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S1.1 Baseline theory for upscaling effects17

Building off of the theory developed in Meynard et al. (2019), we want to understand how probability18

of species occurrence changes as a function of how we aggregate sampling (and environmental covariate)19

data. Suppose that we have a set of sites, {i}, at which fieldwork is carried out to assess species presence-20

absence. We assume that species presence at a given site i is a binomial stochastic process with probability21
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of occurrence (i.e., presence), pi, being a function of one or more environmental covariates. Implicitly in this22

formulation we assume that site i being occupied has no impact on the occurrence in nearby site j. This23

means that individual sites are far enough apart (or big enough) that we are beyond the scale of nearest-24

neighbor colonization events so that occurrence at one site is independent of occurrence at all other sites25

(note: given this assumption, probability of occurrence can have spatial auto-correlation due to spatial auto-26

correlation in environmental covariates, it is just occurrence itself that must be a perfect stochastic process27

of the environmentally-determined probability of occurrence). Later we reflect on what would happen if28

there was correlation in occurrence between sites due to colonization events.29

Now suppose that we want to group presence-absence observations at several such sites, e.g., to match the30

spatial scales of environmental data. There are at least 3 approaches to doing this (also see Fig. 1 in the31

paper):32

1) One could randomly sample one of the sub-sites within an aggregate and declare the aggregate to be33

a presence if that randomly sampled site was a presence (Fig. 1a).34

• This is equivalent to what would happen if one had a fixed amount of sampling effort to determine35

if a species is present in a small subset of all possible sites. The set of presences and absences that36

one observes could be associated with (environmental) covariate information on different spatial37

scales, but increasing or decreasing this scale will not change one’s declaration of the corresponding38

site as a presence or an absence because there is essentially never more than one site sampled per39

aggregate.40

• An aggregate being considered a presence would then just mean that the species was present at the41

(smaller) sampled site. Nevertheless, one would model as if the species was present throughout42

the grid cell. If environmental covariates represent an average over the entire aggregate and43

environment is not constant throughout the aggregated sites, then differences between average44

environmental conditions and the specific conditions at the sampled site within an aggregate could45

produce variability or bias in our estimates of species environment-occurrence relationships.46

2) Another possibility is to declare an aggregate a presence if the species is present in any sub-site within47

the aggregate (Fig. 1b).48

• This is what would happen if one was aggregating species observations over space (or time), so49

that sampling effort increases proportional to the size of the aggregate.50

• This approach is exactly equivalent to declaring an absence if and only if the species is absent51

from all sub-sites within an aggregate.52
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3) A final possibility is to declare an aggregate as a presence if and only if all sites within the aggregate53

are occupied (Fig. 1c).54

• This unlikely choice is essentially the inverse of approach #2, and, therefore, it has the same55

theoretical behavior (but in an inverse sense) as approach #2. As such, we will present primarily56

approach #2 and only briefly mention approach #3.57

If there is very strong spatial autocorrelation among observations of occurrence due, e.g., to nearest-neighbor58

colonization and extinction processes, then species presence in any one site in an aggregate will guarantee59

presence in all sites of an aggregate. In this case, assessments of species presence based on a single site (i.e.,60

approach #1) are no different than assessments based on all sites in the aggregate and approach #2 reduces61

to approach #1. Therefore, approaches #1 and #2 essentially bound the possibilities of what will happen if62

local species nearest-neighbor colonization and extinction processes are important or negligible, respectively,63

on the scale of individual sites.64

For all three approaches described above, we would like to derive the probability of “occurrence” in an65

aggregate based on the probabilities of occurrence of the sites (or observations) that are inside the aggre-66

gate. Initially we will assume that environmental conditions are constant within each aggregate (or, in an67

approximate sense, that the scale of aggregation is considerably inferior to the spatial autocorrelation scales68

of environmental variability). For this case, one can develop a relatively simple set of analytic equations69

describing what will happen to probability of occurrence as a function of level of aggregation. Once we70

understand this theory, we will then turn our attention to how environmental variability within aggregates71

will impact bias and variability in estimated environment-occurrence relationships.72

Approach #1 is relatively simple to analyze, so we will develop it first before proceeding to the more complex73

Approach #2.74

S1.1.1 Approach #175

Approach #1 will achieve on an average an unbiased estimate of probability of occurrence within an aggre-76

gate. If single sites are randomly drawn from within an aggregate many times, the average percent occurrence77

of the sites drawn (i.e., the average of the zeros representing absences and ones representing presences) will78

just reflect the percentage of presences within the aggregate. As the percentage of presences within an79

aggregate is simply a reflection of the mean (environmentally-determined) probability of occurrence of all80

sites within the aggregate, on average over many such upscalings the perceived probability of occurrence will81

