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3IFREMER
4Institute of Earth Sciences
5Geosciences-M/GLADYS
6Aix-Marseille Université
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Abstract

Temperature is central for ocean science but is still poorly sampled on the deep ocean. Here, we show that Distributed Acoustic

Sensing (DAS) technology can convert several kilometer long seafloor fiber-optic (FO) telecommunication cables into dense

arrays of temperature anomaly sensors with milikelvin (mK) sensitivity, allowing us to monitor oceanic processes such as

internal waves and upwelling with unprecedented detail. We validate our observations with oceanographic in-situ sensors and

an alternative FO technology. Practical solutions and recent advances are outlined to obtain continuous absolute temperatures

with DAS at the seafloor. Our observations grant key advantages to DAS over established temperature sensors, showing its

transformative potential for thermometry in ocean sciences and hydrography.
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Abstract19

Temperature is central for ocean science but is still poorly sampled on the deep20

ocean. Here, we show that Distributed Acoustic Sensing (DAS) technology can21

convert several kilometer long seafloor fiber-optic (FO) telecommunication cables22

into dense arrays of temperature anomaly sensors with milikelvin (mK) sensitivity,23

allowing us to monitor oceanic processes such as internal waves and upwelling with24

unprecedented detail. We validate our observations with oceanographic in-situ25

sensors and an alternative FO technology. Practical solutions and recent advances26

are outlined to obtain continuous absolute temperatures with DAS at the seafloor.27

Our observations grant key advantages to DAS over established temperature28

sensors, showing its transformative potential for thermometry in ocean sciences29

and hydrography.30

Plain Language Summary31

In recent years, technological advances enabled the transformation of standard fiber-optic32

cables into long arrays of sensors that finely detect physical changes of their surrounding33

environment along several kilometers at meter-scale samplings and less. One of these technologies,34

known as ”Distributed Acoustic Sensing”, is increasingly used to detect sound waves,35

mechanical vibrations and other external forces in diverse settings. Here we apply this36

technology on a several-kilometers-long telecommunication cable lying along the seafloor37

South of Toulon (France) to show that, over timescales of some hours and longer, the38

system is instead highly sensitive to small temperature fluctuations of the surrounding39

water. We show that these fluctuations are related to complex underwater processes that40

are widespread in the ocean and well-known to oceanographers but rarely measured continuously41

at such level of detail. The potential of this technology for oceanography and other marine42

sciences is thus highlighted.43

1 Introduction44

1.1 Relevance of ocean temperature variability and experimental45

challenges46

Monitoring seafloor ocean temperature variability became a priority over the47

last years within the Oceanographic community (Johnson et al., 2015; Howe et al.,48

2019). On climatic timescales, bottom temperature measurements are needed to49

constrain the global ocean heat content and imbalance (Meyssignac et al., 2019), to50

monitor the evolution of water masses on regional scales (Margirier et al., 2020),51

climate changes (Wijffels et al., 2016) and to predict the chemical (Coogan &52

Gillis, 2018) and biological (Griffiths et al., 2017) evolution of the ocean. Improved53

seafloor measurements within the coastal domain are much needed given their poor54

representation in climatic models (Todd et al., 2019). Temperature variability at the55

timescale of hours to minutes affects: the degree of homogeneity of the water column56

and ocean circulation (Woodson, 2018), the vertical transport of nutrients for marine57

productivity (Villamaña et al., 2017) and the propagation of hydroacoustic waves58

(Wang et al., 2020). The bottom boundary layer dynamics also remains an area of59

forefront research in both the coastal domain (Burchard et al., 2008; Trowbridge &60

Lentz, 2018) and the abyss (Ruan et al., 2017; Naveira-Garabato et al., 2019).61

Ocean in-situ thermometry typically relies on scattered point measurements62

and temporary deployments near the water surface (e.g. ships with63

thermosalinographs, buoys), which tend to be limited in terms of temporal and64

spatial resolution, while access to the deep ocean and remote regions remains65

challenging. Oceanographic moorings, Remotely Operated Vehicles, i.a. have66
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attempted to fill this gap. However, obtaining large spatial coverage and long-term67

continuous measurements remains difficult (Favali & Beranzoli, 2006).68

1.2 DAS Thermometry69

In recent years, efforts have been devoted to transform fiber-optic (FO)70

cables into dense arrays of sensors with technologies that leverage various71

back-scattering effects of light (Hartog, 2000; Li et al., 2021). Among these,72

Distributed Acoustic Sensing (DAS) has gained wide interest thanks to its ability73

to monitor seismo-acoustic signals and dynamic strain with high sensitivity, making74

it suitable for a wide range of monitoring applications (e.g. Becker & Coleman,75

2019; Lindsey et al., 2019; Sladen et al., 2019; Williams et al., 2019; Cheng et al.,76

2021; Matsumoto et al., 2021; Rivet et al., 2021; Ugalde et al., 2021; Bouffaut et al.,77

