the origin of its southward 

resultant. Figure 38a displays the mean value of the TCANT
isop

 over 1997–2010, accumulated from 

Greenland to Portugal and from the bottom to each density level. For water denser than  

σ
1
 = 32.14 the accumulated TCANT

isop
 is -150 kmol·s

−1
, which is the 87% of the total (-171 kmol·s

−1
). It 

shows that, for the whole section, the TCANT
isop

 occurs mainly in the dense waters. To locate the main 

region contributing to the TCANT
isop

, the latter was vertically integrated and horizontally accumulated 

from Greenland to each station along the section (Figure 38b). The maximum negative value is 

reached approximately 200 km from Greenland, exactly where the maximum negative value of 

volume transport is found (Figure 38c). From that point eastwards, a northward TCANT caused by 

the recirculation in the Irminger Sea diminished the total southward TCANT
isop

 in this basin (Figure 

38b). In the intermediate and deep waters (σ
1
 > 32.14) east of the Reykjanes Ridge, anomalies of 

C
ANT

 in isopycnal layers are quite small, resulting in a weak contribution to the TCANT
isop

 (Figure 38b). 

Taking into account the whole water column, there is a southward TCANT
isop

 in the WEB (Figure 38b) 

mainly explained by a northward advection of a negative anomaly of C
ANT

 in the intermediate 

layers (Figure 38c). Indeed, the shallow isopycnal layers in the Irminger Sea are richer in C
ANT

 

than the same layers found deeper in the WEB and the IAP (Figure 36). It can then be concluded 

that southward TCANT associated with the TCANT
isop

 mainly occurs in the Irminger Sea. In order to 

identify the water masses mainly responsible for this transport, the TCANT associated with the TCANT
isop

 

is horizontally but not vertically integrated (Figure 38d). Two different ranges of densities are 

identified as the major contributions to the TCANT
isop

. The lower lobe (32.48 < σ
1
 < 32.55) 

corresponds to the overflow waters (DSOW and ISOW), while the upper lobe corresponds to the 

intermediate and surface waters of the Irminger Sea (note the shallow position of σ
1
 = 32.14 in the 

Irminger Sea; Figure 36). In this basin, the waters corresponding to the density range of both lobes 

contain high concentrations of C
ANT

 (Figure 36) due to their recent formation and/or ventilation. 

To summarize, the southward resultant of the TCANT
isop

 is mainly localized in the Irminger Sea where 

the southward TCANT caused by the WBC is partially compensated by the northward transport 

caused by the inner recirculation in this basin. Concerning water masses, only LSW has a minor 

contribution to the TCANT
isop

; it will be discussed further in Section 6.7. 
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Figure 38.- Transport of anthropogenic CO
2
 (Cant) caused by the isopycnal component (𝐓𝐜𝐚𝐧𝐭

𝐢𝐬𝐨𝐩
) averaged over time. 

(A) The 𝐓𝐜𝐚𝐧𝐭
𝐢𝐬𝐨𝐩

 (in kmol·s
–1

) accumulated from the bottom to each specific density level. (B) The 𝐓𝐜𝐚𝐧𝐭
𝐢𝐬𝐨𝐩

 horizontally 

accumulated from Greenland to each station along the section, and vertically integrated for the whole water column 

(continuous line) and for waters denser than σ
1
 = 32.14 (dashed line). (C) On the left axis: isopycnal volume 

transport (in Sv; where 1 Sv = 10
6
 m

3
·s

–1
) accumulated from Greenland to each station, and vertically integrated for 

the whole water column (continuous black line) and for waters denser than σ
1
 = 32.14 (dashed black line). On the 

right axis: mean value of Cant anomalies vertically averaged all along the section (grey line; in µmol·kg
–1

). (D) The 

𝐓𝐜𝐚𝐧𝐭
𝐢𝐬𝐨𝐩

 horizontally but not vertically integrated (see Figure 35 for the abbreviations). Note that in plots (A) and (D) 

the vertical axes do not have the same scale. 

The TCANT across isopycnals, which is the TCANT
diap

 (Eq. 6.7), is decomposed in terms of mean 

profiles of anomalies of volume transport (Figure 39a) and C
ANT

 concentration (Figure 39b) 

computed in isopycnal layers (with a resolution of 0.01 kg·m
−3

). The upper and lower limbs of the 

MOCσ can be identified in Figure 39a, with northward (southward) volume transports above 

(below) σ
MOC

. The vertical profile of C
ANT

 concentration averaged in density layers (Figure 39b) 

shows, as expected, decreasing C
ANT

 concentration when increasing depth. The profile of TCANT 

(Figure 39c) follows perfectly the vertical profile of volume transport. The vertical integration of 

the diapycnal component of the volume transport (Figure 39a) is equal to 0 Sv. However, because 

the C
ANT

 concentration is larger in the upper limb of the MOCσ than in the lower one (Figure 

39b), the TCANT
diap

 results in a strong positive value once vertically integrated (Figure 37). 

The Ekman transport has been estimated separately from wind stress data averaged over 

the months of the cruises (Mercier et al., 2015) and equally distributed in the first 30 m. After 

that, it has been added to the absolute geostrophic velocity across the section and analysed 

together. It has not been considered as the fourth element of the circulation because it is 
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dispatched between the TCANT
diap

, TCANT
isop

 and TCANT
net  components. Nevertheless, it is worth mentioning 

that the Ekman transport causes a southward TCANT (dashed grey line in Figure 37), whose mean 

value is -50 ± 8 kmol·s
−1

 and its standard deviation is 21 kmol·s
−1

. 

 

Figure 39.- The diapycnal component of the transport of anthropogenic CO
2
 (𝐓𝒄𝒂𝒏𝒕

𝐝𝐢𝐚𝐩
) and the different elements by 

which it was computed (see Eq. 6.7). (A) Profile of anomalies of volume transport (in Sv) integrated into density 

(σ
1
) layers with a 0.01 kg·m

−3
 resolution. (B) Mean profile of anthropogenic CO

2
 (Cant; in µmol·kg

–1
) averaged at 

each density layer. (C) 𝐓𝐜𝐚𝐧𝐭
𝐝𝐢𝐚𝐩

 profile (in kmol·s
–1

). All the data represented in this figure are the averages of the six 

surveys analysed in the present study. In the formulation, 𝐒 means the area of each density layer along the section 

and replaces the overbar given in Eq. (6.7), since there is no vertical integration in the data displayed in the figure. 