3



simply be the mean of the probabilities of occurrence of the sites that compose the aggregate. If we assume82

that environmental conditions are the same for all sites within the aggregate, then probability of occurrence83

will be the same for any site within the aggregate and the probability of occurrence of the aggregate based84

on approach #1 will simply be the probability of occurrence for any individual site within the aggregate. As85

such, the environment-occurrence relationship will be unchanged by the aggregation process.86

However, the observed relationship between average environmental conditions over the aggregate and av-87

erage probability of occurrence over the aggregate may differ from the underlying (site-level) environment-88

occurrence relationship if environment varies within an aggregate. Differences will potentially be important if89

the environment-occurrence relationship is a non-linear function of environment over the range of conditions90

within an aggregate. This possibility will be considered in more detail later on in the document.91

One might think that upscaling would also increase the variance (i.e., RMS difference) between the observed92

aggregate presence-absence map and the aggregated probability of occurrence because randomly sampling93

a single cell may in some cases very poorly reflect the average probability of occurrence (e.g., by randomly94

selecting the one cell in an aggregate that is actually occupied), but this will not on average be the case as95

every site is an equally valid potential presence and the probability of occurrence of that site contributes96

equally to the average probability of occurrence over the aggregate. An increase in discrepancy between97

the presence-absence map and predicted probability of occurrence would be entirely due in this case to the98

reduced number of “sites” after the aggregation process.99

S1.1.2 Approach #2100

For approach #2, the upscaled probability of occurrence in the aggregate is the probability that at least one101

of the sampled sites within the aggregate is a presence. This is the same as one minus the probability that102

none of the sites in an aggregate are occupied. As the probability that none of the sites in an aggregate is103

occupied is the probability that site 1 is an absence AND site 2 is an absence AND site 3 is an absence. . . ,104

this can be calculated as the product of the probabilities of absence in each site:105

p̃ = 1 −
ν∏

i=1
(1 − pi) (1)

where ν is the number of sites in the aggregate. Note that this reduces to p̃ = p for the case ν = 1, as one106

would expect.107

If environment is constant over all sites within an aggregate (i.e., pi = p), then the aggregate probability of108
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occurrence, p̃, becomes:109

p̃ = 1 − (1 − p)ν (2)

Note that this equation can be inverted to give the probability of occurrence in a single site as a function of110

the probability of occurrence of the aggregate:111

p = 1 − (1 − p̃)1/ν (3)

S1.1.2.1 Case of a logistic probability of occurrence112

One special case of the logic above for constant environment within aggregates for which a number of113

intuitive analytic results can be obtained is when probability of occurrence is a logistic function of a single114

environmental variable, x:115

p(x) = 1
1 + e(x−β)/α

(4)

This formulation is reasonably representative of any one-sided environmental gradient in probability of116

occurrence. If α > 0, then probability of occurrence will approach one for x << 0 and it will approach zero117

for x >> 0. The inflection point of the logistic curve occurs when x = β and p = 1
2 . At this inflection point,118

the slope of the environment-occurrence relationship is − 1
4α .119

We would like to understand the behavior of this type of environment-occurrence relationship as we aggre-120

gate probability of occurrence over multiple sites following approach #2. In particular, we would like to121

understand at least three things:122

1) How does the environmental point at which p̃ = 1
2 change as a function of the level of aggregation?123

2) How does the inflection point change as a function of level of aggregation?124

3) How does the steepness at the inflection point change as a function of level of aggregation? Does the125

environment-occurrence relationship become more threshold-like as level of aggregation is increased?126

In order to develop analytic relationships that answer these questions, it is useful to first note that the logistic127

function can be inverted to get the value of the environment x corresponding to a probability of occurrence128

p:129
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x = β + α [log(1 − p) − log(p)] (5)

This, in combination with Eq. 3 can be used to get the environmental values corresponding to a value of130

the theoretical upscaled probability of occurrence:131

x = β + α

[
1
ν

log(1 − p̃) − log
(

1 − (1 − p̃)1/ν
)]

(6)

This can also be written:132

x = β − α log
(

(1 − p̃)−1/ν − 1
)

This equation can be useful to look at what environmental conditions produce a given value of aggregated133

probability of occurrence as a function of ν. In particular, we can look at what value of environment produces134

p̃ = 1
2 . Substituting this into Eq. 6, we have:135

xν,0.5 = β − α log
(

21/ν − 1
)

(7)

