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Constrained Random Diffeomorphisms
for Data Assimilation

Valentin Resseguier, Yicun Zhen, and Bertrand Chapron

1 Introduction

For ensemble-based data assimilation purposes, there is a definite need for relevant
ensemble sampling tools. Indeed, the quality and spreading of these ensembles
have deep implications in the quality of the data assimilation (Dufée et al 2022),
and—until recently—those so-called covariance inflation tools have mostly relied
on unsuitable linear Gaussian frameworks (Tandeo et al 2020, Resseguier et al
2020a). A promising alternative is the generation of ensembles through a stochastic
remapping of the physical space.

Consider a random mapping T , acting at every infinitesimal time step, such that
.Tt (x) − x is interpreted as a “location perturbation” expressed by

.Tt (x) = x + a(t, x)Δt + ei(t, x)Δηi(t), (1.1)

where .a(t, x), ei(t, x) ∈ R
n. In Eq. (1.1), .a(t, x) controls deterministic location

shifts, and .Δηi(t) ∼ N (0,Δt) random ones. At every time step, this random
mapping T shall induce a perturbation to any tensor field .θ(t) (Zhen et al 2022).
For instance, one can perturb a differential form .θ(t) applying .θ(t) → T ∗

t θ(t) with
.T ∗

t the associated pull-back operator.
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A rigorous mathematical definition and calculation of .Tt and .T ∗
t can be obtained

in terms of stochastic flows of diffeomorphisms and its Lie derivatives (e.g.,
Bethencourt De Leon 2021). Yet, to rapidly assess .T ∗

t θ , a Taylor expansion and
Itô’s lemma can be used. Given coordinates .(x1, . . . , xn), when .θ is a differential
.k−form, it can be written as

.θ =
∑

i1<...<ik

f i1,...,ik dxi1 ∧ · · · ∧ dxik , (1.2)

with f a semimartingale smooth in space. Then

.T ∗
t θ =

∑
i1<...<ik

f i1,...,ik (Tt (x))T ∗
t (dxi1 ∧ · · · ∧ dxik ), (1.3)

leading to a compact expression

.T ∗
t θ = θ + M(t, θ)Δt + Ni (t, θ)Δηi(t), (1.4)

with some differential .k−forms .M(t, θ) and .Ni (t, θ). Appendix 4 provides defini-
tions of .M and .N (see Zhen et al 2022, Appendix B for a full proof).

Hereafter, we present and discuss the potential of this random mapping scheme
to possibly prescribe .θ , and the parameters a and .ei to ensure that certain quantities,
i.e. mass, vorticity, helicity, energy, are conserved.

Several examples of .T ∗
t θ can indeed be considered. For instance, when .θ = f is

a function (differential .0−form),

.(T ∗
t θ) =f +

(
aj ∂xj f + 1

2e
p
i e

q
i ∂xp∂xq f

)
︸ ︷︷ ︸

=M

Δt + e
p
i ∂xpf︸ ︷︷ ︸
=Ni

Δηi. (1.5)

And when .θ = f dx1 ∧ · · · ∧ dxn (differential n-form), it then follows

.T ∗
t θ =

{
f +

(
(∂xpap + 1

2Ji)f + (ap + e
p
i ∂xq e

q
i )∂xpf + 1

2e
p
i e

q
i ∂xp∂xq f

)
Δt

+ (∂xpe
p
i f + e

p
i ∂xpf )Δηi

}
dx1 ∧ · · · ∧ dxn. (1.6)

Finally, when .θ = f jdxj = ∑n
j=1 f jdxj is differential 1-form, we have

.T ∗
t θ =

{
f j + (ap∂xpf j + 1

2e
p
i e

q
i ∂xp∂xq f j + ∂xj a

pf p + ∂xj e
p
i e

q
i ∂xq f p)Δt

+ (e
p
i ∂xpf j + ∂xj e

p
i f p)Δηi

}
dxj . (1.7)
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2 Induced Stochastic PDE

From the expression of .T ∗
t θ , a SPDE is derived from an original PDE, when .θ is a

differential form. Suppose .Sd is the full state variable of the deterministic dynamical
system:

.
∂Sd

∂t
= g(Sd). (2.1)