6.6.3.- Variability of the transport of anthropogenic CO
2
 

In this part of the chapter, the variability of the TCANT across the OVIDE section is 

analysed. It is expected that changes in both the circulation and the C
ANT

 concentration of water 

masses have a certain influence on the variability of the TCANT. In the previous section the TCANT 

was decomposed into three different elements of the ocean circulation. In this section it is going to 

be evaluated which elements of the circulation have a major influence on the variability of the 

TCANT and whether the C
ANT

 increase in the water masses affects the variability of the TCANT. 
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6.6.3.1.- Variability of the components of the 𝐓𝐂𝐀𝐍𝐓  

The variability of the TCANT and the TCANT
diap

 (black and blue lines in Figure 37, respectively) 

is very well correlated (r
2
 = 0.99; p-value < 0.01). By contrast, the TCANT

isop
 presents a small 

variability that is not correlated with the TCANT (r
2
 = 0.44; p-value = 0.38), and the same is true for 

the TCANT
net  (r

2
 = 0.40; p-value = 0.43). Therefore, the TCANT

diap
 mainly drives the variability of the 

TCANT. 

In terms of volume transport, the TCANT
diap

 is directly related to the MOCσ . Pérez et al. 

(2013) suggested that the weakening of the lateral advection of C
ANT

 between 1997 and 2006, 

caused by the slow-down of the MOCσ, is responsible for the decrease in the C
ANT

 storage rate 

during that period. However, during the period of time studied in this work (1997–2010), the 

MOCσ intensity (Figure 40a) is correlated neither with the TCANT (r
2
 = 0.58, p-value = 0.23) nor 

with the TCANT
diap

 (r
2
 = 0.68, p-value = 0.13). These results suggest that, although the diapycnal 

circulation is related to the MOCσ, in the case of the TCANT there is another factor acting on the 

variability of the TCANT
diap

. It is very likely that the C
ANT

 concentration change is the other factor 

controlling the variability of the TCANT
diap

, and thus the variability of the TCANT. 

6.6.3.2.- A simplified estimator for the variability of the 𝐓𝐂𝐀𝐍𝐓  

The overturning circulation has been identified as the component of the circulation 

mainly driving the heat flux variability across the subpolar gyre (Mercier et al., 2015). After 

defining the MOCσ as the maximum of the transport streamfunction computed in density 

coordinates, these authors approximated the heat transport variability across the OVIDE section, 

taking into account the temperature difference between the upper and lower limbs of the MOCσ 

and the intensity of the MOCσ. This method applied to the TCANT could help to clarify the effect 

of both the circulation changes and the C
ANT

 increase on the variability of the TCANT. Therefore 

the following estimator is proposed: 

TCANT
0 = ΔCANT · ρ · MOCσ 

where ΔCANT is the difference between the mean value of C
ANT

 in the upper and lower limbs of the 

MOCσ, ρ is the in situ density and MOCσ is the intensity of the Meridional Overturning 

Circulation computed in density coordinates (Mercier et al., 2015). The time evolution of MOCσ 

and ΔCANT is shown in Figure 40a. 

It is expected the estimator TCANT
0  to be a good approximation of the TCANT

diap
 because it takes 

into account the diapycnal circulation via the MOCσ intensity and not the isopycnal component 

of the circulation. Furthermore, by using the difference in the C
ANT

 concentration between both 

limbs of the MOCσ, the C
ANT

 increase in the waters flowing through the A25 section is taken into 

account, which is expected to have an important role in the variability of the TCANT
diap

. As a matter 

of fact, the estimator TCANT
0  is quite similar to the TCANT

diap
 (blue and cyan lines in Figure 40b) and 

they are well correlated (r
2
 = 0.82, p-value = 0.04). 
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Figure 40.- (A) Time evolution of the intensity of the Meridional Overturning Circulation computed in density 

coordinates (MOCσ, in green; in Sv) and the difference in anthropogenic CO
2
 (Cant) between the upper and lower 

limbs of the MOCσ (delta Cant, in pink; in µmol·kg
–1

). (B) Time evolution of the transport of Cant (T
cant

; black 

line), the diapycnal transport of Cant (𝐓𝐂𝐀𝐍𝐓
𝐝𝐢𝐚𝐩

; blue line) and the T
cant

 computed by the estimator (𝐓𝐂𝐀𝐍𝐓
𝟎 ; cyan line) 

(all in kmol·s
–1

). (C) Time evolution of anomalies of the T
cant

 (black line), the 𝐓𝐂𝐀𝐍𝐓
𝐝𝐢𝐚𝐩

 (blue line), the 𝐓𝐂𝐀𝐍𝐓
𝟎  (cyan line) 

in relation to the mean value computed over 1997–2010 (all in kmol·s
–1

). 

To compare their variability, the anomalies of the TCANT, the TCANT
diap

 and the TCANT
0  time 

series are plotted in Figure 40c. Although similar patterns between the TCANT and the TCANT
0  

anomalies can be distinguished by eye, their correlation (r
2
 = 0.75, p-value = 0.09) is not as good 

as between the TCANT
diap

 and the TCANT
0  since the estimator does not consider the isopycnal 

contribution. 

In conclusion, the TCANT cannot be totally inferred from the proposed estimator TCANT
0  

since the isopycnal component has a non-negligible contribution, but it is a good estimation of the 

TCANT
diap

. As the TCANT
diap

 mainly drives the variability of the TCANT across the A25 section, the 

proposed estimator TCANT
0  is, at least, a fairly good indicator of the variability of the TCANT across 

the section. Moreover, it will help to disentangle the relative contribution of the circulation and 

the C
ANT

 increase in the variability of the TCANT. 
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6.6.3.3.- The effect of the anthropogenic CO
2
 concentration changes on the 

variability of the 𝐓𝐂𝐀𝐍𝐓  

In the A25 section during the period 1997–2010, the section-average C
ANT

 concentration 

increased at a rate of 0.29 ± 0.21 μmol·kg
−1

·yr
−1

, which means an increase of 4 μmol·kg
−1

 between 

1997 and 2010. The C
ANT

 increase in the upper limb of the MOCσ, which imports C
ANT

 into the 

subpolar region, is larger than the increase in the lower limb of the MOCσ, which exports C
ANT

 

from the subpolar region: 0.63 ± 0.27 μmol·kg
−1

·yr
−1

 and 0.20 ± 0.25 μmol·kg
−1

·yr
−1

, respectively 

(Figure 41). 

 

Figure 41.- Time evolution of anthropogenic CO
2
 (Cant) concentrations (in µmol·kg

–1
): upper limb of the 

Meridional Overturning Circulation computed in density coordinates (MOCσ; black circles), section average value 

(grey circles), and lower limb of the MOCσ (triangles). 

