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Abstract : 

The Kuroshio Current flows northward along the east coast of Taiwan toward the Okinawa Trough and 
the East China Sea, but its dynamics and trajectory were probably different during the Last Glacial 
Maximum (LGM) due to the globally lower sea level that could have caused a (debated) deflection of the 
current along the eastern edge of the Ryukyu Arc.  

Core MD18–3532 has been recovered in an intra-slope basin of the Ryukyu accretionary prism, currently 
disconnected from the Kuroshio Current, but would have been on its trajectory in case of a NE deflection. 
Measurements of clay mineral assemblages and illite crystallinity revealed that Taiwan has been the main 
sediment source at this site over the last 26 kyr. The significantly higher sedimentation rate from the Last 
Glacial Maximum to the Bølling–Allerød compared with the period from the Younger Dryas to the 
Holocene, coupled with very low δ15Nsed during LGM and Heinrich Stadial 1, provide evidence for the 
transport of sediments and Trichodesmium spp. cyanobacteria by the partially deflected Kuroshio Current 
toward the eastern edge of the Ryukyu Arc. Combined with δ13Corg, TOC, TN, and XRF analyses, an 
increase in primary productivity has been observed during LGM and Heinrich Stadial 1. This would have 
been caused by an enhanced East Asian Winter monsoon winds resulting in the deepening of the mixed 
layer that would have led to the upwelling of the Kuroshio Current nutrient-enriched subsurface waters to 
the oligotrophic surface waters, and the supply of dust-borne iron from the Chinese Loess Plateau. 
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Highlights 

► The Kuroshio Current deflected partially eastward during the LGM and HS1. ► The Kuroshio Current 
exerts a strong control on the dispersion of hypopycnal flows. ► Dust and upwelled nutrients under 
intensified EAWM control paleoproductivity. ► Intensified primary productivity in the NW Philippine Sea 
during the LGM and HS1. 

 

Keywords : Kuroshio Current deflection, NW Philippine Sea, Taiwan paleoceanography, primary 
productivity, last deglaciation, Trichodesmium spp. 
 
 

 

 



1 Introduction 

The Kuroshio Current is the western boundary current of the North Pacific Subtropical 

Gyre. It flows northward along the eastern coast of East Asia (Fig. 1a), transferring heat, 

salinity and moisture from the Indo Pacific Warm Pool to the high latitudes. While its surface 

water is oligotrophic, marked by low concentration of chlorophyll-a (Chen et al., 2022) 

reflecting reduced phytoplanktonic activity, the Kuroshio Current transports large quantities 

of nutrients on the subsurface (300 – 600 m; maximum core of the nutrient flux at 400 – 500 

m depth) (Chen et al., 2017; Guo et al., 2012). It is also at the origin of a “water barrier” 

effect in the East China Sea preventing the export of sediments from Chinese rivers (e.g. 

Yangtze River) to the Okinawa Trough during summer. This “water barrier” effect decreases 

during the winter, enhancing the export of sediments to the Okinawa Trough (Zheng et al., 

2016). 

As a result of this transfer of heat and moisture, the Kuroshio Current has a major impact 

on global scale by regulating the thermal balance between low and high latitudes, and on 

regional scale by regulating local climate and ocean dynamics (Hu et al., 2015). The gradual 

intensification of the Kuroshio Current over the deglaciation under the influence of East 

Asian Monsoon changes and the El Niño Southern Oscillation is well established (Li et al., 

2020; Lim et al., 2017; Zheng et al., 2016; Zou et al., 2021). However, over the past two 

decades, the Kuroshio Current has been the subject of debate (Li et al., 2020; Lim et al., 

2017; Ujiié and Ujiié, 1999; Vogt‐Vincent and Mitarai, 2020; Wang et al., 2015; Zheng et al., 

2016) regarding whether it was still able to flow through the Yonaguni Depression and 

remain in the Okinawa Trough, or whether it was deflected eastwards along the eastern 

edge of the Ryukyu Arc, as a result of the ∼130 m drop in sea level (Lambeck et al., 2014) 
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during the Last Glacial Maximum (LGM; 23.0 – 19.0 thousands of years ago; ka afterwards) 

(Mix et al., 2001). At glacial/interglacial and stadial/interstadial scale, the deflection of the 

Kuroshio Current pathway out of the Okinawa Trough may affect East Asia and the East 

China Sea through changes in East Asian Summer Monsoon (EASM) rainfall patterns (Sasaki 

et al., 2012), the range of East Asian Winter Monsoon (EAWM) winds propagation (Pan et al., 

2018), the ability of typhoons to sustain themselves with the heat and moisture of the 

surface ocean (Fujiwara et al., 2020; He et al., 2022; Liu and Wei, 2015; Wu et al., 2008), and 

through primary productivity changes outside and inside the Okinawa Trough (Chen, 2000).  

Previous studies based on planktonic foraminifera (Ujiié and Ujiié, 1999; Ujiié et al., 

2003), clay mineral analysis (Diekmann et al., 2008; Dou et al., 2010) and Sr-Nd isotopes 

(Dou et al., 2012) suggest a complete deflection of the Kuroshio Current from the Okinawa 

Trough toward the eastern edge of the Ryukyu Arc during LGM and its return to the Okinawa 

Trough since at least 14 ka. Other studies using geochemical (Lim et al., 2017; Xu et al., 

2019), mineralogical (Li et al., 2019), paleotemperature proxies (Kim et al., 2015; Li et al., 

2020) and modeling results (Vogt‐Vincent and Mitarai, 2020; Zheng et al., 2016) suggest that 

the Kuroshio Current did not deflected and would have persisted, albeit weakly, in the 

Okinawa Trough during the low sea level period, beginning to strengthen since ~14 ka. 

These previous studies are mainly based on sediments collected in the Okinawa Trough, 

and little attention has so far been paid to the northwestern Philippine Sea, south of the 

Ryukyu Arc (Fig. 1a), where deflection, if any, would have occurred. To fill this gap, in this 

study we analyze sediment core MD18-3532, located in an intra-slope basin of the Ryukyu 

accretionary prism in the northwest Philippine Sea (Fig. 1b). This core is currently 
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disconnected from the Kuroshio Current, but might have been on its pathway during the low 

sea level period if it had deflected eastward. 

The Kuroshio Current carries sediments delivered to the surface waters by eastern 

Taiwanese rivers (Diekmann et al., 2008; Dou et al., 2012; Li et al., 2019; Wang et al., 2015). 

A change in the amount and/or source of sediment could therefore be an indicator of the 

deflection of the Kuroshio Current or a weakening of its “barrier effect” that prevents the 

offshore export of sediments from Taiwan (Fig. 1b). Also, the emergence of the East China 

Sea shelf during the glacial low sea level drove the migration of the Yangtze River mouth 

across the shelf to the border of the Okinawa Trough, with those sediments being carried 

directly into the Okinawa Trough (Dou et al., 2012, 2010; Li et al., 2019) and possibly to the 

Ryukyu accretionary wedge area, becoming an additional sediment sources. Finally, 

enhanced EAWM during LGM and Heinrich Stadial 1 (HS1; 18.0 – 14.7 ka) (Denton et al., 

2010) might have transported dust from Chinese Loess Plateau to the Philippine Sea as 

evidenced by previous studies (Jiang et al., 2016; Wan et al., 2012; Xu et al., 2015). 

Therefore, in order to constrain potential changes in sediment supply and sources, we have 

investigated the provenance of the sediments by using clay minerals and illite crystallinity as 

sediment source indicators (Dou et al., 2010; Li et al., 2012; Nayak et al., 2021) and 

sedimentation rate variability.  

