

Version 2 of the global oceanic diazotroph database

Zhibo Shao^{1,#}, Yangchun Xu^{1,#}, Hua Wang¹, Weicheng Luo¹, Lice Wang¹, Yuhong Huang¹, Ya-Wei Luo¹

¹ State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China

5

[#]These authors contributed equally.

Correspondence to: Ya-Wei Luo (ywluo@xmu.edu.cn)

- Abstract. Marine diazotrophs convert dinitrogen (N_2) in seawater into bioavailable nitrogen (N), contributing approximately 10 half of the external input of bioavailable N to the global ocean. A global oceanic diazotroph database was previously published in 2012 (Luo et al., 2012). Here, we compiled version 2 of the database by adding 23,095 in situ measurements of marine diazotrophic abundance and N₂ fixation rates published in the past decade, increasing the number of N₂ fixation rates and microscopic and qPCR-based diazotrophic abundance data by 140%, 26% and 443%, respectively. Although the updated database expanded spatial coverage considerably, particularly in the Indian Ocean, the data distribution was still not uniform and most data were sampled in the surface Pacific and Atlantic Oceans. By summing the arithmetic means of the N₂ fixation 15 rates in each ocean basin, the updated database substantially increased the estimate of global oceanic N_2 fixation from 137 \pm 9 Tg N yr⁻¹ using the old database to 260 ± 20 Tg N yr⁻¹ (mean \pm standard error). However, using geometric means instead, the updated database gave an estimate of global oceanic N_2 fixation (60 Tg N yr⁻¹) similar to that estimated from the old database (62 Tg N yr⁻¹), while the new estimate had a larger uncertainty (confidence intervals based on one standard error: 47 -107 Tg N yr⁻¹ versus 52 -73 Tg N yr⁻¹), mostly attributable to elevated uncertainties in the Pacific Ocean. An analysis 20 comparing N₂ fixation rates measured at the same months and location $(1^{\circ} \times 1^{\circ} \text{ grids})$ showed that the new ¹⁵N₂ dissolution method obtained N₂ fixation rates higher than the conventional $^{15}N_2$ bubble method in 65% of cases, with this percentage increasing when the N₂ fixation rates were high (> approximately 3 μ mol N m⁻³ d⁻¹ using the ¹⁵N₂ dissolution method). With greatly increased data points, this version 2 of the global oceanic diazotrophic database can support future studies in marine
- 25
- (Shao et al., 2022).

1 Introduction

Dinitrogen (N_2) fixation is conducted by a group of microbes, termed diazotrophs, to convert inert N_2 gases into bioavailable nitrogen (N). In the ocean, where N nutrients are largely scarce, N_2 fixation plays an important role in fertilizing primary

ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687)

30 production, particularly in oligotrophic regions (Gruber et al., 2008; Wang et al., 2019), and balances N loss processes such as denitrification and anammox (Deutsch et al., 2007; Gruber, 2019).

Marine diazotrophs include three main types of autotrophic cyanobacteria (Zehr, 2011): (1) nonheterocystous filamentous cyanobacteria, *Trichodesmium*; (2) heterocystous cyanobacteria, *Richelia* or *Calothrix*, forming diazotroph-diatom associations (DDAs); and (3) unicellular cyanobacteria (UCYNs).

35 Diazotrophic abundance can be directly obtained by counting their cells using microscopes or be estimated from their copies of *nifH* using qPCR assays (Church et al., 2005). *NifH* copies have been more frequently measured than microscopic cell counting, particularly in the past decade, and can be more useful when evaluating the abundance of different diazotrophic groups. However, caution must be taken because there are discrepancies between cell-count-based and *nifH*-based diazotrophic abundance (Luo et al., 2012), largely attributed to large variations in the number of *nifH* copies in the genomes of marine diazotrophs, particularly *Trichodesmium* and heterocystous cyanobacteria (Sargent et al., 2016; White et al., 2018).

Considering the key role of N_2 fixation in oceans, a database compiling up-to-date measurements of N_2 fixation and diazotrophic abundances is essential in studying marine ecology and biogeochemistry. For example, the estimated global marine N_2 fixation rate ranges from 15 to 238 Tg N yr⁻¹ using different methods (Zehr and Capone, 2021), which is commonly thought to be much lower than the estimated nitrogen loss (126 – 481 Tg N yr⁻¹) from denitrification and anammox (Zehr and Capone, 2020; Gruber et al., 2008; Zhang et al., 2020). One possible reason for this imbalance is inaccurate estimation of

45 Capone, 2020; Gruber et al., 2008; Zhang et al., 2020). One possible reason for this imbalance is inaccurate estimation of global marine N₂ fixation due to limited spatio-temporal coverage of measurements and questionable N₂ fixation assays (White et al., 2020).

Luo et al. (2012) compiled the first global oceanic diazotrophic database including *in situ* measurements of N₂ fixation rates and cell-count-based and *nifH*-based diazotrophic abundance. In the past decade, many more measurements have been reported, extending diazotrophic activities to new habitats such as subpolar (Sato et al., 2021; Shiozaki et al., 2018b) and even polar regions (Shiozaki et al., 2020; Harding et al., 2018). Several years ago, two studies supplemented the database with some newly measured diazotrophic data (Tang and Cassar, 2019; Tang et al., 2019), although a substantial amount of additional data still needed to be included.

Here, we present an updated version of the global oceanic diazotrophic database. We describe the database information, a summary of the data updates, measurement methods and data distribution. Furthermore, we conduct a first-order estimation of the global oceanic N_2 fixation rate using the updated database. We also analyzed the discrepancy in N_2 fixation assays and the relationship between *nifH* gene copies and diazotrophic cell abundance based on the existing data.

2 Data and methods

2.1 Database summary

points) (Tables 1 & 4).

60 This study updated the original global oceanic diazotrophic database of Luo et al. (2012) with new *in situ* measurements of N_2 fixation rates and abundance of diazotrophic cells and nifH gene copies. The updated database (version 2) included 23,095 new data points, including 6,902 measured in 2012 – 2018 and collected by two previous studies (Tang et al., 2019; Tang and Cassar, 2019) and 16,193 data points measured in 2012 - 2022 and collected by this study (Table 1). In version 2 of the database, some errors in the datasets of Tang et al. (2019) (mostly caused in unit conversions) were also corrected. Version 2 65 of the database is composed of six sub-databases: (1) 7,515 volumetric N₂ fixation rates (4,200 new data points) (Tables 1 & 2); (2) 2,248 depth-integrated N₂ fixation rates (1,497 new data points) (**Tables 1 & 2**); (3) 6,016 volumetric cell counts (1,130 new data points) (Tables 1 & 3); (4) 1,291 depth-integrated cell counts (360 new data points) (Tables 1 & 3); (5) 17,143 volumetric nifH copies (13,994 new data points) (Tables 1 & 4); and (6) 2,356 depth-integrated nifH copies (1,914 new data

70

More recently, a unique group of non-cyanobacterial diazotrophs (NCDs) carrying nifH (gene encoding N₂-fixing enzyme, nitrogenase) has been widely found (Moisander et al., 2017; Zehr et al., 1995; Zehr, 1998), although direct evidence of N₂ fixation by NCDs is still limited (Harding et al., 2022). We therefore did not include NCD data in our database, while those who would be interested can use two recently published NCD datasets (Shao and Luo, 2022; Turk-Kubo et al., 2022).

Depth-integrated data were either provided directly in published papers or calculated for those vertical profiles with at 75 least 3 volumetric data points in each profile. A profile was integrated from the sea surface to the depth of the deepest datum, while using the value of the shallowest datum to represent the level in the upper layer. We ignored those rates of N_2 fixation deeper than 200 m when calculating depth integrals, because they often had low vertical resolutions.

As in the original database, the data in version 2 were grouped into three taxonomic categories: Trichodesmium, UCYN and heterocystous cyanobacteria. The UCYN abundance data were further grouped into UCYN-A, UCYN-B, and UCYN-C, 80 and the heterocystous cyanobacterial abundance was grouped into Richelia and Calothrix. N2 fixation rates were measured for size groups or in whole seawater samples. When whole-water N_2 fixation rates were not reported, total N_2 fixation rates were calculated as the sum of N₂ fixation rates of different groups.

Sampling information (latitude, longitude, depth and time) was provided for each data point. Physical, chemical and biological parameters, including temperature, salinity, and concentrations of nitrate, phosphate, iron and chlorophyll, were also included when they were available.

85

	New data added in Version 2						
	Original database	Tang et al., 2019	Tang & Cassar, 2019	This study	Sum		
		Volumetric N2 fixa	tion rate				
Trichodesmium	689	145		83	917		
UCYN	275	124			399		
Heterocystous	205	30		83	318		
Whole seawater	2,146	1,322		2,413	5,881		
Total	3,315	1,621		2,579	7,515		
Proportion	48.1%	21.6%		34.3%			
]	Depth-integrated N ₂ f	ixation rate				
Trichodesmium	280	89		45	414		
UCYN	46	18		1	65		
Heterocystous	65	92		20	177		
Whole seawater	360	544		702	1606		
Total	751	743		768	2262		
Proportion	33.2%	32.8%		34.0%			
	,	Volumetric cell-count	-based data				
Trichodesmium	3,274			645	3,919		
UCYN				85	85		
Heterocystous	1,612			400	2,012		
Total	4,886			1,130	6,016		
Proportion	81.2%			18.8%			
	Dep	oth-integrated cell-co	unt-based data				
Trichodesmium	626			241	867		
UCYN				19	19		
Heterocystous	305			100	405		
Total	931			360	1,291		
Proportion	72.1%			27.9%			
		Volumetric <i>nifH-</i> ba	ased data				
Trichodesmium	758		770	2,382	3,910		
UCYN	1,792		2,640	4,822	9,254		
Heterocystous	599		505	2,875	3,979		

Table 1. Summary of data points for N₂ fixation rates, cell-count-based abundance and *nifH*-based abundance.

Total	3,149	3915	10,079	17,143
Proportion	18.4%	22.8%	58.7%	
		Depth-integrated nifH-based data		
Trichodesmium	105	123	297	525
UCYN	263	418	609	1,290
Heterocystous	74	82	385	541
Total	442	623	1,291	2,356
Proportion	18.8%	26.4%	54.8%	

Table 2. Summary of data points of N_2 fixation rates in version 2 of the database, including whole seawater and volumetric90measurements for *Trichodesmium*, unicellular and heterocystous diazotrophs.

Reference	Region	Tricho- desmium	UCYN	Hetero- cystous	Whole Seawater	Depth- integrated
Agawin et al. (2013)	Subtropical Atlantic	21			17	
Ahmed et al. (2017)	E Arabian Sea				19	5 ^a
Benavides et al. (2013)	Subtropical N Atlantic	15	15		15	
Benavides et al. (2016a)	Mediterranean Sea				10	
Benavides et al. (2018a)	Tropical SW Pacific				59	
Benavides et al. (2022)	S Pacific				38	
Bentzon-Tilia et al. (2015)	Baltic Sea				23	23ª
Berthelot et al. (2017)	Tropical W Pacific				48	12 ^a
Bhavya et al. (2016)	Arabian Sea				4	
Biegala and Raimbault (2008)	SW Pacific				9	2
Blais et al. (2012)	Arctic Ocean				18	12
Bombar et al. (2011)	South China Sea				15	
Bombar et al. (2015)	Subtropical N Pacific				20	2
Bonnet et al. (2013)	Tropical SW Pacific					8 ^a
Bonnet et al. (2015)	SW Pacific					30 ^a
Bonnet et al. (2018)	Tropical SW Pacific				102	14
Böttjer et al. (2017)	Subtropical N Pacific				243	108 ^a
Chang et al. (2000)	S East China Sea					7 ^a
Chang et al. (2019)	Tropical SE Pacific				37	
Dekaezemacker et al. (2013)	Tropical SE Pacific				43	10
Fernandez et al. (2015)	Central Chile Upwelling System				84	14 ^a
Fernández-Castro et al. (2015)	Atlantic, Pacific and Indian Oceans					43ª
Fonseca-Batista et al. (2017)	E Atlantic				56	14

Reference	Region	Tricho- desmium	UCYN	Hetero- cystous	Whole Seawater	Depth- integrated
Fonseca-Batista et al. (2019)	Temperate NE Atlantic				46	10 ^a
Foster et al. (2009)	Red Sea				26	
Gandhi et al. (2011)	E Arabian Sea				28	7 ^a
Garcia et al. (2007)	SW Pacific					1 ^a
González et al. (2014)	Southern Ocean				8	
Gradoville et al. (2020)	N Pacific				20	
Großkopf et al. (2012)	Atlantic Ocean				39	17
Hallstrøm et al. (2022)	NE Atlantic				59	11 ^a
Halm et al. (2012)	S Pacific	43	43		43	10 ^a
Harding et al. (2018)	Arctic Ocean				38	
Hörstmann et al. (2021)	S Indian Ocean; Southern Ocean				13	
Ibello et al. (2010)	Mediterranean Sea				21	7 ^a
Jayakumar et al. (2017)	Tropical NE Pacific				32	7 ^a
Knapp et al. (2016)	Tropical SE Pacific					6 ^a
Konno et al. (2010)	NW Pacific					16 ^a
Kromkamp et al. (1997)	Indian Ocean					4 ^a
Krupke et al. (2013)	Subtropical N Atlantic				3	
Krupke et al. (2014)	N Atlantic	42	42	30	42	44 ^a
Krupke et al. (2015)	Subtropical NE Atlantic				1	
Kumar et al. (2017)	E Arabian Sea				12	3
Kumari et al. (2022)	Bay of Bengal				97	18 ^a
Lee Chen et al. (2014)	South China Sea					24 ^a
Li et al. (2020)	N South China Sea; East China Sea				68	15 ^a
Liu et al. (2020)	South China Sea				25	5 ^a
Loescher et al. (2014)	Pacific Ocean				30	5 ^a
Loick-Wilde et al. (2015)	Amazon River					36 ^a