First, note that as 1 ≥ 21/(ν−1) − 1 > 21/(ν) − 1 > · · · > 0 for all ν > 1, we have that xν,0.5 > xν−1,0.5 ≥ β,136

so the environmental value at which probability of occurrence is 50% moves continuously to the right as the137

level of aggregation (i.e., ν) increases. For large ν, we can use the exponential expansion to estimate this138

point:139

xν,0.5 ≈ β − α log
(

1 + 1
ν

log 2 − 1
)

= β + α log
(

ν

log 2

)
So the position of this point moves rightward approximately at the rate of α log ν.140

Next, to examine the inflection point and the steepness at the inflection point, we need to look at the141

derivatives of p̃(x). The inflection of this function is defined as the point at which the second derivative with142

respect to x is zero. We begin with derivatives of the unaggregated logistic function:143

dp

dx
= −1

α
(
1 + e(x−β)/α

)2 e(x−β)/α = −p2

α
e(x−β)/α = − 1

α
p(1 − p) (8)

and144
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d2p

dx2 = − 1
α

[
(1 − p) dp

dx
− p

dp

dx

]
= 1

α2 p(1 − p)(1 − 2p) (9)

From this final equation, it is easy to see that the inflection point of the logistic occurs when p = 1
2 , which145

occurs when x = β.146

We can also look at the derivatives of p̃ to identify it’s inflection points:147

dp̃

dx
= ν(1 − p)ν−1 dp

dx

For a logistic probability of occurrence, this gives:148

dp̃

dx
= − ν

α
p(1 − p)ν (10)

The second derivative of p̃ is:149

d2p̃

dx2 = ν(1 − p)ν−1 d2p

dx2 − ν(ν − 1)(1 − p)ν−2
(

dp

dx

)2

We can substitute the derivatives of the logistic (Eqs. 8 & 9) into this formula to get a precise location for150

the inflection point for this specific case:151

d2p̃

dx2 = ν

α2 p(1 − p)ν(1 − 2p) − ν

α2 (ν − 1)p2(1 − p)ν

d2p̃

dx2 = ν

α2 p(1 − p)ν [1 − 2p − (ν − 1)p] = ν

α2 p(1 − p)ν [1 − (ν + 1)p]

From this we see that the inflection point given by d2p̃
dx2 = 0 occurs when:152

pν,infl = 1
ν + 1 (11)

Note that this is the probability of occurrence of the original, unaggregated logistic function. The probability153

of occurrence in the aggregated environment-occurrence relationship can be derived from this using Eq. 2:154
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p̃ν,infl = 1 −
(

1 − 1
ν + 1

)ν

= 1 −
(

ν

ν + 1

)ν

= 1 − 1(
1 + 1

ν

)ν (12)

Using the well-known limit equation:155

lim
ν→∞

(
1 + 1

ν

)ν

= e (13)

we find that for large ν, Eq. 12 approaches:156

p̃ν,infl ≈ 1 − 1
e

≈ 0.632 (14)

Therefore, the probability of occurrence at which the inflection point occurs asymptotes to 0.632.157

This gives the location of the inflection point as a function of the original, unaggregated logistic probability of158

occurrence. Substituting this into Eq. 5 gives the value of the environmental variable at which the inflection159

occurs:160

xν,infl = β + α

[
log

(
ν

ν + 1

)
− log

(
1

ν + 1

)]
= β + α log(ν) (15)

Eq. 15 indicates that the position of the inflection point moves rightward at precisely the rate α log(ν). For161

large ν, this is approximately the same rate at which the point of p̃ = 1
2 (Eq. 7) moves to the right, so these162

two remain at an approximately fixed distance from each other in environmental variable space.163

One can also evaluate the steepness at the inflection point using Eq. 10:164

dp̃

dx

∣∣∣∣
xν,infl

= − ν

α

1
ν + 1

(
ν

ν + 1

)ν

= − 1
α

(
ν

ν + 1

)ν+1
(16)

Again using Eq. 13, we find that for large ν, Eq. 16 approaches:165

dp̃

dx

∣∣∣∣
xν,infl

≈ − 1
eα

(17)

Therefore, the steepness of the aggregate environment-occurrence relationship does not increase indefinitely,166

but rather asymptotes toward 4
e ≈ 1.472 times the steepness of the original, unaggregated logistic species-167

environment relationship.168
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Eqs. 7, 11, 15, 12, 16 and 17 form the core theoretical results of this analysis regarding the effects of ag-169

gregating probabilities of occurrence for sets of sites with similar environmental conditions. They indicate170

that aggregation moves the center of the transition zone of the probability of occurrence distribution to-171

wards more and more marginal habitat areas. This process continues indefinitely as the log of the level of172

aggregation (in environmental variable space; in real space, movement of the “presence” frontier will depend173

on the relationship between physical space and environmental conditions; Fig. 2). The steepness of the174

transition does not, however, increase indefinitely towards a threshold species-environment relationship, but175

rather asymptotes towards a fixed value no matter what the level of aggregation.176