In the previous section the estimator TCANT
0  was presented, which is a good indicator of the 

variability of the TCANT across the A25 section. Using this estimator, if a steady circulation 

hypothesis is considered (MOCσ constant, e.g., 16 Sv), the TCANT
0  increases at a rate of  

7.0 ± 1.6 kmol·s
−1

·yr
−1

. It means that the C
ANT

 increase in the ocean waters yields an increase in the 

northward TCANT across the A25 section. However, the overturning circulation has an important 

role in the variability of the TCANT, and it introduces a larger variability than the C
ANT

 increase at 

inter-annual timescale. This is why the “real” trend estimated for the TCANT for the period  

1997–2010 is positive but not statistically different from 0. 
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To assess the relative role of the C
ANT

 concentration and circulation in the TCANT and to 

compare it with the analysis of Pérez et al. (2013), the period between 1997 and 2006 is studied. 

During that period, the MOCσ intensity across the OVIDE section decreased (Mercier et al., 

2015) at a rate of 0.68 ± 0.65 Sv·yr
−1

. Simultaneously, the TCANT decreased at a rate of 9.3 ± 11.7 

kmol·s
−1

·yr
−1

, while the C
ANT

 concentration increased at a rate of 0.48 ± 0.56 μmol·kg
−1

·yr
−1

 and 

0.01 ± 0.42 μmol·kg
−1

·yr
−1

 in the upper and lower limbs of the MOCσ, respectively. All these 

trends are not statistically different from 0, likely due to the low number of data, only 4, but they 

give insights that the C
ANT

 concentration increased in the upper limb of the MOCσ; meanwhile it 

hardly changed in the lower limb. Taking into account these results it can be concluded that, in 

the period between 1997 and 2006, the MOCσ decrease prevailed on the variability of the TCANT. 

Indeed, using the proposed estimator TCANT
0 , if a steady circulation was considered, the TCANT 

would increase at a rate of 7.8 ± 3.2 kmol·s
−1

·yr
−1

 during the period 1997–2006. However, if the 

C
ANT

 concentration is maintained constant between 1997 and 2006, the TCANT would decrease at a 

rate of 15.3 ± 14.6 kmol·s
−1

·yr
−1

, that is, the slow-down of the MOCσ would cause a decrease in the 

TCANT statistically different from 0. 

Over the whole studied period, 1997–2010, the trends in the TCANT and the TCANT
0  are not 

significant. In the hypothetical case of a steady circulation, the TCANT
0  increases at a rate of 7.0 ± 

1.6 kmol·s
−1

·yr
−1

 since the ΔCANT is continuously increasing. Conversely, if the ΔCANT remains 

constant, the variability of the TCANT
0  follows the variability of the MOCσ with no trend. 

All these results suggest that, at inter-annual to decadal timescales, the variability of the 

MOCσ mainly drives the variability of the TCANT across the OVIDE section. Nonetheless, the 

C
ANT

 increase also causes a long-term increase in the TCANT that, at the timescale analysed here, is 

blurred by the inter-annual variability caused by the variability of the MOCσ. 

6.7.-  Discussion and conclusions 

The continuous increase in CO
2
 concentration in the atmosphere due to human activities 

is softened by the oceanic CO
2
 uptake. The question is how long the ocean will act as a sink for 

this greenhouse gas. Therefore, it is really important to quantify and understand the mechanisms 

acting in its transport and storage in the oceans. It is well-known that the North Atlantic Ocean 

presents the highest storage rate of C
ANT

 of the global oceans, mainly in the SPNA (Sabine et al., 

2004). Recently, it has been demonstrated that the lateral advection provides the main supply of 

C
ANT

 to the SPNA (Pérez et al., 2013). In the last decade, the estimations of the TCANT by 

observational data and models have yielded quite different results: models tend to show lower 

values than data (Table 7). The present study have been focused in the physical aspect of the 

TCANT in order to understand the mechanisms driving the TCANT across the SPNA and to describe 

for the first time its inter-annual to decadal variability. 

In agreement with previous works (Álvarez et al., 2003; Pérez et al., 2013), a northward 

TCANT across the section was obtained. The mean value for the period 1997–2010 is 254 ± 29 

kmol·s
−1

; its standard deviation is 71 kmol·s
−1

. No significant long-term changes have been 

identified during this period, due to the clear decrease between 1997 and the mid-2000s (cyan 
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values in Figure 37) and the recover thereafter. The initial decrease was due to the slow-down of 

the MOCσ and the increase that follows was mainly due to the increase in the C
ANT

 concentration 

in the ocean waters. 

Splitting the TCANT into its different components, it has been observed that the TCANT
isop

 

causes a non-negligible southward transport (Figure 37), mainly localized in the Irminger Sea 

(Figure 38). It contrasts with the heat fluxes across the North Atlantic Ocean, for which the 

TCANT
isop

 has a minor contribution to the total heat flux (Ganachaud and Wunsch, 2003); across the 

A25 section specifically, the isopycnal heat flux accounts for less than 10% of the total heat flux 

(Mercier et al., 2015). The different behaviour between the TCANT and the heat fluxes across the 

A25 section is due to the differences in the horizontal gradient  of C
ANT

 and temperature: the C
ANT

 

markedly decreases eastwards due to the age of the water masses; meanwhile the temperature 

presents a subtle increase (Figure 36). As a result, high positive anomalies of C
ANT

 are found in the 

Irminger Sea, while the temperature anomalies are close to 0º C. Therefore, the isopycnal 

contribution is more important in the TCANT than in the heat flux. 

To go further in the analysis of the TCANT
isop

 in the Irminger Sea, it is found that the overflow 

waters (DSOW and ISOW) and the intermediate and surface waters are mainly responsible for the 

southward transport (Figure 38d). The fact that intermediate and surface waters of the Irminger 

Sea have a high contribution to the TCANT
isop

 is because their high C
ANT

 concentration as compared to 

the waters with the same density range in the WEB and the IAP as for example Mediterranean 

Water (Figure 36). The high C
ANT

 content in the intermediate waters of the Irminger Sea is likely 

due to the recent ventilation of these waters. Indeed, Våge et al. (2009) observed a 700 m-deep 

mixed layer in winter 2007–2008. In the case of the overflow waters, the relatively high C
ANT

 

concentration is mainly due to the entrainment of C
ANT

-rich thermocline water at the sills during 

the process of overflow (Sarafanov et al., 2010). 

Once the water masses mainly responsible for the TCANT
isop

 have been identified, the question 

is: why does LSW, both upper and classical, yield a minor contribution to the TCANT
isop

 (Figure 38)? 