Reference	Region	Tricho- desmium	UCYN	Hetero- cystous	Whole Seawater	Depth- integrated
Loick-Wilde et al. (2019)	Tropical W Pacific				8	
Lory et al. (2022)	Tropical SW Pacific				5	
Löscher et al. (2016)	Tropical SW Pacific				225	31 ^a
Löscher et al. (2020)	Bay of Bengal				18	
Lu et al. (2018)	Equatorial W Pacific				3	3 ^a
Martínez-Pérez et al. (2016)	Tropical N Atlantic				84	14
Messer et al. (2016)	S Pacific				27	
Mouriño-Carballido et al. (2011)	Atlantic Ocean					20ª
Mulholland et al. (2019)	NW Atlantic				402	242ª
Needoba et al. (2007)	Temperate N Pacific				2	1 ^a
Raes et al. (2020)	S Pacific				55	
Rahav et al. (2013a); Rahav et al. (2015)	Red Sea and E Mediterranean Sea				62	10
Rahav et al. (2013b); Rahav et al. (2013c)	Mediterranean Sea				8	
Rahav et al. (2016)	Mediterranean Sea					3 ^a
Reeder et al. (2022)	S Baltic Sea				15	5
Riou et al. (2016)	N Atlantic	24	24			6
Sahoo et al. (2021)	Bay of Bengal					6 ^a
Sarma et al. (2020)	Bay of Bengal				2	
Sato et al. (2021)	Subarctic Sea of Japan; Sea of Okhotsk				31	3
Saxena et al. (2020)	Bay of Bengal				32	8
Selden et al. (2019)	Tropical NE Pacific				8	16 ^a
Shiozaki et al. (2013)	W Pacific				50	10
Shiozaki et al. (2014a)	Indian Ocean				42	
Shiozaki et al. (2014b)	SW Pacific				26	6 ^a
Shiozaki et al. (2015a)	NW Pacific				73	11 ^a
Shiozaki et al. (2015b)	N Pacific				112	22 ^a

Reference	Region	Tricho- desmium	UCYN	Hetero- cystous	Whole Seawater	Depth- integrated
Shiozaki et al. (2017)	N Pacific				74	15
Shiozaki et al. (2018b)	W Arctic Ocean				84	21 ^a
Shiozaki et al. (2020)	Antarctic Coast				53	15 ^a
Sipler et al. (2017)	Arctic Ocean				8	
Sohm et al. (2011)	S Atlantic				12	3 ^a
Subramaniam et al. (2008)	Tropical N Atlantic					242ª
Subramaniam et al. (2013)	Atlantic Ocean				96	24 ^a
Tang et al. (2020)	N Atlantic				15	
Turk-Kubo et al. (2012)	Tropical N Atlantic				27	7
Wang et al. (2021)	NW Atlantic				85	
Wasmund et al. (2015)	S Atlantic					66 ^a
Watkins-Brandt et al. (2011)	N Pacific					1ª
Wen et al. (2022)	Tropical NW Pacific				143	22 ^a
White et al. (2018)	Subtropical N Pacific	83		83	62	51ª
Wilson et al. (2012)	N Pacific				9	4 ^a
Wilson et al. (2017)	Subtropical N Pacific				33	
Wu et al. (2021)	Eastern Indian Ocean				48	7
Yogev et al. (2011)	E Mediterranean Sea				16	32 ^a
Zhang et al. (2015)	South China Sea				82	11
Zhang et al. (2019)	Tropical NW Pacific				87	9 ^a
Total		228	124	113	3735	1497

 a Data are reported by data providers as depth-integrated N_{2} fixation rates (unlabelled data computed from volumetric N_{2} fixation rate data)

Table 3. Summary of data points of cell-count-based abundance in version 2 of the database, including volumetric95measurements for *Trichodesmium*, unicellular and heterocystous diazotrophs.

			Cell-cour	nt-based abui	ndance	
Reference	Region	Tricho- desmium	Unicellular	Richelia	Calothrix	Depth- integrated
Bif and Yunes (2017)	S Atlantic	16				
Campbell et al. (2005)	SW Pacific					33 ^a
Detoni et al. (2016)	S Atlantic	14				
Dupouy et al. (2011)	SW Pacific	18				
Fernández et al. (2010)	Global					40 ^a
Hegde et al. (2008)	Bay of Bengal	135				
Holl et al. (2007)	N Atlantic					10 ^a
Krupke et al. (2013)	N Atlantic		9			
Lory et al. (2022)	S Pacific	3				
Lu et al. (2018)	W Equatorial Pacific	2				
Martínez-Pérez et al. (2016)	Tropical N Atlantic		56			14
Masotti et al. (2007)	Southwestern Pacific	20				5
Mompeán et al. (2013)	N Atlantic					43 ^a
Pierella Karlusich et al. (2021)	Global	46		46	35	
Riou et al. (2016)	N Atlantic		20			5
Sahu et al. (2017)	Bay of Bengal	14				
Shiozaki et al. (2013)	W Pacific	10		12		
Shiozaki et al. (2015a)	NW Pacific	60				10
Subramaniam et al. (2008)	N Atlantic					162ª
White et al. (2018)	N Pacific	83		83		38
Wu et al. (2021)	Bay of Bengal	224		224		
Total		645	85	365	35	360

^a Data are reported by data providers as depth-integrated cell-count-based abundance (unlabelled data computed from volumetric cell-count-based abundance).

100

Table 4. Summary of data points of *nifH*-based abundance in version 2 of the database, including volumetric measurements0for *Trichodesmium*, unicellular and heterocystous diazotrophs.

		nifH-based abundances					
References	Region	Tricho- desmium	Unicellular	Heterocystous	Depth- integrated		
Benavides et al. (2016a)	N Atlantic	13	30	15			
Bentzon-Tilia et al. (2015)	Baltic Sea		20				
Berthelot et al. (2017)	W Tropical Pacific	64	256	64	96		
Bombar et al. (2011)	S China Sea	18	36	18			
Bombar et al. (2015)	N Pacific				32		
Chen et al. (2019)	W Pacific	103	381	177	123		
Cheung et al. (2020)	N Pacific	519	519				
Cheung et al. (2022)	Western Bering Sea		58	29			
Church and Zehr (2020)	N Pacific	968	1936	1936	605		
Church et al. (2008)	N Pacific				60		
Detoni et al. (2022)	WS Atlantic	70	140	70	72		
Gradoville et al. (2020)	N Pacific	43	85	28			
Hallstrøm et al. (2022)	NE Atlantic				42 ^a		
Halm et al. (2012)	S Pacific Gyre	8	16				
Hamersley et al. (2011)	S California Bight	6	12	6			
Harding et al. (2018)	Arctic Ocean		39				
Hashimoto et al. (2016)	Seto Inland Sea		176				
Henke et al. (2018)	W Tropical S Pacific		142				
Krupke et al. (2013)	N Atlantic		24		3		
Liu et al. (2020)	S China Sea	49	98		33		
Lory et al. (2022)	W Tropical S Pacific	3	3				
Lu et al. (2018)	W Tropical Pacific	3	6	3			
Martínez-Pérez et al. (2016)	N Tropical Atlantic	84	252	84	70		
Moisander et al. (2014)	S Pacific	174	348	174	92		
Moore et al. (2018)	Tropical Atlantic	104	312	208			
Moreira-Coello et al. (2017)	N Pacific		20		20 ^a		

		nifH-based abundances					
References	Region	Tricho- desmium	Unicellular	Heterocystous	Depth- integrated		
Ratten et al. (2015)	N Atlantic	9	27	9	10		
Reeder et al. (2022)	Baltic Sea		15	15			
Sato et al. (2021)	Subarctic Sea		31		3		
Shiozaki et al. (2014a)	Arabian Sea	26	52		18		
Shiozaki et al. (2014b)	S China Sea	171	342		72 ^a		
Shiozaki et al. (2015a)	Temperate N Pacific	73	146		33		
Shiozaki et al. (2017)	N Pacific	74	222	74	90		
Shiozaki et al. (2018a)	Kuroshio	46	138	46			
Shiozaki et al. (2018b)	W Arctic		84		21		
Shiozaki et al. (2018c)	S Pacific	94	285	95	95		
Shiozaki et al. (2020)	Antarctic sea ice		53				
Sohm et al. (2011)	S Atlantic Gyre		58				
Stenegren et al. (2018)	W Tropical S Pacific	108	402	120	108		
Tang et al. (2020)	N Atlantic	42	42				
Turk-Kubo et al. (2014)	E Tropical S Pacific	60	159	57	53		
Wen et al. (2017)	W Pacific	22	44	22			
Wen et al. (2022)	W Pacific	130	390	130	110 ^a		
White et al. (2018)	N Pacific				34		
Wu et al. (2019)	Bay of Bengal	68	63		19		
Total		3082	7462	3281	1914		

^a Data are reported by data providers as depth-integrated *nifH*-based abundance (unlabelled data computed from volumetric *nifH*-based abundance).

2.2 Nitrogen fixation rates

105

Marine N_2 fixation rates are commonly measured using the acetylene reduction assay or ${}^{15}N_2$ assimilation method (Mohr et al., 2010; Montoya et al., 1996; Capone, 1993). The acetylene reduction assay estimates gross N_2 fixation rates indirectly by using a factor of 3:1 (Stewart et al., 1967; Bhavya et al., 2019) or 4:1 (Zehr and Capone, 2021) to convert acetylene reduction rates to N_2 fixation rates. When using the ${}^{15}N_2$ assimilation method, samples are incubated in seawater with ${}^{15}N_2$ labelled gas; the ${}^{15}N'{}^{14}N$ ratio of particulate nitrogen is measured at the beginning and at end of incubation to calculate the N_2 fixation rate

(Capone and Montoya, 2001). Compared to the $^{15}N_2$ assimilation method, the acetylene reduction assay is easier to conduct, 110 but acetylene used in the assay can potentially impact the metabolic activities of diazotrophs (Bhavya et al., 2019). The conversion factor between acetylene reduction and N2 fixation is also controversial (Flett et al., 1976; Giller, 1987; Hardy et al., 1973). The ${}^{15}N_2$ assimilation method has higher sensitivity and requires a shorter incubation time than the acetylene reduction assay, particularly when N2 fixation is low (Montoya et al., 1996). The ¹⁵N2 assimilation method, however, needs to concentrate cells for signal detection, which can potentially damage cells and underestimate N2 fixation rates (Bhavya et al., 2019). Hence, the ¹⁵N₂ assimilation method only measures the fixed N in particulate forms and ignores the N that is fixed but 115

then excreted by diazotrophs during incubation, which, however, can theoretically be counted by the acetylene reduction assays (Mulholland, 2007).

The conventional ¹⁵N₂ assimilation method was conducted by bubbling ¹⁵N₂-labelled gas. It was later found to be difficult to reach complete solubility equilibrium over a short incubation time, leading to serious underestimations of N₂ fixation rates

(Mohr et al., 2010; Großkopf et al., 2012; Wannicke et al., 2018). This "bubble" method was then modified by dissolving ¹⁵N₂-120 labelled gas in seawater for an adequate period to ensure that it reached solubility equilibrium (Mohr et al., 2010). Recently, this dissolution method was reported to have risks of introducing heavy metal pollution and affecting the growth of diazotrophs (White et al., 2020).

We compared volumetric N₂ fixation rates in the upper 50 m and depth-integrated N₂ fixation rates in the database 125 measured using the above three methods, and found that they basically span a similar range of magnitude (Fig. 1). The results of a further analysis comparing the ${}^{15}N_2$ bubble and dissolution methods will be discussed later.

Most N₂ fixation rates were originally reported as daily rates. For those reported hourly N₂ fixation rates in the daytime, we converted them to daily rates by multiplying by 12 hours. Some studies also reported hourly rates at night. We multiplied these night rates by 12 hours and added them to the daytime rates.

Figure 1. Distribution of N_2 fixation rates measured using different methods. (a) Volumetric data in upper 50 m; (b) depthintegrated data.

2.3 Diazotrophic abundance

Diazotroph cell abundance was counted mainly by using standard light microscopy, and in some cases by using epifluorescence microscopy with the aid of color excitation. A recent study used machine learning techniques to detect and enumerate diazotrophs in a large dataset of microscopic images (Pierella Karlusich et al., 2021). In the original database, only the cell-counted abundance of *Trichodesmium* and heterocystous cyanobacteria was recorded. The updated database also

included a dataset of enumerated abundance of UCYN-A after staining them by CARD-FISH assays (**Table 3**) (Martínez-Pérez et al., 2016), although this unicellular diazotroph remained uncultivated.

140

Trichodesmium cell-count abundance in our database was recorded as the number of trichomes per volume of water, although it was also reported in the literature as the number of cells or colonies per volume of water. In the latter cases, the data were converted to trichomes per volume of water by using a commonly used factor of 200 trichomes colony⁻¹ or 100 cells trichome⁻¹ (Luo et al., 2012).