S1.1.2.2 Impact of aggregation on model performance statistics177

One particularly important question regarding the impact of spatial aggregation on SDMs is how indicators178

of model performance (e.g., AUC, TSS, proportion of correctly classified data, sensitivity and specificity)179

will vary as a function of spatial scale, with it generally being assumed that higher resolution models will180

have better performance (Mertes & Jetz 2018). When aggregation is carried out following approach #2,181

whether or not model performance indicators will increase or decrease as a function of the spatial scale of182

aggregation depends on a number of factors. One is the particular modeling approach used. For example,183

if one uses logistic regression, then this will fit less well the aggregated data than the unaggregated data as184

the aggregated data no longer has a true logistic environment-occurrence relationship. However, as we will185

see when we examine below numerically the theory developed above, divergence from a logistic relationship186

is generally relatively minor. Furthermore, true environment-occurrence relationships in nature will never187

be exactly logistic regardless of spatial scale, and this is issue is easily addressed by using a more flexible,188

non-linear modeling approach, such as general additive models (GAMs) and random forests.189

Likely a more important effect is the shape of the environment-occurrence relationship itself. Model perfor-190

mance is essentially determined by areas for which environmental conditions lead to probabilities of occur-191

rence that are far from zero or one. In all other areas, models will have little problem correctly determining192

occurrence as the species will be (almost) always present or always absent. As aggregation using approach193

#2 increases the slope of the environment-occurrence relationship, this will have a tendency to reduce the194

area over which probabilities of occurrence are intermediate, thereby increasing model performance as level195

of aggregation is increased. However, our analysis shows that the slope (in environmental space) does not196

increase indefinitely, but rather asymptotes towards a maximum value that is not strongly different from the197

initial slope. As such, the effect of increased aggregation may be relatively minor.198

Perhaps the most important impact of aggregation on model performance indicators is via the range of199
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environmental conditions for which probabilities of occurrence are intermediate. As aggregation is increased,200

the environmental conditions over which probability of occurrence is rapidly varying will shift (to the right in201

our logistic formulation provided that α > 0). Depending on how prevalent these environmental conditions202

are over space, this could lead to significant changes in model performance. For example, if the range203

of environmental conditions for which the unaggregated data has intermediate occurrence are far more204

prevalent in space than the range of environmental conditions for which the aggregated data has intermediate205

occurrence then model performance will likely increase as data are aggregated. On the other hand, if the206

reverse is true, model performance will likely decrease as data are aggregated.207

S1.1.3 Approach #3208

As previously mentioned, approach #3 is conceptually similar to approach #2, but in an opposite sense.209

As such, all equations developed in the previous section are valid for approach #3 so long as one replaces p210

by 1 − p and p̃ by 1 − p̃. As a result, aggregation continually lowers the probability of occurrence, moving211

the transition zone of the environment-occurrence relationship to the left with the same rate and properties212

(e.g., slope) as developed in the previous section.213

S1.2 Visualization of theory214

Here we visually explore the analytic results developed above for approach #2. The other two approaches will215

not be given further consideration as approach #3 is conceptually equivalent to (but opposite) approach #2,216

and approach #1 does not modify the underlying environment-occurrence relationship. This visualization will217

be based purely on the analytic equations developed above and the relationship between physical space and218

environment will be ignored (i.e., we assume that environmental conditions do not vary within aggregates219

at the scales of aggregation examined). Numerical tests of the theory involving real space-environment220

relationships will be carried out in Section S1.3 and in Supplementary Material S2.221