In addition, the Kuroshio Current is well-known to carry abundant Trichodesmium spp. 

cyanobacteria (Chen et al., 2008; Shiozaki et al., 2015), characteristic of its oligotrophic 

surface waters (Chen et al., 1995; Kodama et al., 2014), that generate significant nitrogen 

fixation compared to the rest of the Philippine Sea (Liu et al., 1996; Shiozaki et al., 2015). 

Therefore, we have also used sedimentary δ15N (δ15Nsed) to reconstruct changes in nitrogen 
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fixation that might indicate a deflection of the Kuroshio Current rather than a weakening of 

its “barrier effect”.  

Finally, the Kuroshio Current transports nutrients to the subsurface which when brought 

to the surface lead to the increase in primary productivity (Chen et al., 2022; Chen, 2000). 

During Marine Isotope Stage 2 (MIS 2; 27.8 – 14.7 ka; Sanchez Goñi and Harrison, 2010), the 

combination of a deflected Kuroshio Current with enhanced EAWM winds might have 

increase the primary productivity by supplying dust-borne iron to the study area and 

deepening the mixed layer, causing upwelling of Kuroshio Current nutrient-rich subsurface 

water. Therefore, using organic and inorganic geochemical proxies (TOC, TN, δ15Nsed, δ13Corg, 

Br/Al, Ti/Al and Fe/Al) combined with previous geochemical proxies, we investigate changes 

in the paleoproductivity in the northwestern Philippine Sea that might indicate the partial 

deflection of the Kuroshio Current. 

2 General setting 

Taiwan is located along the Eurasian margin (Fig. 1a), between 21°54’N and 25°18’N, and 

is climatically under the influence of the EASM and typhoons (Chen and Chen, 2003; Chen et 

al., 2010) that generate in the West Pacific Warm Pool (Gray, 1977). The hydrological regime 

is characterised by heavy rainfall comprised between 1500 – 2500 mm yr-1, reaching 5000 

mm yr-1 in the north and north-east of Taiwan (Li et al., 2013; Resentini et al., 2017). The 

large surrection rate (5 – 20 mm yr-1; Ching et al., 2011; Hsu et al., 2018) is compensated by 

an average erosion rate of 1 to 10 mm yr-1 over the whole island, which can reach 30 to 60 

mm yr-1 locally (Dadson et al., 2003). This erosion causes an important and rapid export of 

sediments to the ocean by hypopycnal and hyperpycnal flows (Dadson et al., 2005; Mulder 

et al., 2003) that reach 208 to 332 Mt yr-1, including 68.5 (± 35.4) (±2σ; as all the ±SD 
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hereafter) Mt yr-1 through the north-eastern rivers of Taiwan (Lanyang – Hualian rivers) 

(Resentini et al., 2017). This results in high sedimentation rates in the coastal regions of 

Taiwan of few hundred cm kyr-1 (see supplementary materials) (Li et al., 2009; Wei et al., 

2005; Yu et al., 2017). High sedimentation rates are also observed in the western mud area 

of the East China Sea shelf (100 – 300 cm kyr-1) related to the transport of sediments from 

the Yangtze River (480 Mt yr-1 ; Xu et al., 2007) and, to a lesser extent, transport of the 

Taiwanese rivers (Dong et al., 2020). 

North East Taiwan, in the region of the Ryukyu accretionary prism, hyperpycnal flows 

pass through the Hoping Canyon to the Nanao Basin (Fig. 1b) (3700 m below sea level or 

b.s.l.). These flows possibly do not cross the submarine morphological barrier of the Nanao 

Rise (3 400 m b.s.l.). The absence of pyrrhotite, a characteristic mineral of the Central Range 

(Horng et al., 2012), in the sediments of the East Nanao Basin (Hsiung et al., 2017), supports 

this assumption. Moreover, a reduced occurrence of turbidites in the East Nanao Basin 

(4 600 m b.s.l.) compared to the Nanao Basin has been observed (Nayak et al., 2021). 

Generally speaking, the finest sediment fraction of turbidity flows may remain in suspension 

and cross over topographical ridges of hundreds of meters (Kneller and Buckee, 2000). 

However, the Yaeyama Ridge (2 800 m b.s.l.), a barrier separating the East Nanao Basin and 

the MD18-3532 basin, is about 1 800 m high (Fig. S1 in Supplementary Material), too high for 

allowing the totality of the turbidity flows to cross the obstacle, that could be partial at the 

most and transporting only the finest silts, isolating the intra-slope basins from sedimentary 

inputs from Taiwan and the Ryukyu Arc (Fig. 1b) (Hsiung et al., 2017). The sediments 

constituting the hypopycnal flows are diverted to the Okinawa Trough by the Kuroshio 

Current (Fig. 1a). 
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The Kuroshio Current emerges from the bifurcation of the North Equatorial Current, 

between 8 and 17°N (Qiu et al., 2015) and flows northward along Philippines and Taiwan 

eastern coasts before entering the Okinawa Trough in the East China Sea through the 

Yonaguni Depression (sill depth ±775 m) (Qiu, 2001) and the Kerama Gap (sill depth ±1100 

m) (Na et al., 2014). It exits the East China Sea through the Tokara Strait (sill depth ±690 m) 

(Qiu, 2001) and joins the North Pacific (Fig. 1a). Nowadays, east of Taiwan, the Kuroshio 

Current transports a volume of 11 – 23 Sv (1 Sv = 106 m3 s-1) for a maximum current velocity 

between 0.7 and 1.4 m s-1 (Jan et al., 2015). Its boundary can be delimited by the 0.2 m s-1 

marine isotach at 30 m depth based on historical ADCP data set (Jan et al., 2015). Within 

these limits, its width is between 85 and 135 km for a thickness of 400 to 600 m, centred at 

122°E (Jan et al., 2015).  

Below 600 m, the intermediate waters flow northwards but at a speed of less than 0.2 m 

s-1. When they reach the Ilan Ridge, which bridges Taiwan and the Ryukyu Arc and 

constitutes the bottom of the Yonaguni Depression, the intermediate waters are deflected 

eastward, along the eastern edge of the Ryukyu Island, forming the Ryukyu Current (Wang et 

al., 2019) (Fig. 1a). It exhibits a main core with a velocity maximum of 0.2 to 0.1 m s-1 

between 600 and 1000 m depth (Wang et al., 2019). East of the Kuroshio Current, the 

velocity of the Ryukyu Current is not enough to drag waters above its main core  (Wang et 

al., 2019). However, the Ryukyu Current intensifies along the its path, and south of Okinawa, 

is strong enough to extend its influence to the surface and drag water with it (Wang et al., 

2019). 

As a geostrophic current belonging to the North Pacific subtropical gyre, the Kuroshio 

Current intensity is associated with the horizontal gradient of wind stress on the ocean 
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surface (Hu et al., 2015). Thus, easterlies and westerlies apply respectively a negative and 

positive wind stress curl over the equatorial Pacific; when negative, it causes an 

equatorward migration of the North Equatorial Current compensated by the intensification 

of the poleward Kuroshio Current transport to conserve mass balance, and conversely when 

positive (Hu et al., 2015; Qiu and Lukas, 1996). This wind stress curl is strongly influenced by 

the East Asian Monsoon and the El Niño Southern Oscillation. During EASM and La Niña 

phase, strengthened easterlies induce an increase of the negative wind stress curl, leading to 

a equatorward migration of the bifurcation and hence an intensification of the Kuroshio 

Current. Conversely, during EAWM and El Niño phase, the strengthened westerlies and 

weakened easterlies generate a positive wind stress curl, leading the poleward migration of 

the bifurcation and hence a weakening of the Kuroshio Current (Hu et al., 2015; Qiu and 

Lukas, 1996). 