The abundance of heterocystous cyanobacterial cells was recorded in this database. When the number of symbioses was reported in several studies, we assumed that 2 and 5 *Richelia* heterocystous cells were associated with each *Hemiaulus* and *Rhizosolenia* cell, respectively (Villareal et al., 2011), and 5 *Calothrix* heterocystous cells were associated with each *Chaetoceros* cell (Tuo et al., 2021).

In measurements of *nifH* copies, different qPCR assays were designed to target specific diazotrophic groups (Church et al., 2005; Foster et al., 2007), mainly including *Trichodesmium*, UCYN subgroups (A, B and C) and heterocystous groups

- (Table 4). More recently, UCYN-A was found to have three sublineages, UCYN-A1, UCYN-A2, and UCYN-A3, with clade UCYN-A1 sharing the same genome as previously targeted UCYN-A (Thompson et al., 2014). UCYN-A1 and UCYN-A2 have significant distinctions in the sizes and species of their symbiotic hosts, with the former living in relatively smaller hosts (Thompson et al., 2014; Martínez-Pérez et al., 2016; Cornejo-Castillo et al., 2016). The *nifH* copies of these two sublineages were included in our database. The *nifH* copies of UCYN-A3 were not listed separately in our database because there were
- 155 only very few measurements reported. Three major associations of heterocystous groups were also marked for the *nifH* data, including *Richelia-Hemiaulus* (het-1), *Richelia-Rhizosolenia* (het-2) and *Calothrix-Chaetoceros* (het-3).

2.4 Quality control

The data of N_2 fixation rates and diazotrophic abundance in the database ranged by several orders of magnitude. Extremely high values usually occurred during algal blooms, and zero values indicated that diazotrophic activity was below detection or true absence at the sampling time and stations. The data (nonzero value) were first logarithmically transformed and then analyzed for outliers, considering that they were likely log-normally distributed (Fig. S1-S6). For each parameter, we used Chauvenet's criterion to identify suspicious outliers whose probability of deviation from the means is lower than 1/2n, where *n* is the number of data points (Glover et al., 2011). Because N_2 fixation rates and diazotroph abundances in the ocean can be extremely low, this filtering only applies to data on the high side. Although these outliers (labelled in database) may be true

¹⁶⁵ values, we flagged them to remind users for caution. These outliers were also not used in our estimation of global ocean N_2 fixation rates.

3. Results

3.1 Data distribution

Version 2 of the database approximately doubled the number of N₂ fixation rate data in the original database, filling spatial
gaps particularly in the Indian and Southern Oceans (Figs. 2a, 2b, 3a & 3b). The number of depth-integrated N₂ fixation rate data tripled, potentially providing more constraints on estimating global marine N₂ fixation (Figs. 2b & 3b). *NifH*-based abundance consisted of the largest fraction of new data, mostly in the Pacific and Atlantic Oceans (Figs. 2e, f & 3e, f). Compared to other parameters, a relatively moderate amount of new cell-count data was added and mainly distributed in the Indian and Atlantic Oceans (Figs. 2c, d & 3c, d). Overall, there were limited data on N₂ fixation and diazotrophic abundance in the Southern Ocean.

 \diamond Original database \triangle Tang et al., 2019 ∇ Tang & Cassar, 2019 \bigcirc This study

Figure 2. Spatial distribution of volumetric and depth-integrated data points in version 2 of the diazotrophic database binned in $1^{\circ} \times 1^{\circ}$ grids. (**a-b**) N₂ fixation rates, (**c-d**) cell counts, and (**e-f**) *nifH* gene copies. The data sources include the original version of this database (Luo et al., 2012) (blue diamonds), two compiled datasets (Tang et al., 2019; Tang and Cassar, 2019) (red triangles) and this study (red circles).

180

Figure 3. Spatial distribution of volumetric and depth-integrated data points binned in $1^{\circ} \times 1^{\circ}$ grids for (**a-b**) N₂ fixation rates, (**c-d**) cell counts, and (**e-f**) *nifH* gene copies. The size of the circles represents the number of data points in each bin. The blue diamonds mark the outliers identified using Chauvenet's criterion.

185

Version 2 of the database added data at all latitudinal ranges (**Fig. 4**). In particular, version 2 extended the data from tropical and subtropical areas to polar regions in the Arctic Ocean (Harding et al., 2018) and Antarctic coast (Shiozaki et al., 2020).

Figure 4. Latitudinal distribution of volumetric and depth-integrated data including (a-b) N₂ fixation rates, (c-d) cell counts,
 and (e-f) *nifH* gene copies, including the data in the original database (blue) and the new data added in version 2 of the database (red).

The data in version 2 of the database were distributed more evenly in months than in the original database, especially for the *nifH* copies, in which substantially more data were collected from January to February (**Fig. 5**).

195

Figure 5. Temporal distribution of volumetric and depth-integrated data including (**a-b**) N_2 fixation rates, (**c-d**) cell counts, and (**e-f**) *nifH* gene copies, including the data in the original database (blue) and the new data added in version 2 of the database (red).

200

Although most of the new data were measured in surface waters, there were numerous *nifH* copy data sampled in other layers in the euphotic zone (**Fig. 6**). Additionally, active N₂ fixation and the existence of diazotrophs were found below the euphotic zone (e.g., depth > 200 m) (Benavides et al., 2016b; Benavides et al., 2018b; Selden et al., 2019; Hamersley et al., 2011; Bonnet et al., 2013; Loescher et al., 2014) (**Fig. 6**).

205

Figure 6. Vertical distribution of data including (a) N_2 fixation rates, (b) cell counts, and (c) *nifH* gene copies, including the data in the original database (blue) and the new data added in version 2 of the database (red).

3.2 N₂ fixation rates

The volumetric N₂ fixation rates in 5 vertical layers and the depth-integrated N₂ fixation rates were binned in $3^{\circ} \times 3^{\circ}$ grids, and 210 the geometric means in each bin are displayed (**Fig. 7**). The depth-integrated N₂ fixation rates ranged in order of $10^{-4} - 10^{3}$ µmol N m⁻² d⁻¹ (mostly in order of 1 - 100 µmol N m⁻² d⁻¹) (**Fig. 7a**). Some high rates $(10^{2} - 10^{3}$ µmol N m⁻² d⁻¹) were found in the western Pacific Ocean, the regions near the Hawaii Islands, and the western tropical Atlantic Ocean. Approximately 25% of the depth-integrated N₂ fixation rates were lower than 1 µmol N m⁻² d⁻¹, mainly in the North Atlantic Ocean and in the Indian Ocean. Vertically, the N₂ fixation rates were high in the upper 25 m (**Fig. 7b, c**), below which the rates rapidly decreased

215 with depth (**Fig. 7d, e, f**). In the upper 25 m, the N₂ fixation rates in the southwestern Pacific were higher than those in other areas, mostly ranging from 1 to 100 μ mol N m⁻³ d⁻¹. Note that some zero N₂ fixation rates were reported mostly in subpolar regions, as well as in certain tropical and subtropical regions (**Fig. 7**).

10⁻²

220

Figure 7. N₂ fixation rates in version 2 of the database. The panels show (**a**) depth-integrated data and volumetric data in (**b**) 0-5 m, (**c**) 5-25 m, (**d**) 25-100 m, (**e**) 100-200 m, and (**f**) below 200 m. For a clear demonstration, data are binned to $3^{\circ} \times 3^{\circ}$ grids and geometric means in each bin are shown. Zero-value data are denoted as black crosses.

10⁻²

3.3 Diazotrophic abundance

225 The depth-integrated and upper 25 m volumetric cell-count-based abundance was also shown in geometric means of each 3° × 3° grid (Fig. 8). *Trichodesmium* abundance generally decreased from the west to the east in the Atlantic Ocean (Fig. 8a–b). In the Pacific Ocean, *Trichodesmium* appeared more abundant in the west. The abundance data of *Richelia* and *Calothrix* were still scarce (Fig. 8c, e).

The data of *nifH* copies had better spatial coverage than the cell-count data (Fig. 9). Depth-integrated *Trichodesmium nifH* 230 copies were also more abundant in the western Pacific and western Atlantic Oceans (Fig. 9a). Some high depth-integrated nifH abundance of UCYN-A and UCYN-B was reported in the northwestern and southwestern Pacific Ocean (Fig. 9c, e). High nifH abundance of Richelia was also found in the northwestern Pacific Ocean (Fig. 9i). The nifH abundance data for UCYN-C and Calothrix were sparse. The volumetric nifH abundance data are also shown in four depth intervals (Fig. 9 & Fig. S8). Almost all diazotrophs were more abundant in the upper 25 m than below.

235

Figure 8. Depth-integrated cell-count-based abundance and upper 25 m volumetric cell-count-based abundance in version 2 of the database. The panels show (a-b) Trichodesmium, (c-d) Richelia, and (e-f) Calothrix. For a clear demonstration, data are binned to $3^{\circ} \times 3^{\circ}$, and geometric means in each bin are shown. Zero-value data are denoted as black crosses. Note that the abundance of *Trichodesmium* is reported as the number of trichomes per square or cubic meter.

Figure 9. Depth-integrated *nifH* abundance and upper 25 m volumetric *nifH* abundance in version 2 of the database. The panels
show (a–b) *Trichodesmium*, (c–d) UCYN-A, (e–f) UCYN-B, (g–h) UCYN-C, (i–j) *Richelia*, and (k–l) *Calothrix*. For a clear demonstration, data are binned to 3° × 3° and geometric means in each bin are shown. Zero-value data are denoted as black crosses.

3.4 First-order estimate of global ocean N2 fixation rate

Similar to that applied to the original database, we used version 2 of the database to conduct a first-order estimate of global ocean N_2 fixation rates (**Table 5**). The adequate data in version 2 supported the estimates of mean and total N_2 fixation rates in the Indian and Arctic Oceans, while the estimates for these two ocean basins were not available when using the original database (Luo et al., 2012). Version 2 estimated a much higher arithmetic mean of N_2 fixation rates in the South Pacific Ocean than that using the original database, while the difference did not exist in the geometric means in the same basin. Another large difference between the two versions of the database was the much lower geometric mean of N_2 fixation rates in the North

- 255 Pacific. The global oceanic N₂ fixation rate was calculated by summing its geometric or arithmetic means in every ocean basin, with the associated errors being propagated (Glover et al., 2011; Luo et al., 2012). The estimates of global oceanic N₂ fixation based on geometric means were close using the original and version 2 databases (62 and 60 Tg N yr⁻¹, respectively), while those based on arithmetic means differed greatly (137 versus 260 Tg N yr⁻¹, respectively). This higher arithmetic mean-based estimate of global oceanic N₂ fixation was mainly due to the supplementation of the Indian Ocean, for which the estimate was
- 260 unavailable when using the original database because of data limitations, and due to the higher rates in the South Pacific Ocean. It must be noted that high uncertainties were associated with the arithmetic means of N_2 fixation in the South Pacific and Indian Oceans when using version 2 (**Table 5**), indicating that more measurements were needed in these basins to better constrain the elevated estimates of global oceanic N_2 fixation.

265

270

Table 5. First-order estimates of N_2 fixation rates in different ocean basins. Data are first binned to $3^{\circ} \times 3^{\circ}$ grids before being used to calculate geometric or arithmetic means in each basin. The means are multiplied by the basin areas to calculate the N_2 fixation rates of each basin. NQ: not quantified due to limited data points. ND: no data. The numbers in parentheses after geometric means are confidence intervals estimated from one standard error of log-10 transformed data. Arithmetic means were reported with one standard error.

	Number of	hinned data	Mean N2 fixation rate (µmol N m ⁻² d ⁻¹)				Areal sum (Tg N yr ⁻¹)			
Pagion	Number of	binned data	Original	database	Vers	ion 2	Original	database	Versi	on 2
Region	Original database	Version 2	Geometric	Arithmetic	Geometric	Arithmetic	Geometric	Arithmetic	Geometric	Arithmetic
North Atlantic	125	180	9.2 (7.0–12)	170 ± 40	18.9 (18.6–19.1)	180 ± 33	1.7 (1.3–2.2)	32 ± 7.4	3.98 (3.93-4.03)	38 ± 7.0
South Atlantic	15	53	7.9 (6.3–9.8)	13 ± 4.4	17 (6.9–43)	30 ± 5	1.1 (0.9–1.4)	1.8 ± 0.6	2.7 (1.1-6.7)	4.6 ± 0.81
North Pacific	45	131	78 (67–90)	120 ± 22	50 (22–115)	130 ± 20	35 (30–41)	56 ± 9.8	20 (8.8–47)	52 ± 8.2
South Pacific	26	95	64 (54–76)	130 ± 46	58 (30-115)	240 ± 66	24 (20–28)	46 ± 17	20 (10-40)	83 ± 23
India Ocean	4	34	120 (29–490)	590 ± 320	17 (15–20)	270 ± 140	NQ	NQ	4.9 (4.3–5.6)	76 ± 33
Mediterranean Sea	10	12	18 (12–28)	45 ± 21	9.8 (7.4–13)	120 ± 94	0.2 (0.1–0.4)	0.6 ± 0.3	0.2 (0.15-0.26)	2.4 ± 1.9
Arctic Ocean	ND	17	ND	ND	14 (8.5–23)	19 ± 5	ND	ND	0.8 (0.48–1.3)	1.1 ± 0.28
Southern Ocean	ND	10	ND	ND	21 (7.7–58)	8.6 ± 8.1	ND	ND	6.5 (2.4–18)	2.7 ± 2.5
Global Ocean							62 (52-73)	137 ± 9.2	60 (47–107)	260 ± 20

4. Discussion

4.1 Comparison of N_2 fixation measured using ${}^{15}N_2$ bubbling and dissolution

Compared to the ¹⁵N₂ dissolution method, the magnitude of underestimation in N₂ fixation rates acquired by the ¹⁵N₂ bubble 275 method remains inconclusive. Here, we used data in our database to compare these two methods. First, as shown above, the volumetric N₂ fixation rates obtained by these two methods varied in a similar range of extent of magnitude (**Fig. 1**). The average N₂ fixation rate measured using the ¹⁵N₂ dissolution method was significantly higher (17%) than that measured using the ¹⁵N₂ bubble method (one-tailed Wilcoxon test, p < 0.01). We also compared N₂ fixation rates at the same location (1° × 1° grids) and months but measured by either the ¹⁵N₂ bubble or dissolution method, although the samples measured by the two 280 methods were not identical. The results showed that the ¹⁵N₂ dissolution method produced higher rates than the ¹⁵N₂ bubble method in 65% of cases (**Fig. 10**). The analysis using the generalized additive model (GAM) further demonstrated that the underestimation by the ¹⁵N₂ bubble method tended to be exaggerated under high N₂ fixation (> 3 µmol N m⁻³ d⁻¹) (**Fig. 10**).

which can be explained by the gas equilibrium time (Mohr et al., 2010; Wannicke et al., 2018; Jayakumar et al., 2017): Under

low N₂ fixation, the ${}^{15}N_2$ bubble method can provide sufficient dissolved ${}^{15}N_2$ regardless of whether the gas reaches equilibrium;

285 under high N₂ fixation, the ¹⁵N₂ bubble method cannot fulfil the requirement of dissolved ¹⁵N₂, resulting in relatively large underestimation.