S1.2.1 Logistic probability of occurence222

We begin by examining a logistic functional relationship between an environmental variable, in this case taken223

without loss of generality to be (mean annual) temperature in ◦C, and the probability of occurrence of a224

virtual species. The logistic curve representing species probability of occurrence as a function of environment225

follows Eq. (4) with β = 7.5 and α = 0.3. As mentioned above, the relationship between environment and226
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physical, habitat space is not relevant as we assume that environment does not vary within aggregates at the227

scales of aggregation considered. We will consider aggregation in a two-dimensional space at the following228

scales: 1x1, 2x2, 4x4, 8x8, 16x16 (corresponding to ν = 1, 4, 16, 64, 256).229

For these parameter values, the unaggregated probability of occurrence is very close to one in areas with230

temperatures < 6◦C and very close to zero for temperatures > 9◦C with intermediate probabilities of oc-231

currence between these two temperatures (Fig. S1.1). As level of aggregation is increased, the inflection232

point of the probability of occurrence curve displaces to the right (Fig. S1.1), as does the range of temper-233

atures for which probability of occurrence is significantly different from zero and one (Fig. S1.2), at a rate234

proportional to log(ν) = log(N2) (Fig. S1.3). Though the range of temperatures for which probabilities of235

occurrence are intermediate shrinks as data are aggregated, this shrinkage more or less reaches the asymptote236

for aggregation above a scale of 8x8 (Fig. S1.4).237

S1.2.2 Normally distributed probability of occurence238

Though a logistic curve is representative of many observed gradients in species occurrence, it is a one-sided239

gradient that is ultimately unrealistic for species that have lower and upper bounds on suitable environmental240

conditions. To explore the impact of aggregation on a two-sided environment-occurrence relationship, we241

consider a normally distributed probability of occurrence:242

p(x) = Ce−(x−µ)2/σ2
(18)

where the maximum probability of occurrence, C, can be chosen to ensure a certain overall prevalence level243

over the habitat domain.244

Although analytic results may be possible for species occurrence following a normal distribution, for sim-245

plicity we choose to numerically examine changes in the environment-occurrence relationship as a result of246

aggregation based on the combination of Eq. (18) and Eq. (2). We consider two virtual species with nor-247

mally distributed environment-occurrence relationships differing in their level of overall habitat occurrence.248

For both species, µ = 0 and σ = 1, but for the high prevalence species C = 1, whereas for the low occurrence249

species C = 0.5250

For both the high (Fig. S1.5) and the low (Fig. S1.6) prevalence virtual species, aggregation has approxi-251

mately the effect that one would expect from a two-sided logistic curve. On both sides of the environment-252

occurrence curve, aggregation has the effect of displacing the perceived core area of occurrence outward at253
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a decreasing, approximately-logarithmic rate. The range of environmental conditions over which probability254

of occurrence is intermediate decreases as aggregation increases, but this decrease appears to stabalize after255

a certain level of aggregation (e.g., the maximum and minimum slopes on each side of the environment-256

occurrence distribution is approximately the same for the blue and cyan curves in Fig. S1.5) as it would for257

a logistic environment-occurrence relationship.258

These results suggest that analytical results for a logistic environment-occurrence relationship are approxi-259

mately applicable to many other functional forms for the distribution of occurrence in environmental space.260

S1.3 Numerical exploration of hypothetical case study and model261

performance indicators262

Whereas the visualization above provides a basic demonstration of the theory, to understand how it might263

work in a real scenario and to examine the impact of aggregation on SDM model performance indicators, it is264

useful to consider hypothetical case studies based on virtual species distributed in a two-dimensional space.265

The habitat area is taken to be a square with 160 units on each side, for a total of 25,600 unaggregated grid266

cells. The spatial units of the grid cells (i.e., their physical size) have no impact on results, but so as to talk267

in concrete terms we can take them to be km.268

We consider three different potential relationships between space and environmental conditions, here taken269

without loss of generality to be mean annual temperature in each grid cell (Fig. S1.7). In all three cases,270

mean annual temperature in the grid cells varies in the “latitudinal” (i.e., y or vertical) dimension from 4.5◦C271

at the bottom of the domain to 10.5◦C at the top of the domain. For the first relationship, temperature272

increases linearly (i.e., at a fixed rate) over the spatial domain (red curve in Fig. S1.7). In the other273

two cases, temperature increases at varying rates: the green curve in Fig. S1.7 has temperature values274

approximately constant and around the inflection point of the virtual species (i.e., 7.5◦C) for a wide range of275

y values (i.e., from y ≈ 50 to y ≈ 100), whereas the blue curve in Fig. S1.7 changes quickly on the y axis for276

temperature values close to the inflection point of the virtual species. These differences in rates of change277

in the temperature gradient for the three types of landscapes mean that for the slow rate of change scenario278

of the green curve, the environments for which the probability of occurrence is intermediate are relatively279

common, whereas intermediate probabilities of occurrence are rare in the high-rate of change landscape given280

by the blue curve. As such, the space-environment relationship given by the green curve will at times be281

referred to as the “common scenario” and the space-environment relationship given by the blue curve will282
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at times be referred to as the “rare scenario” (the red curve being referred to as the “linear scenario).283