Let .f d be a component or a collection of components of .Sd . We then associate .f d

to a differential form .θd , i.e. there is an invertible map .F that maps the space of .f d

to the space of .θd , such that .F(f d) = θd . Typically, if .f d is a tracer, it is often
associated to the 0-form .θd = f d . If .f d is the density .ρd , we might associate the
n-form .θd = ρd dxi1 ∧· · ·∧dxin . More generally, .θd , and thus .F , can be prescribed
to ensure that certain quantities—such as mass, energy, circulation—are conserved
(Zhen et al 2022, section 3.3). Consider the propagation equation for .f d

.df d = gf (Sd)dt. (2.2)

It implies a propagation equation for .θ :

.dθd = gθ (Sd)dt. (2.3)

We will now stochastically perturb the above deterministic dynamics. Let us denote
.S, f and .θ the semimartingale solutions of this randomized dynamics. The proposed
discrete-time perturbation at each time step consists of the following two steps:⎧⎨

⎩.θ̃ (t + Δt) = θ(t) + gθ (S(t))Δt,

θ(t + Δt) = T ∗
t θ̃ (t + Δt),

(2.4)

(2.5)

with .T ∗
t θ̃ (t+Δt) = θ̃ (t+Δt)+M(t, θ̃ (t+Δt))Δt+Ni (t, θ̃ (t+Δt))Δηi(t)+o(Δt)

for the associated differential forms .M(t, θ̃ ) and .Ni (t, θ̃ ).
The deterministic PDE (2.4) and .‖θ̃ (t +Δt)−θ(t)‖ scales in .O(Δt). There is no

noise term to induce a scaling in .O(
√

Δt). Therefore, it can be assumed that there
exists .C > 0 so that .‖M(t, θ̃ (t + Δt)) − M(t, θ(t))‖ < CΔt and .‖Ni (t, θ̃ (t +
Δt)) − Ni (t, θ(t))‖ < CΔt , for .Δt small enough. Accordingly,

.T ∗
t θ̃ (t + Δt) =θ̃ (t + Δt) +

(
M(t, θ(t)) + O(Δt)

)
Δt

+
(
Ni (t, θ(t)) + O(Δt)

)
Δηi(t) + o(Δt),

=θ̃ (t + Δt) + M(t, θ(t))Δt + Ni (t, θ(t))Δηi(t) + o(Δt).

(2.6)
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Therefore,

.θ(t + Δt) = θ(t) + gθ (S(t))Δt + M(t, θ(t))Δt + Ni (t, θ(t))Δηi + o(Δt).

(2.7)

It suggests the following stochastic propagation equation for .θ :

.dθ = gθ (S)dt + M(t, θ)dt + Ni (t, θ)dηi. (2.8)

Since there is a 1-1 correspondence between .θ and f , Eq. (2.3) also suggests a
stochastic propagation equation for f , which can be written as

.df = gf (S)dt + Mf (f )dt + N f
i (f )dηi. (2.9)

We denote the additional terms in Eq. (2.9) by

.dsf := Mf (f )dt + N f
i (f )dηi. (2.10)

Then Eq. (2.9) can be written as:

.df = gf (S)dt + dsf. (2.11)

3 Comparison with Other Perturbation Schemes

Obtained above, .dsf is completely determined by .T ∗
t θ , but is not directly related to

the original dynamics Eq. (2.2). Once the expression of T in Eq. (1.1) and the choice
of the differential form .θd are determined, the perturbation term .dsf is prescribed.
However, the choice of .θd is up to the user, and may then be related to the original
dynamics.

In the following, we thus demonstrate that both the stochastic advection by Lie
transport (SALT) equation (Holm 2015) and the location uncertainty (LU) equation
(Mémin 2014, Resseguier et al 2017; 2020b) can be properly recovered using the
proposed perturbation scheme.

3.1 Comparison with the LU Equations

The Reynolds transport theorem is central to the LU setting. The Reynolds transport
theorem expresses an integral conservation equation for the transport of any con-
served quantity within a fluid, connected to its corresponding differential equation.
A link between the proposed perturbation approach and the LU formulation can
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be anticipated to be related to differential n-forms. But first, we consider a key
ingredient of LU: the stochastic material derivative of functions (differential 0-
forms).

