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Abstract In this paper, we investigate the wave solutions of a stochastic rotating
shallow water model. This approximate model provides an interesting simple
description of the interplay between waves and random forcing ensuing either from
the wind or coming as the feedback of the ocean on the atmosphere and leading in a
very fast way to the selection of some wavelength. This interwoven, yet simple,
mechanism explains the emergence of typical wavelength associated with near
inertial waves. Ensemble-mean waves that are not in phase with the random forcing
are damped at an exponential rate, whose magnitude depends on the random forcing
variance. Geostrophic adjustment is also interpreted as a statistical homogenization
process in which, in order to conserve potential vorticity, the small-scale component
tends to align to the velocity fields to form a statistically homogeneous random field.

1 Introduction

Oceanic global circulation currents show a predominance of near inertial waves
(NIW) in their spectrum. These waves result from the repeated forcing of atmo-
spheric winds over the globe together with the influence of global earth rotation
at Coriolis frequency. Besides, large-scale numerical representations of oceanic
circulation require to introduce subgrid scale models that inescapably damp in the
long run velocity fields and wave solutions. In such models high frequency waves
are obviously completely smoothed out. But even large scale structures might be
also affected if no particular attention is paid to the subgrid model design.
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In the last year, there has been an increasing effort to devise stochastic parameter-
izations for large-scale flows [2, 10, 11]. The motivations come from the failure of
classical subgrid models to represent accurately the effect of the flow state variables
at the unresolved scales and the necessity to provide reliable and computationally
efficient models at the climatic scale. Uncertainty quantification, ensemble methods
for forecasting and data assimilation are also prevailing, and the Bayes principle on
which they are built leads naturally to considering stochastic dynamics.

Stochastic dynamics can hardly be devised on ad hoc grounds if one wants
to provide generic and flexible systems. Control of the variance’s growth and the
respect of the physical properties of the underlying turbulent flows is of the utmost
importance to define stable and physically relevant systems, in which the unresolved
variables or the different physical and numerical approximations performed are
faithfully represented. Two main schemes have been recently proposed to that
purpose in the literature [12, 20]. The first one is a geometric framework relying
on a Hamiltonian formulation, whereas the second one—referred to as modelling
under location uncertainty (LU)—is based on Newton’s principles and a stochastic
formulation of the Reynolds transport theorem. Both schemes have been analyzed
and numerically experimented for several geophysical models and configurations
[1, 4, 5, 6, 17, 23, 25]. Surface waves and linear models have been proposed in the
LU framework [8, 26, 27].

Nevertheless, the analysis of basic geostrophic mechanisms such as geostrophic
adjustment or the form of basic wave solutions in linearized simple systems has not
been investigated so far. This is the objective of this work. We will in particular
analyze a stochastic rotating shallow water model recently proposed in [4, 16].
The focus will be on wave solutions of this system. We will show in particular
that ensemble-mean waves ensuing from a random forcing at given frequencies
are preserved whereas the others are very quickly damped. The stochastic model
will allow us to propose a very simple mechanism leading to the emergence
and conservation of NIW in atmosphere and ocean dynamics as a coupled self
entrainment process.

The paper is organized as follows. In a first section we briefly recall the proposed
stochastic model—rotating shallow water under location uncertainty (RSW-LU).
We then identify a stationary solution of this stochastic system. We next analyze
and illustrate the plane wave solutions associated to the linearized system under
some specific noises. Finally, we provide a picture of the geostrophic adjustment
process associated to the random system.

2 Review of RSW-LU

Let us first recall the stochastic transport operator introduced in the LU framework
[1, 18, 17, 24]:
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.DtΘ := dtΘ +
((

u − 1

2
∇ ·a)

dt + σ tdB t

)
·∇Θ − 1

2
∇ · (a∇Θ

)
dt = 0, (1a)

where the tracer, .Θ , is a stochastic process with an extensive property (e.g.
temperature, salinity, buoyancy), .dtΘ(x) := Θ(x, t + δt) − Θ(x, t) stands for
the time-increment of .Θ at a fixed point .x with .δt an infinitesimal time variation,
.u denotes the time-smooth resolved velocity that is both spatially and temporally
correlated, .σ tdB t stands for the highly oscillating unresolved noise component,
assumed in the present study to be divergence-free, with its quadratic variation
[22] denoted by .a and .

1
2∇ · a is the so-called Itô-Stokes drift [1] ensuing from

the inhomogeneity of the noise. The mathematical definitions of the noise and its
quadratic variation are given by

.σ tdB t (x) =
∫

D
σ̆ (x, y, t)dB t (y) dy =

∑
n∈N

λ
1/2
n (t)ξn(x, t)dβn

t , (1b)

.a(x, t) =
∫

D
σ̆ (x, y, t)σ̆ †(y, x, t) dy =

∑
n∈N

λn(t)
(
ξnξ

†
n

)
(x, t), (1c)

where .σ t is an integral operator defined on the Hilbert space .(L2(D))d with a
bounded spatial domain .D ⊂ C

d (.d = 2 or 3), .σ̆ = (σ̆ij )i,j=1,...,d is a spatially
and temporally bounded matrix kernel of .σ t , .λn and .ξn are the eigenfunctions and
eigenvalues of the composite operator .σ tσ