In all cases, the environment-occurrence relationship is take to be a logistic function of temperature with284

the same form as that used in the previous section on visualization of analytic results: β = 7.5 and α = 0.3.285

The combination of the space-environment relationships (e.g., the top panel in Fig. S1.8 presents the linear286

space-environment relationship) and the environment-occurrence relationship yields the spatial distributions287

of probability of occurrence (e.g., the middle panel in Fig. S1.8 shows that for the linear space-environment288

relationship). These distributions can be used to simulate potential distributions of presence-absence for the289

species by drawing one random number between zero and one for each grid cell of the model domain and290

comparing it with the probability of occurrence for that grid cell (Meynard et al. 2019), one example of which291

is shown in the bottom panel of Fig. S1.8. 80 such potential distributions of presence-absence were randomly292

drawn. These were used as the basis for developing SDMs for each of the 80 presence-absence maps after293

aggregation using approach #2 at a variety of spatial scales ranging from 1x1 (i.e., no aggregation) to 16x16.294

SDMs were estimated using binomial GAM models for which probability of occurrence was assumed to be295

a simple smooth of mean annual temperature. From the GAM SDMs, deviance explained was extracted,296

predictions of probability of occurrence were calculated and these were used to estimate the area under the297

ROC curve (i.e., AUC).298

Results from this process demonstrate how SDM performance and model estimated probability of occurrence299

behave as a function of scale of aggregation and the spatial distribution of environmental conditions. For the300

linear space-environment relationship (top panel in Fig. S1.10), aggregation initially improves AUC before301

it stabilizes and begins to decrease slightly on average. As scale of aggregation increases, so does variability302

in performance between realizations of presence-absence (i.e., large size of boxplots in Fig. S1.10).303

The initial increase in presence-absence classification rates (as measured by AUC) as a function of aggre-304

gation can be explained by the decrease in the range of temperatures yielding intermediate probabilities of305

occurrence as a result of aggregation (Fig. S1.4). The increased variability in performance as a function of306

scale of aggregation can be explained by the decreasing number of grid cells post aggregation (Fig. S1.9)307

leading to larger random swings in the clarity of the relationship between presence-absence and temperature.308

Perhaps the most intriguing pattern is the decrease in AUC for larger scales of aggregation. This can be309

explained by the fact that increasingly large aggregates encompass a wider range of temperatures, thereby310

leading to mean environmental conditions over aggregates being a relatively poor indicator of the aggregate311

probability of occurrence (i.e., Eq. (1)). This can be seen by considering that Eq. (1) can be rewritten as:312
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p̃ = 1 − Gν

where G is the geometric mean of the individual probabilities of absence (i.e., one minus probability of313

occurrence) that compose the aggregate:314

G =
[

ν∏
i=1

(1 − pi)
]1/ν

The discrepancy between the arithmetic mean (of environmental conditions that then are used to calculate315

a probability of occurrence at the mean environmental conditions) and the geometric mean (of the true316

probabilities of occurrence) grows as a function of both the range and the number of values within the mean,317

leading to decreased model performance for large aggregates encompassing a wide range of temperatures.318

Indeed, at the 16x16 scale of aggregation, the temperature range within an aggregate is 0.6◦C, which is not319

small with respect to the range of temperatures leading to intermediate probabilities of occurrence (Fig.320

S1.4). This theory based on geometric means and arithmetic means also explains why model-estimated and321

Eq. (1)-estimated probabilities of occurrence generally exceed probabilities of occurrence based on theory322

ignoring environmental heterogeneity within aggregates (Fig. S1.11) because the geometric mean is always323

inferior to the arithmetic mean, meaning that:324

p̃ = 1 − Gν > 1 − (1 − p̄)ν = ˜̄p

where p̄ is the probability of occurrence for the mean environmental conditions of the aggregate.325

When temperatures corresponding to intermediate probabilities of occurrence are relatively common in space326

(green curve in Fig. S1.7), unaggregated model performance indicators (left-hand side of middle panel in327

Fig. S1.10) are far lower than those for a linear space-environment relationship. Aggregation at the 4x4328

scale increases performance indicators to approximately the level of those for the linear space-environment329

relationship and performance indicators at the 16x16 scale exceed those of the linear space-environment330

relationship. The opposite tendencies are true when temperatures for which probability of occurrence are331

intermediate are relatively rare over space (bottom panel in Fig. S1.10); in this case, performance indicators332

begin higher than those for the linear relationship, increase less with aggregation and decrease, in a relative333

sense, more at large scales of aggregation. These results can be explained by the change in temperatures that334

produce intermediate probabilities of occurrence as a function of scale of aggregation (Fig. S1.3). For the335
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space-environment relationship given by the green curve in Fig. S1.7, aggregation moves the temperatures336

that produce intermediate probabilities of occurrence from those that are relatively common over space to337

those that are relatively rare over space, causing a relative increase in performance indices (middle panel of338