Figure 10. Comparison of measured N₂ fixation rates using the ¹⁵N₂ dissolution and the ¹⁵N₂ bubble assays. The blue line represents the 1:1 ratio of the two methods. The fitted results of the two methods by the generalized additive model (GAM) and confidence intervals are represented by the red solid line and the dashed black lines, respectively.

4.2 Comparison between diazotrophic cell counts and nifH copies

Whether *nifH* copies can be used to infer diazotrophic abundance remains debated, as a large range in the number of *nifH* copies per diazotrophic cell has been reported (**Table S1**). The reported ratios of *nifH* copies to cell numbers in *Trichodesmium* and heterocystous cyanobacteria appeared larger than those in UCYNs (**Table S1**), possibly caused by large genome size in

- *Trichodesmium* (Sargent et al., 2016) and inclusion of the *nifH* gene in vegetative cells of heterocystous filaments (White et al., 2018). In our database, the log-10 transformed abundance of *Trichodesmium* cell counts $(10^{6.5\pm1.2} \text{ cells L}^{-1})$ was only slightly lower than the log-10 transformed abundance of *Trichodesmium nifH* copies $(10^{6.6\pm1.6} \text{ copies L}^{-1})$ (**Fig. 11a**), while the difference was approximately two orders of magnitude in heterocystous cyanobacteria *Richelia* and *Calothrix* (**Fig. 11b, c**). It must be noted that this simple analysis used all the data in our database, and the cell counts and *nifH* copies were measured for
- 300 samples that were not in the same season and location. Much lower ratios of cell counts to *nifH* copies (1.51 2.58) were

(1)

recently reported in heterocystous cyanobacteria and UCYN-B collected near the Hawaii Islands (Gradoville et al., 2022), demonstrating potentially large variance in these ratios.

Figure 11. Comparison of all cell-count and *nifH* copy abundance data in the database. The box plots show the median (central
 line), 25th and 75th percentiles of log-10 transformed data (upper and lower edges of the boxes), 5th and 95th percentiles (error
 and outliers (red crosses).

4.3 Biomass conversion factor

For the possible further use of cell-count or *nifH*-based abundance, here we suggest factors to convert the abundance to carbon biomass (**Tables 6 and S2**). Most biomass conversion factors suggested here are the same as those used in Luo et al. (2012), except for heterocystous cyanobacteria and UCYN-A because new information has become available or additional consideration is necessary.

Because heterocystous cyanobacteria and their host diatoms form DDAs and need to function together, we suggest allocating the biomass of host diatoms to each associated diazotrophic cell (**Table S2**). The carbon biomass of host diatom cells was calculated using an empirical equation (Menden-Deuer and Lessard, 2000):

```
315 C = 0.117 \times V^{0.881},
```

310

where *C* is the diatom cell carbon biomass (pg C cell⁻¹), and *V* is the average cell biovolume (μ m³) of each diatom genus, for which values from a database (Harrison et al., 2015) were used in this study (**Table S2**). Each host diatom associates with multiple heterocysts. The numbers of *Richelia* heterocysts in *Hemiaulus* and *Rhizosoleni* were observed to be 2 and 5 (Villareal et al., 2011; Yeung et al., 2012), and the number of vegetative cells in each heterocyst can range from 3 to 10 (Foster et al.,

320 2011). We tried 2 and 5 *Calothrix* heterocysts in *Chaetoceros* when estimating the biomass conversion factor, although the values were unknown. The biomasses of heterocystous cells and vegetative cells (2–80 pg C cell⁻¹ for *Richelia* and 5–20 pg C cell⁻¹ for *Calothrix*) were adopted from Luo et al. (2012). Hence, the conversion factors for DDAs are estimated by dividing the total biomass of each DDA by the number of associated heterocysts. As a result, the biomass conversion factors of *Richelia-Hemiaulus* and *Richelia-Rhizosolenia* were estimated to be 280 (range: 150–1250) and 430 (range: 10–1900) pg C heterocyst⁻¹

330

³²⁵ ¹, respectively (**Table S2**). As the number of filaments (2 or 5) did not have a large impact on the factors of *Calothrix-Chaetoceros* associations, we recommend using 100 (range: 20–360) pg C heterocyst⁻¹.

The conversion factor for UCYN-A is also updated because it has been found to live symbiotically with prymnesiophyte or coccolitophore species (Thompson et al., 2012). Similar to DDAs, the host biomass is allocated to UCYN-A. It has been reported that each prymnesiophyte cell hosts one UCYN-A1 cell, and each coccolitophore hosts 5–10 UCYN-A2 cells (Cornejo-Castillo et al., 2019). The biomass of a UCYN-A1 cell with a diameter of 1 µm and a UCYN-A2 cell with a diameter

of 1.6–3.3 μm (Cornejo-Castillo et al., 2019; Martínez-Pérez et al., 2016) is 0.2 and 0.8–5.5 pg C, respectively, by using an empirical equation (Verity et al., 1992):

$$C = 0.433 \times V^{0.863}, \tag{2}$$

Using Equation (2), the biomass of a host prymnesiophyte or coccolitophore cell is 1.5–2.2 pg C or 6.8–43 pg C according
to their reported cell diameters (2–2.3 μm and 3.6–7.3 μm, respectively) (Martínez-Pérez et al., 2016; Cornejo-Castillo et al., 2019). Hence, the biomass of the UCYN-A1 symbiosis and the UCYN-A2 symbiosis is 1.7–2.4 pg C and 7.6–48 pg C, respectively. After normalizing the symbiotic biomass to the number of UCYN cells in each symbiosis (1 for UCYN-A1 and 5–10 for UCYN-A2), the biomass conversion factors are 1.7–2.4 pg C (UCYN-A1 cell)⁻¹ and 0.8–9.6 pg C (UCYN-A2 cell)⁻¹. Thus, we recommend using a uniform conversion factor of 2 pg C cell⁻¹ for these two clades of UCYN-A (Table 7) considering that UCYN-A1 is more frequently found and often in higher abundance than UCYN-A2 (Thompson et al., 2014).

Table 6. Biomass conversion factors for diazotrophs.

					Richelia-	Richelia-	Calothrix-
	Trichodesmium	UCYN-A	UCYN-B	UCYN-C	Hemiaulus	Rhizosolenia	Chaetoceros
	(pg C cell ⁻¹)	(pg C	(pg C	(pg C			
					heterocyst ⁻¹)	heterocyst ⁻¹)	heterocyst ⁻¹)
Recommended	300	2	20	10	280	430	100
Range	100-500	1-10	4-50	5-24	150-1250	10-1900	20-360

5. Conclusions

This study updated the global oceanic diazotrophic database by Luo et al. (2012) using new measurements reported in the past decade. Although the spatial coverage of the data was greatly expanded by this effort, the data distribution is still uneven, with most measurements in the Pacific and Atlantic Oceans. The estimation of global oceanic N₂ fixation based on its arithmetic means in ocean basins was greatly increased by using the updated database, particularly in the Indian and South Pacific Oceans. Although this result may suggest the potential to reduce the imbalance existing in estimated N₂ fixation and N removal rates in the global ocean, large uncertainties still exist, and better constraints with more measurements are needed in the future. For instance, if geometric means of N₂ fixation in ocean basins were instead used, the updated database did not increase the

- 350 estimation of global oceanic N₂ fixation. Furthermore, data were more concentrated in surface seawater, especially in the Southern Ocean, limiting reliable evaluations of depth-integrated N₂ fixation rates. We also compared the N₂ fixation rates measured using bubbling or dissolving ¹⁵N₂ gases at the same location and month (not necessarily in identical samples). The results showed that the bubbling method produced lower rates, on average, than the dissolution method, although the former method even generated higher rates in approximately one-third of cases. All these results suggest that, despite the efforts in
- 355 the past several decades, the ocean is still under sampled in terms of the distribution of diazotrophs and level of N_2 fixation. Nevertheless, we believe this diazotrophic database, updated with a large amount of data accumulated in the past decade, is timely and can help scientists study marine ecology and biogeochemistry.

Data availability.

360 The database is available in a data repository (https://doi.org/10.6084/m9.figshare.21677687) (Shao et al., 2022)

Author contributions.

YWL conceived and designed the structure of the database and supervised the study. All the authors collected the data and updated the database. ZS, YX, HW and YWL analyzed the data. ZS, YX and YWL wrote the manuscript.

365

Competing interests.

The authors declare that they have no conflicts of interest.

Acknowledgments.

370 We would like to thank all the scientists who collected and shared the sampling data. This work was supported by the National Natural Science Foundation of China (grants 41890802 and 42076153).

375

References

Agawin, N. S. R., Tovar-Sánchez, A., De Zarruk, K. K., Duarte, C. M., and Agustí, S.: Variability in the abundance of *Trichodesmium* and nitrogen fixation activities in the subtropical NE Atlantic, Journal of Plankton Research, 35, 1126-1140, <u>https://doi.org/10.1093/plankt/fbt059</u>, 2013.

380 Ahmed, A., Gauns, M., Kurian, S., Bardhan, P., Pratihary, A., Naik, H., Shenoy, D. M., and Naqvi, S. W. A.: Nitrogen fixation rates in the eastern Arabian Sea, Estuarine, Coastal and Shelf Science, 191, 74-83, <u>https://doi.org/10.1016/j.ecss.2017.04.005</u>, 2017.

Benavides, M., Bonnet, S., Berman-Frank, I., and Riemann, L.: Deep into oceanic N₂ fixation, Front. Mar. Sci., 5, 108, https://doi.org/10.3389/fmars.2018.00108, 2018a.

Benavides, M., Moisander, P. H., Daley, M. C., Bode, A., and Aristegui, J.: Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean, J. Plankton Res., 38, 662-672, <u>https://doi.org/10.1093/plankt/fbv121</u>, 2016a.

Benavides, M., Bronk, D. A., Agawin, N. S. R., Pérez-Hernández, M. D., Hernández-Guerra, A., and Arístegui, J.: Longitudinal variability of size-fractionated N₂ fixation and DON release rates along 24.5°N in the subtropical North Atlantic, Journal of Geophysical Research: Oceans, 118, 3406-3415, <u>https://doi.org/10.1002/jgrc.20253</u>, 2013.

Benavides, M., Caffin, M., Duhamel, S., Foster, R. A., Grosso, O., Guieu, C., Van Wambeke, F., and Bonnet, S.: Anomalously high abundance of *Crocosphaera* in the South Pacific Gyre, FEMS Microbiol Lett, 369, <u>https://doi.org/10.1093/femsle/fnac039</u>, 2022.

Benavides, M., Shoemaker, K. M., Moisander, P. H., Niggemann, J., Dittmar, T., Duhamel, S., Grosso, O., Pujo-Pay, M., Helias-Nunige, S., Fumenia, A., and Bonnet, S.: Aphotic N₂ fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean, Biogeosciences, 15, 3107-3119, <u>https://doi.org/10.5194/bg-15-3107-2018</u>, 2018b.

Benavides, M., Bonnet, S., Hernandez, N., Martinez-Perez, A. M., Nieto-Cid, M., Alvarez-Salgado, X. A., Banos, I., Montero, M. F.,
Mazuecos, I. P., Gasol, J. M., Osterholz, H., Dittmar, T., Berman-Frank, I., and Aristegui, J.: Basin-wide N₂ fixation in the deep waters of the Mediterranean Sea, Global Biogeochemical Cycles, 30, 952-961, <u>https://doi.org/10.1002/2015gb005326</u>, 2016b.

Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H., Hansen, J. L., Markager, S., and Riemann, L.: Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries, The ISME Journal, 9, 273-285, 10.1038/ismej.2014.119, 2015.

400 Berthelot, H., Benavides, M., Moisander, P. H., Grosso, O., and Bonnet, S.: High-nitrogen fixation rates in the particulate and dissolved pools in the Western Tropical Pacific (Solomon and Bismarck Seas), Geophys. Res. Lett., 44, 8414-8423, https://doi.org/10.1002/2017gl073856, 2017.