∗
t (.σ

∗
t denotes the adjoint of .σ t ), .•† stands

for transpose-conjugate operation, .B t is a cylindrical Wiener process [22] and .βn
t

are independent (one-dimensional) standard Brownian motions.
Under the stochastic transport notations (1), the governing equations of the

energy-preserved RSW-LU system [4] read

.(Conservation of momentum)

Dtu + f0u
⊥ dt = −g∇η dt, . (2a)

(Conservation of mass)

Dt h + h∇ ·u dt = 0, . (2b)

(Incompressible constraints)

σ tdB t = ∇⊥ϕdBt , ∇ ·∇ · a = 0, . (2c)

(Conservation of energy)

dt

∫

D

1

2
ρ
(
h|u|2 + gh2

)
dx = 0, (2d)

where .u = [u, v]T denotes the two-dimensional horizontal velocity with .u⊥ =
[−v, u]T , .∇ = [∂x, ∂y]T stands for the horizontal gradient with .∇⊥ = [−∂y, ∂x]T ,
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.h(x, t) = H + η(x, t) is the water thickness with H the flat bottom height
and .η the free-surface position, .f0 is a constant approximation of the Coriolis
parameter, g is the gravity constant, .ρ is the water density and .ϕdBt denotes a
random (scalar) stream function defined in a similar way as in (1b). As shown
in [4], the incompressible conditions (2c) for both noise and Itô-Stokes drift
ensure the path-wise conservation of the total energy (2d). We remark that the
analytical properties for the RSW-LU system have been investigated in [16] and
some numerical applications of (2) have been performed in [4].

3 Stationary Solution

We focus now on stationary solutions associated to the previous system. To that
end, neglecting the time increments .dtu and .dt h in (2a) and (2b) and recalling that
.∇η = ∇h due to the flat bottom assumption, we obtain

.

((
u − 1

2
∇ ·a) ·∇u − 1

2
∇ ·(a∇u) + f0u

⊥ + g∇h
)
dt + σ tdB t ·∇u = 0, (3a)

.

((
u − 1

2
∇ · a

) ·∇h − 1

2
∇ · (a∇h) + h∇ ·u

)
dt + σ tdB t ·∇h = 0, (3b)

.σ tdB t = ∇⊥ϕdBt , a = ∇⊥ϕ(∇⊥ϕ)T . (3c)

From Bichteler-Dellacherie decomposition of a semi-martingale, the martingale
terms (i.e. the Brownian terms) and the finite variation terms (i.e. the differentiable
terms) can be safely separated. Decomposing in such way the mass equation (3b)
and considering the corresponding martingale part leads to .σ tdB t · ∇h = 0.
The random surface height gradient is aligned with the large-scale surface height
gradient

.σ tdB t = α∇⊥h, (4)

The noise being divergence free yields that .α is constant along the level sets of h:

.∇α ·∇⊥h = 0. (5)

It is hence necessary of the form .α = φ(h) + C, with C a constant, and .φ a
differentiable function. For such a noise the variance tensor is given by

.a = α2∇⊥h∇⊥hT , (6)

while the ISD reads
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.∇ · a = α2∇ · (∇⊥h∇⊥hT ) = α2(∇⊥h ·∇)∇⊥h, (7)

and we notice that .a∇h = 0. The mass equation then boils down to

.
(
u − 1

2
∇ · a

) ·∇h + h∇ ·u = 0. (8a)

In the same way, we get from a semi-martingale decomposition of (3a) that

.σ tdB t ·∇u = 0, (8b)

which yields

.
(
u − 1

2
∇ · a

) ·∇u + f0u
⊥ + g∇h = 0. (8c)

At this point it is interesting to interpret the random streamfunction in terms of
nondimensional units to infer the importance of the Itô-Stokes drift (ISD) in compar-
ison to geostrophic flows. To that end, we assume that .ϕdBt ∼ √

εT (gH/f0)
√

T ,
where T denotes the characteristic time scale and .εT stands for a small-scale
decorrelation time with .ε the strength of uncertainty (the greater .ε the stronger
the noise is). From definition (3c), the noise’s quadratic variation scales then as
.a ∼ εT (gH)2/(f0L)2 with L the characteristic length scale. As a consequence, the
ratio of the ISD advection term with the geostrophic gradient pressure scales as

.
(∇ · a) ·∇u

g∇h
∼ ε

gH

f 2
0 L2

= ε
L2

d

L2 = εBu, (9)

where .Ld = √
gH/f0 is the Rossby deformation radius, and .Bu denotes the Burger

number, which stands for the ratio between vertical density stratification and the
earth’s rotation in the horizontal (.Bu = (NH/�L)2 = (Ld/L)2). If the ISD
advection has the same importance as the gradient pressure term, then we must
have .

√
ε = L/Ld . This means that when the scale of motions is greater than the

deformation radius, the rotation will dominate and the noise must be important
to have the ISD playing a role. At the opposite, when the scale of motions is
smaller than the Rossby radius, the small-scale flow component does not need to
be important to be as significant as the gradient pressure term. From this point of
view, the deformation radius can be interpreted as the limiting scale under which
the statistically modified advection due to the inhomogeneity of the small-scale
component plays a role.