3 Materials and methods 

The 23 m piston core MD18-3532 (23°28.88’N, 123°5.89’E; water depth: 4325 m) was 

recovered during the EAGER Cruise of the R/V Marion-Dufresne II in 2018. It was collected at 

150 km off the coast of Taiwan, in an intra-slope basin of the Ryukyu arc accretionary wedge 

and out of the present-day mainstream of the Kuroshio Current (Fig. 1a). It is composed of 

dark grey clay with no evidence of turbiditic sediment sequences or large mass transported 

deposits, neither at the naked eye lithology observation, nor on general geometry on seismic 

profiles (N. Babonneau and G. Ratzov, unpublished data). Few millimetre-thick silt/fine sand 

layers concentrated in the uppermost 3 m of the core are found, related to the deposition of 

the queue of fine-grained turbidites derived from turbidite flows thick enough to surmount 

the topographic barrier and reach East Nanao Basin. Volcanic glass has been observed under 
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binocular microscope in the > 150 µm size fraction at 165.5 cm depth. No tephra layers can 

be found at the naked eye inspection. 

The age model was built using 13 radiocarbon dates (Table 1) on mixed planktonic 

foraminifera measured at Alfred-Wegener Institute (Bremerhaven, Germany), using a 

MICADAS-Accelerator Mass Spectrometry (AMS) and at Laboratoire des Sciences du Climat 

et de l’Environnement (Saclay, France) using the ECHoMICADAS-AMS facilities. They were 

converted to calendar ages using Oxcal software version 4.4.4 (Ramsey, 2008) and the 

Marine20 calibration curve (Heaton et al., 2020). A local correction of the reservoir age of 86 

(±40) years was applied (Dezileau et al., 2016). The volcanic glass shards at 165.5 cm 

corresponding to the 7 300-year-old Kikai-Akahoya (K-Ah) eruption (Matsu’ura et al., 2021) 

confirms the age model (Fig. 2). 

The sediment core was scanned at 1 cm resolution using an AVAATECH XRF core scanner 

at IFREMER laboratory “Geo-Ocean” (Plouzané, France) to determine the semi-quantitative 

elemental composition of the sediment in counts per second (Richter et al., 2006). The 

ln(Br/Al) ratio is commonly used to qualitatively reconstruct the relative abundance of 

marine organic matter and to differentiate it from terrestrial organic matter, since Br is 

particularly abundant in the marine realm due to the synthesis of organic bromine-laden 

compounds by bacteria and microalgae (Channell et al., 2019; Harvey, 1980; Hillenbrand et 

al., 2021; Mayer et al., 2007; Nieto-Moreno et al., 2011; Ziegler et al., 2008). Ln(Ti/Al) and 

ln(Fe/Al) can be used to identify the contribution of secondary terrestrial sources of 

sediments by highlighting their difference in composition of terrigenous elements with the 

main source, such as aeolian dust supplies in an environment dominated by fluvial inputs 

(Calvert and Pedersen, 2007; Croudace and Rothwell, 2015; Govin et al., 2012; Martinez-Ruiz 
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et al., 2015). The XRF ratios were smoothed by a 30-point moving average using XLSTAT 

software (Addinsoft, 2016).  

One-cm thick samples were retrieved from the core approximately every 10 centimetres 

(n = 264), corresponding to an average resolution of 100 years. Three-gr subsamples were 

used for geochemical analysis and the rest was sieved at 63 µm to separate the silt-clay from 

the sand fraction. Carbon and nitrogen isotopic (δ15Nsed, δ13Corg) analyses, as well as 

measurements of total carbon (TC), total nitrogen (TN) and total organic carbon (TOC) were 

carried out on those samples. δ15Nsed, δ13Corg, TC and TN were analysed on freeze-dried, 

grounded, and weighed samples at CEFREM laboratory (University of Perpignan, France). 

δ15Nsed, δ13Corg subsamples were decarbonated using repeated additions of 2 mol.L-1 of 

concentrated hydrochloric acid (HCL) until no effervescence was observed. Isotopic values 

were measured with a Eurovector 3000 elemental analyser coupled to a GVI-Isoprime mass 

spectrometer (EA-IRMS). Values are expressed in per mil (‰) relative to the Vienna Pee Dee 

Belemnite standard (V-PDB) for δ13Corg and AIR for δ15Nsed. All samples were measured at 

least in duplicate at CEFREM laboratory (University of Perpignan, France). For each series of 

measurements, High Organic (HO) sediment B2151 and Low Organic (LO) sediment B2153 

certified standards were analyzed at the beginning and end of the series. Standard values 

and errors, as well as the analytical precision and accuracy are reported in Table S1. 

TC and TN values were measured on a CHN Elementar at CEFREM laboratory (University 

of Perpignan, France) and values are expressed in percentage of dry weight (%). TOC was 

calculated by dividing (i) the mass of absolute C by (ii) the total mass of the sample 

multiplied by 100. TOC and TN can originate from primary productivity and/or continental 

input (Hilton et al., 2010; Kao et al., 2014), and they are often used to reconstruct changes in 
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primary productivity (Meyers, 1997; Stein, 1991). Here, TOC has been compared to Br/Al to 

distinguish marine organic matter from terrestrial input, and a marine vs. continental δ13Corg 

mixing model has been performed in order to estimate the terrestrial contribution (Fterr 

δ13Corg) to the organic C accumulation and δ13Corg signature. The equation used take the form 

: Fterr = (X – XM) / (XT – XM), with X the δ13Corg of the sample, XM the marine δ13Corg end-

member and XT the terrestrial δ13Corg end-member (Kandasamy et al., 2018). For this 

purpose, the δ13Corg terrestrial end-member has been estimated at -22.8‰ and the marine 

end-member at -20.0‰ (Goericke and Fry, 1994; Kao et al., 2003). 

The clay minerals were analysed using the XRD PANalytical X'Pert PRO at the Centre 

Européen de Recherches Préhistoriques (Tautavel, France). The analyses were conducted on 

the 2 µm fraction of 65 evenly distributed samples after decarbonation and oxygenated 

water degradation of organic matter. The identification and semi-quantification of the 

different clays was done based on the position and intensity of peaks. Illite and chlorite were 

analysed based on their main peaks at 14 and 10 Å respectively. Kaolinite was measured 

based on the ratio between the intensity of the shoulder at 3.5 Å and the intensity of the 

(002) chlorite peak at 5 Å. The percentages of each clay mineral were determined with 

respect to the abundance of all detected minerals including clay, quartz, and feldspars peaks 

at 4.26 and, 3.24-3.18 Å respectively. Illite crystallinity has been calculated as the full width 

at half maximum of the main illite peak. It can be used to determine the degree of chemical 

(high values) or physical (low values) alteration of a rock (Li et al., 2012) or as an index of 

provenance in the case where the source is partly composed of metamorphic rocks 

(Jaboyedoff et al., 2001; Verdel et al., 2012). 
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4 Results 

4.1 Age model and sedimentation rate 

The age model indicates that the core MD18-3532 covers the last 26 kyr (Fig. 2, Table 1). 

Significant variations in sedimentation rate can be observed and coincide with the depths at 

which radiocarbon measurements were measured, indicating they are artefacts generated 

by the calculation model that has been run using only the dated points (Fig. 2). Two periods 

can be nonetheless highlighted: a “high” sedimentation rate period of 177 cm kyr-1 from 13.3 

(±0.5) to 24.8 (±0.6) ka, and a “low” sedimentation rate period of 38 cm kyr-1 from 3.5 (±0.3) 

to 13.3 (±2.5) ka (Fig. 2 and 3a). Although the exact timing of the transition, 13.3 ±2.5 (0.5) 

ka toward the younger (older) date, has a large error, the transition between these two 

periods takes place during BA. 