Bhavya, P. S., Kumar, S., Gupta, G. V. M., Sudheesh, V., Sudharma, K. V., Varrier, D. S., Dhanya, K. R., and Saravanane, N.: Nitrogen uptake dynamics in a tropical eutrophic estuary (Cochin, India) and adjacent coastal waters, Estuaries and Coasts, 39, 54-67,
 https://doi.org/10.1007/s12237-015-9982-y, 2016.

Bhavya, P. S., Min, J.-O., Kim, M.-S., Jang, H. K., Kim, K., Kang, J. J., Lee, J. H., Lee, D., Jo, N., Kim, M. J., Kim, Y., Lee, J., Lee, C. H., Bae, H., Yoo, H., Park, S., Yun, M. S., and Lee, S. H.: A review on marine N₂ fixation: Mechanism, evolution of methodologies, rates, and future concerns, Ocean Science Journal, 54, 515-528, <u>https://doi.org/10.1007/s12601-019-0037-3</u>, 2019.

Biegala, I. and Raimbault, P.: High abundance of diazotrophic picocyanobacteria (<3 μm) in a Southwest Pacific coral lagoon, Aquat 410 Microb Ecol, 51, 45-53, <u>https://doi.org/10.3354/ame01185</u>, 2008.

Bif, M. and Yunes, J.: Distribution of the marine cyanobacteria Trichodesmium and their association with iron-rich particles in the South Atlantic Ocean, Aquat Microb Ecol, 78, 107-119, <u>https://doi.org/10.3354/ame01810</u>, 2017.

420

Blais, M., Tremblay, J. É., Jungblut, A. D., Gagnon, J., Martin, J., Thaler, M., and Lovejoy, C.: Nitrogen fixation and identification of potential diazotrophs in the Canadian Arctic, Global Biogeochemical Cycles, 26, 1-13, <u>https://doi.org/10.1029/2011gb004096</u>, 2012.

415 Bombar, D., Moisander, P. H., Dippner, J. W., Foster, R. A., Voss, M., Karfeld, B., and Zehr, J. P.: Distribution of diazotrophic microorganisms and *nifH* gene expression in the Mekong River plume during intermonsoon, Mar. Ecol. Prog. Ser., 424, 39-55, <u>https://doi.org/10.3354/meps08976</u>, 2011.

Bombar, D., Taylor, C. D., Wilson, S. T., Robidart, J. C., Rabines, A., Turk-Kubo, K. A., Kemp, J. N., Karl, D. M., and Zehr, J. P.: Measurements of nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre using a free-drifting submersible incubation device, J. Plankton Res., 37, 727-739, <u>https://doi.org/10.1093/plankt/fbv049</u>, 2015.

Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R. M., Grosso, O., Zehr, J. P., and Capone, D. G.: Aphotic N₂ fixation in the Eastern Tropical South Pacific Ocean, PLoS One, 8, 14, <u>https://doi.org/10.1371/journal.pone.0081265</u>, 2013.

Bonnet, S., Caffin, M., Berthelot, H., Grosso, O., Benavides, M., Helias-Nunige, S., Guieu, C., Stenegren, M., and Foster, R. A.: In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N₂ fixation (OUTPACE cruise),
Biogeosciences, 15, 4215-4232, <u>https://doi.org/10.5194/bg-15-4215-2018</u>, 2018.

Bonnet, S., Rodier, M., Turk-Kubo, K. A., Germineaud, C., Menkes, C., Ganachaud, A., Cravatte, S., Raimbault, P., Campbell, E., Quéroué, F., Sarthou, G., Desnues, A., Maes, C., and Eldin, G.: Contrasted geographical distribution of N₂ fixation rates and *nifH* phylotypes in the Coral and Solomon Seas (southwestern Pacific) during austral winter conditions, Global Biogeochemical Cycles, 29, 1874-1892, <u>https://doi.org/10.1002/2015gb005117</u>, 2015.

430 Böttjer, D., Dore, J. E., Karl, D. M., Letelier, R. M., Mahaffey, C., Wilson, S. T., Zehr, J., and Church, M. J.: Temporal variability of nitrogen fixation and particulate nitrogen export at Station ALOHA, Limnology and Oceanography, 62, 200-216, <u>https://doi.org/10.1002/lno.10386</u>, 2017.

Campbell, L., Carpenter, E., Montoya, J., Kustka, A., and Capone, D.: Picoplankton community structure within and outside a *Trichodesmium* bloom in the southwestern Pacific Ocean, Vie et Milieu/Life & Environment, 185-195, <u>https://hal.sorbonne-</u>
 universite.fr/hal-03219052, 2005.

Capone, D.: Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure., Handbook of Methods in Aquatic Microbial Ecology, 621-631, 1993.

Capone, D. G. and Montoya, J. P.: Nitrogen fixation and denitrification, in: Methods in Microbiology, Academic Press, 501-515, https://doi.org/10.1016/S0580-9517(01)30060-0, 2001.

440 Chang, B. X., Jayakumar, A., Widner, B., Bernhardt, P., Mordy, C. W., Mulholland, M. R., and Ward, B. B.: Low rates of dinitrogen fixation in the eastern tropical South Pacific, Limnology and Oceanography, 64, 1913-1923, <u>https://doi.org/10.1002/lno.11159</u>, 2019.

Chang, J., Chiang, K.-P., and Gong, G.-C.: Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium, *Trichodesmium*, in southern East China Sea, Continental Shelf Research, 20, 479-492, <u>https://doi.org/10.1016/S0278-4343(99)00082-5</u>, 2000.

445 Chen, M. M., Lu, Y. Y., Jiao, N. Z., Tian, J. W., Kao, S. J., and Zhang, Y.: Biogeographic drivers of diazotrophs in the western Pacific Ocean, Limnol Oceanogr, 64, 1403-1421, <u>https://doi.org/10.1002/lno.11123</u>, 2019.

Cheung, S., Liu, K., Turk-Kubo, K. A., Nishioka, J., Suzuki, K., Landry, M. R., Zehr, J. P., Leung, S., Deng, L., and Liu, H.: High biomass turnover rates of endosymbiotic nitrogen-fixing cyanobacteria in the western Bering Sea, Limnology and Oceanography Letters, 7, 501-509, https://doi.org/10.1002/lol2.10267, 2022.

480

450 Cheung, S. Y., Nitanai, R., Tsurumoto, C., Endo, H., Nakaoka, S., Cheah, W., Lorda, J. F., Xia, X. M., Liu, H. B., and Suzuki, K.: Physical forcing controls the basin-scale occurrence of nitrogen-fixing organisms in the North Pacific Ocean, Global Biogeochemical Cycles, 34, 9, https://doi.org/10.1029/2019GB006452, 2020.

Church, M. J. and Zehr, J.: Time series measurements of nifH gene abundances for several cyanobacteria in the subtropical North Pacific Ocean [dataset], https://doi.org/10.5281/zenodo.4728253, 2020.

455 Church, M. J., Jenkins, B. D., Karl, D. M., and Zehr, J. P.: Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean, Aquat Microb Ecol, 38, 3-14, https://doi.org/10.3354/ame038003, 2005.

Church, M. J., Björkman, K. M., Karl, D. M., Saito, M. A., and Zehr, J. P.: Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean, Limnology and Oceanography, 53, 63-77, https://doi.org/10.4319/lo.2008.53.1.0063, 2008.

Cornejo-Castillo, F. M., Muñoz-Marín, M. d. C., Turk-Kubo, K. A., Royo-Llonch, M., Farnelid, H., Acinas, S. G., and Zehr, J. P.: UCYN-460 A3, a newly characterized open ocean sublineage of the symbiotic N₂-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa, Environ. Microbiol., 21, 111-124, https://doi.org/10.1111/1462-2920.14429, 2019.

Cornejo-Castillo, F. M., Cabello, A. M., Salazar, G., Sánchez-Baracaldo, P., Lima-Mendez, G., Hingamp, P., Alberti, A., Sunagawa, S., Bork, P., de Vargas, C., Raes, J., Bowler, C., Wincker, P., Zehr, J. P., Gasol, J. M., Massana, R., and Acinas, S. G.: Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton, Nat. Commun., 7, 11071, https://doi.org/10.1038/ncomms11071, 2016.

465

Dekaezemacker, J., Bonnet, S., Grosso, O., Moutin, T., Bressac, M., and Capone, D. G.: Evidence of active dinitrogen fixation in surface waters of the eastern tropical South Pacific during El Nino and La Nina events and evaluation of its potential nutrient controls, Global Biogeochemical Cycles, 27, 768-779, https://doi.org/10.1002/gbc.20063, 2013.

Detoni, A. M. S., Ciotti, Á. M., Calil, P. H. R., Tavano, V. M., and Yunes, J. S.: Trichodesmium latitudinal distribution on the shelf break 470 in the southwestern Atlantic Ocean during spring and autumn, Global Biogeochemical Cycles, 30, 1738-1753, https://doi.org/10.1002/2016gb005431, 2016.

Detoni, A. M. S., Subramaniam, A., Haley, S. T., Dyhrman, S. T., and Calil, P. H. R.: Cyanobacterial diazotroph distributions in the western South Atlantic, Front. Mar. Sci., 9, https://doi.org/10.3389/fmars.2022.856643, 2022.

Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.: Spatial coupling of nitrogen inputs and losses in the ocean, 475 Nature, 445, 163-167, https://doi.org/10.1038/nature05392, 2007.

Dupouy, C., Benielli-Gary, D., Neveux, J., Dandonneau, Y., and Westberry, T. K.: An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific, Biogeosciences, 8, 3631-3647, https://doi.org/10.5194/bg-8-3631-2011, 2011.

Fernández-Castro, B., Mouriño-Carballido, B., Marañón, E., Chouciño, P., Gago, J., Ramírez, T., Vidal, M., Bode, A., Blasco, D., Royer, S.-J., Estrada, M., and Simó, R.: Importance of salt fingering for new nitrogen supply in the oligotrophic ocean, Nature Communications, 6, 8002, https://doi.org/10.1038/ncomms9002, 2015.

Fernández, A., Mouriño-Carballido, B., Bode, A., Varela, M., and Marañón, E.: Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean, Biogeosciences, 7, 3167-3176, https://doi.org/10.5194/bg-7-3167-2010, 2010.

Fernandez, C., González, M. L., Muñoz, C., Molina, V., and Farias, L.: Temporal and spatial variability of biological nitrogen fixation off the upwelling system of central Chile (35-38.5°S), J Geophys Res-Oceans, 120, 3330-3349, https://doi.org/10.1002/2014jc010410, 2015.

485 Flett, R. J., Hamilton, R. D., and Campbell, N. E. R.: Aquatic acetylene-reduction techniques: solutions to several problems, Canadian Journal of Microbiology, 22, 43-51, https://doi.org/10.1139/m76-006, 1976.

505

Fonseca-Batista, D., Dehairs, F., Riou, V., Fripiat, F., Elskens, M., Deman, F., Brion, N., Quéroué, F., Bode, M., and Auel, H.: Nitrogen fixation in the eastern Atlantic reaches similar levels in the southern and northern hemisphere, Journal of Geophysical Research: Oceans, 122, 587-601, <u>https://doi.org/10.1002/2016jc012335</u>, 2017.

490 Fonseca-Batista, D., Li, X., Riou, V., Michotey, V., Deman, F., Fripiat, F., Guasco, S., Brion, N., Lemaitre, N., Tonnard, M., Gallinari, M., Planquette, H., Planchon, F., Sarthou, G., Elskens, M., Laroche, J., Chou, L., and Dehairs, F.: Evidence of high N₂ fixation rates in the temperate northeast Atlantic, Biogeosciences, 16, 999-1017, <u>https://doi.org/10.5194/bg-16-999-2019</u>, 2019.

Foster, R. A., Paytan, A., and Zehr, J.: Seasonality of N_2 fixation and *nifH* gene diversity in the Gulf of Aqaba (Red Sea), Limnol Oceanogr, 54, 219-233, <u>https://doi.org/10.4319/lo.2009.54.1.0219</u>, 2009.

495 Foster, R. A., Kuypers, M. M. M., Vagner, T., Paerl, R. W., Musat, N., and Zehr, J. P.: Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses, Isme Journal, 5, 1484-1493, <u>https://doi.org/10.1038/ismej.2011.26</u>, 2011.

Foster, R. A., Subramaniam, A., Mahaffey, C., Carpenter, E. J., Capone, D. G., and Zehr, J. P.: Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean, Limnol Oceanogr, 52, 517-532, https://doi.org/10.4319/lo.2007.52.2.0517, 2007.

500 Gandhi, N., Singh, A., Prakash, S., Ramesh, R., Raman, M., Sheshshayee, M. S., and Shetye, S.: First direct measurements of N₂ fixation during a *Trichodesmium* bloom in the eastern Arabian Sea, Global Biogeochemical Cycles, 25, 1-10, https://doi.org/10.1029/2010gb003970, 2011.

Garcia, N., Raimbault, P., and Sandroni, V.: Seasonal nitrogen fixation and primary production in the Southwest Pacific: nanoplankton diazotrophy and transfer of nitrogen to picoplankton organisms, Marine Ecology Progress Series, 343, 25-33, https://doi.org/10.3354/meps06882, 2007.

Giller, K. E., Nambiar, P. T. C., Srinivasa Rao, B., Dart, P. J., and Day, J. M.: A comparison of nitrogen fixation in genotypes of 420 groundnut (Arachis hypogaea L.) using ¹⁵N-isotope dilution, Biology and Fertility of Soils, <u>https://doi.org/10.1007/BF00264341</u>, 1987.