In the following, we will assume to be at a scale much larger than the deformation
radius, so that the action of the ISD becomes negligible. In that case, the stationary
system finally simplifies as

.(u ·∇)u + f0u
⊥ + g∇h = ∇ · (uh) = 0. (10)
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This system is structurally the same as the nonlinear stationary system, at the
exception of a scaling constraint on the ISD, which makes negligible the nonlinear
advection term. As a matter of fact, noticing that for .u ∝ ∇⊥h, the advection
term corresponds to the ISD (7), it follows that the geostrophic balance, .u =
−(g/f0)∇⊥h, is a stationary solution of such system for a null ISD. We show below
it is the only non-trivial stationary solution of such system.

Let us write the velocity as a superposition of the geostrophic component and an
ageostrophic component:

.u = − g

f0
∇⊥h + v, (11)

where .v is defined through the Helmholtz decomposition from a potential function,
.Φ, and a stream function .Ψ that both depend on the surface elevation:

.v = ∇⊥Ψ (h) + ∇Φ(h), . (12)

= ∇⊥h Ψ ′(h) + ∇h Φ ′(h). (13)

As .∇⊥h belongs to the null space of the velocity gradient (8b), .∇h either belongs
also to the null space or it is an eigenvector of the velocity gradient tensor .(∇u).
From the momentum equation (10) we have

.
(∇hΦ ′(h)

) ·∇v = −f v⊥.

Then if .∇h belongs to the null space of the velocity gradient, .v directly cancels out.
If is an eigenvector of the velocity gradient with eigenvalue .λ, the above equation
reads

.λ∇hΦ ′(h) = −f
(∇hΨ ′(h) + ∇⊥hΦ ′(h)

)
,

which implies .Φ ′(h) = Ψ ′(h) = 0 and hence .v = 0.
Physically, we see hence that the considered nonlinear system admits a stationary

solution for a negligible ISD. Let us note that no such constraint is available in
the deterministic setting. In the following we will interpret this stationary solution
in the linearized stochastic shallow water system in terms of wave solutions and
geostrophic adjustment.

4 Stochastic Rotating Shallow Water Waves

In order to look at the different wave solutions associated to the stochastic shallow
water system (2), we proceed in the same way as in the deterministic case [19, 28]. In
particular, we assume that the noise’s structure in (1b) is independent of the resolved
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prognostic variable .u. In that case, the associated linearized system of (2) reads

.dtu +
(
f0u

⊥ + g∇η − 1

2
∇ · (a∇u)

)
dt + σ tdB t ·∇u = 0, (14a)

.dt η +
(
H∇ ·u − 1

2
∇ · (a∇η)

)
dt + σ tdB t ·∇η = 0, (14b)

.∇ · σ tdB t = ∇ · a = 0, (14c)

.dt

∫

D

1

2
ρ
(
H |u|2 + g(H + η)2

)
dx = 0. (14d)

It can be checked that this system conserves the total energy (14d) in the same way
as the initial nonlinear stochastic system (2) does. For noise defined through Hilbert-
Schmidt correlation tensor this system admits a mild solution [22]. Existence of
strong solution could also be shown from the nonlinear system [16]. In order to build
some simple analytical solutions of this linearized system and to better understand
the physical behaviours of the resulting waves, only very specific noise models will
be considered in the following. We first build the ensemble-mean wave solutions
under homogeneous noise, then investigate the path-wise solutions under constant
noise and under homogeneous noise but with very smooth structures.

4.1 Ensemble-Mean Waves Under Homogeneous Noise

Let us first recall the definition of the homogeneous and incompressible noise:

.σ t (x)dB t =
∫

D
∇⊥ϕ(x − y)dB t (y) dy

=
∑
m

ik⊥
mϕ̂(km)dβt (km) exp(ikm · x), (15a)

.a =
∑
m

|ϕ̂(km)|2k⊥
m(k⊥

m)T , (15b)

where i denotes the imaginary unit, .km = [km, �m]T ∈ R
2 is the m-th wavenumber

vector, .̂• stands for Fourier transform (in space) coefficient and .βt ∈ C are
independent Brownian motions satisfying .βt (−km) = βt (km) with .Re{βt } and
.Im{βt } be independent. This noise is homogeneous, and thus associated to a constant
matrix .a. Its ISD is null and fits naturally the condition on the stationary solution
found in the previous section.

For sake of simplicity, we assume hereafter that the noise is defined by only
one Fourier mode (associated to a wavenumber .kσ ) combined with its complex
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conjugate, namely

.σ t (x)dB t = Re
{
ik⊥

σ α exp(ikσ · x) dβt

}
, a = |α|2k⊥

σ (k⊥
σ )T , (16)

where .α = ϕ̂(kσ ) is assumed to be deterministic and real. This monochromatic
noise can be directly extended to a multi-scale noise model (15a). Results with a
multiscale version of the noise will be shown in the numerical section.

Taking now the expectation (.E) of the linearized random system (14), we have

.∂tE
[
u
] + f0E

[
u
]⊥ + g∇E

[
η
] − 1

2
∇ · (a∇E

[
u
]
) = 0, (17a)

.∂tE
[
η
] + H∇ ·E[

u
] − 1

2
∇ · (a∇E

[
η
]
) = 0, (17b)

where .∂t denotes the partial time derivative. In order to infer the mean wave
solutions, we look for a deterministic ansatz of the form

.E
[̃
q
]
(x, t) = q̂0 exp

(
i(k · x − ωt)

)
, (18)

where .q = [u, η]T = Re
{̃
q
}
is a compact notation for the prognostic variables of

the RSW-LU (14), .̂q0 is the initial constant vector (also assumed to be deterministic)
and .ω is the time-frequency. We remark that .E[̃q] = Ẽ[q] due to the commutativity
of expectation with linear operators.