2022; Guerin et al., 2022; Williams et al., 2022).78

Fluctuations in both the mechanical strain and temperature fields locally79

change the optical path length of the fiber which is sensed by DAS interrogators80

(López-Higuera, 2002; Hartog, 2017; Lu et al., 2017). At short timescales (≲10 ms),81

DAS records mostly strain signals as ambient temperature usually fluctuates more82

slowly, while at longer timescales, the temperature effect is expected to dominate83

over strain, presumably due to changes in the fiber refractive index (Ide et al.,84

2021). Ide et al. (2021) analysed the low frequency (LF) component of DAS signals85

acquired on a cable offshore Japan. They suggested that these signals were related86

to the thermal signature of water currents and linked them to interaction between87

tides, complex bathymetry and currents. Lindsey et al. (2019) had also speculated88

about possible internal waves (IWs) signatures on LF-DAS data collected offshore89

California, USA. In practice however, the role of temperature in LF-DAS signals90

remains to be demonstrated.91

Additionally to DAS, Distributed Fiber Optic Sensing (DFOS) can be92

performed with alternative technologies, such as: Distributed Temperature Sensing93

(DTS) and Distributed Strain and Temperature Sensing (DSTS). While DAS relies94

on Rayleigh scattering and measures variations in the phase of the back-scattered95

light, DTS and DSTS track variations in the Raman and Brillouin back-scattered96

light spectrum, respectively (Hartog, 2017). For instance, Connolly and Kirincich97

(2019); Reid et al. (2019) and Davis et al. (2020) implemented DTS to track98

near-coastal seafloor temperatures and observed IWs, cooling events and tidal99

currents.100

In this study, we analyse LF-DAS (≲1 mHz) signals on a seafloor101

telecommunication cable in the South of France. We compare our results with102

independent ocean temperature measurements and DSTS data. We show that the103

recorded anomalies are related to IWs and upwelling events, and mainly, if not fully,104

related to temperature effects.105

2 Materials and Methods106

2.1 Low-frequency DAS107

Our analysis focuses on nearly two weeks of data of a DAS campaign108

operated on July 2019 on a seafloor cable extending almost 45 km from Toulon,109

France, towards the Mediterranean basin (Fig. 1). The data were acquired with110

a phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) chirped-pulse111

DAS acquisition system (Pastor-Graells et al., 2016; Fernández-Ruiz et al., 2019),112

providing strain measurements with a spatial sampling and gauge length of 10 m.113

–3–



D
ra
ft

manuscript submitted to Geophysical Research Letters

Figure 1. Toulon seafloor FO cable layout (black curve; numbered channels indicated) in the

Mediterranean sea. Bathymetry obtained from SHOM (2015). In Sec. 3, the temperature data of

the thermistor chain (yellow diamond) is compared to channel 352 (green dot) of the cable. Data

of the AROME wind model are extracted at the position of the blue inverted triangle.

–4–
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For a complete description of the acquisitions, see Supplementary Text S1 and Lior114

et al. (2021).115

To isolate the LF content (≲ 1mHz) of the large DAS dataset (11 Terabytes)116

and make it manageable for signal processing in a standard workstation, we applied117

a temporal moving average on the strain time series of each channel independently.118

Details on the pre-processing scheme are provided in Supplementary Text S2.119

Then, to convert LF-DAS strain values into absolute temperature differences,120

we used the approximation (Ide et al., 2021): dϵ/dT = nα + dn/dT , where where121

ϵ is the recorded strain, T the temperature, n the optical fiber refractive index122

and α its thermal expansion coefficient (see Supplementary Text S3 for details).123

Furthermore, LF-DAS and DSTS observations are expected to be mostly sensitive to124

temperature instead of fiber strain, given that the monitored fiber is loose inside the125

cable (Cherukupalli & Anders, 2020).126

2.2 Oceanographic and meteorological data127

Our interpretation of the LF-DAS measurements relies on the temperature128

reference provided by a vertical thermistor chain of 10 sensors (5 to 50 m depths)129

off Cap Vieux, Toulon (Fig. 1) recording every half-hour at ±0.2◦C accuracy130

(Sartoretto et al., 2022). The deepest sensor is nearly on the seabed. These sensors131

are about 4 km west of the closest cable section, a distance comparable or shorter132

than the horizontal scales of the main processes observed in this study.133

Additionally, hourly wind data (horizontal speed components at 10 m-height134

and turbulent surface stresses) of Météo-France operational forecasting atmospheric135

model AROME (Seity et al., 2011) near the cable is used to check for potential136

correlations between wind events and LF-DAS. The spatial sampling of this model is137

of 0.01◦ (∼1.3 km). Wind station data was not available near the cable.138

3 Results139

3.1 LF-DAS variability - Time series140

3.1.1 Variability on multiple days timescales141

Fig. 2 summarizes our LF-DAS observations. Only the first 25 km of cable142

(from the shoreline to the continental rise) are shown, given that the signal143

has lower SNR at longer ranges. The highest LF-DAS values represent the144

largest temperature variations relative to the baseline of each channel during145