Glover, D. M., Jenkins, W. J., and Doney, S. C.: Modeling methods for marine science, https://doi.org/10.1017/cbo9780511975721, 2011.

González, M. L., Molina, V., Florez-Leiva, L., Oriol, L., Cavagna, A. J., Dehairs, F., Farias, L., and Fernandez, C.: Nitrogen fixation in the
 Southern Ocean: a case of study of the Fe-fertilized Kerguelen region (KEOPS II cruise), <u>https://doi.org/10.5194/bgd-11-17151-2014</u>, 2014.

Gradoville, M. R., Dugenne, M., Hynes, A. M., Zehr, J. P., and White, A. E.: Empirical relationship between *nifH* gene abundance and diazotroph cell concentration in the North Pacific Subtropical Gyre, J Phycol, 58, 829-833, <u>https://doi.org/10.1111/jpy.13289</u>, 2022.

Gradoville, M. R., Farnelid, H., White, A. E., Turk - Kubo, K. A., Stewart, B., Ribalet, F., Ferrón, S., Pinedo - Gonzalez, P., Armbrust, E.
515 V., Karl, D. M., John, S., and Zehr, J. P.: Latitudinal constraints on the abundance and activity of the cyanobacterium UCYN-A and other marine diazotrophs in the North Pacific, Limnology and Oceanography, 65, 1858-1875, https://doi.org/10.1002/lno.11423, 2020.

Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M. M. M., Lavik, G., Schmitz, R. A., Wallace, D. W. R., and LaRoche, J.: Doubling of marine dinitrogen-fixation rates based on direct measurements, Nature, 488, 361-364, https://doi.org/10.1038/nature11338, 2012.

520 Gruber, N.: A diagnosis for marine nitrogen fixation, Nature, 566, 191-193, <u>https://doi.org/10.1038/d41586-019-00498-y</u>, 2019.

Gruber, N., Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J.: The marine nitrogen cycle: overview and challenges, Nitrogen in the Marine Environment, 2nd Edition, Elsevier Academic Press Inc, 525 B Street, Suite 1900, San Diego, Ca 92101-4495 USA, 1-50 pp., <u>https://doi.org/10.1016/b978-0-12-372522-6.00001-3</u>, 2008.

530

535

550

Hallstrøm, S., Benavides, M., Salamon, E. R., Arístegui, J., and Riemann, L.: Activity and distribution of diazotrophic communities across
 the Cape Verde Frontal Zone in the Northeast Atlantic Ocean, Biogeochemistry, https://doi.org/10.1007/s10533-022-00940-w, 2022.

Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T., LaRoche, J., D'Hondt, S., and Kuypers, M. M. M.: Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre, ISME J, 6, 1238-1249, <u>https://doi.org/10.1038/ismej.2011.182</u>, 2012.

Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J. P., Gunderson, T., and Capone, D. G.: Nitrogen fixation within the water column associated with two hypoxic basins in the Southern California Bight, Aquatic Microbial Ecology, 63, 193-205, https://doi.org/10.3354/ame01494, 2011.

Harding, K., Turk-Kubo, K. A., Sipler, R. E., Mills, M. M., Bronk, D. A., and Zehr, J. P.: Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean, P Natl Acad Sci USA, 115, 13371-13375, <u>https://doi.org/10.1073/pnas.1813658115</u>, 2018.

Harding, K. J., Turk-Kubo, K. A., Mak, E. W. K., Weber, P. K., Mayali, X., and Zehr, J. P.: Cell-specific measurements show nitrogen fixation by particle-attached putative non-cyanobacterial diazotrophs in the North Pacific Subtropical Gyre, Nat Commun, 13, 6979, https://doi.org/10.1038/s41467-022-34585-y, 2022.

Hardy, R. W. F., Burns, R. C., and Holsten, R. D.: Applications of the acetylene-ethylene assay for measurement of nitrogen fixation, Soil Biology and Biochemistry, 5, 47-81, <u>https://doi.org/10.1016/0038-0717(73)90093-X</u>, 1973.

Harrison, P., Zingone, A., Mickelson, M., Lehtinen, S., Nagappa, R., Kraberg, A., Sun, J., McQuatters-Gollop, A., and Jakobsen, H.: Cell volumes of marine phytoplankton from globally distributed coastal data sets, Estuar Coast Mar Sci, 162, https://doi.org/10.1016/j.ecss.2015.05.026, 2015.

Hashimoto, R., Watai, H., Miyahara, K., Sako, Y., and Yoshida, T.: Spatial and temporal variability of unicellular diazotrophic cyanobacteria in the eastern Seto Inland Sea, Fisheries Science, 82, 459-471, <u>https://doi.org/10.1007/s12562-016-0983-y</u>, 2016.

Hegde, S., Anil, A., Patil, J., Mitbavkar, S., Krishnamurthy, V., and Gopalakrishna, V.: Influence of environmental settings on the prevalence of *Trichodesmium* spp. in the Bay of Bengal, Mar. Ecol. Prog. Ser., 356, 93-101, <u>https://doi.org/10.3354/meps07259</u>, 2008.

545 Henke, B. A., Turk-Kubo, K. A., Bonnet, S., and Zehr, J. P.: Distributions and abundances of sublineages of the N₂-Fixing Cyanobacterium *Candidatus* Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian Coral Lagoon, Front Microbiol, 9, https://doi.org/10.3389/fmicb.2018.00554, 2018.

Holl, C. M., Villareal, T. A., Payne, C. D., Clayton, T. D., Hart, C., and Montoya, J. P.: *Trichodesmium* in the western Gulf of Mexico: ¹⁵N₂-fixation and natural abundance stable isotopic evidence, Limnology and Oceanography, 52, 2249-2259, https://doi.org/10.4319/lo.2007.52.5.2249, 2007.

Hörstmann, C., Raes, E. J., Buttigieg, P. L., Lo Monaco, C., John, U., and Waite, A. M.: Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean, Biogeosciences, 18, 3733-3749, https://doi.org/10.5194/bg-18-3733-2021, 2021.

Ibello, V., Cantoni, C., Cozzi, S., and Civitarese, G.: First basin-wide experimental results on N₂ fixation in the open Mediterranean Sea, Geophysical Research Letters, 37, n/a-n/a, <u>https://doi.org/10.1029/2009g1041635</u>, 2010.

Jayakumar, A., Chang, B. X., Widner, B., Bernhardt, P., Mulholland, M. R., and Ward, B. B.: Biological nitrogen fixation in the oxygenminimum region of the eastern tropical North Pacific ocean, The ISME Journal, 11, 2356-2367, <u>https://doi.org/10.1038/ismej.2017.97</u>, 2017.

Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G., and Capone, D. G.: Low rates of nitrogen fixation in eastern tropical South Pacific surface waters, Proc Natl Acad Sci U S A, 113, 4398-4403, <u>https://doi.org/10.1073/pnas.1515641113</u>, 2016.

585

600

Konno, U., Tsunogai, U., Komatsu, D. D., Daita, S., Nakagawa, F., Tsuda, A., Matsui, T., Eum, Y.-J., and Suzuki, K.: Determination of total N_2 fixation rates in the ocean taking into account both the particulate and filtrate fractions, Biogeosciences, 7, 2369-2377, https://doi.org/10.5194/bg-7-2369-2010, 2010.

Kromkamp, J., De Bie, M., Goosen, N., Peene, J., Van Rijswijk, P., Sinke, J., and Duinevel, G. C. A.: Primary production by
phytoplankton along the Kenyan coast during the SE monsoon and November intermonsoon 1992, and the occurrence of *Trichodesmium*,
Deep Sea Research Part II: Topical Studies in Oceanography, 44, 1195-1212, https://doi.org/10.1016/s0967-0645(97)00015-5, 1997.

Krupke, A., Lavik, G., Halm, H., Fuchs, B. M., Amann, R. I., and Kuypers, M. M. M.: Distribution of a consortium between unicellular algae and the N₂ fixing cyanobacterium UCYN-A in the North Atlantic Ocean, Environmental Microbiology, 16, 3153-3167, https://doi.org/10.1111/1462-2920.12431, 2014.

570 Krupke, A., Mohr, W., Laroche, J., Fuchs, B. M., Amann, R. I., and Kuypers, M. M.: The effect of nutrients on carbon and nitrogen fixation by the UCYN-A–haptophyte symbiosis, The ISME Journal, 9, 1635-1647, <u>https://doi.org/10.1038/ismej.2014.253</u>, 2015.

Krupke, A., Musat, N., LaRoche, J., Mohr, W., Fuchs, B. M., Amann, R. I., Kuypers, M. M. M., and Foster, R. A.: In situ identification and N₂ and C fixation rates of uncultivated cyanobacteria populations, Systematic and Applied Microbiology, 36, 259-271, https://doi.org/10.1016/j.syapm.2013.02.002, 2013.

575 Kumar, P. K., Singh, A., Ramesh, R., and Nallathambi, T.: N₂ Fixation in the eastern Arabian Sea: probable role of heterotrophic diazotrophs, Front. Mar. Sci., 4, <u>https://doi.org/10.3389/fmars.2017.00080</u>, 2017.

Kumari, V. R., Ghosh, V. R. D., Rao, D. N., Krishna, M. S., and Sarma, V. V. S. S.: Nitrogen fixation in the western coastal Bay of Bengal: Controlling factors and contribution to primary production, Regional Studies in Marine Science, 53, 102410, https://doi.org/10.1016/j.rsma.2022.102410, 2022.

580 Lee Chen, Y.-L., Chen, H.-Y., Lin, Y.-H., Yong, T.-C., Taniuchi, Y., and Tuo, S.-H.: The relative contributions of unicellular and filamentous diazotrophs to N₂ fixation in the South China Sea and the upstream Kuroshio, Deep Sea Research Part I: Oceanographic Research Papers, 85, 56-71, <u>https://doi.org/10.1016/j.dsr.2013.11.006</u>, 2014.

Li, L., Wu, C., Sun, J., Song, S., Ding, C., Huang, D., and Pujari, L.: Nitrogen fixation driven by mesoscale eddies and the Kuroshio Current in the northern South China Sea and the East China Sea, Acta Oceanol. Sin., 39, 30-41, <u>https://doi.org/10.1007/s13131-020-1691-0</u>, 2020.

Liu, J. X., Zhou, L. B., Li, J. J., Lin, Y. Y., Ke, Z. X., Zhao, C. Y., Liu, H. J., Jiang, X., He, Y. H., and Tan, Y. H.: Effect of mesoscale eddies on diazotroph community structure and nitrogen fixation rates in the South China Sea, Regional Studies in Marine Science, 35, 14, <u>https://doi.org/10.1016/j.rsma.2020.101106</u>, 2020.

 Loescher, C. R., Großkopf, T., Desai, F. D., Gill, D., Schunck, H., Croot, P. L., Schlosser, C., Neulinger, S. C., Pinnow, N., Lavik, G.,
 Kuypers, M. M. M., LaRoche, J., and Schmitz, R. A.: Facets of diazotrophy in the oxygen minimum zone waters off Peru, The Isme Journal, 8, 2180-2192, <u>https://doi.org/10.1038/ismej.2014.71</u>, 2014.

Loick-Wilde, N., Weber, S. C., Conroy, B. J., Capone, D. G., Coles, V. J., Medeiros, P. M., Steinberg, D. K., and Montoya, J. P.: Nitrogen sources and net growth efficiency of zooplankton in three Amazon River plume food webs, Limnology and Oceanography, 61, 460-481, https://doi.org/10.1002/lno.10227, 2015.

595 Loick-Wilde, N., Fernandez-Urruzola, I., Eglite, E., Liskow, I., Nausch, M., Schulz-Bull, D., Wodarg, D., Wasmund, N., and Mohrholz, V.: Stratification, nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic food web structure, Glob Chang Biol, 25, 794-810, <u>https://doi.org/10.1111/gcb.14546</u>, 2019.

Lory, C., Van Wambeke, F., Fourquez, M., Barani, A., Guieu, C., Tilliette, C., Marie, D., Nunige, S., Berman-Frank, I., and Bonnet, S.: Assessing the contribution of diazotrophs to microbial Fe uptake using a group specific approach in the Western Tropical South Pacific Ocean, ISME Communications, 2, 41, https://doi.org/10.1038/s43705-022-00122-7, 2022.

605

Löscher, C. R., Mohr, W., Bange, H. W., and Canfield, D. E.: No nitrogen fixation in the Bay of Bengal?, Biogeosciences, 17, 851-864, https://doi.org/10.5194/bg-17-851-2020, 2020.

Löscher, C. R., Bourbonnais, A., Dekaezemacker, J., Charoenpong, C. N., Altabet, M. A., Bange, H. W., Czeschel, R., Hoffmann, C., and Schmitz, R.: N₂ fixation in eddies of the eastern tropical South Pacific Ocean, Biogeosciences, 13, 2889-2899, <u>https://doi.org/10.5194/bg-13-2889-2016</u>, 2016.

Lu, Y., Wen, Z., Shi, D., Chen, M., Zhang, Y., Bonnet, S., Li, Y., Tian, J., and Kao, S. J.: Effect of light on N₂ fixation and net nitrogen release of *Trichodesmium* in a field study, Biogeosciences, 15, 1-12, <u>https://doi.org/10.5194/bg-15-1-2018</u>, 2018.