Injecting next the previous ansatz together with the constant matrix .a (16) into
the system (17), we get .Lq̂0 = 0 with

.L =
(

− iω + 1

2
|α|2(kσ × k)2

)
I3 +

⎡
⎣

0 −f0 igk

f0 0 ig�

iHk iH� 0

⎤
⎦ , (19)

where .I3 stands for the .3× 3 identity matrix, .kσ × k = kσ �− �σ k denotes the cross
product between the wavenumber vectors .kσ and .k with .|kσ × k| = |kσ ||k| sin(θ)

and .θ is the angle between them.
As usual, the dispersion relations are then given by the solution of .det(L) = 0,

namely

.ω = − i

2
|α|2(kσ × k)2, ω = − i

2
|α|2(kσ × k)2 ±

√
gH |k|2 + f 2

0 . (20)

We realize immediately that when the noise has the same direction as the initial
wave (i.e. .kσ ×k = 0), these two frequencies correspond to the steady and Poincaré
(inertia-gravity) waves of the deterministic system [19, 28]. Conversely, when the
noise is not aligned to the initial wave, then the term .− i

2 |α|2(kσ × k)2 leads to
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a damping of the ensemble mean wave. We next construct the mean plane wave
solutions associated to the frequencies (20).

4.1.1 Mean Poincaré Waves

With the value of the last two (opposite) frequencies in (20) and the associated
eigenvector of .L (19), one obtains the following polarization relations:

.E
[̃
q
] =

⎡
⎢⎣

ωk+if0�

H |k|2
ω�−if0k

H |k|2
1

⎤
⎥⎦ η̂0 exp

(
i(k · x − ωt)

)
exp

( − 1

2
|α|2(kσ × k)2t

)
. (21)

Taking the real part, we finally deduce the ensemble-mean wave solution:

.E
[
η
] = η̂0 cos

(
k · x − ωt

)
exp

( − 1

2
|α|2(kσ × k)2t

)
, (22a)

.E
[
u
] = E

[
u‖

] k

|k| + E
[
u⊥

]k⊥

|k| , (22b)

.E
[
u‖

]
(x, t) = η̂0ω

H |k| cos
(
k · x − ωt

)
exp

( − 1

2
|α|2(kσ × k)2t

)
, (22c)

.E
[
u⊥

]
(x, t) = η̂0f0

H |k| sin
(
k · x − ωt

)
exp

( − 1

2
|α|2(kσ × k)2t

)
, (22d)

where the component .E[u‖] is associated to the mean pressure waves that depends
on surface elevation mean, whereas the latter component .E[u⊥] is associated to
mean vorticity waves that are initiated by rotation. Note that in the short waves limit
with .‖k‖2 � 1/L2

d , the mean Poincaré wave corresponds to the inertia-gravity wave
of a shallow water system without rotation. The damping term .exp

( − 1
2 |α|2(kσ ×

k)2t
)
depends on the noise’s wavelength and variance. This term is zero when the

noise and the wave are colinear (i.e. the angle .θ between .kσ and .k is zero). For high
noise magnitude (and .θ �= 0), the damping occurs in a very fast way. In the long
wave limit with .‖k‖2  1/L2

d , the frequency approaches the Coriolis frequency
and the damping term is much less important unless the noise amplitude is very
high. Nevertheless, the exponential damping in time remains when the noise and
the waves are not aligned.

4.1.2 Mean Geostrophic Mode

The polarization for the eigenvalue .ω = − 1
2 |α|2(kσ × k)2 reads
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.E
[̃
q
]
(x, t) =

⎡
⎢⎣

−i
g
f0

�

i
g
f0

k

1

⎤
⎥⎦ η̂0 exp

(
ik · x

)
exp

( − 1

2
|α|2(kσ × k)2t

)
. (23)

The ensemble-mean of the wave solutions are given by

.E
[
η
] = f0η̂0 cos

(
k · x

)
exp

( − 1

2
|α|2(kσ × k)2t

)
, (24a)

.E
[
u
] = −gη̂0k

⊥ sin
(
k · x

)
exp

( − 1

2
|α|2(kσ × k)2t

)
. (24b)

This is a pure vorticity wave. When the noise and the wave are aligned, it
corresponds to a steady wave in geostrophic balance, which is also, as we saw, a
stationary solution of the nonlinear stochastic system associated to a divergence-
free quadratic variation (10). We next look at the path-wise wave solutions under
specific noise.

