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SUMMARY 
 

The French aerial survey provide an important fisheries independent index for the stock 
assessment of Eastern Atlantic Bluefin Tuna (EABFT, Thunnus thynnus). However, this survey 
presents several shortcomings. The main issue is linked to the absence of quantitative estimate 
of the size of the different school types encountered during the survey. This prevents from 
accounting to changes in school size composition, which could affect the trends of the index. 
Since 2016 video cameras were set-up under the aircraft to record the flights and obtain school 
size estimates. In addition to the 2017 update of the index, the present manuscript describes the 
procedure to estimate school size from the videos and presents preliminary results for an index 
integrating this new information. Robustness to school type assignment and school size 
variability are investigated through bootstrap approaches. The results show distinct surfaces for 
the different school types and that including school sizes into the index leads to a comparable 
long-term trend, but with higher values for 2009-2012 than without including the school 
surfaces. 

 
RÉSUMÉ 

 
Les prospections aériennes françaises fournissent un important indice indépendant des 
pêcheries pour l'évaluation du stock de thon rouge de l'Atlantique Est (EABFT, Thunnus 
thynnus). Cependant, ces prospections présentent plusieurs lacunes. Le principal problème est 
lié à l’absence d’estimation quantitative de la taille des différents types de bancs observés au 
cours de la prospection. Cela empêche de prendre en compte les changements de la 
composition par taille des bancs, ce qui pourrait affecter les tendances de l’indice. Depuis 
2016, des caméras vidéo ont été installées sous l'avion pour filmer les vols et obtenir une 
estimation de la taille du banc. Outre la mise à jour de l'indice de 2017, le présent document 
décrit la procédure d'estimation de la taille des bancs à partir des enregistrements vidéo et 
présente les résultats préliminaires d'un indice intégrant ces nouvelles informations. La 
robustesse vis-à-vis de l’attribution d’un type de banc et la variabilité de la taille du banc sont 
étudiées au moyen d’approches de type bootstrap. Les résultats font apparaître diverses 
surfaces pour les différents types de bancs et montrent que l’inclusion de la taille des bancs 
dans l’indice aboutit à une tendance comparable à long terme, mais avec des valeurs plus 
élevées pour 2009-2012 que lorsque la surface des bancs n'est pas incluse. 
 

 
RESUMEN 

 
La prospección aérea francesa proporciona un importante índice independiente de la pesquería 
para la evaluación del stock de atún rojo del Atlántico oriental (EABFT, Thunnus thynnus). Sin 
embargo, esta prospección presenta diversas deficiencias. El principal problema está 
relacionado con la falta una estimación cuantitativa del tamaño de los diferentes tipos de 
bancos hallados durante la prospección. Esto impide tener en cuenta los cambios en la 
composición por tallas del banco, lo que podría afectar a las tendencias del índice. Desde 
2016, se colocaron cámaras de vídeo bajo la aeronave para grabar los vuelos y obtener 
estimaciones del tamaño de los bancos. Además de la actualización del índice de 2017, el 
presente documento describe el procedimiento para estimar el tamaño de los bancos a partir de 
los vídeos y presenta resultados preliminares para un índice que integre esta nueva 
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información. Se investiga la robustez ante la asignación al tipo de banco y la variabilidad en el 
tamaño del banco mediante enfoques de bootstrap. Los resultados demuestran superficies 
diferentes para los distintos tipos de bancos y que incluir el tamaño del banco en el índice 
conduce a una tendencia a largo plazo comparable, pero con valores más elevados para 2009-
2012 que sin incluir las superficies de los bancos. 
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1. Introduction 
 
The French aerial survey index has been integrated for the first time in the base case VPA of the Eastern Atlantic 
bluefin tuna (EABFT, Thunnus thynnus) stock assessment in 2017. This index is important for the stock 
assessment. It is one of the two fisheries-independent index included in the stock assessment. The index started 
in 2000 and has been updated yearly since then, with the exception of 2004-2008. It also covers young fishes 
from the northeast Mediterranean Sea, for which information is scarce, particularly since the enforcement of the 
recovery plan limiting the catch of fish below 30kg. Therefore, even if the geographical coverage of juvenile 
areas is not complete as it only covers the Gulf of Lions (GoL), it provides insights into stock dynamics that 
cannot be captured by indices covering adults. 
 
This index still has several shortcomings. It does not cover all juveniles areas, among them the Bay of Biscay 
and the Adriatic. It also does not include effects about detectability related to the position of tuna in the water 
column, or related to the emigration/immigration in the GoL associated to food availability and changes in 
oceanographic conditions. However, the main issue is that the survey relies upon the census of EABFT schools 
feeding at the surface into qualitative size classes. It is therefore not possible to estimate the absolute or the 
relative size of schools. This is an important issue as changes in school type composition from one year to 
another will not be accounted for by the index. For instance, years with more numerous small schools will 
translate into a higher index than years with less numerous but larger schools, even though the total amount of 
tunas might be higher for the latter. During the 2017 EABFT stock assessment, this issue resulted in the decision 
to split the French aerial survey into two parts as changes in school size composition has been detected. 
 