4.2 Illite crystallinity, clay minerals abundance and grain size 

The clay minerals are composed of illite, chlorite and kaolinite (Table 2) and variations 

are not substantial throughout the core, although higher percentages of illite and chlorite 

are observed in the Holocene (11.7 – 0.0 ka) (Walker et al., 2009) compared to MIS 2, due to 

the decrease in kaolinite (Fig. 3b). Same as clay minerals, illite crystallinity remain relatively 

constant throughout the core (Table 2; Fig. 3c). The weight percentage of the < 63µm 

fraction ranges from 81.0 to 99.9 with an average of 99.0 (±4.0) and, despite some 

fluctuations, remains stable throughout the core (Fig. 3d). 

4.3 X-ray fluorescence (XRF) 

Ln(Br/Al) values range from -3.70 to -0.46 with an average of -2.67 (±0.72), Ln(Fe/Al) 

range from 2.87 to 4.31 with an average of 3.27 (±0.34) and Ln(Ti/Al) range from 0.61 to 1.48 

with an average of 0.88 (±0.25) (Fig. 3e). These three XRF ratios show a similar trend with a 
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gradual increase during the pre-LGM and LGM with a maximum reached during the Late 

Glacial (LG; 19.0 – 18.0 ka) and HS1, before beginning to decrease at the end of HS1, from 16 

to 7 ka. After 7 ka, the three ratio start to rise again (Fig. 3e). A similar evolution of the trend 

can also be stated by Spearman correlation. Both terrigenous ln(Fe/Al, Ti/Al) ratios show a 

very strong correlation with each other (r = 0.91, p-value < 0.001) and a moderate 

correlation rate with ln(Br/Al) (r = 0.64 – 0.65, p-value < 0.001) (Table S2). The Spearman 

correlation coefficient with ln(Br/Al) increase after smoothing the data using a 30-order 

moving average (r = 0.74, p-value < 0.001) (Table S3). 

4.4 Isotopic geochemistry 

δ15Nsed values range from -1.6 to 7.4‰ with an average of 3.1‰ (±3.2) (Fig. 3f). They 

show relatively high values during the pre-LGM before abruptly decreasing at the beginning 

of LGM. Then, they observe a sharp decrease to much lower values until the mid-BA, with 

mean values from LGM to 13.6 ka. After the mid-BA, the δ15Nsed rises steeply and stabilize on 

a plateau from Younger Dryas (12.9 – 11.7 ka) (Clark et al., 2012) until the Holocene (Fig. 3f). 

δ13Corg values range from -22.5 to -19.0‰ with an average of -21.3‰ (±1.1) (Fig. 3g). The 

record shows high values during the pre-LGM then a decrease during LGM, before starting to 

increase again during LG to reach a maximum during mid-HS1, around 17.5 – 16 ka. From 16 

ka, δ13Corg values start to decrease progressively to reach a minimum plateau after 8 ka (Fig. 

3g). The marine vs. continental δ13Corg mixing model values show that the contribution of 

marine organic carbon is highest during HS1 and pre-LGM. They show a more moderate 

marine contribution during LGM, LG and BA, and an increase of the terrestrial contribution 

since the end of HS1 to a maximum during the Holocene (Fig. 3h). 
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4.5 Organic geochemistry 

TOC values range from 0.33 to 0.79% with an average of 0.57% (± 0.17) (Fig. 3i). They 

show an increase from the pre-LGM to HS1, then a decrease from Bølling–Allerød (BA; 14.7 – 

12.9) (Clark et al., 2012) until reaching a minimum during the Holocene (Fig. 3i). TN values 

range from 0.05 to 0.14% with an average of 0.09% (±0.03) (Fig. 3j). They show an increase 

from the pre-LGM to LG, then a decrease until the mid-BA, before rising slightly during the 

Holocene (Fig. 3j). 

5 Discussion 

5.1 Origin of sediments in core MD18-3532 

Clay minerals relative abundance show that the sediments of core MD18-3532 are 

dominated by illite and chlorite with traces of kaolinites (Fig. 4e). In the South and East China 

Seas, clay mineral assemblages are commonly used to reconstruct the source of terrigenous 

sediments (Diekmann et al., 2008; Dou et al., 2010; Liu et al., 2016, 2010; Steinke et al., 

2008; Wan et al., 2010). Previous studies have evidenced that in the region, three sources 

are characterized by dominance of illite and chlorite with rare presence of kaolinite: (i) the 

Yangtze River and the East China Sea shelf, (ii) the Taiwan island and (iii) the Chinese Loess 

Plateau (Diekmann et al., 2008; M. He et al., 2013; Li et al., 2012; Nayak et al., 2021; Wan et 

al., 2007; Zhao et al., 2017). 

In Taiwan island, the dominance of illite and chlorite is related to intense physical erosion 

and the rapid transfer of eroded sediments to the ocean, which prevents the chemical 

erosion necessary for the formation of kaolinite (Chamley, 1989; Li et al., 2012). In addition, 

the Central Taiwan Range is composed of polymetamorphic rocks with an abundance of 

slates and schists that generate illite and chlorite (Ho, 1986; Li et al., 2012; Nayak et al., 
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2022). Thus, kaolinite is only a minor mineral of Taiwan, mainly found in Hengchun Peninsula 

and Kenting Plateau, the southern tip of the Taiwan Central Range and its southern 

submarine plateau, and Tainan Shelf, on the SW coast, with an average concentration of 10% 

(Nayak et al., 2021).  

The Yangtze River originates in the eastern part of the Tibetan plateau, whose high 

elevation (>6000 m) leads to increased erosion and cold climate, resulting in a significant 

formation of illite. The bedrock in the upper Yangtze watershed includes intermediate-acid 

igneous rocks and basic basalts which favor the formation of illite and chlorite (M. He et al., 

2013). In contrast, indexes of chemical alteration, erosion and crystallinity of illite indicate an 

increase of chemical weathering in the middle and downstream sections of the watershed 

relative to upstream (M. He et al., 2013). It is marked by an enrichment of kaolinite  due to 

the chemical erosion of granites containing potassium feldspars and muscovite which are 

sources of kaolinite under chemical weathering conditions (M. He et al., 2013). Thus, 

Yangtze transported particulate matter deposits mostly illite and chlorite on the East China 

Sea shelf, with kaolinite present up to 10% on average (M. He et al., 2013; Liu et al., 2006). 

The Chinese Loess Plateau clay mineral assemblage is dominated by illite and chlorite 

with little amount of kaolinite (6 – 10%) (Wan et al., 2007; Zhao et al., 2017). Illite and 

chlorite originate from the erosion of very low- to low-grade metamorphic rocks eroded by 

EAWM winds from northern region of the Tibetan Plateau (Ji et al., 1999), while the 

prevailing aridity and low temperatures in the loess region, particularly during glacial 

periods, limit the chemical weathering that would lead to kaolinite formation (Chamley, 

1989; Maher, 2016). 
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Core MD18-3532 clay minerals abundance could therefore potentially be related to (i) 

erosion of Taiwan massifs, (ii) sediment transport from the Yangtze River, especially during 

low sea level periods, and (iii) airborne transport of loess sediments mainly during glacial 

periods. The Yangtze River source (ii) might be particularly important if we consider a 

weakening of the Kuroshio Current through the Okinawa Trough, and the potential 

establishment of a counter-current in the Okinawa Trough similar to the modern Zhejiang-

Fujian Coastal Current. This latter can originated by an enhanced EAWM, transporting 

sediments southward. The Yangtze River contribution to the sedimentation of the southern 

Okinawa Trough during the deglaciation is supported by the mineralogical composition of 

sediment at the ODP 1202B site (Diekmann et al., 2008) (Fig. 1a). The third source would 

have been particularly intense during LGM and HS1 due to intensified EAWM (E. Huang et 

al., 2011; Sun et al., 2012; Yang et al., 2020). It was caused by the increase of the zonal land-

sea thermal contrast between Eurasia and North Pacific by the cooling of the North 

Hemisphere, resulting in the intensification of the Siberian High over Eurasia (Kutzbach, 

1993; Sun et al., 2012) and Aleutian Low over the western North Pacific (McGee et al., 2018; 

Yanase and Abe-Ouchi, 2007). During HS1, the Atlantic Meridional Overturning Circulation 

weakening in the North Atlantic, combined with the setting of El Niño-like state in the 

equatorial Pacific (Clement et al., 1999; Merkel et al., 2010; Timmermann et al., 2007), 

would have resulted in an even stronger intensification of EAWM than during LGM as 

evidenced by the maximum observed in the Gulang Loess mean grain size (Fig. 4b) (E. Huang 

et al., 2011; Sun et al., 2012; Yang et al., 2020).  