4.2 Path-Wise Waves Under Constant Noise

As an initial informative example, we first assume that the noise is constant in space
using a zeroth order approximation of the Fourier mode .exp(ikσ · x) in (16). It can
be expressed as

.σ tdB t = Re
{
iαk⊥

σ dβt

}
, a = α2k⊥

σ (k⊥
σ )T . (25)

In order to infer wave solutions, we look for stochastic ansatz of the form

.̃q (x, t) = q̂0 exp
(
i
(
k · x − ωt − Re{iγβt }

))
, (26a)

where .γ is of unit s.−1/2. This ansatz has been shown to be a solution of a linear
stochastic water waves for constant noise in [8]. Applying now the Itô formula [22]
for the deterministic function .(t, z) �→ q̂0 exp

(
i(c − ωt − z)

)
composed with the

random process .Re{iγβt }, we deduce

.dt q̃ = −
((

iω + 1

2
|γ |2) dt + iRe

{
iγ dβt

})
q̃, (26b)

where the second term on the right-hand-side (RHS) comes from the quadratic
variation of the random phase.
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Injecting next the stochastic ansatz (26) as well as the noise definition (25) into
the linearized system (14), we obtain a system composed of differentiable terms and
Brownian (martingale) terms that can be compactly written as

.Lq̂0 dt = 0, L =
(

− iω − 1

2
|γ |2 + 1

2
α2(kσ × k)2

)
I3 +

⎡
⎣

0 −f0 igk

f0 0 ig�

iHk iH� 0

⎤
⎦ ,

(27a)
. − iRe

{
iγ dβt

} + ik ·Re{iαk⊥
σ dβt

} = 0. (27b)

The last equation leads to

.γ = αkσ × k ∈ R. (28)

Substituting it into (27a), we deduce

.L =
⎡
⎣

−iω −f0 igk

f0 −iω ig�

iHk iH� −iω

⎤
⎦ . (29a)

We remark that in this case the linear operator .L for the resolved variables reduces to
the same as that of the deterministic system [19, 28]. Solving subsequently .det(L) =
0 gives us

.ω = 0, ω = ±
√

gH |k|2 + f 2
0 . (29b)

We next construct the stochastic plane wave solutions associated to these frequen-
cies.

4.2.1 Stochastic Poincaré Waves

With the value of the last two frequencies in (29b) and the associated eigenvector of
.L, one can find the following polarization relations:

.̃q(x, t) =

⎡
⎢⎢⎢⎢⎢⎣

ωk + if0�

H |k|2
ω� − if0k

H |k|2
1

⎤
⎥⎥⎥⎥⎥⎦

η̂0 exp
(
i
(
k · x − ωt + γ Im{βt }

))
. (30)

Taking the real part of this ansatz, we deduce the path-wise wave solution:
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.η(x, t) = η̂0 cos
(
k · x − ωt + γ Im{βt }

)
, (31a)

.u(x, t) = η̂0ω

H |k| cos
(
k · x − ωt + γ Im{βt }

) k

|k|

+ η̂0f0

H |k| sin
(
k · x − ωt + γ Im{βt }

)k⊥

|k| . (31b)

In this simple case, we can analytically compute the ensemble-mean from these
path-wise wave solutions. Note that .Xt := k · x − ωt + γ Im{βt } ∼ N (k · x −
ωt, γ 2t), and the characteristic function of the Gaussian process .Xt is given by
.E

[
exp(iXt )

] = exp
(
i(k · x − ωt) − 1

2γ
2t

)
. One can then deduce the mean of the

random ansatz (26), taking its real part leads finally to

.E
[
η
] = η̂0 cos

(
k · x − ωt

)
exp

( − 1

2
γ 2t

)
, (32a)

.E
[
u
] = η̂0

H |k|2
(
ωk cos

(
k·x−ωt

)+f0k
⊥ sin

(
k·x−ωt

))
exp

(− 1

2
γ 2t

)
. (32b)

It can be readily observed from the random dispersion relation (28), that we recover
the general mean solution (22) presented in the previous section.

4.2.2 Stochastic Geostrophic Mode

The polarization for the eigenvalue .ω = 0 reads

.̃q(x, t) =
⎡
⎢⎣

−i
g
f0

�

i
g
f0

k

1

⎤
⎥⎦ η̂0 exp

(
i
(
k · x + γ Im{βt }

))
. (33)

The path-wise wave solutions are then given by

.η = f0η̂0 cos
(
k · x + γ Im{βt }

)
, u = −gη̂0k

⊥ sin
(
k · x + γ Im{βt }

)
. (34)

Similarly, one can recover the general mean solution (24) by taking the expectation
of these path-wise solutions. As in the previous case only the waves that are excited
by the stochastic forcing remain active on long terms horizon.
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4.3 Approximation of Path-Wise Waves Under Homogeneous
Noise

We now extend the previous solution to statistically homogeneous noise. In the same
way as previously we will assume a monochromatic noise as defined in (16), but now
slowly varying in space:

.σ tdB t = Re
{
iαk⊥

σ exp(iεkσ · x)dβt

}
, a = |α|2k⊥

σ (k⊥
σ )T , (35)

where .ε  1 is a small parameter to ensure the smooth structure of the noise. To
infer wave solutions for such homogeneous noise, we now look for the following
ansatz:

.̃q (x, t) = q̂0 exp
(
i
(
k · x − ωt − Re

{
iγ exp(iεkσ · x)βt

}))
, (36a)

which generalizes our previous ansatz to homogeneous noise. Applying the Itô
formula for this ansatz, we have

.dt q̃ = −
((

iω + 1

2
|γ |2) dt + iRe

{
iγ exp(iεkσ · x)dβt

})
q̃. (36b)

Injecting these solutions ansatz into system (14), we can separate again the
Brownian parts and the time-differentiable component. The former reads

. − iRe
{
iγ exp(iεkσ · x)dβt

} + ik ·Re{iαk⊥
σ exp(iεkσ · x)dβt

} = 0, (37a)

which leads to

.γ = αkσ × k ∈ R. (37b)