Luo, Y. W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Bostrom, K. H., Bottjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcon, L. I., Fernandez, A., Foster, R. A., Furuya, K., Gomez, F.,

- 610 Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Maranon, E., McGillicuddy, D. J., Moisander, P. H., Moore, C. M., Mourino-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47-73, https://doi.org/10.5194/essd-4-47-2012, 2012.
- 615 Martínez Pérez, C., Mohr, W., Loscher, C. R., Dekaezemacker, J., Littmann, S., Yilmaz, P., Lehnen, N., Fuchs, B. M., Lavik, G., Schmitz, R. A., LaRoche, J., and Kuypers, M. M.: The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle, Nat Microbiol, 1, 16163, <u>https://doi.org/10.1038/nmicrobiol.2016.163</u>, 2016.

Masotti, I., Ruiz-Pino, D., and Le Bouteiller, A.: Photosynthetic characteristics of *Trichodesmium* in the southwest Pacific Ocean: importance and significance, Mar. Ecol. Prog. Ser., 338, 47-59, <u>https://doi.org/10.3354/meps338047</u>, 2007.

620 Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol Oceanogr, 45, 569-579, <u>https://doi.org/10.4319/lo.2000.45.3.0569</u>, 2000.

Messer, L. F., Mahaffey, C., M Robinson, C., Jeffries, T. C., Baker, K. G., Bibiloni Isaksson, J., Ostrowski, M., Doblin, M. A., Brown, M. V., and Seymour, J. R.: High levels of heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation, The ISME Journal, 10, 1499-1513, <u>https://doi.org/10.1038/ismej.2015.205</u>, 2016.

625 Mohr, W., Grosskopf, T., Wallace, D. W., and LaRoche, J.: Methodological underestimation of oceanic nitrogen fixation rates, PLoS One, 5, e12583, <u>https://doi.org/10.1371/journal.pone.0012583</u>, 2010.

Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A., and Zehr, J. P.: Gammaproteobacterial diazotrophs and *nifH* gene expression in surface waters of the South Pacific Ocean, ISME J, 8, 1962-1973, <u>https://doi.org/10.1038/ismej.2014.49</u>, 2014.

Moisander, P. H., Benavides, M., Bonnet, S., Berman-Frank, I., White, A. E., and Riemann, L.: Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments, Frontiers in Microbiology, 8, 1736, <u>https://doi.org/10.3389/fmicb.2017.01736</u>, 2017.

Mompeán, C., Bode, A., Benítez-Barrios, V. M., Domínguez-Yanes, J. F., Escánez, J., and Fraile-Nuez, E.: Spatial patterns of plankton biomass and stable isotopes reflect the influence of the nitrogen-fixer *Trichodesmium* along the subtropical North Atlantic, J. Plankton Res., 35, 513-525, <u>https://doi.org/10.1093/plankt/fbt011</u>, 2013.

Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G.: A simple, high-precision, high-sensitivity tracer assay for N₂ fixation, Applied and Environmental Microbiology, 62, 986-993, <u>https://doi.org/10.1128/aem.62.3.986-993.1996</u>, 1996.

Moore, R. M., Grefe, I., Zorz, J., Shan, S., Thompson, K., Ratten, J., and LaRoche, J.: On the relationship between hydrogen saturation in the tropical Atlantic Ocean and nitrogen fixation by the symbiotic diazotroph UCYN-A, J Geophys Res-Oceans, 123, 2353-2362, https://doi.org/10.1002/2017jc013047, 2018.

655

Moreira-Coello, V., Mourino-Carballido, B., Maranon, E., Fernandez-Carrera, A., Bode, A., and Varela, M. M.: Biological N₂ fixation in
 the upwelling region off NW Iberia: magnitude, relevance, and players, Front. Mar. Sci., 4, 303, https://doi.org/10.3389/fmars.2017.00303, 2017.

Mouriño-Carballido, B., Graña, R., Fernàndez, A., Bode, A., Varela, M., Domínguez, J. F., Escànez, J., De Armas, D., and Marañón, E.: Importance of N₂ fixation vs. nitrate eddy diffusion along a latitudinal transect in the Atlantic Ocean, Limnol Oceanogr, 56, 999-1007, <u>https://doi.org/10.4319/lo.2011.56.3.0999</u>, 2011.

645 Mulholland, M. R.: The fate of nitrogen fixed by diazotrophs in the ocean, Biogeosciences, 4, 37-51, <u>https://doi.org/10.5194/bg-4-37-2007</u>, 2007.

Mulholland, M. R., Bernhardt, P. W., Widner, B. N., Selden, C. R., Chappell, P. D., Clayton, S., Mannino, A., and Hyde, K.: High rates of N₂ fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy, Global Biogeochemical Cycles, 33, 826-840, <u>https://doi.org/10.1029/2018gb006130</u>, 2019.

650 Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P., and Johnson, K. S.: Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean, Limnology and Oceanography, 52, 1317-1327, <u>https://doi.org/10.4319/lo.2007.52.4.1317</u>, 2007.

Pierella Karlusich, J. J., Pelletier, E., Lombard, F., Carsique, M., Dvorak, E., Colin, S., Picheral, M., Cornejo-Castillo, F. M., Acinas, S. G., Pepperkok, R., Karsenti, E., De Vargas, C., Wincker, P., Bowler, C., and Foster, R. A.: Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods, Nature Communications, 12, <u>https://doi.org/10.1038/s41467-021-24299-y</u>, 2021.

Raes, E., van de Kamp, J., Bodrossy, L., Fong, A., Riekenberg, J., Holmes, B., Erler, D., Eyre, B., Weil, S.-S., and Waite, A.: N₂ fixation and new insights into nitrification from the ice-edge to the equator in the South Pacific Ocean, Front. Mar. Sci., 7, https://doi.org/10.3389/fmars.2020.00389, 2020.

Rahav, E., Giannetto, M. J., and Bar-Zeev, E.: Contribution of mono and polysaccharides to heterotrophic N₂ fixation at the eastern Mediterranean coastline, Sci Rep-Uk, 6, 27858, <u>https://doi.org/10.1038/srep27858</u>, 2016.

Rahav, E., Herut, B., Levi, A., Mulholland, M. R., and Berman-Frank, I.: Springtime contribution of dinitrogen fixation to primary production across the Mediterranean Sea, Ocean Science, 9, 489-498, <u>https://doi.org/10.5194/os-9-489-2013</u>, 2013a.

Rahav, E., Herut, B., Mulholland, M., Belkin, N., Elifantz, H., and Berman-Frank, I.: Heterotrophic and autotrophic contribution to dinitrogen fixation in the Gulf of Aqaba, Marine Ecology Progress Series, 522, 67-77, <u>https://doi.org/10.3354/meps11143</u>, 2015.

665 Rahav, E., Bar-Zeev, E., Ohayon, S., Elifantz, H., Belkin, N., Herut, B., Mulholland, M. R., and Berman-Frank, I.: Dinitrogen fixation in aphotic oxygenated marine environments, Frontiers in Microbiology, 4, 11, <u>https://doi.org/10.3389/fmicb.2013.00227</u>, 2013b.

Rahav, E., Herut, B., Mulholland, M. R., Voß, B., Stazic, D., Steglich, C., Hess, W. R., and Berman-Frank, I.: Contribution of dinitrogen fixation to bacterial and primary productivity in the Gulf of Aqaba (Red Sea), <u>https://doi.org/10.5194/bgd-10-10327-2013</u>, 2013c.

Ratten, J.-M., LaRoche, J., Desai, D. K., Shelley, R. U., Landing, W. M., Boyle, E., Cutter, G. A., and Langlois, R. J.: Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic, Deep Sea Research Part II: Topical Studies in Oceanography, 116, 332-341, <u>https://doi.org/10.1016/j.dsr2.2014.11.012</u>, 2015.

Reeder, C. F., Stoltenberg, I., Javidpour, J., and Löscher, C. R.: Salinity as a key control on the diazotrophic community composition in the southern Baltic Sea, Ocean Science, 18, 401-417, <u>https://doi.org/10.5194/os-18-401-2022</u>, 2022.

Riou, V., Fonseca-Batista, D., Roukaerts, A., Biegala, I. C., Prakya, S. R., Magalhães Loureiro, C., Santos, M., Muniz-Piniella, A. E.,
 Schmiing, M., Elskens, M., Brion, N., Martins, M. A., and Dehairs, F.: Importance of N₂-fixation on the productivity at the North-Western Azores Current/Front System, and the abundance of diazotrophic unicellular cyanobacteria, PLoS One, 11, e0150827, https://doi.org/10.1371/journal.pone.0150827, 2016.

Sahoo, D., Saxena, H., Nazirahmed, S., Kumar, S., Sudheer, A. K., Bhushan, R., Sahay, A., and Singh, A.: Role of eddies and N₂ fixation in regulating C:N:P proportions in the Bay of Bengal, Biogeochemistry, 155, 413-429, <u>https://doi.org/10.1007/s10533-021-00833-4</u>, 2021.

680 Sahu, B. K., Baliarsingh, S. K., Lotliker, A. A., Parida, C., Srichandan, S., and Sahu, K. C.: Winter thermal inversion and *Trichodesmium* dominance in north-western Bay of Bengal, Ocean Science Journal, 52, 301-306, <u>https://doi.org/10.1007/s12601-017-0028-1</u>, 2017.

Sargent, E. C., Hitchcock, A., Johansson, S. A., Langlois, R., Moore, C. M., LaRoche, J., Poulton, A. J., and Bibby, T. S.: Evidence for polyploidy in the globally important diazotroph *Trichodesmium*, FEMS microbiology letters, 363, fnw244, <u>https://doi.org/10.1093/femsle/fnw244</u>, 2016.

685 Sarma, V. V. S. S., Vivek, R., Rao, D. N., and Ghosh, V. R. D.: Severe phosphate limitation on nitrogen fixation in the Bay of Bengal, Continental Shelf Research, 205, 104199, https://doi.org/10.1016/j.csr.2020.104199, 2020.

Sato, T., Shiozaki, T., Taniuchi, Y., Kasai, H., and Takahashi, K.: Nitrogen fixation and diazotroph community in the subarctic Sea of Japan and Sea of Okhotsk, J Geophys Res-Oceans, 126, <u>https://doi.org/10.1029/2020jc017071</u>, 2021.

Saxena, H., Sahoo, D., Khan, M. A., Kumar, S., Sudheer, A. K., and Singh, A.: Dinitrogen fixation rates in the Bay of Bengal during summer monsoon, Environmental Research Communications, 2, 051007, <u>https://doi.org/10.1088/2515-7620/ab89fa</u>, 2020.

Selden, C. R., Mulholland, M. R., Bernhardt, P. W., Widner, B., Macías-Tapia, A., Ji, Q., and Jayakumar, A.: Dinitrogen fixation across physico-chemical gradients of the Eastern Tropical North Pacific oxygen deficient zone, Global Biogeochemical Cycles, 33, 1187-1202, https://doi.org/10.1029/2019GB006242, 2019.

Shao, Z. and Luo, Y.-W.: Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A), Biogeosciences, 19, 2939-2952, <u>https://doi.org/10.5194/bg-19-2939-2022</u>, 2022.

Shao, Z., Xu, Y., Wang, H., Luo, W., Wang, L., Huang, Y., and Luo, Y.-W.: Version 2 of the global oceanic diazotroph database, Figshare [dataset], <u>https://doi.org/10.6084/m9.figshare.21677687</u>, 2022.

Shiozaki, T., Kondo, Y., Yuasa, D., and Takeda, S.: Distribution of major diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to south of mainland Japan, J. Plankton Res., 40, 407-419, <u>https://doi.org/10.1093/plankt/fby027</u>, 2018a.

500 Shiozaki, T., Nagata, T., Ijichi, M., and Furuya, K.: Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific, Biogeosciences, 12, 4751-4764, <u>https://doi.org/10.5194/bg-12-4751-2015</u>, 2015a.

Shiozaki, T., Ijichi, M., Kodama, T., Takeda, S., and Furuya, K.: Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the Indian Ocean, Global Biogeochemical Cycles, 28, 1096-1110, <u>https://doi.org/10.1002/2014gb004886</u>, 2014a.

Shiozaki, T., Kodama, T., Kitajima, S., Sato, M., and Furuya, K.: Advective transport of diazotrophs and importance of their nitrogen
 fixation on new and primary production in the western Pacific warm pool, Limnol Oceanogr, 58, 49-60,
 https://doi.org/10.4319/lo.2013.58.1.0049, 2013.

Shiozaki, T., Fujiwara, A., Inomura, K., Hirose, Y., Hashihama, F., and Harada, N.: Biological nitrogen fixation detected under Antarctic sea ice, Nat Geosci, 13, 729-+, <u>https://doi.org/10.1038/s41561-020-00651-7</u>, 2020.

Shiozaki, T., Chen, Y. L. L., Lin, Y. H., Taniuchi, Y., Sheu, D. S., Furuya, K., and Chen, H. Y.: Seasonal variations of unicellular
diazotroph groups A and B, and Trichodesmium in the northern South China Sea and neighboring upstream Kuroshio Current, Continental Shelf Research, 80, 20-31, <u>https://doi.org/10.1016/j.csr.2014.02.015</u>, 2014b.

Shiozaki, T., Takeda, S., Itoh, S., Kodama, T., Liu, X., Hashihama, F., and Furuya, K.: Why is *Trichodesmium* abundant in the Kuroshio?, Biogeosciences, 12, 6931-6943, <u>https://doi.org/10.4319/lo.2007.52.4.131710.5194/bg-12-6931-2015</u>, 2015b.