the observation period. Equivalent temperature differences above 10 K are not146

plotted in Fig. 2a, as these are considered too large for typical ocean temperature147

variability and are presumably biased by coastal dynamics, potentially surface148

gravity wave-induced stresses. The evolution of apparent strain values of LF-DAS149

in the time-range space (Fig. 2a) indicates that the largest variability on multiple150

days timescales is found on the continental shelf (within 100 m water depths). This151

is consistent given the larger thermal stratification expected in the upper ocean in152

general.153

The multiple-days temperature trend recorded at the Cap Vieux thermistor154

chain correlates well with the best-matching LF-DAS channel, 352 (Fig. 2d),155

which was constrained via maximum cross-correlation search (additional details in156

Supplementary Text S3). This channel is on the 40 m isobath, which is comparable157

to that of the Cap Vieux sensor at 50 m depth, also at the seafloor. A major cooling158

event towards the end of the DAS campaign coincides with an intense northwesterly159
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Figure 2. Toulon 2019 LF-DAS and ground truth time series. a) LF-DAS section from the

shoreline to the deep Mediterranean sea with bathymetry along the cable (left). Anomalous

data points corresponding approximately to ∆T> 10 K were rejected. b) Highpass-filtered

continental shelf and c) slope/rise subsections of (a) with adjusted colorscales. Channel 352 is

marked in dashed line. For reference, the scale bar indicates the inertial period (Tc). d) Channel

352 LF-DAS time series approximated to absolute temperature differences (in red). The LF-DAS

trace is offset vertically to align it with the mean value of the 50m-depth temperature time series

on the thermistor chain (in blue). Isothermal contours extracted from the vertical thermistor

chain are represented with dotted lines in colorscale (with depth scale in the far right) to depict

the water column layering evolution. e) AROME horizontal wind vectors (above) and wind stress

(below). The dark grey bars indicate the same time span of a) to d).
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wind event lasting a few days as attested by the AROME data (Fig. 2e). No160

apparent dependency on wind events on the days before the deployment is visible.161

3.1.2 Variability on multiple hours timescales162

A marked variability in hourly-to-daily scales with distinctly non-sinusoidal163

waveforms (characteristic edginess, sharp onsets and decays) is evident in the164

LF-DAS sections (Figs. 2b-d). These shorter period oscillations are persistent from165

the shallow-most continental shelf down to almost the bottom of the continental166

slope at 2000 m depth. In the deep sea region, the fast common mode fluctuations167

reflect temperature variations close to or below the optical noise threshold of the168

DAS system. Some sporadic anomalous peaks on the deepest section of the slope169

are independently known to be related to hanging sections of the cable (Mata et al.,170

submitted).171

Hourly-to-daily fluctuations of LF-DAS on channel 352 exhibit some similarity172

with those of the Cap Vieux temperature, both in shape and periodicity (Fig. 2d).173

However, both time series are only roughly correlated at these timescales, which may174

be explained by the fact that the spatial scales associated with these fluctuations175

is smaller than the cable-thermistor chain separation. In general, the intermittent176

LF-DAS temperature arrivals (anomalies with slanted time-space offsets) in the177

shallow continental shelf (Fig. 2b) and deeper slope (Fig. 2c) indicate locally178

coherent propagation. Along the slope, a visible along-channel modulation of179

the LF-DAS patterns (amplitude and phase propagation) indicates a marked site180

control, potentially correlated with the bathymetry and also influenced by variable181

cable-seabed coupling and/or local variations in the fiber structure.182

3.2 LF-DAS variability - Spectra183

Fig. 3a shows Direct Fourier Transform periodograms using Welch’s method184

for selected channel ranges, averaged on the shallow (channels 350-800), slope185

(800-2000) and deep (2000-3000) cable sections. The spectral peaks approach186

the mean inertial period in the study region, Tc=f−1
c ≈17.5h (fc being the187

latitude-dependent Coriolis frequency) and its first harmonic, particularly at the188

shallow and slope sections (further details on inertial variability in Supplementary189

text S4). The deep section spectrum has a the weakest signal. As expected, these190

peaks are not correlated with the main tidal components, since the Mediterranean is191

a microtidal sea.192

The short time span of the data hampers a FT-derived spectrogram that193

properly resolves LF signals in time. Furthermore, the markedly non-sinusoidal194

patterns of the LF-DAS time series affect the reliability of the finite Fourier195

Transform. In order to overcome these obstacles, we conduct an Empirical Mode196

Decomposition (EMD) analysis (Huang et al., 1998; Deering & Kaiser, 2005; Huang197

et al., 2009; Stallone et al., 2020; Quinn et al., 2021) based on the Hilbert-Huang198

transform (HHT) (Huang & Wu, 2008), which is intended for decomposion of199

non-linear and non-stationary signals. Supplementary text S5 describes details200

on the parameterization of the EMD and HHT.201

Figs. 3b,c show the results of averaging the instantaneous frequencies of each202

of the EMD Intrinsic Mode Functions (IMFs, see Supplementary Text S5 and Fig.203

S1) obtained for each channel across the shelf and slope cable sections, respectively.204