In a similar way to the previous case, substituting this random dispersion into the
diagonal component of the resolved linear operator satisfying .Lq̂0 dt = 0, we get
.diag(L) = −iωI3. However, in order to compute the gradient terms of the anti-
symmetric part of .L, the random phase is linearized as

.̃q (x, t) ≈ q̂0 exp
(
i
(
k · x − ωt − γRe

{
i(1 + iεkσ · x)βt

}))
,

= q̂0 exp
(
i
(
(k + εkσ γRe{βt }︸ ︷︷ ︸

:=k̃t

) · x − ωt + γ Im{βt }
))

. (38)

Hereafter, .̃kt = [̃k, �̃]T is referred to as the effective wavenumber vector ensuing
from the space varying random phase. It can be noticed that the real component of
the complex Brownian path influences the wave’s spatial phase, whereas the wave’s
temporal phase is randomized by the imaginary component. This latter has already
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been considered in the constant noise case. With the previous approximation, the
linear operator .L can be finally written as

.L =
⎡
⎣

−iω −f0 igk̃t

f0 −iω ig�̃t

iH k̃t iH �̃t −iω

⎤
⎦ . (39a)

The two resulting dispersion relations are now given by

.ω = 0, ω = ±
√

gH
∣∣̃kt

∣∣2 + f 2
0 . (39b)

The latter random dispersion relation reduces to the previous relation (29b) (asso-
ciated to a spatially constant noise) when .ε = 0. We note that the homogeneous
random noise leads to wave scattering. Such phenomena corresponds to similar
results found in the setting of theWentzel-Kramers-Brillouin approximation [15, 21]
or more recently through Wigner transform [7, 13, 14]. The stochastic framework
explored here leads nevertheless to simpler formal developments.

In the same way as previously, we exhibit in the following the two types of
stochastic waves associated to this spatially slowly varying homogeneous noise.

4.3.1 Stochastic Poincaré Waves

The path-wise wave solution in this case can be written as

.η(x, t) = η̂0 cos
(̃
kt · x − ωt + γ Im{βt }

)
, (40a)

.u(x, t) = η̂ω

H
∣∣̃kt

∣∣ cos
(̃
kt · x − ωt + γ Im{βt }

) k̃t∣∣̃kt

∣∣

+ η̂f0

H
∣∣̃kt

∣∣ sin
(̃
kt · x − ωt + γ Im{βt }

) k̃
⊥
t∣∣̃kt

∣∣ . (40b)

It can be remarked that the surface elevation phase has two sources of randomness:
a temporal one, in the modified frequency, and one in space coming from the
space varying noise. For .k = kσ the solutions corresponds again to the classical
deterministic waves, while, as shown in Sect. 4.1, when .k �= kσ , the mean of
the stochastic wave solutions (22) is damped compared to the deterministic surface
elevation (.hd(x, t)).
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4.3.2 Stochastic Geostrophic Mode

The path-wise wave solutions are given by

.η = f0η̂0 cos
(̃
kt ·x + γ Im{βt }

)
, u = −gη̂0k̃

⊥
t sin

(̃
kt ·x + γ Im{βt }

)
. (41)

These solutions correspond to dispersive geostrophic modes wave packet. The
velocity wave is a pure vorticity wave packet. Its ensemble mean is also damped
for .k �= kσ and corresponds to the geostrophic stationary wave for .k = kσ (24).

As a final word, on the general linear stochastic shallow water system, it can
be noticed that in the long wave limit with .|̃k|2  1/L2

d , (when the frequency
approaches the Coriolis frequency), the pressure gradient force becomes negligible
compared to the other terms in (14a), and for a noise amplitude of order unity the
linear shallow water system boils down to a linear stochastic transport equation in a
rotating frame:

.dtu +
(
f0u

⊥ − 1

2
∇ · (a∇u)

)
dt + σ tdB t ·∇u = 0. (42)

Up to the diffusion and noise term (whose energy balances exactly) this closely
corresponds to the so-called near inertial regime in which the fluid is purely
transported. In the LU setting, the noise acts always as a random deviation whose
energy is exactly compensated by the diffusion term. In the particular case of the
shallow water model (linear or nonlinear) the total energy is conserved. For the
linear system the total energy of the mean being damped up to a constant, the total
energy variance increases up to a constant as a consequence of the total energy
conservation.

4.4 Numerical Illustrations

We next give simple illustrations of the stochastic wave solutions. Here, rather than
evaluating the analytical solutions presented in the previous sections, we propose
to discretize numerically the linearized RSW-LU system (14) and perform Monte-
Carlo simulations in order to estimate both path-wise and ensemble-mean wave
solutions. To that end, the spectral (Fourier) method is adopted for the spatial
discretization within a periodic domain, and an exponential integrator [8] combined
with the Milstein scheme [9] is used to approximate the mild solution. This semi-
discrete problem can be written as

.q̂ (1) = −ik · ̂(q tσ tΔBt ), (43a)

.q̂ (2) = −ik · ̂(q (1)σ tΔBt ), (43b)
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.̂q t+Δt = exp(AΔt)

(
q̂ t + q̂ (1) + 1

2
q̂ (2)

)
, (43c)

.A =
⎡
⎣

0 f0 −igk

−f0 0 −ig�

−iHk −iH� 0

⎤
⎦ , q =

⎡
⎣

u

v

η

⎤
⎦ , (43d)

where .̂• denotes the projection coefficient on the discrete Fourier modes, .q =
F−1(̂q) is the inverse discrete Fourier transform of .̂q, .Δt and .ΔBt stands for the
timestep and the Brownian motion’s increment respectively. We remark that the
classical 2/3 dealiasing rule can be adopted for the practical computations of (43a)
and (43b).