The answer is likely related to changes in the formation rate of these water masses and their 

spreading all along the A25 section. On the one hand, during the first half of the 1990s, cLSW 

was abundantly formed in the Labrador Sea (Rhein et al., 2002), so it was enriched in C
ANT

. In the 

mid-1990s there was a shut-down in the formation of this water mass that was compensated by an 

enhanced production of uLSW in the Labrador Sea and possibly in the Irminger Sea (Kieke et al., 

2007; Yashayaev et al., 2007b; Rhein et al., 2011). Thenceforth, cLSW was exported to the 

Irminger Sea and northeast Atlantic, taking between 6 months (Sy et al., 1997) to 2 years 

(Straneo et al., 2003) to reach the Irminger Sea and 3–6 years to get to the Mid-Atlantic Ridge 

(Kieke et al., 2009). Because of this spreading, cLSW was homogenized all along the A25 section, 

resulting in small C
ANT

 anomalies. On the other hand, the evolution of the TCANT
isop

 in the uLSW 

density range during the period 1997–2010 displays more temporal variability (not shown), 

probably due to the intermittent ventilation of this water mass over the 2000s and to the 

advection timescales that are comparable to those of cLSW. However, the average of the TCANT
isop

 in 

the density range of uLSW for the 1997–2010 period is close to zero; this is why a minor 
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contribution of uLSW to the TCANT
isop

 is identified, and a more detailed analysis of its variability is 

out of the scope of this study. 

The decomposition of the TCANT also shows that the overturning component (TCANT
diap

) is 

the major contribution to the TCANT, whose mean value over the period 1997–2010 is  

400 ± 29 kmol·s
−1

. Moreover, as in the case of the heat flux, it drives the variability of the TCANT. 

The TCANT
diap

 is related to the MOCσ that transports warm and C
ANT

-enriched waters northwards in 

its upper limb and denser, colder and poorer in C
ANT

 waters southwards in its lower limb. The 

estimator TCANT
0  is a schematic representation of this mechanism and indeed a good correlation 

between the TCANT
0  and the TCANT

diap
 is found. It also offers a simple proxy for testing numerical 

models. However, the TCANT
0  does not represent all the processes involved in the TCANT in the 

SPNA. 

It is well known that the MOCσ presents a high seasonal variability. For example, Mercier 

et al. (2015) showed that it has a seasonal amplitude of 4.3 Sv. The data analysed in the present 

study were measured during summer months. Mercier et al. (2015) show that the MOCσ at the 

A25 section presents its yearly minimum in summer, but their results also show that the  

inter-annual variability of the MOCσ can be reliably represented by summer data. Therefore, it is 

expected that the inter-annual variability of the TCANT will be well captured in the present study, 

although the magnitudes here given are likely to be weaker than the annual means. 

The TCANT
0  was used to get an order of magnitude of the relative importance of the C

ANT
 

content and the circulation on the TCANT across the SPNA at long timescales. On the one hand, 

the C
ANT

 concentration is increasing faster in the upper limb of the MOCσ than in the lower limb, 

showing trends of 0.63 ± 0.27 μmol·kg
−1

·yr
−1

 and 0.20 ± 0.25 μmol·kg
−1

·yr
−1

, respectively, during the 

period 1997–2010. It means that, in the SPNA, there is more C
ANT

 being imported in the upper 

limb than being exported in the lower limb, resulting in an accumulation of C
ANT

, in agreement 

with Sabine et al. (2004) and Pérez et al. (2010). The minor increase in the C
ANT

 concentration in 

the lower limb is due to the dilution of the convected and overflow waters rich in C
ANT

 with the 

deep waters poor in C
ANT

. It is expected that the C
ANT

 concentration in both limbs will be linked to 

the variability of the MOCσ, although at which timescale remains unknown. Indeed, it depends 

on the advection of waters from the subtropical areas in the upper limb, and on the processes of 

deep and intermediate water formation in the lower limb. However, it is striking that the ΔCANT 

keeps increasing independently of the variability of the MOCσ at a mean rate of 0.43 ± 0.10 

μmol·kg
−1

·yr
−1

 (pink line in Figure 40a). This increasing rate is going to cause an augmentation in 

the TCANT across the A25 section, and consequently, an increase in the storage rate in the SPNA. 

On the other hand, models have predicted a slow-down of 25% of the MOCσ at the end of the 

present century (IPCC, 2007) independently of the inter-annual to decadal variability observed by 

Mercier et al. (2015). Taking into account the predicted slow-down of the MOCσ and the 

positive trend of the ΔCANT computed in this work, the TCANT
0  would increase at a rate of  

4.3 ± 0.1 kmol·s
−1

·yr
−1

 during the 21st century. It means an increase of 430 kmol·s
−1

 of the TCANT in 

100 years, despite the predicted slow-down of the MOCσ. To conclude, the faster increase in C
ANT

 

in the upper limb than in the lower limb will cause an augmentation of the northward TCANT 

across the SPNA at long timescales. Nevertheless, at the timescale analysed in this work  



 CHAPTER 6.- VARIABILITY OF THE TRANSPORT OF ANTHROPOGENIC CO
2
 

135 

(1997–2010), the inter-annual variability of the MOCσ blurs the long-term increase in the 

TCANT  caused by the ΔCANT increase. Furthermore, this result is quite speculative since (i) it is 

supposed that the trend in the ΔCANT will remain constant and (ii) the model-based decrease in 

the MOCσ is taken as true. However, it gives an interesting order of magnitude. 

It is suspected that the long-term increase in the TCANT would cause an increase in the 

storage rate of C
ANT

 in the SPNA. Pérez et al. (2013) observed a decrease in the storage rate of 

C
ANT

 in the SPNA between 1997 (high MOCσ) and 2002–2006 (low MOCσ). They reported a 

change in the storage rate from 0.083 ± 0.008 GtC·yr
−1

 to 0.026 ± 0.004 GtC·yr
−1

 between both 

periods. However, because of the short time span, the ΔCANT increase was too small to compensate 

for the large intra-decadal decrease in the MOCσ that caused the decrease in the TCANT across the 

A25 section and consequently the decrease in the C
ANT

 storage rate reported by Pérez et al. (2013). 

Calculating the storage rate for 1997–2010 is the subject of a future work. 