725

Shiozaki, T., Fujiwara, A., Ijichi, M., Harada, N., Nishino, S., Nishi, S., Nagata, T., and Hamasaki, K.: Diazotroph community structure
 and the role of nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic Ocean), Limnology and Oceanography, 63, 2191 2205, <u>https://doi.org/10.1002/lno.10933</u>, 2018b.

Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi, T., Ehama, M., Hamasaki, K., and Furuya, K.: Basin scale variability of active diazotrophs and nitrogen fixation in the North Pacific, from the tropics to the subarctic Bering Sea, Global Biogeochemical Cycles, 31, 996-1009, <u>https://doi.org/10.1002/2017gb005681</u>, 2017.

720 Shiozaki, T., Bombar, D., Riemann, L., Sato, M., Hashihama, F., Kodama, T., Tanita, I., Takeda, S., Saito, H., Hamasaki, K., and Furuya, K.: Linkage between dinitrogen fixation and primary production in the oligotrophic South Pacific Ocean, Global Biogeochemical Cycles, 32, 1028-1044, <u>https://doi.org/10.1029/2017gb005869</u>, 2018c.

Sipler, R. E., Gong, D., Baer, S. E., Sanderson, M. P., Roberts, Q. N., Mulholland, M. R., and Bronk, D. A.: Preliminary estimates of the contribution of Arctic nitrogen fixation to the global nitrogen budget, Limnology and Oceanography Letters, 2, 159-166, https://doi.org/10.1002/lol2.10046, 2017.

Sohm, J. A., Hilton, J. A., Noble, A. E., Zehr, J. P., Saito, M. A., and Webb, E. A.: Nitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling System, Geophysical Research Letters, 38, n/a-n/a, <u>https://doi.org/10.1029/2011gl048315</u>, 2011.

Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R. A.: Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific, Biogeosciences, 15, 1559-1578, <u>https://doi.org/10.5194/bg-15-1559-2018</u>, 2018.

730 Stewart, W. D., Fitzgerald, G. P., and Burris, R. H.: In situ studies on N₂ fixation using the acetylene reduction technique, P Natl Acad Sci USA, 58, 2071-2078, <u>https://doi.org/10.1073/pnas.58.5.2071</u>, 1967.

Subramaniam, A., Mahaffey, C., Johns, W., and Mahowald, N.: Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean, Geophysical Research Letters, 40, 1766-1771, <u>https://doi.org/10.1002/grl.50250</u>, 2013.

Subramaniam, A., Yager, P., Carpenter, E., Mahaffey, C., Björkman, K., Cooley, S., Kustka, A., Montoya, J., Sañudo-Wilhelmy, S., and
 Shipe, R.: Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean, P Natl Acad Sci USA, 105, 10460-10465, https://doi.org/10.1073/pnas.0710279105, 2008.

Tang, W., Cerdán-García, E., Berthelot, H., Polyviou, D., Wang, S., Baylay, A., Whitby, H., Planquette, H., Mowlem, M., Robidart, J., and Cassar, N.: New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods, The ISME Journal, 14, 2514-2526, https://doi.org/10.1038/s41396-020-0703-6, 2020.

740 Tang, W. Y. and Cassar, N.: Data-driven modeling of the distribution of diazotrophs in the global ocean, Geophysical Research Letters, 46, 12258-12269, <u>https://doi.org/10.1029/2019gl084376</u>, 2019.

Tang, W. Y., Wang, S., Fonseca-Batista, D., Dehairs, F., Gifford, S., Gonzalez, A. G., Gallinari, M., Planquette, H., Sarthou, G., and Cassar, N.: Revisiting the distribution of oceanic N₂ fixation and estimating diazotrophic contribution to marine production, Nature Communications, 10, <u>https://doi.org/10.1038/s41467-019-08640-0</u>, 2019.

745 Thompson, A., Carter, B. J., Turk-Kubo, K., Malfatti, F., Azam, F., and Zehr, J. P.: Genetic diversity of the unicellular nitrogen-fixing cyanobacteria UCYN-A and its prymnesiophyte host, Environ. Microbiol., 16, 3238-3249, <u>https://doi.org/10.1111/1462-2920.12490</u>, 2014.

Thompson, A. W., Foster, R. A., Krupke, A., Carter, B. J., Musat, N., Vaulot, D., Kuypers, M. M., and Zehr, J. P.: Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga, Science, 337, 1546-1550, <u>https://doi.org/10.1126/science.1222700</u>, 2012.

750 Tuo, S.-h., Mulholland, M. R., Taniuchi, Y., Chen, H.-Y., Jane, W.-N., Lin, Y.-H., and Chen, Y.-l. L.: Trichome lengths of the heterocystous N₂-fixing cyanobacteria in the tropical marginal seas of the western north pacific, Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.678607, 2021.

Turk-Kubo, K., Achilles, K., Serros, T., Ochiai, M., Montoya, J., and Zehr, J.: Nitrogenase (*nifH*) gene expression in diazotrophic cyanobacteria in the Tropical North Atlantic in response to nutrient amendments., Frontiers in Aquatic Microbiology, 3, 1-17, https://doi.org/10.3389/fmicb.2012.00386, 2012.

Turk-Kubo, K., Gradoville, M., Cheung, S., Cornejo Castillo, F. M., Harding, K., Morando, M., Mills, M., and Zehr, J.: Non-cyanobacterial diazotrophs: Global diversity, distribution, ecophysiology, and activity in marine waters, FEMS microbiology reviews, https://doi.org/10.1093/femsre/fuac046, 2022.

Turk-Kubo, K. A., Karamchandani, M., Capone, D. G., and Zehr, J. P.: The paradox of marine heterotrophic nitrogen fixation: abundances
 of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific, Environ Microbiol, 16, 3095-3114, https://doi.org/10.1111/1462-2920.12346, 2014.

Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R., and Sieracki, M. E.: Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton, Limnol Oceanogr, 37, 1434-1446, https://doi.org/10.4319/lo.1992.37.7.1434, 1992.

765 Villareal, T. A., Adornato, L., Wilson, C., and Schoenbaechler, C. A.: Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in the North Pacific gyre: A disconnect, Journal of Geophysical Research, 116, <u>https://doi.org/10.1029/2010jc006268</u>, 2011.

Wang, S., Tang, W., Delage, E., Gifford, S., Whitby, H., González, A. G., Eveillard, D., Planquette, H., and Cassar, N.: Investigating the microbial ecology of coastal hotspots of marine nitrogen fixation in the western North Atlantic, Sci Rep-Uk, 11, <u>https://doi.org/10.1038/s41598-021-84969-1</u>, 2021.

770 Wang, W. L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent estimates of marine nitrogen fixation, Nature, 566, 205-213, <u>https://doi.org/10.1038/s41586-019-0911-2</u>, 2019.

Wannicke, N., Benavides, M., Dalsgaard, T., Dippner, J. W., Montoya, J. P., and Voss, M.: New perspectives on nitrogen fixation measurements using ¹⁵N₂ gas, Front. Mar. Sci., 5, <u>https://doi.org/10.3389/fmars.2018.00120</u>, 2018.

Wasmund, N., Struck, U., Hansen, A., Flohr, A., Nausch, G., Grüttmüller, A., and Voss, M.: Missing nitrogen fixation in the Benguela region, Deep Sea Research Part I: Oceanographic Research Papers, 106, 30-41, <u>https://doi.org/10.1016/j.dsr.2015.10.007</u>, 2015.

Watkins-Brandt, K., Letelier, R., Spitz, Y., Church, M., Böttjer, D., and White, A.: Addition of inorganic or organic phosphorus enhances nitrogen and carbon fixation in the oligotrophic North Pacific, Marine Ecology Progress Series, 432, 17-29, https://doi.org/10.3354/meps09147, 2011.

Wen, Z., Lin, W., Shen, R., Hong, H., Kao, S.-J., and Shi, D.: Nitrogen fixation in two coastal upwelling regions of the Taiwan Strait, Sci 780 Rep-Uk, 7, 17601, <u>https://doi.org/10.1038/s41598-017-18006-5</u>, 2017.

Wen, Z., Browning, T. J., Cai, Y., Dai, R., Zhang, R., Du, C., Jiang, R., Lin, W., Liu, X., Cao, Z., Hong, H., Dai, M., and Shi, D.: Nutrient regulation of biological nitrogen fixation across the tropical western North Pacific, Science advances, 8, eabl7564-eabl7564, https://doi.org/10.1126/sciadv.abl7564, 2022.

White, A. E., Watkins-Brandt, K. S., and Church, M. J.: Temporal variability of *Trichodesmium* spp. and diatom-diazotroph assemblages in the North Pacific Subtropical Gyre, Front. Mar. Sci., 5, <u>https://doi.org/10.3389/fmars.2018.00027</u>, 2018.

White, A. E., Granger, J., Selden, C., Gradoville, M. R., Potts, L., Bourbonnais, A., Fulweiler, R. W., Knapp, A. N., Mohr, W., Moisander, P. H., Tobias, C. R., Caffin, M., Wilson, S. T., Benavides, M., Bonnet, S., Mulholland, M. R., and Chang, B. X.: A critical review of the ¹⁵N₂ tracer method to measure diazotrophic production in pelagic ecosystems, Limnology and Oceanography: Methods, 18, 129-147, https://doi.org/10.1002/lom3.10353, 2020.

790 Wilson, S. T., Böttjer, D., Church, M. J., and Karl, D. M.: Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean, Applied and Environmental Microbiology, 78, 6516-6523, <u>https://doi.org/10.1128/aem.01146-12</u>, 2012.

795

Wilson, S. T., Aylward, F. O., Ribalet, F., Barone, B., Casey, J. R., Connell, P. E., Eppley, J. M., Ferrón, S., Fitzsimmons, J. N., Hayes, C. T., Romano, A. E., Turk-Kubo, K. A., Vislova, A., Armbrust, E. V., Caron, D. A., Church, M. J., Zehr, J. P., Karl, D. M., and DeLong, E. F.: Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium *Crocosphaera*, Nat. Microbiol, 2, 17118, <u>https://doi.org/10.1038/nmicrobiol.2017.118</u>, 2017.

Wu, C., Kan, J., Liu, H., Pujari, L., Guo, C., Wang, X., and Sun, J.: Heterotrophic bacteria dominate the diazotrophic community in the Eastern Indian Ocean (EIO) during pre-southwest monsoon, Microb Ecol, 78, 804-819, <u>https://doi.org/10.1007/s00248-019-01355-1</u>, 2019.

 Wu, C., Sun, J., Liu, H., Xu, W., Zhang, G., Lu, H., and Guo, Y.: Evidence of the significant contribution of heterotrophic diazotrophs to nitrogen fixation in the Eastern Indian Ocean during pre-southwest monsoon period, Ecosystems, <u>https://doi.org/10.1007/s10021-021-00702-z</u>, 2021.

Yeung, L. Y., Berelson, W. M., Young, E. D., Prokopenko, M. G., Rollins, N., Coles, V. J., Montoya, J. P., Carpenter, E. J., Steinberg, D. K., Foster, R. A., Capone, D. G., and Yager, P. L.: Impact of diatom-diazotroph associations on carbon export in the Amazon River plume, Geophys. Res. Lett., 39, <u>https://doi.org/10.1029/2012GL053356</u>, 2012.

805 Yogev, T., Rahav, E., Bar-Zeev, E., Man-Aharonovich, D., Stambler, N., Kress, N., Béjà, O., Mulholland, M. R., Herut, B., and Berman-Frank, I.: Is dinitrogen fixation significant in the Levantine Basin, East Mediterranean Sea?, Environmental Microbiology, 13, 854-871, https://doi.org/10.1111/j.1462-2920.2010.02402.x, 2011.

Zehr, J. P.: Nitrogen fixation by marine cyanobacteria, Trends Microbiol., 19, 162-173, https://doi.org/10.1016/j.tim.2010.12.004, 2011.

Zehr, J. P. and Capone, D. G.: Changing perspectives in marine nitrogen fixation, Science, 368, <u>https://doi.org/10.1126/science.aay9514</u>, 810 2020.

Zehr, J. P. and Capone, D. G.: Marine nitrogen fixation, Springer, https://doi.org/10.1007/978-3-030-67746-6, 2021.

Zehr, J. P., Mellon, M., Braun, S., Litaker, W., Steppe, T., and Paerl, H. W.: Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat, Applied and Environmental Microbiology, 61, 2527-2532, <u>https://doi.org/10.1111/j.1574-6968.1997.tb12589.x</u>, 1995.

Zehr, J. P., Mellon, M. T., Zani, S: New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (*nifH*) genes, Appl Environ Microbiol, 64, <u>https://doi.org/.10.1128/AEM.64.9.3444-3450.1998</u>, 1998.

Zhang, R., Zhang, D., Chen, M., Jiang, Z., Wang, C., Zheng, M., Qiu, Y., and Huang, J.: N₂ fixation rate and diazotroph community structure in the western tropical North Pacific Ocean, Acta Oceanol. Sin., 38, 26-34, <u>https://doi.org/10.1007/s13131-019-1513-4</u>, 2019.

Zhang, R., Chen, M., Yang, Q., Lin, Y., Mao, H., Qiu, Y., Tong, J., Lv, E., Yang, Z., Yang, W., and Cao, J.: Physical-biological coupling of N₂ fixation in the northwestern South China Sea coastal upwelling during summer, Limnology and Oceanography, 60, 1411-1425, https://doi.org/10.1002/ino.10111, 2015.

Zhang, X., Ward, B. B., and Sigman, D. M.: Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics, Chem Rev, 120, 5308-5351, <u>https://doi.org/10.1021/acs.chemrev.9b00613</u>, 2020.