A deterministic monochromatic wave corresponding to a single frequency of the
Poincaré waves (propagating to the left) is fixed as the initial condition:

.̂q0 =
⎡
⎢⎣

ωk+if0�

H |k|2
ω�−if0k

H |k|2
1

⎤
⎥⎦ δ(k − k0), ω =

√
gH

∣∣k∣∣2 + f 2
0 , (44)

where .δ denotes the Dirac function and .k0 is the initial wavenumber vector.
For the simulation configuration, we consider a squared shallow basin of length

.L = 5120 km and depth .H = 100m at mid-latitude (.f0 = 10−4 s.−1) and a large-
scale wave with .k = [3Δk, 0Δ�]T , where .Δk = Δ� = 2π/L. Each random
system either under constant (25) or under homogeneous noises (16) has been
simulated over 5 years with 100 realizations. We remark that here we do not use the
smoothness approximation (35) in the homogeneous case. The noise’s amplitude is
fixed as .α = √

τg/f0, where .τ = Δx/
√

gH with .g = 9.81m s.−2, .Δx = 40 km
and .Δt = 5τ .

Figure 1 illustrates the evolution of the path-wise surface elevation .η and of
the ensemble-mean solution .E[η] under a constant noise which has a different
direction (with .kσ = [4Δk, 6Δ�]T ) than that of the wave (.k0). In this case, the path-
wise solution preserves the magnitude of the initial monochromatic wave while the
ensemble-mean wave is damped along time.

Figure 2 demonstrates the results obtained with the homogeneous noise (with
the same .kσ as in the previous case). In that case, the path-wise wave is dispersive
(scattering effect) whereas the mean wave is dissipative.

The solutions related to the homogeneous noise is rougher than for a constant
noise. The damping associated to the mean solution is visually similar in both case.

We then diagnosed an energy decomposition with respect to ensemble of
different runs in Fig. 3. This decomposition consists of the (ensemble) mean of
energy .E

[ ∫
D

1
2 (H |u|2+gη2) dx

]
, the energy of (ensemble) mean .

∫
D

1
2

(
H |E[u]|2+

gE[η]2) dx and the energy of “eddy” .E
[ ∫

D
1
2

(
H |u − E[u]|2 + g(η − E[η])2) dx]

.
Figure 3 shows that for both noise models, the energy of mean waves is quickly
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Fig. 1 Illustration for the path-wise surface elevation (top) and its ensemble-mean (bottom) with
constant noise (with .kσ × k �= 0) at different time (by columns)

Fig. 2 Illustration for the path-wise surface elevation (top) and its ensemble-mean (bottom) with
an homogeneous noise (with .kσ × k �= 0) at different time (by columns)

dissipates along time while the energy of eddy waves increases with the same
rate and continuously backscatters the variance to the ensemble. This mechanism
ensures that the mean of the random energy is preserved in time. This corresponds
well to the characteristic (2d), (14d) of the proposed stochastic transport model.

Figure 3 illustrates also the dissipation rate of the energy of the mean waves in
terms of different scales of the noise (equivalently, different angles of directions
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Fig. 3 (Top) Time evolution of energy decomposition (w.r.t. ensemble) with constant (left) and
homogeneous (right) noises; (Bottom) Comparison of dissipation of ensemble mean for different
noise’s scales

Fig. 4 Illustrations under multi-scale noise. From left to right: pathwise wave solution after 5 years
simulation, the corresponding ensemble-mean and evolution of energy decomposition

between the noise and the wave). The numerical results confirm our analyses in
Sect. 4: the larger the angle .θ , or the smaller the noise’s scale .kσ , the faster the
mean waves are damped in both cases.

Furthermore, propagation of the monochromatic wave by a multi-scale noise
model have been numerically tested. In particular, we consider a band of wavenum-
bers for the noise, .kσ = {kj }j=m,...,M with .|km| < |kj | < |kM |, ∀m < j < M ,
satisfying the .−3 spectrum power law: .α2

j |k⊥
j |2 = α2

m|k⊥
m|2 (|kj |/|km|)−3, i.e. .αj =

αm(|kj |/|km|)−5/2. Figure 4 shows the results with .km = [5Δk, 5Δ�]T , .αm = α (as
mentioned above) and 10 wavenumbers in total with uniform step .Δk. After 5 years
of simulation, the pathwise wave is dispersive while the mean wave is dissipative,
and both of them are more irregular than the monochromatic noise solutions (see
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Fig. 2). We obtain also the consistent conclusion for the ensemble decomposition of
the total energy. Moreover, the conversion from energy of mean to energy of eddy
in this case is more faster and efficient than that of the monochromatic noise model
(see Fig. 3).