To sum up, although the TCANT
isop

 has a considerable contribution to the TCANT across the 

A25 section, the major contribution to the TCANT is the TCANT
diap

, which is also the main driver of its 

variability. In both components of the transport (TCANT
isop

 and TCANT
diap

), the C
ANT

 concentration plays 

an important role: the horizontal gradient of C
ANT

 across the section is responsible for the 

southward TCANT by the TCANT
isop

, while the C
ANT

-laden waters flowing northwards are responsible for 

the large positive values of the TCANT
diap

. Finally, it has been shown that the variability of the MOCσ 

dominates the variability of the TCANT at inter-annual to decadal timescales, but that the C
ANT

 

increase seems to control the TCANT change at longer timescales. Therefore, in spite of the 

predicted slow-down of the MOCσ by 2100, an increase in the storage rate of C
ANT

 in the SPNA 

would be expected.  
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Capítulo 7.- Resumen y conclusiones 

Los resultados de la presente tesis doctoral se organizaron en tres grandes bloques. En el 

capítulo 4 se empleó un análisis óptimo multiparamétrico para evaluar la estructura de las masas de 

agua del Giro Subpolar del Atlántico Norte durante el período 2002–2010, así como su variación 

temporal entre 1997 y 2010. Mediante la combinación de esta estructura de masas de agua con los 

campos de velocidad se evaluaron los transportes de volumen de las principales masas de agua y su 

contribución a la circulación termohalina del Atlántico (AMOC). Por último se evaluaron las 

transformaciones que sufren las masas de agua dentro del Giro Subpolar del Atlántico Norte. En el 

capítulo 5 se evaluaron los cambios de pH y de saturación de CaCO
3
 resultado del incremento de 

la concentración de CO
2
 antropogénico (C

ANT
) en las principales masas de agua de las cuencas del 

Irminger e Islandia durante el periodo 1981–2014. Se investigaron los componentes antropogénico 

y no antropogénico de los cambios de pH para evaluar su importancia relativa en los cambios de 

pH observados. En base a las tendencias observadas de pH y saturación de CaCO
3
 durante el 

periodo de estudio se infirieron los cambios esperados de estas variables para el final del siglo. Por 

último se evaluaron los cambios en la alcalinidad total de las aguas de las cuencas del Irminger e 

Islandia. En el capítulo 6 se investigó la variabilidad interanual a decenal en el transporte del C
ANT

 

a través del Atlántico Norte Subpolar entre 1997 y 2010. Los mecanismos que controlan la 

variabilidad del transporte de C
ANT

 (TCANT) se evaluaron mediante la partición del TCANT en sus 

componentes diapícnico e isopícnico. En base a este análisis, se propuso un estimador simplificado 

para la variabilidad del TCANT, basado en la intensidad de la AMOC y en la diferencia de C
ANT

 

entre las ramas superior e inferior de la AMOC. 

A continuación se resumen los principales resultados obtenidos en cada uno de los 

capítulos, que constituyen las conclusiones generales referentes a los tres bloques temáticos que 

fueron objeto de esta tesis doctoral. 

7.1.-  Capítulo 4: Estructura, transportes y transformaciones de 

las masas de agua del Giro Subpolar del Atlántico 

En este capítulo se muestra una aplicación del análisis óptimo multiparamétrico (OMP) 

como base para identificar las variaciones temporales y las transformaciones de las masas de agua a 

lo largo de las secciones hidrográficas WOCE A25 (4x y OVIDE, en el límite sur del Giro 

Subpolar del Atlántico Norte). La selección de masas de agua y figuras de mezcla fue la apropiada 

ya que el OMP fue capaz de reproducir las características fisicoquímicas de todas las muestras, tal 

como lo demuestran los bajos residuos del modelo. En la configuración del OMP, la transformación 

de las masas de agua debida a la interacción océano-atmósfera se tuvo en cuenta mediante la 

selección de diversas variedades de Agua Modal Subpolar (SPMW). Esta novedad produce 

distribuciones de masas de agua realistas, que confirman los conocimientos generales de la 

circulación del Atlántico Norte Subpolar. Concretamente, las distribuciones de masas de agua 

obtenidas evidencian la subducción del Agua Intermedia Subártica (SAIW) bajo la corriente del 

Atlántico Norte (NAC) y la intrusión del Agua Polar Intermedia (PIW) en el rango de densidad 

de la corriente profunda del margen occidental (DWBC). La contribución relativa de cada masa 
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de agua a los transportes a través de las secciones hidrográficas se calculó mediante la combinación 

de los resultados del análisis OMP con los campos de velocidad de las secciones. La evaluación del 

transporte de volumen por masa de agua basada en diluciones de una masa de agua “pura” 

(resultado de un análisis OMP) es particularmente útil para zonas con distribuciones de corrientes 

complejas e importantes procesos de transformación de masas de agua, donde esta metodología 

combinada puede proporcionar información sobre las características de la circulación, mejorándose 

así la comprensión de la oceanografía regional. 

Las estimaciones de los transportes por masa de agua son consistentes con los resultados de 

anteriores estudios y con las principales características de la circulación del Atlántico Norte. 

Teniendo en cuenta la isopicna que separa las ramas superior e inferior de la AMOC (σ
1
 = 32,15; 

donde σ
1
 es la densidad potencial referenciada a 1000 metros), cada masa de agua se asoció con la 

correspondiente rama de la AMOC. En este estudio, la rama superior de la AMOC está compuesta 

por Aguas Centrales, SPMW de Islandia (IcSPMW), SAIW y Agua Mediterránea; mientras que la 

rama inferior de la AMOC está constituida por SPMW del Irminger (IrSPMW), PIW, Agua del 

Mar de Labrador (LSW), Agua de desbordamiento de Islandia–Escocia (ISOW), Agua de 

desbordamiento de Dinamarca y Agua Profunda del Atlántico Noreste. Este análisis permite 

asociar la reducción de la magnitud de la rama superior de la AMOC entre 1997 y la década de 

2000 (de 23,3 ± 1,2 Sv a 16,5 ± 1,5 Sv; donde 1 Sv = 10
6
 m

3
·s

–1
) con la reducción en el transporte 

hacia el norte de las Aguas Centrales. Esta reducción del flujo hacia el norte de la rama superior de 

la AMOC está parcialmente compensada por la reducción del flujo hacia el sur de la rama inferior, 

asociada con la disminución del transporte de IrSPMW y PIW. 

La evaluación del modelo de cajas permitió comprender la transformación de las Aguas 

Centrales. En la cuenca Este del Atlántico Norte (ENA) 2,7 Sv de Aguas Centrales se 

transforman en IcSPMW. Este flujo recircula alrededor del Reykjanes Ridge y se une a la IcSPMW 

advectada desde el sur (posiblemente a través de una rama de la NAC como sugieren Pollard et al. 

(2004)), lo que da lugar a un transporte de 5,3 Sv hacia el norte de IcSPMW en la cuenca del 

Irminger. Estos 5,3 Sv se combinan con 1,1 Sv de Aguas Centrales y 2,2 Sv de SAIW (que cruzan 

sobre el Reykjanes Ridge) para dar lugar a 8,8 Sv de IrSPMW como resultado de la interacción 

océano-atmósfera. 