The short-term variability correlates well with Tc in the study region, particularly205

in the slope section, where modulated inertial peak energy dominates (Fig. 3c).206

The spectral energy distribution in the shelf area (Fig. 3b) is comparatively207

more random and non-stationary, as expected from the time series signatures.208

–7–
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Figure 3. Toulon 2019 LF-DAS spectra (same time span as in Fig. 2). (a) Channel-averaged

Welch spectra (6-day-long windows, 4-day overlaps) for different cable sections with 90%

confidence intervals (Zhu et al., 2015). Linear regressions of the log-log spectra between 4 and

30 h are shown for reference, along with the inertial frequency fc, its first three harmonics and

the O1 and M2 tidal components. Average Hilbert-Huang spectra with tapered edges for the

shallow (b) and slope (c) cable sections, and frequency-wavenumber spectra of the shallow (d)

and slope (e) cable sections.
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Several-days fluctuations as well as sporadic transient events are present in the209

shelf region, in contrast to the slope section, where steadier conditions are evident.210

The marked presence of the inertial peak in the signals suggests near-inertial211

IWs. Figs 3d,e depict frequency-wavenumber (e.g. Margrave & Lamoureux,212

2019) spectra on Continental shelf and slope sections where the horizontal cable213

projection is nearly linear. The apparent phase propagation speeds range from 0.01214

to about 1 m/s. These are in good agreement with the typical phase propagation215

speeds of IWs in the ocean (e.g. Tintoré et al., 1995; Miropol’sky & Shishkina,216

2013; Serebryany et al., 2020). Furthermore, a dominant shoreward propagation217

component (positive wavenumbers) is evident. The apparent wavelengths of the218

dominant processes range from a couple hundred of meters to several kilometers,219

also in line with typical wavelengths of IWs (Massel, 2015). The cable layout in220

the slope is affected by irregular bathymetry, which might partially explain the221

more smeared frequency-wavenumber spectrum on the latter (Fig. 3e). These plots222

further confirm the existence of near-inertial perturbations propagating above the223

cable. Furthermore, the repetitive and well-defined spectral energy bands along224

both, the shelf and slope, suggest higher-order modes of IWs.225

4 Discussion and perspectives226

4.1 Interpretation227

4.1.1 Upwelling event228

A cooling event corresponding to an estimated decrease of ∼2 K across229

the continental shelf (∼8 km-wide) is evidenced towards the end of the LF-DAS230

observation period (Figs. 2a-e) which is consistent with upwelling (Abrahams et al.,231

2021) caused by northwesterly mistral wind episodes in the region (Guenard et al.,232

2005; Odic et al., 2022). The independent Cap Vieux temperature measurements233

confirmed this cooling event which favored the homogenization of the water column234

temperature, and is consistent with decreased IWs during the last days analysed.235

Ocean currents, such as the near-surface Liguro-Provençal (i.e. Northern) current236

(Petrenko, 2003) could potentially be related to our observations, as these could237

produce temperature variations on multiple days timescales in the continental shelf238

and slope.239

Ide et al. (2021) correlated deep offshore Japan LF-DAS data with temperature240

anomalies of a few Kelvins. Our LF-DAS observations also confirm temperature241

anomalies of some Kelvin on the continental shelf, and others on the order of ∼0.1K242

on the continental slope seafloor off Toulon. Having in mind that standard FO and243

DAS systems have sensitivities of the order of a nanostrain, LF-DAS measurements244

should be sensitive to temperature variations of at least ∼0.1 mK.245

4.1.2 Near-inertial internal waves and higher frequency temperature246

variability247

The LF-DAS observations reported here highlight the presence of near-inertial248

IWs producing temperature fluctuations of up to ∼1 K at the seafloor from the249

coast and down to the continental rise. Weaker temperature variability of higher250

frequency is also present. The near-inertial variability is particularly ubiquitous251

over the continental slope which may be explained by the more stable thermal252

stratification there. Oscillations with periods of less than a couple hours are less253

obvious to interpret but are potentially related to the buoyancy frequency in the254

ocean, which is a well-known upper frequency bound for IWs. However, this spectral255

band might also be partially affected by optical noise. Complex reverberations on256
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the rugged seafloor and deep-sea valleys of the slope might cause the harmonic-like257

spectral bands. Previous studies have also documented energetic near-coastal inertial258

IWs in the of Gulf of Lions (Millot & Crépon, 1981; Millot, 1990) and the Western259

Mediterranean abyss (Van Haren & the ANTARES collaboration, 2014).260

Over the slope, LF-DAS points towards fluctuation amplitudes on the order261

of 0.01 K. Assuming a vertical thermal stratification of 10−3 K/m, such amplitudes262

amount to vertical displacements of about 10 m and near-inertial vertical velocity263

amplitudes of 10−3 m/s. On the seafloor, horizontal and vertical velocities are tied264

via bottom boundary condition: w + u · ∇h where w and u are the vertical and265

horizontal flows respectively, and h is water depth. Assuming an average slope of266