5 Shallow Water PV Dynamics and Geostrophic Adjustment

The geostrophic adjustment is the process by which the flow and the pressure
field tend to mutually adjust at large scale under the influence of earth’s rotation.
An obvious manifestation of this adjustment corresponds to isobaric wind field
and geostrophic current in the ocean. In the classical case of the deterministic
linear shallow water model the geostrophic adjustment can be explained in terms
of a variational formulation as the state of minimum energy corresponding to a
given constant value of the potential vorticity (PV). Within the LU modelling, the
geostrophic adjustment can be explained from the nonlinear system. To that end, let
us derive the PV equation of the stochastic system (2). Taking first the curl of the
momentum equation (2a) under the space-time invariant Coriolis parameter .f0, we
have

.Dt (ξ + f0) = −(ξ + f0)∇ ·u dt + [∇⊥u,∇σ tdB t

]
F

+ 1

2

∑
i,j=1,2

∂xi
∂xj

(∇aij × u
)
dt, (45a)

where .ξ = ∇×u = ∂xv−∂yu denotes the relative vorticity and .[A,B]F = tr(AT B)

stands for the Frobenius inner product of two matrices .A and .B. Applying next the
chain rule [24] for the stochastic transport of height (2b), one obtain

.Dt h
−1 = h−1∇ ·u dt. (45b)

Let us recall the product rules of two stochastic transport equations in the following.
In particular, if two arbitrary tracers .θ and .ζ satisfy

.Dt θ = Θ dt, Dt ζ = Z dt + ΣdBt , (46a)

where .Θ,Z are time-differentiable forcing terms and .Σ a martingale forcing
component, then according to the Itô-integration-by-part formula [22], we have

.Dt (θζ ) = θDt ζ + ζDt θ − d
〈 ∫ t

0
σ sdBs ·∇θ,

∫ t

0
ΣdBs

〉
t
, (46b)
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where the last bracket term denotes the quadratic covariation of two martingales
[22]. Applying such rule for .θ = h−1 and .ζ = ξ + f0 associated with (45), one
deduces the stochastic evolution of the PV, .q = (ξ + f0)/h, namely

.Dt q = h−1[∇⊥u,∇σ tdB t

]
F

+ 1

2
h−1

∑
i,j=1,2

∂xi
∂xj

(∇aij × u
)
dt

− d
〈 ∫ t

0
σ sdBs ·∇h−1,

∫ t

0

[∇⊥u,∇σ sdBs

]
F

〉
t
. (47a)

Opposite to the deterministic shallow water case the PV is not transported by the
stochastic flow in general and some source/sink terms appear on the right-hand
side of this PV equation. These source/sink terms reflect here the action of the
small-scale on the non conservation of PV. In the deterministic context, PV is very
sensitive to turbulence and subgrid modelling [3]. The same mechanism is at play
here. We can nevertheless explore the condition for which PV remains conserved in
the setting of a stochastic modeling of the small scales effect. The first and last terms
cancel if the large-scale velocity field and the small-scale random component align
with each other up to a uniform vector field. The second term trivially cancels if the
random field is homogeneous in space (as in that case .a becomes a constant matrix).
With these two previous conditions (alignment and homogeneity) PV is path-wise
conserved. For homogeneous (incompressible) noise the expectation can be written
in flux form and the mean PV is globally conserved. For homogeneous field, the PV
equation reduces then to

.Dt q = h−1[∇⊥u,∇σ tdB t

]
F

− d
〈 ∫ ·

0
σ tdBs ·∇h−1,

∫ ·

0

[∇⊥u,∇σ tdBs

]
F

〉
t
.

(47b)

The above equation, combined with the previous results on the stochastic linear
dynamics, enables revisiting the mechanism of geostrophic adjustment in the
presence of a forcing. The corresponding global pictures is as follows. Let us
first consider random fluctuations in the ocean generated by wind forcing at large
scales. Then, due to the wavelength mechanism described in the previous section,
all the waves that are not aligned with this forcing are smoothed out and eventually
annihilated following an exponential decay. The only waves that eventually remain
are aligned with the wind forcing, which at large scale corresponds essentially to
near inertial waves, and the PV dynamics corresponds then to a pure transport.
Thus, the system tends then to relax to a balanced state as in the deterministic
case. Conversely, we can devise a similar picture in the atmospheric context, in a
configuration where the ocean plays the role of a noise for the atmosphere. The
atmospheric waves will evolve toward a near inertial wave field aligned with the
noise, following the exact same process. As a result, merging these two perspectives
provides an interesting ocean/atmosphere coupling mechanisms of auto adjustment.
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At small scales, things are more complicated as the ISD has to be taken into account
with an isotropization process that is likely less obvious. As a result the forcing
terms in the PV equation remain. Furthermore, in that case the smooth spatial
structure assumption of the noise imposes a very low noise amplitude. For the study
of strong small-scale forcing this assumption as well as the wave ansatz associated
to it have to be revisited. This will be the objective of future works.

6 Conclusions

This stochastic extension of the shallow water equations highlights the behavior
of the LU setting for large-scale representation of flow dynamics. Opposite to
classical eddy viscosity models, which introduces a similar damping term on the
waves form, here, the waves that are sustained by the noise term keep their full
classical expressions. This provides a simple mechanism for waves selection and
an interesting simplified model explaining the emergence of near inertial waves in
ocean atmosphere systems. In the LU representation of the linearized shallow water
system, the ensemble-mean waves that are not excited by a noise term with the same
wavelength vanish exponentially fast whereas the others correspond to the classical
deterministic wave solutions. The decay rate depends on the noise variance and on
the wavenumber (in a quadratic way). The vanishing is therefore all the more fast
for waves with small wavelength. The noise acts hence as a Dirac comb on the mean
wave field.
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