La principal masa de agua de las secciones hidrográficas es LSW (35,0 ± 0,6% del volumen 

de la sección). La variabilidad interanual observada en las capas superiores de la cuenca del 

Irminger refleja la interacción entre LSW y SPMW, cuya mezcla emula la presencia de la variedad 

superior de LSW. En las capas inferiores a ambos lados del Reykjanes Ridge se observa la 

interacción entre LSW e ISOW, con un incremento de la presencia de ISOW con el tiempo como 

respuesta a la progresiva dilución de LSW. Los resultados del OMP también revelan que LSW se 

mezcla vigorosamente con las aguas que la rodean principalmente en dos regiones: (i) a lo largo del 

Reykjanes Ridge, y (ii) en la DWBC (σ
0
 > 27,80), donde la contribución de LSW es significativa. 

El transporte neto de LSW ligeramente negativo a través de la sección OVIDE corrobora la 

formación moderada de LSW en la cuenca del Irminger. 

Las aguas de la cuenca ENA cruzan sobre el Reykjanes Ridge y entran en la cuenca del 

Irminger, donde se transforman y/o densifican, pasando de la zona de aguas superiores e 

intermedias a la zona de aguas profundas. El análisis OMP permite descomponer el flujo de 9,4 Sv 
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a través del Reykjanes Ridge en Aguas Centrales, SAIW, LSW e ISOW; siendo SAIW el principal 

contribuyente. 

Las distribuciones y transportes de ISOW permiten inferir que a lo largo de su viaje entre 

el umbral de Islandia–Escocia y la Zona de Fractura de Charlie-Gibbs (CGFZ), parte de ella 

asciende y fluye a través de pequeñas fracturas en el Reykjanes Ridge situadas entre las secciones 

OVIDE y 4x. Una vez que ISOW llega a la CGFZ, una pequeña parte sigue hacia la cuenca 

occidental de Europa mientras que la corriente principal atraviesa la fractura llegando a la cuenca 

del Irminger, donde fluirá hacia el norte y se unirá a las fracciones que anteriormente cruzaron el 

Reykjanes Ridge. 

La extensión de esta metodología a amplias zonas del océano podría proporcionar una base 

útil para otros estudios de este tipo o para otros más ambiciosos relacionados con los componentes 

de los ciclos biogeoquímicos del océano. 

7.2.-  Capítulo 5: Tendencias observadas en los factores de estrés 

del sistema del CO
2
 en las cuencas del Irminger e Islandia 

El efecto último de la absorción de C
ANT

 por el océano es la disminución del pH y 

concentración de iones carbonato del agua de mar, reduciendo así su capacidad tampón. En este 

capítulo se evaluó la progresiva acidificación de las masas aguas del Atlántico Norte en base a 

medidas directas del sistema del CO
2
 oceánico que abarcan las últimas tres décadas (1981–2014). 

Para averiguar las causas de los cambios de pH se evaluaron sus componentes antropogénico 

(derivado de la captación de CO
2
 antropogénico; ΔpHCANT) y no antropogénico (no directamente 

relacionado con la captación de CO
2
 antropogénico; ΔpHVar). Las crecientes concentraciones de 

CO
2
 atmosférico han disminuido significativamente el pH de toda la columna de agua de las 

cuencas del Irminger e Islandia, observándose las mayores tasas de descenso de pH en las aguas 

superficiales e intermedias. El aumento del contenido en C
ANT

 de la capa superficial es consecuente 

con el aumento de la concentración de CO
2
 en la atmósfera, pero el descenso de pH no sigue este 

patrón. La acidificación de las aguas superficiales es amortiguada por la llegada de aguas 

subtropicales más salinas y con un mayor contenido en alcalinidad. Las aguas intermedias 

presentan unas tasas de acidificación similares a las encontradas en las aguas superficiales, que son 

causadas por una combinación de los efectos de los componentes antropogénico y no 

antropogénico. En la cuenca del Irminger, la tasa de acidificación esperada en la capa ocupada por 

la variedad “clásica” de LSW debida a la absorción de C
ANT

 se ve reforzada por el envejecimiento 

de esta masa de agua desde el final de la década de 1990. Las aguas profundas de la cuenca del 

Irminger presentan una tasa de acidificación significativa con un marcado carácter antropogénico. 

La calcificación y/o disolución de los organismos planctónicos y bentónicos formadores de 

estructuras calcáreas normalmente depende de la concentración de iones carbonato, a menudo 

expresada por el grado de saturación de los biominerales aragonito y calcita. La captación oceánica 

de C
ANT

 durante los últimos 33 años ha provocado que los horizontes de saturación de aragonito 

asciendan a una velocidad de ~10 m·año
–1
 en las cuencas del Irminger e Islandia, tasa que es más 

de dos veces mayor que las anteriormente observadas en la cuenca de Islandia. 
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En base a las tasas de cambio de pH y Ω
Arag

 observadas durante el periodo 1981–2014, se 

infirieron los cambios esperados de estas variables para el final del siglo. En base a estas 

estimaciones, la capa superficial experimentará una caída de pH de ~0,31 unidades con respecto a 

la era pre-industrial en el momento en que la concentración de CO
2
 atmosférico llegue a los 800 

ppm (aproximadamente el doble de la concentración actual). La capa profunda de la cuenca del 

Irminger experimentará una disminución de pH similar a la de las aguas superficiales  

(~0,27 unidades de pH). Las proyecciones también muestran que toda la columna de agua de 

ambas cuencas estará subsaturada en aragonito en el momento en que el CO
2
 atmosférico alcance 

los 800 ppm (~2065). Sin embargo, las aguas intermedias alcanzarán los niveles subsaturación en 

aragonito más rápidamente, concretamente cuando la concentración de CO
2
 atmosférico alcance 

los ~500–560 ppm (~2035–2045). 

Los datos aquí recopilados también muestran tendencias significativas de incremento de la 

alcalinidad a largo plazo en las aguas profundas de la cuenca del Irminger, que pueden estar 

relacionadas con el aumento de la descarga de los ríos árticos. 

La acidificación del océano se ha convertido en un tema clave debido a las posibles 

retroalimentaciones climáticas que puede provocar a nivel global. Los estudios de las variables del 

sistema del CO
2
 de oceánico en toda la columna de agua y a lo largo de las cuencas oceánicas 

(como el realizado en esta tesis) son necesarios para poder evaluar las consecuencias de los cambios 

futuros. 