0.1 (Fig. 2c), this leads to horizontal velocities of 0.01 m/s. These estimates of the267

horizontal and vertical flows are in line with past observations of IWs in the area268

(Van Haren & the ANTARES collaboration, 2014).269

Our results show IWs with phase propagation having a dominant shoreward270

component (Fig. 3d,e). Remaining seaward energy could be partially comprised of271

horizontal reflections at bathymetric obstacles, as near-inertial IWs mostly reflect272

horizontally against slopping bottoms (Gerkema & Zimmerman, 2008). However, it273

is well-known that IW packets do not generally propagate horizontally. In fact, deep274

inertial motion has an upward phase component and downward group propagation275

when stratification (N) is larger than fc (Tintoré et al., 1995). Both propagation276

vectors have equal-sign vertical components for gyroscopic IWs, that is when N≈0277

(van Haren & Millot, 2004). Currently, LF-DAS on a single cable only provides a278

one-dimensional view of the multi-dimensional oceanic variability, therefore more279

advanced processing methods and additional constraints (e.g. multiple cables280

or additional ground truths) could provide further insights into IW propagation281

complexity.282

The apparent propagation speeds of the temperature anomalies (∼0.5 m/s)283

observed by Ide et al. (2021) are in line with the apparent propagation of IWs found284

in our study. The variable cross-shore range extent of temperature patterns over the285

shelf can be interpreted as variations in the amplitude of IW packets displacing the286

thermocline vertically at variable depths. Temporal variations in the temperature287

stratification could also be indirectly responsible for such differential patterns.288

4.2 LF-DAS and alternative DFOS approaches289

Figure 4. Comparison of DSTS and LF-DAS measurements at collocated channels in Toulon,

June 2022, both bandpassed in the 0.05-0.5 mHz range.

–10–
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Standard DAS and DSTS systems cannot distinguish temperature or strain290

anomalies without external information on the processes involved (e.g. frequency or291

shape of the perturbation). However, at LF the temperature effect is expected to292

dominate, as evidenced by the ground truth comparison in Sec. 3.293

Upon calibration, DSTS and DTS are capable of providing absolute294

temperature measurements (e.g. Sinnett et al., 2020), while LF-DAS is currently295

limited to temperature variations estimates. Yet, LF-DAS has some key advantages296

when monitoring thermal anomalies: over short distances (∼5 km), most DSTS297

and DTS interrogators typically have repeatability (Hartog, 2017) on the order of298

0.1∼1.0 K (also depending on type of fiber, duration of acquisition, environmental299

setting, i.a.), while LF-DAS approaches the ∼0.1 mK. For DSTS and DTS,300

the repeatability drops sharply with sensing range, e.g. ∼1.5 K at 70 km for a301

single-mode fiber with a minimum laser attenuation of 0.2 dB/km (Lauber et al.,302

2018). In contrast, the Rayleigh scattered power is 20 to 30 dB higher than the303

Brillouin and Raman scatterings typically used for temperature sensing, respectively304

(Santos & Farahi, 2014), so that longer sensing ranges are attainable with DAS305

(up to 80 km and more). At the same time, diverse techniques exist to preserve an306

optimal DAS repeatability at long distances (e.g. Shang et al., 2022).307

To support our LF-DAS analysis, we ran an independent, simultaneous DAS308

and DSTS acquisition on the Toulon cable. Fig. 4 shows the LF-DAS and DSTS309

time series, bandpass-filtered from 0.05 to 0.5 mHz, a range where the frequency310

content of both instruments is comparable. Apart from some deviations in the311

weaker, fast fluctuations, LF-DAS matches the DSTS signal. The former appears312

smoother, potentially because of its longer spatial sampling (4.8 m for LF-DAS and313

2.0 m for DSTS) and/or increased high frequency noise in the later. Apparent time314

lags are likely related to the different spatial samplings of each deployment and315

the absence of clock synchronization. Visual inspection of Supplementary Fig. S2316

confirms the similarity of both data types and that the DSTS signal has a lower317

SNR at long ranges. Conversely, DSTS appears to have a higher SNR than LF-DAS318

near the shoreline, possibly due to increased sensitivity of DAS to surface gravity319

waves strain.320

4.3 Challenges and limitations321

Presently only absolute temperature anomalies can be estimated from LF-DAS322

because of the ϕ-OTDR limitations (Lu et al., 2017). The current lack of knowledge323

about the exact transfer function between the FO response and temperature,324

which could depend on cable material and structure (Ekechukwu & Sharma, 2021),325

hampers the retrieval of absolute temperatures. This, however, could be overcome326

by means of unique, temporary or regular temperature calibrations at a single or327

multiple cable locations with dedicated temperature sensors and/or with auxiliary328