3.1.1 0-Forms in the LU Framework

Dropping the forcing terms, LU equation for compressible and incompressible flow
reads (Resseguier et al 2017)

.∂tf + w� · ∇f =∇ · ( 1
2a∇f ) − σḂ · ∇f ,. (3.1)

w� =w − 1
2 (∇ · a)
 + σ (∇ · σ )
, (3.2)

where .a = σ •kσ
T•k and f can be any quantity that is assumed to be transported by

the flow, i.e. .Df/Dt = 0 where .D/Dt is the Itô material derivative. For instance,
f could be the velocity (dropping forces in the SPDE), the temperature, or the
buoyancy.

Separating the terms of the SPDE related to the deterministic dynamics from the
term associated to the stochastic scheme, it comes

.dLUf = gf (S)dt + dLU
s f, (3.3)

where

.gf (S) = − w · ∇f ,. (3.4)

dLU
s f = − (w� − w) · ∇fdt − σdB · ∇f + ∇ · ( 1

2a∇f )dt. (3.5)

Besides, from our proposed scheme applied to a 0-form .θ = f (Eq. (1.5)), we
obtain:

.dsf =
(
ap∂xpf + 1

2e
p
i e

q
i ∂xp∂xq f

)
dt + e

p
i ∂xpfdηi. (3.6)

To physically interpret this equation, we rewrite:

.
dsf

dt
= −V p∂xpf + ∂xp

(
( 1

2e
p
i e

q
i )∂xq f

)
, (3.7)

where

.V p = −ap + 1
2∂xq (e

p
i e

q
i ) − e

p
i

dηi

dt
. (3.8)

Terms of advection and diffusion are recognized. The matrix .
1
2eie

T
i is symmetric

non-negative and represents a diffusion matrix. The p-th component of the advect-
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ing velocity .V p is composed of the drift .−ap, a correction .
1
2∂xq (e

p
i e

q
i ), and a

stochastic advecting velocity .−e
p
i
dηi

dt
.

Direct calculation yields that Eq. (3.5) coincides with Eq. (3.7) when .a =
σ •kσ

T•k = eie
T
i and .σḂ = −eidηi and

.Tt (x) = x + e
q
i ∂xq eiΔt + eiΔηi = x − wc

SΔt + (−wc
SΔt − σΔB), (3.9)

where

.wc
S = − 1

2 (σ •k · ∇)σ •k = − 1
2 (∇ · a)
 + 1

2σ (∇ · σ )
. (3.10)

The LU equation can thus be derived by choosing .θ = f and .Tt by Eq. (3.9). Note,
the term .(−wc

SΔt − σΔB) = ( 1
2e

q
i ∂xq eiΔt + eiΔηi) is the Itô noise plus its Itô-

to-Stratonovich correction. Hence, it corresponds to the Stratonovich noise .ei ◦ dηi

of the flow associated to .Tt . The additional drift .−wc
SΔt is different in nature. It

is related to the advection correction .wc
S · ∇f in the LU setting. Indeed, in the LU

framework, the Itô drift, .w, is seen as the resolved large-scale velocity. That is why,
in this framework, the deterministic dynamics (3.4) involve the Itô drift, .w. This
is also the reason why, under the LU derivation, the advected velocity is assumed
to be given by the Itô drift, .w. It differs from the Stratonovich drift .wS = w +
wc

S , used as advected velocity in SALT approach or in Mikulevicius and Rozovskii
(2004) (where the Stratonovich drift is denoted u). Interested readers are referred
to (Resseguier et al 2020b, Appendix A) for a discussion on these assumptions and
for the complete table of SALT-LU notations correspondences. Note however that
in all these approaches, the advecting velocity is always the Stratonovich drift. This
can be seen e.g., in the Stratonovich form of LU equations, derived in (Resseguier
2017, Appendix 10.1) and (Resseguier et al 2020a, 6.1.3):

.∂tf + wS · ∇f = − (σ ◦ Ḃ) · ∇f, (3.11)

where .σ ◦ Ḃ is the Stratonovich noise of the SPDE. Since the advecting velocity .wS

and the resolved velocity .w differ by a drift .wc
S , the term .wc

S · ∇f is interpreted as
an advection correction, being part of the stochastic scheme (3.5). Accordingly, the
remapping .Tt involves an additional drift .−wc

SΔt .
To also understand (3.9), the inverse flow can be considered:

.T −1
t (x) = x − eiΔηi = x + σΔB. (3.12)