7.3.-  Capítulo 6: Variabilidad del transporte de CO
2
 

antropogénico en las secciones OVIDE entre Groenlandia 

y Portugal: mecanismos controladores 

El continuo aumento de la concentración de CO
2
 en la atmósfera debido a las actividades 

humanas es suavizado por la absorción de CO
2
 por parte del océano. La pregunta es ¿cuánto tiempo 

el océano va a actuar como sumidero de este gas de efecto invernadero? Por lo tanto, es realmente 

importante cuantificar y comprender los mecanismos que actúan en el transporte y 

almacenamiento de CO
2
 en los océanos. Este capítulo se ha centrado en estudiar el aspecto físico 

del transporte de C
ANT

 (TCANT) con el fin de comprender los mecanismos que lo controlan en el 

Atlántico Norte Subpolar y describir por vez primera su variabilidad interanual a decenal. 

Se obtuvo un TCANT a través de la sección hacia el norte, con un valor promedio de  

254 ± 29 kmol·s
−1

 para el período 1997–2010, con una desviación estándar de 71 kmol·s
−1

. No se 

identificaron cambios significativos a largo plazo en este período debido a la transición entre una 

clara disminución del TCANT desde 1997 y mediados de la década de 2000 y su posterior 

recuperación. La disminución inicial se debe a la desaceleración de la AMOC y el posterior 

aumento se debe principalmente al aumento en la concentración C
ANT

. 

La división del TCANT en sus diferentes componentes permitió observar que el componente 

isopícnico (TCANT
isop

) da lugar a un importante TCANT hacia el sur, localizado principalmente en la 

cuenca del Irminger. Las aguas de desbordamiento (ISOW y DSOW) y las aguas intermedias y de 

superficie son las principales responsables de este transporte hacia el sur. El hecho de que las aguas 
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intermedias y de superficie de la cuenca del Irminger tengan una alta contribución al TCANT
isop

 se debe 

a su concentración de C
ANT

 relativamente alta en comparación con la de las aguas del mismo rango 

de densidad en la cuenta oeste europea. El alto contenido en C
ANT

 de las aguas intermedias de la 

cuenca del Irminger es probablemente debido a la reciente ventilación de estas aguas. En el caso de 

las aguas de desbordamiento, la concentración de C
ANT

 relativamente alta se debe principalmente a 

la entrada de aguas de la termoclina ricas en C
ANT

 durante el proceso de desbordamiento. 

La descomposición del TCANT en sus diferentes componentes también muestra que el 

componente de diapícnico (TCANT
diap

) es el principal contribuyente del TCANT, cuyo valor medio 

durante el período 1997–2010 es de 400 ± 29 kmol·s
−1

. Además el TCANT
diap

es el responsable de la 

variabilidad del TCANT. El TCANT
diap

 está relacionado con la AMOC, cuya rama superior transporta 

aguas cálidas y enriquecidas en C
ANT

 hacia el norte, mientras que su rama inferior transporta aguas 

más densas, frías y pobres en C
ANT

 hacia el sur. El estimador del TCANT aquí presentado (TCANT
0 ) es 

una representación esquemática de este mecanismo, lo que queda corroborado por la buena 

correlación entre el TCANT
0  y el TCANT

diap
. El TCANT

0  también sirve como una aproximación sencilla para 

probar los modelos numéricos. Sin embargo, el TCANT
0  no recoge todos los procesos que intervienen 

en el TCANT en el Atlántico Norte Subpolar. 

El TCANT
0  se utiliza para obtener la importancia relativa a largo plazo del contenido en C

ANT
 

y la circulación en el TCANT a través del Atlántico Norte Subpolar. Por un lado, la concentración 

de C
ANT

 está aumentando más rápidamente en la rama superior de la AMOC que en la rama 

inferior, con unas tendencias durante el período 1997–2010 de 0,63 ± 0,27 μmol·kg
−1

·año
−1

 y  

0,20 ± 0,25 μmol·kg
−1

·año
−1

, respectivamente. Esto significa que en el Atlántico Norte Subpolar 

hay más C
ANT

 siendo importado en la rama superior que siendo exportado en la rama inferior, lo 

que da lugar a una acumulación de C
ANT

. Se espera que la concentración C
ANT

 en ambas ramas se 

vincule a la variabilidad de la AMOC, aunque sigue sin conocerse a qué escala temporal ocurrirá. 

Sin embargo, la diferencia de C
ANT

 entre ambas ramas de la AMOC (ΔCANT) aumenta 

independientemente de la variabilidad de la AMOC, con una tasa media de  

0,43 ± 0,10 μmol·kg
−1

·año
−1

. Esta tasa de incremento va a causar un aumento en el TCANT a través 

de la sección OVIDE y, en consecuencia, un aumento en la tasa de almacenamiento de C
ANT

 en el 

Atlántico Norte Subpolar. Por otro lado, los modelos han pronosticado una desaceleración del 

25% de la AMOC a finales de siglo. Teniendo esto en cuenta y con la tendencia positiva de la 

ΔCANT calculada en este trabajo, el TCANT
0  aumentaría a un ritmo de 4,3 ± 0,1 kmol·s

−1
·año

−1
 

durante el siglo XXI. Esto implica un aumento del TCANT de 430 kmol·s
−1

 en 100 años, a pesar de la 

predicha desaceleración de la AMOC. Sin embargo, en la escala de tiempo analizada (1997–2010) 

la variabilidad interanual de la AMOC enmascara el aumento a largo plazo del TCANT causado por 

el aumento de la ΔCANT. Este resultado es bastante especulativo ya que (i) supone que la tendencia 

en la ΔCANT permanecerá constante y (ii) se asume como cierta la disminución de la AMOC 

predicha por los modelos. A pesar de esto, da una idea del orden de magnitud. 

En resumen, aunque el TCANT
isop

 tiene una contribución considerable al TCANT a través de la 

sección OVIDE, el mayor contribuyente es el TCANT
diap

, que es también el principal responsable de la 
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variabilidad del TCANT. La concentración de C
ANT

 juega un papel importante en ambos 

componentes del TCANT: el gradiente horizontal de C
ANT

 través de la sección es responsable del 

TCANT hacia el sur por el TCANT
isop

, mientras que las aguas cargadas de C
ANT

 que fluyen hacia el norte 

son las responsables del alto TCANT hacia el norte del TCANT
diap

. Finalmente, se ha demostrado que la 

variabilidad de la AMOC domina la variabilidad del TCANT a escalas de tiempo interanuales a 

decenales, pero que el aumento de C
ANT

 parece controlar los cambios en el TCANT a escalas de 

tiempo mayores. Por lo tanto, a pesar de la desaceleración de la AMOC predicha para el 2100, se 

espera un aumento en la tasa de almacenamiento de C
ANT

 en el Atlántico Norte Subpolar. 
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Appendix A.- Acronyms, abbreviations and symbols 

θ: potential temperature. 