DTS/DSTS systems, depending on the required precision and possible logistics.329

When implemented, the SMART cable initiative (Howe et al., 2022) should provide330

a calibrated temperature sensor at the optical repeaters of new cables. DAS is also331

making rapid progress in terms of performance. In a recent study, Vidal-Moreno et332

al. (2022) demonstrated the possibility to suppress the noise of DAS systems which333

increases inversely proportional to frequency, and thus opens the way for a new334

generation of DAS systems capable of providing absolute temperatures over periods335

of months or longer.336
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4.4 Perspectives: Opportunities for Oceanography from physics to337

biology338

Our results highlight the potential of LF-DAS for high resolution thermometry339

in the underwater environment and for IW monitoring. In recent years, seismological340

and acoustical instrumentation has been used to study ocean phenomena (e.g. Grob341

et al., 2011; Traer et al., 2012; Davy et al., 2014; Ferretti et al., 2018; Wu et al.,342

2020; Song et al., 2021; Iafolla et al., 2022). DAS can likewise be implemented for343

these applications as well as to densely sample temperature signals, performing344

optimally in complex environments like the deep ocean. This provides new345

experimental opportunities for oceanographic and hydrographic applications such346

as long-term temperature monitoring of large water masses without the need for347

offshore campaigns, and could potentially be useful to study water circulation,348

turbulence, and to track geothermal heat transfer across the seafloor.349

Acronyms350

DAS Distributed Acoustic Sensing351

DFOS Distributed Fiber Optic Sensing352

DSTS Distributed Strain and Temperature Sensing353

DTS Distributed Temperature Sensing354

EMD Empirical Mode Decomposition355

HHT Hilbert-Huang Transform356

IW(s) Internal Wave(s)357

LF-DAS Low-Frequency DAS358

SNR Signal-to-Noise ratio359

ϕ-OTDR Phase-sensitive Optical Time-Domain Reflectometry360

5 Open Research361

The fiber optic DSTS and the processed LF-DAS data, as well as times series362

used to produce Figs. 2-4, and S1-S2 are available in the following OSF repository:363

https://osf.io/6jf9r (https://doi.org/10.17605/OSF.IO/6JF9R). The364

main DAS dataset (Figs. 2,3 and S1) was recorded on the seafloor Toulon cable365

pertaining to the MEUST (Mediterranean Eurocentre for Underwater Sciences366

and Technologies) infrastructure (see Sladen et al. (2019) for details) using an367

Aragón Photonics hDAS interrogator. MEUST is financed with the support of368

the CNRSIN2P3, the Region Sud, France (CPER the State (DRRT), and FEDER.369

Auxiliary DAS and DSTS datasets were recorded on the same cable using a Febus370

Optics G1-C and a Febus A1-R interrogators, respectively. The latter were used to371

produce Figs. 4 and S2.372

Bathymetry data of the study region (South of France/Gulf of Lions) to373

produce Fig. 1 was freely available at SHOM (2015) and can be accessed here:374

https://diffusion.shom.fr/pro/mnt-facade-gdl-ca-homonim.html. The map375

was produced with QGIS v3.22 (QGIS.org, 2022. QGIS Geographic Information376

System. QGIS Association).377

The data of the thermistor chain of Cap Vieux is provided for free by378

Sartoretto et al. (2022) (https://doi.org/10.17882/86522) and can be retrieved379

upon request (Parameters: Toulon (CapSicie), 2019, All Depths) from the380

regional temperature observation network (T-MEDNet), https://t-mednet.org/381

request-data?view=tdatarequest&site id=38. AROME operational atmospheric382

model data was obtained from Météo-France (https://donneespubliques383

.meteofrance.fr/?fond=produit&id produit=131&id rubrique=51).384
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Data processing and analyses largely relied on standard Python libraries,385

e.g. SciPy (https://scipy.org/), NumPy (https://numpy.org/), Pandas386

(https://pandas.pydata.org/), Matplotlib (https://matplotlib.org/), h5Py387

(https://www.h5py.org/); plus dedicated libraries for optimization: Dask (Dask388

Development Team, 2016); seismic data processing: ObsPy (Beyreuther et al., 2010);389

and additional specialized libraries: Sklearn (Pedregosa et al., 2011) and EMD390

(Quinn et al., 2021).391
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5Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille, France

Contents of this file

1. Text S1 to S5

2. Figures S1 to S2

November 16, 2022, 4:00pm



D
ra
ft

X - 2 :

Introduction

This file contains complementary information to our main manuscript, principally de-

tails about the sensing instruments, methods, processing and some additional figures.