If .Tt represents a necessary perturbation to match, at each time step, a true solution,
.T −1

t measures the difference, at each time step, between this true solution and
a model forecast. Therefore, the LU equation can be derived using the proposed
perturbation scheme, choosing .θ = f and assuming that a true solution differs from
a model forecast by a displacement prescribed by Eq. (3.12).
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3.1.2 n-Forms in the LU Framework

The LU physical justification relies on a stochastic interpretation of fundamental
conservation laws, typically conservation of extensive properties (i.e. integrals
of functions over a spatial volume) like momentum, mass, matter and energy
(Resseguier et al 2017). These extensive properties can be expressed by integrals
of differential .n−forms. For instance, the mass and the momentum are integrals of
the differential .n−forms .ρdx1 ∧ · · · ∧ dxn and .ρwdx1 ∧ · · · ∧ dxn, respectively.
In the LU framework, a stochastic version of the Reynolds transport theorem
(Resseguier et al 2017, Eq. (28)) is used to deal with these differential .n−forms
.θ = f dx1 ∧ · · · ∧ dxn. Assuming an integral conservation .

d
dt

∫
V (t)

f = 0 on a
spatial domain .V (t) transported by the flow, it leads to the following SPDE:

.
Df

Dt
+ ∇ · (w� + σḂ)f = d

dt

〈∫ t

0
Dtf,

∫ t

0
∇ · σḂ

〉
= (∇ · σ •i )(∇ · σ •i )

T f ,

(3.13)

where .D/Dt denotes the Itô material derivative. Forcing terms are dropped for the
sake of readability. This SPDE can be rewritten using the expression of that material
derivative (Eq. (9) and (10) of Resseguier et al (2017)):

.∂tf + ∇ · (wSf ) = 1
2∇ · (a∇f ) + 1

2∇ · (σ •i (∇ · σ •i )
T f ) − ∇ · (σḂf ).

(3.14)

The original deterministic equation and stochastic perturbation correspond to

.gf (S) = − ∇ · (wf ),. (3.15)

dLU
s f =(−∇ · (wc

Sf )+ 1
2∇ · (a∇f )+ 1

2∇ · (σ •i (∇ · σ •i )
T f ))dt−∇ · (σdBf ),.

(3.16)

= − ∇ · ((−( 1
2∇ · a)T dt + σdB)f ) + ∇ · ( 1

2a∇f )dt. (3.17)

We can now compare these LU equations to our new stochastic scheme applied
to n-form .θ = f dx1 ∧ · · · ∧ dxn (Eq. (1.6)). This implies that

.dsf =
(
(∂xpap + 1

2Ji)f + (ap + e
p
i ∂xq e

q
i )∂xpf + 1

2e
p
i e

q
i ∂xp∂xq f

)
dt

+ (∂xpe
p
i f + e

p
i ∂xpf )dηi, (3.18)

where .Ji = ∂xpe
p
i ∂xq e

q
i − ∂xpe

q
i ∂xq e

p
i . Rewritten, it leads to:

.
dsf

dt
= −∂xp

(
Ṽ pf

)
+ ∂xp

(
( 1

2e
p
i e

q
i )∂xq f

)
, (3.19)



288 V. Resseguier et al.

where

.Ṽ p = V p − (e
p
i ∂xq e

q
i ) = −ap + 1

2 (∂xq e
p
i e

q
i − e

p
i ∂xq e

q
i ) − e

p
i

dηi

dt
. (3.20)

Again an advection-diffusion equation is recognized, but of different nature. Indeed,
as expected for an n-form, the PDE is similar to a density conservation equation.
Moreover, the advecting drift is slightly different to take into account the cross-
correlations between .f (Tt (x)) and .T ∗

t (dx1 ∧ · · · ∧ dxn).
Identifying .a = σ •kσ

T•k = eie
T
i and .σḂ = −eidηi ,

.Ṽ = −ap + 1
2 (∂xq e

p
i e

q
i − e

p
i ∂xq e

q
i ) − e

p
i

dηi

dt
= −( 1

2∇ · a)T + σḂ, (3.21)

i.e.