In order to disentangle the potential sediment sources we compared measured illite 

crystallinity values from core MD18-3532 with those measured in previous studies in 

sediments from Taiwan rivers, Chinese Loess Plateau, the Yangtze River and the East China 
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Sea shelf. Illite crystallinity measured present much lower values than those of loess (C. 

Huang et al., 2011; Ji et al., 1999), East China Sea shelf and the Yangtze River (M. He et al., 

2013) (Fig. 5). These values are characteristic of Fe-Mg rich un-weathered illite and of 

physically eroded greenschists typical of the Central Range of Taiwan (Li et al., 2012; Nayak 

et al., 2021) and the stability of these values over the past 26 kyr suggest a steady sediment 

source (Fig. 4f). The source of the kaolinite is more difficult to ascertain, but given the clearly 

Taiwanese signal of illite crystallinity, we suggest that the kaolinite originates from the 

Hengshun Peninsula, southern Taiwan, and remobilization of Kenting Plateau sediments by 

erosion caused by the Kuroshio Current (Das et al., 2021). 

However, although Taiwan appears to be the main and constant source of sediment, 

secondary sources bringing insufficient amounts of sediment to influence the clay 

assemblage may exist. Using ln(Fe/Al) and ln(Ti/Al), we observed an increase in these 

elemental ratios from LGM to HS1 before starting to decrease during BA that might indicate 

supply of terrigenous material from another source than Taiwan (Fig. 4g). As ln(Ti/Al) and 

ln(Fe/Al) show a very strong Spearman correlation degree (r = 0.91 ; Table S2), it suggests 

that ln(Fe/Al) is not affected by redox mechanisms and that both ratios reflect terrestrial 

inputs (Croudace and Rothwell, 2015). Changes in these elemental ratios might be related to 

grain size sorting due to the presence of Ti- and Fe-bearing heavy minerals in the coarse 

fraction (Croudace and Rothwell, 2015; Zhao et al., 2011), but low abundance and small 

variation in the sandy fraction suggest that grain size doesn’t have any effect on these 

elemental ratios (Fig. 3d). The ln(Ti/Al) and ln(Fe/Al) trends are more similar to the evolution 

of the EAWM winds intensity as registered in the Gulang Loess mean grain size (Sun et al., 

2012) and dust mass accumulation rate in core MD06-3047, collected east off Philippines (Xu 

et al., 2015) than to sea level changes (Lambeck et al., 2014) (Fig. 4b). This suggests dust-
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borne Fe and Ti inputs by enhanced EAWM rather than related to the emergence of the East 

China Sea shelf and southeastward migration of the Yangtze River mouth. 

5.2 Changes in the Kuroshio Current pathway  

Given that Taiwan has been established as the major and constant source of sediment, 

we investigate hypotheses that could explain the high sedimentation rate observed from 

LGM to BA (Fig. 4d). From the LGM to HS1, the weakening of the easterly trade winds due to 

an enhanced EAWM (Cheng et al., 2016; Steinke et al., 2010; Sun et al., 2012), El Niño-like 

conditions (Clement et al., 1999b; Ford et al., 2015; Koutavas et al., 2002; Yamamoto, 2009) 

and weakened Walker Circulation (Hollstein et al., 2018; Tian and Jiang, 2020) led to the 

decrease of the positive wind stress curl over the equatorial North Pacific (Hu et al., 2015). 

This would have caused the northward migration of the North Equatorial Current bifurcation 

resulting in the weakening of the Kuroshio Current (Hu et al., 2015; Qu and Lukas, 2003; Zou 

et al., 2021). Therefore, Kuroshio Current’s decline could have caused a reduction of the 

“barrier effect”, allowing surface sediment plumes to spread eastwards, toward the study 

area. 

On the other hand, at least partial deflection of the Kuroshio Current along the eastern 

edge of the Ryukyu Arc might also have transported eroded sediments from Taiwan to the 

study site. This deflection could have been caused by the ∼130 m drop in sea level during 

the LGM (Lambeck et al., 2014) decreasing the water depth in the Yonaguni depression. This 

would have caused an increase in the intermediate water volume diverted eastwards, 

strengthening the Ryukyu Current and ultimately dragging the surface water to form an 

eastern branch of the Kuroshio Current (Fig. 6). 
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Both hypotheses are consistent with an increase in the sedimentation rate from LGM to 

BA (Fig. 4d). Previous publications observed an intensification of the Kuroshio Current in the 

Okinawa Trough during BA (Li et al., 2020, 2019; Lim et al., 2017) (Fig. 7d and 7e) that could 

have been induce by a renewed efficiency of the “water barrier” effect. On the other hand, 

the sea level rise from – 100 to – 60 m during BA (Lambeck et al., 2014) (Fig. 7c) might be at 

the origin of a decrease in the Ryukyu Current intensity by reducing the intermediate water 

volume diverted eastward and increasing it in the Yonaguni Depression. This would have 

resulted in the collapse of the Kuroshio Current eastern branch and intensification of the 

Kuroshio Current in the Okinawa Trough as observed in the increase of sea surface 

temperatures (Li et al., 2020; Sun et al., 2005) (Fig. 7d), deepening of the thermocline (Li et 

al., 2020) (Fig. 7e) and in the relative contribution of detrital ferrimagnetic minerals to bulk 

magnetic properties (Li et al., 2019). 

From 22.5 – 13.6 ka, the high sedimentation rate is concomitant with δ15Nsed values 

averaging 2.1‰ (±1.3) (Fig. 7g). Those low values might be attributed to three mechanisms: 

(i) grain size sorting effect (Robinson et al., 2012; Schubert and Calvert, 2001), (ii) continental 

influence due to the main dominance of illite in Taiwanese clay mineral assemblages 

(Robinson et al., 2012) or (iii) nitrogen fixation by cyanobacteria (Galbraith et al., 2008; Kim 

et al., 2017). The high abundance and the small variation of the < 63 µm fraction (Fig. 3d) 

suggest that grain size sorting (i) does not have any effect on δ15Nsed signature. The 

continental influence (ii) is potentially possible, as it is linked to the presence of NH4
+ in the 

interfoliar space of illite clay. However, δ15Nsed and TN data show a non-significant Spearman 

correlation with illite (p > 0.05; Table S4), indicating that illite inputs have no influence on 

δ15Nsed or TN values. Furthermore, measurements in rocks from Taiwan show higher δ15N 
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values (>3‰) (Owen, 2013; Yui et al., 2009) suggesting that terrestrial input from Taiwan do 

not influence δ15Nsed.  

Thus, we suggest that the δ15Nsed records is mainly controlled by nitrogen fixation. The 

Kuroshio Current carries abundant Trichodesmium spp. cyanobacteria that originate in 

blooms around the Pacific island along its path (Chen et al., 2008; Shiozaki et al., 2015; Wu et 

al., 2018). Their abundance decreases with distance from the coast in east Taiwan (Chen et 

al., 2018) and they generate significant nitrogen fixation in the Kuroshio Current compared 

to the rest of the Philippine Sea (Liu et al., 1996; Shiozaki et al., 2015) with a specific δ15N 

signature around − 0.9 ±1.0‰ (Eberl and Carpenter, 2007; Liu et al., 1996; Wada and Hattori, 

1976). The observed decrease in δ15Nsed during the period of high sedimentation rate (Fig. 