Text S1. Principle of Distributed Acoustic Sensing

Distributed Acoustic Sensing (DAS) systems make use of single optic fibers cased inside

(un)armored cables, for instance existing Telecommunication cables, to sense the envi-

ronment. So far, DAS systems require a dark fiber to operate. Coherent laser pulses are

regularly sent along the fiber and their Rayleigh back-scattered signature is used as a

proxy for temperature and strain perturbations affecting the optical path length (due to

local elongations and refractive index variations of the fiber) over specific sections of the

cable, which can be localized (López-Higuera, 2002; Hartog, 2017). These perturbations

are traced-back along the fiber by converting the two-way travel time of light to distances

with the known speed of light in silica. Measurements are averaged along a few meters of

cable (gauge length) at a defined distance step (spatial sampling). In contrast to DAS,

Distributed Temperature Sensing (DTS) is based on Raman-scattering, while Distributed

Temperature and Strain Sensing (DSTS) is based on Brillouin-scattering.

The DAS interrogator unit used for our main analysis is an ϕ-OTDR hDAS (High fidelity

distributed acoustic sensor) designed by Aragón Photonics, which provides measurements

in strain units. One specificity of the hDAS system is the fact that it sends a chirped

light signal. Details can be found in (Pastor-Graells et al., 2016; Fernández-Ruiz et al.,

2019). The sampling frequency was 100 Hz in the first couple days of the campaign and

then switched to 500 Hz.
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The DSTS system used to validate the simultaneous LF-DAS (indirect) measurements

was a Febus Optics G1-C set to record with a gauge length of 10 m and sampling resolution

of 2.0 m over 30 km. The temporal sampling was set to 15 min to keep the data noise level

at a reasonable level. The DAS system in this case was a Febus A1-R DAS interrogator

with gauge length of 10 m and sampling resolution of 4.8 m over 40 km of cable.

Text S2. Extracting the low-frequency component of DAS data

Because of the high sampling rates and large DAS data volumes acquired, a conven-

tional low-pass filtering approach was not possible to isolate the low-frequency content of

the raw data. Thus, a parallel-computing approach with a moving average was instead

implemented for efficiency in the reduction of the thousands of channels

We implemented a moving average windows of 5 minutes with 60% overlap indepen-

dently to each channel. This implies an output sampling frequency of ∼8.33 mHz and

a maximum resolvable frequency of ∼1.66 mHz (the latter is the inverse of twice the

averaging window and does not necessarily match the Nyquist-criterion frequency that

would be expected from the data point sampling rate). Our experience with different

windows showed this combination to be a good compromise between a smoothing that is

not excessive as to preserve the LF content, while being enough to remove spikes, high

frequency noise, and to reduce the data size by a considerable proportion

The original data acquired is automatically segmented in sections of several days due

to a laser refreshing procedure of the interrogator. Each segment has different trends,

large value offsets and most of the times gaps in between. We demean the first segment

and adjust the remaining segments with respect to the last value of the previous ones to
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ensure continuity between them and to smooth-out large data breaks. This is performed

for each channel separately. Although some of the consecutive segments show different

trends which are likely related to instrumental drift, we did not correct these to avoid

distorting and losing true signal, since an objective instrumental drift correction function

is unknown to us. The data gaps in the signal were filled using cubic interpolation between

segments. This allows for processing routines that require continuous time series (spectral

decomposition and filtering). In this exploratory stage, we do not filter out ”bad quality”

channels, given that a criteria to define their ”usefulness” (which may or may not be

related to ground-seabed coupling) is not yet completely understood. A last pre-processing

step is to remove the along channel mean amplitude temporal fluctuation from each sample

of the data (DAS temporal response or common-noise correction) using a band of channels

around a central channel to find each average. This procedure provides smoother time

series, while the effect of the laser time fluctuations and strong amplitude spikes/steps is

minimized. The data was highpass-filtered at 0.009 mHz prior to frequency-wavenumber

transformation using a 2D Direct Fourier Transform.

Text S3. Conversion of strain to temperature

As outlined in Ide, Araki, and Matsumoto (2021), at long time scales (low frequencies),

the apparent strain differences are expected to be caused by refractive index variations of

the fiber due to temperature changes in the environment, instead of being caused by LF

strain-related elongations on the fiber, since such LF strains could hardly couple energy

into the fiber and their effect is much smaller in magnitude than the temperature effect.

The formula that approximately describes this variations is:
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dϵ

dT
= nα +

dn

dT

where ϵ, T, n and α represent the observed (apparent) strain, the environment’s tem-

perature, silica’s refractive index (typically around 7 ·10−6 K−1 at room temperature) and

its thermal expansion coefficient, respectively. The authors explain that a typical value

for dn/dT is 10−5 (constant) while the nα term is expected to be much smaller, in the

order of 10−7. Under these assumptions, a ∆s = 1 nanostrain difference is approximately

equivalent to ∆T = 0.1 mK.

An absolute difference-normalization of each separate LF-DAS channel, i.e. between

zero and the maximum value of each channel, is applied before conversion to temperature

differences.