Ω: saturation states for calcium carbonate. 

σ
x
: potential density referenced to “x” dbar. 

σ
MOC

:  potential density that constitutes the limit between the upper and lower limbs of the 

Meridional Overturning Circulation. 

 ρ: in situ density. 

υ: velocity orthogonal to the section. 

ΔCANT: difference between the mean value of anthropogenic carbon dioxide in the upper and 

lower limbs of the Meridional Overturning Circulation. 

ΔpHCANT: pH change related to the uptake of anthropogenic CO
2
. 

ΔpHVar: pH change not directly related to the uptake of anthropogenic CO
2
. 

A
T
: total alkalinity. 

AABW: Antarctic Bottom Water. 

ADCP: Acoustic Doppler Current Profiler. 

AIW: Arctic Intermediate Water. 

AMOC: Atlantic Meridional Overturning Circulation. 

AOU: Apparent Oxygen Utilization. 

B(OH)
4

–
: borate. 

BOCATS: Biennial Observation of Carbon, Acidification, Transport and Sedimentation in the 

North Atlantic. 

C
ANT

: anthropogenic carbon dioxide. 

C
T
: total dissolved inorganic carbon. 

CaCO
3
: calcium carbonate. 

CARINA: CARbon dioxide IN the Atlantic Ocean. 

CATARINA: CArbon Transport and Acidification Rates In the North Atlantic. 

CCHDO: CLIVAR & Carbon Hydrographic Data Office. 



  Appendix A.- Acronyms, abbreviations and symbols 

170 

CGFZ: Charlie–Gibbs Fracture Zone. 

CH
4
: methane. 

CLIVAR: Climate and Ocean: Variability, Predictability, and Change. 

CNRS: Centre National de la Recherche Scientifique. 

CO
2
: carbon dioxide. 

CO
3

2–
: carbonate ion. 

CRM: Certified Reference Material. 

CSIC: Consejo Superior de Investigaciones Científicas. 

CTD: Conductivity–Temperature–Depth. 

DSOW: Denmark Strait Overflow Water. 

DWBC: Deep Western Boundary Current. 

EGC: East Greenland Current. 

eMLR: extended Multiple Linear Regression. 

ENA: East North Atlantic (Basin). 

ENACW:  East North Atlantic Central Water, subpolar (ENACW
P
) and subtropical (ENACW

T
) 

varieties. 

ESM: Eriador Seamount. 

GEOVIDE:  An international GEOTRACES study along the OVIDE section in the North 

Atlantic and in the Labrador Sea. 

GHG: greenhouse gas. 

GLODAP: GLObal Data Analysis Project. 

GOSHIP: Global Ocean Ship-based Hydrographic Investigations Project. 

GSR: Greenland–Scotland Ridge. 

H
+
: hydrogen ions. 

HCO
3

–
: bicarbonate ion. 

H
2
CO

3
: carbonic acid. 

IAP: Iberian Abyssal Plain. 

IFREMER: Institut Français de Recherche pour l'Exploitation de la MER. 
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IMBER: Integrated Marine Biogeochemistry and Ecosystem Research. 

IOCCP: International Ocean Carbon Coordination Project. 

IRD: Institut de Recherche pour le Développement. 

ISOW: Iceland–Scotland Overflow Water. 

k
0
: solubility constant of carbon dioxide.  

k
1

*
: first equilibrium constant of dissociation of carbonic acid. 

k
2

*
: second equilibrium constant of dissociation of carbonic acid. 

k
sp
: solubility constant of calcium carbonate. 

LADCP: Lowered Acoustic Doppler Current Profilers. 

LDW: Lower Deep Water. 

LEMAR: Laboratoire des sciences de l’Environnement MARin . 

LSW: Labrador Sea Water, classical (cLSW) and upper (uLSW) varieties. 

MAR: Mid-Atlantic Ridge. 

MLR: Multiple Linear Regression. 

MOC: Meridional Overturning Circulation. 

MOCσ: Meridional Overturning Circulation computed in density coordinates. 

MW: Mediterranean Water. 

N
2
O: nitrous oxide. 

NAC: North Atlantic Current. 

NACW: North Atlantic Central Water. 

NADW: North Atlantic Deep Water. 

NAO: North Atlantic Oscillation. 

NASPG: North Atlantic Subpolar Gyre. 

NEADW: North East Atlantic Deep Water, upper (NEADW
U
) and lower (NEADW

L
) varieties. 

NO
3
: nitrate. 

O
2
: oxygen. 

O
3
: ozone. 
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OMP: Optimum MultiParameter (analysis), classical (cOMP) and extended (eOMP). 

OVIDE: Observatoire de la Variabilité Interannuelle et DÉcennale en Atlantique Nord. 

pCO
2
: partial pressure of CO

2
. 

PgC: Petagrams (10
15
 g) of carbon. 

PIW: Polar Intermediate Water. 

PNEDC: Programme National d’Etude de la Dynamique du Climat. 

PO
4
: phosphate. 

ppm: parts per million. 

r
2
: correlation coefficient. 

S: salinity. 

SADCP: Shipboard Acoustic Doppler Current Profilers. 

SAIW: Subarctic Intermediate Water. 

SF
6
: sulphur hexafluoride. 

SiO
2
: silicate. 

SOLAS: Surface Ocean Lower Atmosphere Study. 

SOMMA: Single-Operator Multiparameter Metabolic Analysers. 

SPMW: Subpolar Mode Water, in the Iceland (IcSPMW) and Irminger (IrSPMW) Basins. 

SPNA: Subpolar North Atlantic. 

STD: standard deviation. 

Sv: Sverdrup (1 Sv = 10
6
 m

3
·s

–1
). 

SWT: Source Water Type. 

TCANT: transport of anthropogenic carbon dioxide. 

TCANT
0 : estimator of the transport of anthropogenic carbon dioxide. 

TCANT
diap

: diapycnal transport of anthropogenic carbon dioxide. 

TCANT
isop

: isopycnal transport of anthropogenic carbon dioxide. 

TCANT
net : net transport of anthropogenic carbon dioxide. 

UBO: Université de Bretagne Occidentale. 
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V: transoceanic section velocity. 

WEC: Western Boundary Current. 

WEB: Western European Basin. 

WNACW: West North Atlantic Central Water. 

WOCE: World Ocean Circulation Experiment. 

Xi: fraction of a source water type in a water sample. 
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