.ap = 1
2 (∂xq e

p
i e

q
i − e

p
i ∂xq e

q
i ) + 1

2∂xq (e
p
i e

q
i ) = e

q
i ∂xq e

p
i . (3.22)

A remapping is thus obtained to write

.Tt (x) = x + e
q
i ∂xq eiΔt + eiΔηi = x − wc

SΔt + (−wc
SΔt − σΔB), (3.23)

already derived for differential .0−form in LU framework (Eq. (3.9)). Therefore,
the proposed perturbation mapping can also encompass the LU framework for .n−
forms, and its capacity—given by the Reynolds transport theorem—to deal with
extensive properties.

Moreover, for incompressible flows, LU equation further imposes that

.

{
∇ · σ = 0,

∇ · ∇ · a = 0.
(3.24)

Translating it into our present notation, it reads as

.

{
∂xpe

p
i = 0, for each i

∂xp∂xq (e
p
i e

q
i ) = 0.

(3.25)

Following straightforward calculation, Eq. (3.24) is found equivalent to that .T ∗
t θ =

θ for .θ = dx1 ∧ · · · ∧ dxn. Such a result is expected since constraints Eq. (3.24) are
obtained from the LU density conservation.
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3.2 The SALT Perturbation Scheme

Holm (2015) derived the original SALT equation following a stochastically con-
strained variational principle δS = 0, for which

.

{
S(u, q) = ∫

	(u, q)dt,

dq + £dxt q = 0,
(3.26)

where 	(u, q) is the Lagrangian of the system, £ is the Lie derivative, and xt (x) is
defined by (using our notation)

.xt (x) = x0(x) +
∫ t

0
u(x, s)ds −

∫ t

0
ei(x) ◦ dηi(s), (3.27)

in which u is the velocity vector field. The ◦ means that the integral is defined in the
Stratonovich sense, instead of in the Ito sense. Hence, dxt = u(x, t)dt − ei ◦ dηi

refers to an infinitesimal stochastic tangent field on the domain. We can express
dxt = Tt (x)−x+udt . Note the difference between Ito’s notation and Stratonovich’s
notation, i.e. ei ◦ dηi �= eidηi . The initial expression of Tt essentially follows Ito’s
notation. In this subsection, it comes that Tt (x) �= x − eiΔηi . Instead, it becomes
Tt (x) = x + 1

2e
p
i ∂xpeiΔt − eiΔηi .

In the second equation of Eq. (3.26), q is assumed to be a quantity advected by
the flow. q can correspond to any differential form that is not uniquely determined by
the velocity (since the SALT equation for the velocity is usually determined by the
first equation of Eq. (3.26)). Holm (2015) evaluates the Lie derivative £dxt q using
Cartan’s formula:

.£dxt q = d(idxt q) + idxt dq. (3.28)

This Lie derivative £dxt q corresponds to T ∗
t q − q + f q(S)dt , if we assume that

the deterministic forecast of q is simply the advection of q by u. More generally,
£dxt−udt q = T ∗

t q − q. Therefore, the SALT equation for q is the same as our
perturbation for q. Note, the Cartan’s formula can not be directly applied to calculate
the Lie derivative if the expression of dxt is in Ito’s notation.

Within the SALT setting, the velocity u comes from the first equation of
Eq. (3.26). For most cases, the velocity u is associated with the momentum, a
differential 1−form m = ujdxj = u1dx1 + . . . + undxn. When the Lagrangian
includes the kinetic energy, Holm (2015) observed that the stochastic noises
contribute a term £dxt θ , where θ is a differential 1−form related to the momentum
1−form. In particular, θ = m for the “Stratonovich stochastic Euler-Poincaré flow”
example, and θ = m + Rjdxj for the “Stochastic Euler-Boussinesq equations of a
rotating stratified incompressible fluid”.
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Already pointed out, the operator £dxt is closely related to T ∗
t , and the SALT

momentum equation can thus also be derived using our proposed perturbation
scheme by properly choosing θ , without relying on Lagrangian mechanics.