7g) might have been caused by the supply of these cyanobacteria over the study area by an 

eastern branch of the Kuroshio Current, suggesting rather a partial deflection of the 

Kuroshio Current than a decrease of the “water barrier” effect (Fig. 6). During and after BA, 

the collapse of the Kuroshio Current eastern branch due to the rise of sea level and the 

intensification of the Kuroshio Current in the Okinawa Trough induced by enhanced EASM 

and transition to a La Niña-like state led to the decrease in sedimentation rates and an 

increase in δ15Nsed (Fig. 7a, 7c and7g).  

5.3 Kuroshio and East Asian Winter Monsoon controls on primary productivity 

Northeast of Taiwan, south of the Okinawa Trough, present-day measurements in 

surface sediments under the modern path of the Kuroshio Current observed δ15Nsed values 

greater than 3‰ (Kao et al., 2003). This isotopic signature, close to those of the Taiwanese 

rocks (Owen, 2013; Yui et al., 2009), indicates that the signal is dominated by terrigenous 

inputs of nitrogen rather than by cyanobacterial activity despite the presence of 
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Trichodesmium spp. in the Kuroshio Current above (Jiang et al., 2019; Liu et al., 1996). 

Therefore, the mere input of cyanobacteria might not be enough to explain the decrease of 

δ15Nsed. During LGM and HS1, the strengthened EAWM would have caused an increase in 

dust-borne Fe inputs as evidenced by ln(Fe/Al) (Fig. 7h), soluble iron concentration and dust 

mass accumulation rate in core MD06-3047 (Xu et al., 2015) (Fig. 7b).  In addition a 

deepening of the mixed layer as observed in the northern South China Sea (Steinke et al., 

2010; Zhang et al., 2016) can result in the upwelling of subsurface water. It would have 

caused a transfer of phosphate and nitrate from the nutrient-rich Kuroshio Current 

subsurface water (Chen et al., 2017, 2021, 1995) to the surface of these co-limiting nutrients 

(Fe, P) with consequent intensification of nitrogen fixation  by cyanobacterial activity (Held 

et al., 2020; Lis et al., 2015; Qiu et al., 2022). This hypothesis is supported by the 

concomitant enhancement of nitrogen fixation in the Okinawa Trough as evidenced by the 

organic nitrogen δ15N (δ15NON) of core MD01-2404 (Zheng et al., 2015) (Fig. 7g). In the East 

China Sea, the nitrogen fixation is strongly related to the input of Trichodesmium spp. by the 

Kuroshio Current (Jiang et al., 2019; Liu et al., 1996; Zhang et al., 2012). This synchronous 

evolution (Fig. 7g) suggests that during LGM and HS1, both the remaining and deflected 

branches would have transported cyanobacteria northern and southern of the Okinawa 

Trough, and their nitrogen fixation would have been increased by an enhanced EAWM. This 

observation is consistent with the hypothesis of  total or partial deflection from LGM to BA 

(Fig. 6), and highlights the control exerted by the Kuroshio Current and EAWM on nitrogen 

fixation in this region. 

Enhanced paleoproductivity is also evidenced by the concomitant increase in ln(Br/Al), 

δ13Corg and TOC (Fig. 7h – 7j) from LGM to HS1 before decreasing during and after BA. This is 

consistent with an enhanced EAWM winds intensity and deflection of the Kuroshio Current 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



from LGM to BA, then a reduction of EAWM winds intensity and the collapse of the Kuroshio 

Current eastern branch caused by the sea level rise during and after BA (Fig. 7b and 7c). This 

would have resulted in the weakening of the dust-borne Fe inputs and the shallowing of the 

mixed layer, and the cessation of N and P supply by the Kuroshio Current subsurface waters. 

The impact of dust-borne Fe inputs and/or monsoonal upwelling of nutrients from the 

subsurface on primary productivity during LGM and HS1 is supported by previous studies in 

the northern South China Sea (J. He et al., 2013; Zhang et al., 2016; Zhou et al., 2016), in the 

Okinawa Trough (Ruan et al., 2017) and southern Philippine Sea (Xu et al., 2020, 2015), and 

by a modern study showing that N is the first-order limiting nutrient and P, Fe are second-

order co-limiting nutrient in the study area (Browning et al., 2022). Although the impact of 

Kuroshio Current and EAWM on paleoproductivity can be observed in the Okinawa Trough 

by the biogenic silica concentration (BSi) in core KX12-3 and δ15NON in core MD01-2404 (Fig. 

8e and 8f), in most of these records their impact is only secondary compared with the 

emergence of the continental shelf, remobilization/erosion of its sediments, and the 

migration of river mouths due sea level changes (Chen et al., 2023; Lim et al., 2017; Ruan et 

al., 2017; Xu et al., 2020) (Fig. 8d, 8g – h and 8j – 8k). East of Taiwan, the limited size of the 

shelf (Fig. 1a) and the low impact of Taiwanese sediments on primary productivity (Wang et 

al., 2018) render this influence negligible, explaining the discrepancies observed between 

paleoproductivity records along the Kuroshio Current south – north transect from the east of 

the Philippine Sea to the Okinawa Trough (Fig. 8d – 8k).  

During HS1, δ15Nsed is marked by a significant (p-value < 0.0001; Mann-Whitney U test 

(Mann and Whitney, 1947)) increase from 1.8‰ (±1.7) to 2.5‰ (±1.3) (Fig. 7g) concomitant 

with the premature decline of TN (Fig. 7k) relative to other paleoproductivity proxies 

(ln(Br/Al), δ13Corg, TOC) (Fig. 7h – 7j). This might have been caused by the intensification of 
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water wind stress resulted due to enhanced EAWM that could have limited the development 

of Trichodesmium spp. and their ability to fix atmospheric N (Breitbarth et al., 2007; Chen et 

al., 2008; Wu et al., 2018). Thus, despite an increase in dust-Fe inputs and summer 

temperatures above 24°C (Kim et al., 2015) consistent with Trichodesmium spp. ecological 

needs (Breitbarth et al., 2007), cyanobacterial productivity declined, and so did biogenic 

nitrogen production (7g and 7k). 

6 Conclusion 

A multi-proxy study of the MD18-3532 core, in the Ryukyu accretionary wedge off East 

Taiwan, has investigated the variability of the Kuroshio Current pathway and 

paleoproductivity during the last 26 kyr.  

High values of sedimentation rate, the distribution of clay minerals, and the low values of 

δ15Nsed from 22.5 to 13.6 ka suggest a partial deflection of the Kuroshio Current along the 

eastern edge of the Ryukyu Arc during LGM until BA, and hence a transport of (i) Taiwanese 

suspended material and (ii) Trichodesmium spp. cyanobacteria to the coring site. At the 

same time, high values of δ13Corg, ln(Br/Al), ln(Ti/Al), ln(Fe/Al), TOC, TN and the low δ15Nsed 

values suggest that EAWM and Kuroshio Current are the main control mechanisms on 

paleoproductivity in the northwestern Philippine Sea during that time period. Partial 

deflection of the Kuroshio Current provides nutrient-enriched subsurface waters that upwell 

toward the oligotrophic surface waters by deepening the mixed layer due to intensified 

EAWM winds, which also carry dust-borne Fe, thus creating conditions conducive to an 

increase of primary productivity. After BA, the collapse of the eastern branch of the Kuroshio 

Current due to sea level rise and the weakening of the EAWM leads to a decrease in the 

supply of sediment, Trichodesmium spp. and nutrients to the eastern edge of the Ryukyu Arc 
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and a shallowing of the mixed layer, thus reducing primary productivity and sedimentation 

rates. 
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7 Figures 

Table 1: AMS 14C ages and instrumental error, calendar ages and error (±2σ) for sediment 

core MD18-3532. Radiocarbon measurements were performed on the following taxa: 

Globigerinoides, Neogloboquadrina, Pulleniatina obliquiloculata and Globigerinita glutinata. 

