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Abstract :   
 
Nylon is a very promising candidate to replace steel chain moorings for Marine Renewable Energies 
applications like Wave Energy Converters or Floating Wind Turbine in shallow-water. However, test data 
for nylon ropes in a wet environment at intermediate scales are lacking in the literature except in a recent 
study by Sørum et al 2022. This article proposes a new set of experimental data on nylon subropes with 
a detailed test procedure. This work focuses on the dynamic stiffness of nylon mooring line and its 
experimental evaluation at realistic orders of mean load, load variation and frequency. We also examine 
the accumulated strain after successive test procedures. The experimental campaign highlights the 
stiffness non-linearity with respect to both the mean tension and amplitude. A simple bi-linear model taken 
from the work of Huntley2016; Pham 2019 is considered here, and is shown to provide a good simulation 
of the experimental results. 
 
 

Highlights 

► An experimental campaign is performed to provide data on dynamic stiffness of nylon mooring rope for 
floating wind turbine. ► These data are lacking in the literature for realistic orders of mean tension, tension 
variation and frequency. ► Experimental data highlight the stiffness non-linearity with respect to both the 
mean tension and amplitude. ► A bi-linear model taken from the work of Huntley, 2016; Pham et al., 2019 
is found to predict dynamic stiffness well. 
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Figure 13: comparison of bilinear law with the data from 

 

Figure 14: comparison of bilinear law with the data from 

 



 