Another way to appreciate the correspondence to SALT is by looking at the final
SPDE. If we choose θ to be a differential 1-form to represent the momentum f , i.e.
θ = f jdxj we obtain from Eq. (1.7) (more details in Zhen et al 2022):

.dsf
j = (ap∂xpf j + 1

2e
p
i e

q
i ∂xp∂xq f j + ∂xj a

pf p + ∂xj e
p
i e

q
i ∂xq f p)dt

+ (e
p
i ∂xpf j + ∂xj e

p
i f p)dηi. (3.29)

Regrouping the terms for physical interpretation, it writes:

.
dsf

j

dt
= −V p∂xpf j + ∂xp

(
( 1

2e
p
i e

q
i )∂xq f j

)
+ ∂xj

(
ap + e

p
i

dηi

dt

)
f p + ∂xj e

p
i e

q
i ∂xq f p. (3.30)

Two last terms of the right-hand side complete the advection-diffusion terms,

already appearing in (3.7). The first one, ∂xj

(
−ap − e

p
i
dηi

dt

)
f p, is reminiscent

to the additional terms appearing in SALT momentum equations (Holm 2015,
Resseguier et al 2020b). The second term, −∂xj e

p
i e

q
i ∂xq f p, comes from cross-

correlation in Itô notation.

4 Conclusion

As demonstrated, both SALT and LU equations can be recovered using a prescribed
definition of a random diffeomorphism .Tt used to perturb the physical space.
However, compared with SALT and LU settings, the proposed perturbation scheme
does not directly rely on a particular physics. Hence, the random mapping is more
flexible and can be applied to any PDE. Interestingly, similarities and differences
can then be identified and studied between the proposed use of the random
diffeomorphism and the existing stochastic physical SALT and LU settings. For
instance, the proposed derivation provides an interesting interpretation the operator
.£dxt−udt , appearing in the SALT equation. This term can indeed represent an
infinitesimal forecast error at every forecast time step.

To apply the proposed perturbation scheme to any specific model, the diffeomor-
phism parameters a and .ei must be determined specifically. Hence it is necessary to
learn these parameters from existing data, experimental runs, or additional physical
considerations. This framework naturally provides new perspectives to generate
ensembles through constrained stochastic mappings applied in the physical space.
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Appendix: Expression of T ∗
t θ

Given coordinates .(x1, . . . , xn) and a differential .k−form .θ , Zhen et al (2022)
(Appendix B) proof that:

.T ∗
t θ = f (Tt (x))T ∗

t (dxi1 ∧ · · · ∧ dxik )

= θ +
{(〈∇f, a〉 + 1

2
e

i Hf ei + IW

)
dxi1 ∧ · · · ∧ dxin

+
k∑

s=1

f ∂xj a
is dxi1 ∧ . . . dxj ∧ · · · ∧ dxik

+ ( ∑
s<r

f ∂xj e
is
i ∂xl e

ir
i dxi1 ∧ · · · ∧ dxj ∧ · · · ∧ dxl ∧ · · · ∧ dxik

)

+ ( k∑
s=1

〈∇f, ei〉∂xj e
is
i dxi1 ∧ · · · ∧ dxj ∧ · · · ∧ dxik

)}
Δt

+
{
〈∇f, ei〉dxi1 ∧ · · · ∧ dxik

+
k∑

s=1

f ∂xj e
is
i dxi1 ∧ · · · ∧ dxj ∧ · · · ∧ dxik

}
Δηi

+ o(Δt), (A.1)

where IW is the additional term appearing in the Itô-Wentzell formula (Kunita
1997). Here, there is no noise in the original dynamics (2.3) (the first step (2.4)
of the randomized dynamics) which could be correlated with the noise of the
resulting stochastic scheme (2.5). That is why .IW = 0 in the above Taylor
development of f. Indeed, there is no additional cross-correlation term between .T ∗

t

and .θ̃ (t + Δt) = θ(t) + gθ (S(t))Δt . The final SPDE (2.8) makes clear the link
between the solution .θ and the Brownian motions .ηi . But, at a given time step t ,
since (2.2) has no noise term, .θ̃ (t + Δt) is correlated with the .t ′ �→ ηi(t

′) for
.t ′ < t only, and is independent of the new Brownian increment .Δηi(t) generating
.Tt . Therefore, there is no cross-correlation term between .T ∗

t and .θ̃ (t + Δt).
To simplify Eq. (A.1), wedge algebra is applied and the high-order infinitesimal

.o(Δt) is ignored. Accordingly, .T ∗
t θ is more compactly written as

.T ∗
t θ = θ + M(θ)Δt + Ni (θ)Δηi, (A.2)

for some differential .k−forms .M(θ) and .Ni (θ).
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