Depth (cm) AMS 14C age (y) Error (y) Calibrated Age (ka) Error (±2σ, ka) 

15.5 3814 83 3.5 0.3 

72.5 5284 67 5.4 0.2 

233.5 8640 80 9.0 0.3 
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375.5 12066 47 13.3 0.2 

550.5 12484 47 13.8 0.2 

870.5 14442 53 16.6 0.3 

1000.5 15235 127 17.5 0.4 

1279.5 16385 158 18.8 0.4 

1554.5 17815 202 20.5 0.5 

1842.5 19482 239 22.4 0.4 

1961.5 19687 240 22.9 0.5 

2079.5 21241 277 24.3 0.6 

2157.5 21562 286 24.8 0.6 

Table 2: Average, standard deviation (±2σ), maximum and minimum clay mineral abundance 

(%) and illite crystallinity values (° 2) of core MD18-3532. 

Clay mineral 
Mean 

abundance 

Standard 

Deviation  

Maximum 

abundance 

Minimum 

abundance  

Illite 43 6 37 51 

Chlorite 28 6 22 36 

Kaolinite 10 6 0 18 

Illite 

crystallinity 
0.12 0.06 0.08 0.18 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

Figure 1: Maps showing (a) the modern Kuroshio Current pathway East of Taiwan and the 

monsoon pattern in the northwestern Philippine Sea and (b) the bathymetry of the study 

area and the different modern sedimentary sources. The yellow circle marks the position of 

the core MD18-3532. The black circles indicate the positions of the cores MD06-3052 (1), 
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MD06-3047 (2), MD10-3291 (3), OR1715-21 (4), MD05-2908 (5), ODP 1202-B (6), core 255 

(7), RN93-PC6 (8), MD01-2404 (9), KX12-3 (10), M063-05 (11) and A7 (12). The 130 m isobath 

is marked by a thicker black line and shows the emerged area at the last glacial maximum. 

The white rectangle shows the position of the more detailed box Fig. 1b. The solid red arrow 

show the Kuroshio Current (KC) pathway, the dotted red arrow show the Ryukyu Current 

pathway, the blue arrow indicate the East Asian Winter Monsoon (EAWM), the orange arrow 

indicate the East Asian Summer Monsoon (EASM). NEC: North Equatorial Current, OT: 

Okinawa Through.  

 

Figure 2: Age model and sedimentation rate of core MD18-3532. All dates are given in 

calibrated radiocarbon kyr (±2σ). The black curve is the Oxcal age model and the grey area 

shows the age model error at 2σ. The dotted lines show the average sedimentation rates 
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from 3.5 to 13.3 kyr (38 cm kyr-1) and from 13.3 to 24.8 kyr (177 cm kyr-1). The brown curve 

shows the evolution of the sedimentation rate in cm.kyr-1. 

 

Figure 3: Results of sedimentological and geochemical measurements on core MD18-3532: 

(a) sedimentation rate (cm kyr-1), (b) clay minerals (%), (c) illite crystallinity values (° 2), (d) 

sediment fraction smaller than 63 µm (%), (e) elemental ratios ln(Br/Al), ln(Ti/Al) and 
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ln(Fe/Al), (f) δ15Nsed (‰), (g) δ13Corg (‰), (h) terrigenous contribution of terrestrial organic 

matter to δ13Corg (%) estimated from the marine vs. continental δ13Corg mixing model, (i) 

Total Organic Carbon (TOC; %), Total Nitrogen (TN; %). The division of the time scale is first 

done on the scale of marine isotope stages (MIS),  and then on the scale of late Quaternary 

millennium-scale changes with: Pre-Last Glacial Maximum (Pre-LGM), Last Glacial Maximum 

(LGM), Late Glacial (LG), Heinrich Stadial 1 (HS1), Bølling-Allerød (BA), Younger Dryas (YD) 

and Holocene. Dotted lines show the limits of each millennium-scale changes and grey areas 

are for warming period.  
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Figure 4: Evolution of terrigenous input and their origin: (a) the δ18O of speleothem from 

Hulu and Dongge caves represents the evolution of the East Asian Summer Monsoon (Cheng 

et al., 2016), (b) Gulang Loess mean gain size (µm) (Sun et al., 2012) shows changes in the 

intensity of the East Asian Winter Monsoon (EAWM) and dust mass accumulation rate (MAR) 

shows the variability of the amount of dust (g cm-2 kyr-1) brought to the ocean from the 

Chinese Loess Plateau by the EAWM winds in core MD06-3047, east of the Philippines  (Xu et 
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al., 2015; Fig. 1a), (c) 231Pa/230Th shows changes in the intensity of the Atlantic Meridional 

Overturning Circulation (McManus et al., 2004); (d) to (g) data are from core MD18-3532: (d) 

sedimentation rate (cm kyr-1), (e) percentage of clay minerals (%), (f) illite crystallinity values 

(Δ°2θ), (g) elemental ratios ln(Fe/Al) and ln(Ti/Al); (h) relative sea level (Lambeck et al., 

2014). The division of the time scale is first done on the scale of marine isotope stages (MIS),  

and then on the scale of late Quaternary millennium-scale changes with: Pre-Last Glacial 

Maximum (Pre-LGM), Last Glacial Maximum (LGM), Late Glacial (LG), Heinrich Stadial 1 

(HS1), Bølling-Allerød (BA), Younger Dryas (YD) and Holocene. Dotted lines show the limits of 

each millennium-scale changes and grey areas are for warming period. 
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Figure 5: Illite crystallinity values (Δ°2θ) in sediments from the Chinese Loess Plateau (C. 

Huang et al., 2011; Ji et al., 1999), the Yangtze River and East China Sea shelf (Zhao et al., 

2018), Taiwan rivers (Li et al., 2012; Nayak et al., 2021) and MD18-3532 (this study). 
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Figure 6: Proposed partial deflection of the Kuroshio Current pathway in the northwestern 

Philippine Sea during the Last Glacial Maximum. The 130 m isobath is marked by a thicker 

black line and shows the emerged area. NEC: North Equatrial Current, KC: Kuroshio Current, 

EASM: East Asian Summer Monsoon, EAWM: East Asian Winter Monsoon, OT: Okinawa 

Through. 
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Figure 7:  Variability of sedimentological and geochemical proxies with the evolution of East 

Asian Monsoon, relative sea level and Kuroshio Current: (a) δ18O of speleothems from Hulu 

and Dongge caves represents the evolution of the East Asian Summer Monsoon (Cheng et 
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al., 2016), (b) Gulang Loess mean gain size (µm) shows changes in the intensity of the East 

Asian Winter Monsoon (EAWM), dust mass accumulation rate (MAR) and soluble iron 

concentration shows respectively the amount of dust (g cm-2 kyr-1) and soluble iron (%) 

brought to the ocean from the Chinese Loess Plateau by the EAWM winds in core MD06-

3047, east of the Philippines (Xu et al., 2015; Fig. 1a), (c) relative sea level (m) (Lambeck et 

al., 2014), (d) sea surface temperature (SST) in °C respectively based on Mg/Ca and UK’37 

measurements in core A7 (red) (Sun et al., 2005) and M063-05 (orange) (Li et al., 2020) as an 

indicator of the Kuroshio Current intensity in the middle of the Okinawa Trough (Fig. 1a), (e) 

relative annual mean depth of the thermocline reconstituted using the temperature 

differences between SST and Sea Subsurface Temperature (SSbT) in °C respectively based on 