Fig. S1.10). The opposite occurs for the space-environment relationship given by the blue curve in Fig. S1.7339

(bottom panel of Fig. S1.10).340

Theory ignoring heterogeneity in unaggregated grid cell probability of occurrence driven by variability in341

environmental conditions within aggregates represents reasonably well SDM estimates of probability of oc-342

currence in all cases, however, discrepancies increase as scale of aggregation increases (Fig. S1.11). This can343

be explained by the aforementioned differences between arithmetic and geometric means and the increasing344

“pixelization” of the model system. This effect is particularly visible at the 16x16 scale (bottom panel of Fig.345

S1.11), for which the small number of grid cells leads to regular bumps in mean model-estimated probabilities346

of occurrence as a function of how many cells are randomly classified as presences in the model domain. This347

discretization also explains discrepancies between the application of Eq. (1) to the underlying probability348

of occurrence (dots in Fig. S1.11) and GAM model predictions (colored curves in Fig. S1.11) as the finite349

number of cells only permits certain particular levels of species prevalence (for a given latitudinal level).350

S1.4 Limits to the applicability of theoretical results351

There are a number of limits to the applicability of the theoretical results for approach #2 developed above.352

One was explored in the previous section, namely the impact of environmental heterogeneity within spatial353

aggregates on the applicability of theoretical results assuming constant environmental conditions. However,354

there are at least two other limits that are worth considering. Key to the results above for aggregation355

approach #2 are the infinite tales of the probability distribution. For a logistic or normal probability356

of occurrence, there are no areas for which probability of occurrence is truly zero. In real cases, there357

may, however, be situations for which environmental conditions are truly inhospitable to a species and the358

probability of occurrence is identically zero (e.g., alligators in the Arctic). More generally, as spatial scale of359

aggregation grows, one may reach scales for which the environmental, biological and ecosystemic processes360

driving occurrence are no longer the same, thereby leading to divergences between occurrence gradients that361

are reasonable at one scale and those that are reasonable at another scale.362

Regarding the first of these limits, if probability of occurrence is identically zero for some environmental con-363

ditions, then the movement of the inflection point in the aggregated probability of occurrence distribution364

towards areas that had low probability of occurrence before aggregation will be blocked at these fundamen-365
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tal barriers to presence. In this case, the aggregated probability of occurrence will approach a threshold366

distribution as scale of aggregation is increased.367

Given this context, the results above exploring the effects of aggregation should be thought of as applicable for368

intermediate spatial scales, above those for which temporal and spatial autocorrelation in presence-absence369

are important (i.e., the scale at which nearest-neighbor colonization and extinction events are important), but370

below those over which fundamental barriers to life or major changes in what processes determine occurrence371

are likely to occur. For example, the scale of a single forest track would likely be too small for many species372

(unless the species has very short dispersal potential), and the scale of an entire continent would likely be too373

large for many species for this theory to apply without some modification. Intermediate scales of countries374

or regions would likely be ideal for applying the theory developed above.375

Another limit relates to the SDM development process itself. In our virtual species analyses, we are fortunate376

enough to know exactly what environmental variable is driving changes in probability of occurrence. However,377

in real situations, one rarely has access to the precise environmental variables that directly drive occurrence.378

Instead, one uses proxies that presumably are more or less correlated with the true drivers of occurrence. In379

this case, the theory and simulations developed above should be approximately applicable, though one would380

expect that model performance indicators would be significantly lower than those seen in our simulations.381

One can imagine, however, cases where the process of averaging environmental variables over larger scales382

may produce variables that are more or less correlated with the true drivers of occurrence (i.e., occurrence383

and environment are related on specific scales of spatial variability, but not others). This could cause changes384

in model performance indices that are not purely driven by aggregation itself, but rather by the processes385