For the comparison of LF-DAS with the thermistor chain in Fig. 2, the best-matching

cable channel was found via cross-correlation maxima search. The maximum correlations

were found with the deepest, 50 m deep, temperature sensor of Cap Vieux, which is almost

touching the seafloor and better replicates the FO cable configuration. We note, however,

that the maximum normalized correlations have spread maxima at roughly 60%, i.e. the

highest correlations near zero-lag were similar over a range of a few tens of channels;

this result is expected given that both sensors are not collocated but separated by a

few kilometers. The best-matching LF-DAS channel is located ∼4 km away from the

thermistor chain.

As outlined in the main text, the FO inside the Toulon cable is relatively loose and

can creep inside the cable when deformed slowly, at very low-frequencies. When rapidly
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deformed by e.g. high-frequency seismic or acoustic waves, it responds proportionally to

the stresses without creeping. This further contributes to explain why at LF, the effect

of temperature is dominant whereas strains appears negligible.

Text S4. Inertial variability

The inertial period Tc at a given latitude θ reflects the variability time scale of important

mesoscale to large scale oceanographic processes. This period is determined by the Coriolis

effect due to the angular momentum conservation for traveling objects that are subjected

to the earth’s rotation centrifugal force and can be estimated via:

Tc = fc
−1 = (2Ω sin θ)−1

where fc is known as the Coriolis frequency and Ω is the rotation rate of the earth

(∼ 7.29 × 10−5 rad/s). This translates into an inertial period of ∼17.5h at the mean

latitude of the Toulon cable (43◦N).

Text S5. Empirical Mode Decomposition and Hilbert-Huang Transform Pa-

rameters

EMD and HHT analyses (Huang et al., 1998) were performed by using the EMD Python

package developed by Quinn, Lopes-dos Santos, Dupret, Nobre, and Woolrich (2021). Sev-

eral of the examples and built-in functions of the package were implemented in our study.

The mask sifting (mode separation) scheme (Deering & Kaiser, 2005) produced the best

results for the LF-DAS data. This approach allows us to obtain a set of well-behaved

Intrinsic Mode Functions (IMFs) that represent generalized spectral components or em-

pirical modes of the input signal. A proper sifting leads to IMFs that are purely oscillatory

functions with zero reference levels from which instantaneous amplitude and frequency
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attributes are obtained by means of a Hilbert-Huang Transform (HHT) (Huang & Wu,

2008). The masks are monochromatic signals introduced into the Intrinsic Mode Function

(IMF) under consideration to avoid mixing of modes with very different frequencies: as

the high frequency components are always captured and separated first during the sift-

ing, a mask signal with a frequency higher than a long period oscillation in the signal

contributes to separate the latter correctly from the other higher frequency components.

Most of the default mask sifting parameters of the package were the basis of our process-

ing. The amplitude of these masks were uniformly computed as ratios of the standard

deviation of the input for all IMFs; their frequency successively increasing at factors of 2.

Four masks were applied to each IMF and the sift threshold was set to 10−8. Eight IMFs

were calculated in total.

The instantaneous attributes (amplitude and frequency) of each IMF were found via

amplitude-normalized Hilbert transform (NHT) as in (Huang et al., 2009). Channels

with anomalous extrema were muted under a 3-standard deviation outlier criterium. We

applied a logarithmic binning of 1000 grid points between 0.001 and 1.0 mHz to ensure

enough spectral resolution. Amplitudes were stacked to obtain the binned HHT. The

HHT spectra were normalized as power spectral density (divided by fsampling · Nsamples).

To obtain the HHT spectra, we averaged all the instantaneous attributes of each IMF over

a selected range of channels. This results in a stacked spectrogram-like output representing

the dominant spectral power spectral density over a section of cable. The LF-DAS time

series were pre-filtered with a highpass at 0.0007 mHz (equivalent to nearly 16 days - the

total duration of the deployment) and pre-averaged every two consecutive channels to
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increase their SNR. The final images were smoothed using a Gaussian kernel convolution

filter with one standard deviation. For Figs 3b,c, each IMF is weighted by its instantaneous

amplitude, so to obtain an image analogous to a spectrogram that captures the time-

evolution of the spectral components.

Care was taken to select a timespan for analysis with no large data breaks and to reject

channels with anomalously uniform or large values or spikes (as seen from Fig. 2a,b),

as these artifacts can largely affect the EMD (Stallone et al., 2020). Furthermore, the

averaging of the instantaneous attributes of each IMFs across a sufficiently long cable

range helps to balance out such undesired effects, in case that artifacts may remain at

some channels. Supplementary Figure S1 shows an example of such decomposition for a

selected channel using the EMD Python package.
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Figure S1. Sample Intrinsic Mode Functions (IMFs) for a selected LF-DAS channel.
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(a)

(b)

Figure S2. Collocated DSTS and LF-DAS measurements in Toulon, June 2022 -

Filtered ensemble comparison. Lowpassed DSTS (a) and LF-DAS (b)
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(c)

(d)

Figure S2. (cont.) collocated DSTS and LF-DAS measurements in Toulon, June 2022

- Filtered ensemble comparison. Highpassed DSTS (c) and LF-DAS (d).
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