UK’37 and TEX86
H from core M063-05 (Fig. 1a) as an indicator of the Kuroshio Current 

intensity in the middle of the Okinawa Trough (Li et al., 2020). The following data are all 

from core MD18-3532: (f) sedimentation rate (cm kyr-1), (g) δ15Nsedimentary (‰) in core MD18-

3532 (this study) and δ15NOrgani Nitrogen (‰) in core MD01-2404 (Zheng et al., 2015; Fig. 1a), (h) 

elemental ratios with ln(Br/Al) indicating marine organic matter; ln(Ti/Al) and ln(Fe/Al) 

showing eolian input of Fe and Ti by dust from Chinese Plateau loess, (i) δ13Corg (‰), (j) Total 

Organic Carbon (TOC; %) and (k) Total Nitrogen (TN; %). The division of the time scale is first 

done on the scale of marine isotope stages (MIS) and then on the scale of late Quaternary 

millennium-scale changes with: Pre-Last Glacial Maximum (Pre-LGM), Last Glacial Maximum 

(LGM), Late Glacial (LG), Heinrich Stadial 1 (HS1), Bølling-Allerød (BA), Younger Dryas (YD) 

and Holocene. Dotted lines show the limits of each millennium-scale changes and grey areas 

are for warming period. Black arrows mark trends in Gulang Loess mean grain size, dust 

mass accumulation rate and iron soluble concentration in core MD06-3047 (b), elemental 
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ratios ln(Br/Al), ln(Fe/Al) and ln(Ti/Al) (h), δ13Corg (i) and TOC (j) from the Last Glacial 

Maximum to the Younger Dryas. 

 

Figure 8: Spatiotemporal comparison of paleoproductivity signals along a north-south 

transect on the path of the Kuroshio Current (Fig. 1a): (a) δ18O of speleothems from Hulu 

and Dongge caves represents the evolution of the East Asian Summer Monsoon (Cheng et 
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al., 2016), (b) Gulang Loess mean gain size (µm) shows changes in the intensity of the East 

Asian Winter Monsoon (EAWM), dust mass accumulation rate (MAR) and soluble iron 

concentration shows respectively the amount of dust (g cm-2 kyr-1) and soluble iron (%) 

brought to the ocean from the Chinese Loess Plateau by the EAWM winds in core MD06-

3047, east of the Philippines (Xu et al., 2015; Fig. 1a), (c) relative sea level (m) (Lambeck et 

al., 2014), (d) Total Organic Carbon (TOC; %) in core KX12-3 (Lim et al., 2017; Fig. 1a), (e) 

Biogenic Silica (BSi, %) in core KX12-3 (Lim et al., 2017; Fig. 1a), (f) δ15NOrganic Nitrogen (‰) in 

core MD01-2404 (Zheng et al., 2015; Fig. 1a), (g) δ13Corg (‰) in core MD01-2404 (Zheng et 

al., 2015; Fig. 1a), (h) TOC (%) and δ13Corg (‰) in core M063-05 (Chen et al., 2023; Fig. 1a), (i) 

TOC (%) and δ13Corg (‰) in core MD18-3532 (this study), (j) TOC (%) in core MD06-3052 (Xu 

et al., 2020; Fig. 1a) and (k) BSi (%) in core MD06-3052 (Xu et al., 2020; Fig. 1a). Numbers in 

brackets after the sediment core qualifier refer to the number used for core location Fig. 1a. 

The division of the time scale is first done on the scale of marine isotope stages (MIS) and 

then on the scale of late Quaternary millennium-scale changes with: Pre-Last Glacial 

Maximum (Pre-LGM), Last Glacial Maximum (LGM), Late Glacial (LG), Heinrich Stadial 1 

(HS1), Bølling-Allerød (BA), Younger Dryas (YD) and Holocene. Dotted lines show the limits of 

each millennium-scale changes and grey areas are for warming period.  Jo
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Supplementary material 

 

Figure S1: Bathymetric cross-section of the Ryukyu Arc up to the Ryukyu Trough represented 

by the light green line. 
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Table S1: Analytical precision and accuracy of High Organic (HO) B2151 and Low Organic (LO) 

B2153 standards. The theoretical expected values and errors (±2σ) for δ13C (‰) and δ15N 

(‰) of the HO B2151 and LO B2153 standards are shown in the first two rows of the table. 

The δ13C (‰) and δ15N (‰) measured values of the standards and their errors are reported 

on the last two rows and were obtained by calculating the mean and standard deviation 

(±2σ) of the values measured at the beginning and end of the analysis series. 

 δ13C (‰) Error (±2σ, ‰) δ15N (‰) Error (±2σ, ‰) 

HO B2151 expected -26.27 0.15 4.42 0.29 

LO B2153 expected -26.66 0.24 7.30 0.10 

HO B2151 measured -26.31 0.21 4.43 0.49 

LO B2153 measured -26.61 0.26 7.13 0.54 

Table S2: Spearman correlation matrix of ln(Br/Al), ln(Fe/Al) and ln(Ti/Al). Values in bold 

have a p-value < 0.05. 

Varia

bles 

B

r/Al 

F

e/Al 

T

i/Al 

Br/Al 1 
0

.64 

0

.65 

Fe/Al 

 

1 
0

.91 

Ti/Al   1 
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Table S3: Spearman correlation matrix of ln(Br/Al), ln(Fe/Al) and ln(Ti/Al) after smoothing by 

a 30-order moving average. Values in bold have a p-value < 0.05. 

Variabl

es 

M30(Br

/Al) 

M30(Fe

/Al) 

M30(Ti

/Al) 

M30(Br

/Al) 
1 0.74 0.74 

M30(Fe

/Al)  

1 0.97 

M30(Ti

/Al) 
  1 

Table S4: Spearman correlation matrix of illite, δ15Nsed and Total N. Values in bold have a p-

value < 0.05. 

Varia

bles 

I

llite 

δ15

Nsed 

T

N 

Illite 
1 0,1 -

0,2 

d15N 
 1 -

0,3 

TN   1 

General setting – Sedimentation rate in the coastal region of Taiwan 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The very large sediment export results in high sedimentation rate in the coastal regions of 

Taiwan. Thus, north of Taiwan, in the southern Okinawa Through, the core MD05-2908 (5 in 

Fig. 1a) shows a mean sedimentation rate of 500 cm.kyr-1 over the last 7 kyr (Li et al., 2009). 

Nearby, the ODP site 1202B (6) shows sedimentation rate of 382 cm.kyr-1 in average during 

the Holocene (Wei et al., 2005). South of Taiwan, the core MD10-3291 (3) located on the 

west flank of the Gaoping Canyon a shows a mean sedimentation of 122 cm.kyr-1 over the 

last 12 kyr (Yu et al., 2017). By contrast, during the same period, areas further away from 

Taiwan show lower sedimentation rates. For example, cores 255 (7) and RN93-PC6 (8), 

located further north in the southern part of the Okinawa Through than the ODP 1202B and 

MD05-2908 sites, have average sedimentation rates of 60 and 47 cm.kyr-1 (Li et al., 2009; 

Ujiié et al., 2003), respectively. Eastern of Taiwan, core OR1715-21 (4) located on the 

northern slope of the Green Island, disconnected from Taiwanese canyons inputs, shows a 

sedimentation rate of 25.6 cm.kyr-1 (Lo et al., 2013). 
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Highlights 

 The Kuroshio Current deflected partially eastward during the LGM and HS1 

 The Kuroshio Current exerts a strong control on the dispersion of hypopycnal flows  

 Dust and upwelled nutrients under intensified EAWM control paleoproductivity 

 Intensified primary productivity in the NW Philippine Sea during the LGM and HS1 
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