underlying occurrence.386
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Figure S1.1: Probability of occurrence for various scales of spatial aggregation. Aggregates are assumed to
be square grids of N × N cells (i.e., ν = N2). The underlying logistic curve representing species occurrence
as a function of environment followed logistic Eq. 4 with β = 7.5 and α = 0.3. Vertical dashed lines indicate
positions of inflection points.
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Figure S1.2: Span of area representing 10% and 90% probability of occurrence for various scales of spatial
aggregation. Aggregates are assumed to be square grids of N × N cells (i.e., ν = N2). The underlying
logistic curve representing species occurrence as a function of environment followed logistic Eq. 4 with
β = 7.5 and α = 0.3. Vertical dashed lines indicate environmental conditions for which aggregate probability
of occurrence is 10% or 90%.
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Figure S1.3: Temperature value corresponding to 10% and 90% probability of occurrence for various scales
of spatial aggregation. Black central curve shows the temperature of the inflection point as a function of
scale. Aggregates are assumed to be square grids of N × N cells (i.e., ν = N2). The underlying logistic
curve representing species occurrence as a function of environment followed logistic Eq. 4 with β = 7.5 and
α = 0.3.
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Figure S1.4: Width of 10%-90% window for probability of occurrence for various scales of spatial aggregation
(i.e., width of spans shown in Fig. S1.2). Aggregates are assumed to be square grids of N × N cells (i.e.,
ν = N2). The underlying logistic curve representing species occurrence as a function of environment followed
logistic Eq. 4 with β = 7.5 and α = 0.3.
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Figure S1.5: Probability of occurrence for various scales of spatial aggregation. Aggregates are assumed to
be square grids of N × N cells (i.e., ν = N2). The underlying logistic curve representing species occurrence
as a function of environment followed a normal distribution (i.e., Eq. (18)) with µ = 0, σ = 1. C, the
maximum probability value, was equal to 1.
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Figure S1.6: Probability of occurrence for various scales of spatial aggregation. Aggregates are assumed to
be square grids of N ×N cells (i.e., ν = N2). The underlying logistic curve representing species occurrence as
a function of environment followed a normal distribution (i.e., Eq. 18) with µ = 0, σ = 1. C, the maximum
probability value, was equal to 0.5.

24



0 50 100 150

5
6

7
8

9
10

Space−environment relationships

y

Te
m

pe
ra

tu
re

 (
°C

)

Linear scenario
Common scenario
Rare scenario

Figure S1.7: Assumed relationships between spatial coordinates in the “latitudinal” direction (i.e., y direc-
tion) and mean annual temperature. The red line shows a linear relationship (i.e., constant rate of change
of temperature across space), the green line shows a relationship for which temperatures around 7.5◦C, the
inflection point of the unaggregated environment-occurrence relationship, are relatively common over space,
and the blue line shows a relationship for which temperatures around 7.5◦C are relatively rare.
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Figure S1.8: Temperature (top), probability of occurrence (middle) and one example of presence-absence
based on the probability of occurrence (bottom) for the case when temperature has a linear gradient over
the y dimension. For the bottom panel, white and black grid cells indicate species absence and presence,
respectively.
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Figure S1.9: Examples of the impact of aggregation following approach #2 on perceived presence-absence.
The underlying small-scale presence-absence distribution is as in the bottom panel of Fig. S1.8. The panels
show aggregation at the 4x4 (top), 8x8 (middle) and 16x16 (bottom) scales. In all panels, white and black
grid cells indicate assessments of species absence and presence, respectively, according to approach #2 to
aggregating presence observations.
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Figure S1.10: Area under the ROC curve (AUC) of GAM model predictions as a function of scale of spatial
aggregation and the functional form of the space-environment relationship. Box colors and panel titles
correspond to the space-environment functional forms shown in Fig. S1.7.

28



8.0 8.5 9.0 9.5 10.0 10.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4x4

Temperature (°C)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

8.0 8.5 9.0 9.5 10.0 10.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

8x8

Temperature (°C)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

8.0 8.5 9.0 9.5 10.0 10.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

16x16

Temperature (°C)

P
ro

ba
bi

lit
y 

of
 o

cc
ur

re
nc

e

Figure S1.11: Theoretical and model estimated environment-occurrence relationships at 4x4 (top), 8x8
(middle) and 16x16 (bottom) scales of aggregation. In each panel, the black curve indicates the theoretical
probability of occurrence ignoring environmental heterogeneity within aggregate as shown in Fig. S1.1. The
red, green and blue curves indicate GAM model predictions for the environment-occurrence relationship
based on the space-environment relationship of the corresponding color in Fig. S1.7. Probabilities have been
averaged over 80 random realizations of species occurrence over the model domain (one example of which
is shown in Fig. S1.9). The red, green and blue dots correspond to theoretical predictions of probability
of occurrence based on application of Eq. (1) to the underlying probability of species occurrence over the
model domain (e.g., for the red dots, this probability of occurrence is shown in the middle panel of Fig.
S1.8). These theoretical predictions are only shown for discrete values of temperature because these are the
finite set of averages over the aggregates in the model system.
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