To tackle this problem, since 2016 video cameras were installed underneath the wings of the aircraft used for the 
survey. This system was designed to record the flights and the tuna schools detections that were made under the 
plane. As the altitude of the flights is constant, this enables to use the videos to estimate the surface of each 
school type. Doing so, it becomes then possible to quantitatively account for different school sizes in the index 
of abundance built from this survey. The present paper presents (i) an update of the index of abundance through 
to 2017, (ii) the methodology developed to achieve such quantification of EABFT school surfaces from video 
cameras, (iii) preliminary results about integrating it into the index of abundance and (iv) an analysis of the 
robustness to observation error due to mis-determination of school type. 
 
 
2.  Materials and method 
 
2.1  Reminder of the French aerial survey protocol 
 
The protocol of the French aerial surveys has been described in details into several papers (Fromentin et al., 
2003; Bonhommeau et al., 2010; Bauer et al., 2015; Rouyer et al., 2018). It is just provided here as a reminder. 
Aerial surveys have been carried out since 2000, excepted in 2004-2008 due to a lack of funding. The survey 
takes place from early-August to mid-October over the Northwestern Mediterranean Sea, in the Gulf of Lions. 
This period and location is favourable to school detections as EABFT are at the surface in relation to feeding 
and/or foraging activity. 
 
Depending on weather conditions, up to 20 flights per year were conducted onboard a Cessna C skymaster 337 
“push pull” aircraft at 1000 feet above sea level. One pilot and up to three scientists could embark on this 
aircraft. From 2012 to 2013 a larger plane, a Cessna Caravan 208 ISR, allowed for an IT and video specialist as 
well as two scientists. Greater flight times were possible, enabling to fly over the whole Gulf of Lions within one 
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day against two with the Cessna skymaster 337. The plane was flying higher, 1500ft, and a high resolution, gyro-
stabilized video-camera allowed to record the flight and to obtain accurate geolocation and images for specific 
school detections. 
 
The aerial surveys take place around noon when the sun is at its highest to limit sun reflection on the sea for 
better detection conditions for the observers. To obtain optimal spotting conditions, flights are constrained to 
specific weather, sunny sky and low wind speed (<10nm/h), to avoid confusion between schools and whitecaps. 
Four different routes were defined for the surveys (Figure 1), which were comparable in length 667, 648, 580, 
and 700 km for route 1-4 respectively. The inter-transect distance of 13.8 km reduces chances of double counting 
schools on subsequent transect line. The aircraft flies at the constant speed of about 200 km/h and these routes 
can be then flown in less than 5 hours including distance between airport and transect. Initially, for each flight, 
the route was randomly selected. However, practical constraints such as weather conditions often interfer in that 
process. The transect sections with unsuitable conditions (clouds and/or breaking waves) were skipped. When 
the route could not be selected randomly, special attention was paid to maximizing the spatial coverage of the 
area and to evening out the amount of times the different routes were flown. 
 
Tuna schools were spotted by 1 to 3 trained scientific observers, from both sides of the plane/transects. While 
these teams changed over time, an overlapping period always allowed for the new members of the team to get 
appropriately trained to ensure the standardization of school types attribution. A GPS was used to record the 
position of the plane and detected tuna schools. Each detected school was then attributed to a type “tiny”, 
“small”, “medium”, “large” or “aggregation” for high concentrations of schools. The spotting conditions such as 
the wind strength (beaufort scale) and the number of observers onboard were recorded. During the early years, 
when the density of school was low, perpendicular distances from the plane were initially estimated by taking the 
GPS position of the school location. However, as the density of schools detected increased over time, it became 
impossible for the plane to move above the location of each school to take its GPS position. Therefore distances 
estimates were then realized using marks on the arms supporting the wings, which were set-up to represent pre-
defined ground distances (200, 400, 800, 1200, 1800 and 3600m) at the altitude of 300m. 
 
2.2  Density estimate 
 
The analysis of the aerial survey data was based on the distance sampling theory (Buckland et al., 2005; Thomas 
et al., 2006). In the distance sampling theory the transects, here the routes, are defined within a given area, here 
the Gulf of Lions. The object of interest, here a tuna school, is recorded along the route, which is surveyed 
several times during a given period. The theory allows that some, perhaps many, of the objects remain 
undetected and that variation in detection due to environment or observer could occur, as soon as n, L and w are 
accurately measured. According to the line transect theory, w is estimated through a detection function, which is 
a model fitted to the histogram of the perpendicular distances of the detections. 
 
The line transect approach aims to estimate the detection probability per distance (detectability P) and thus to 
calculate the percentage of sighted and non-sighted objects. The density estimate is given by: 
 

D̂i=
ni

2 w L P  
 
The detectability P, also known as observability or sightability, is obtained by fitting a ‘detection function’ to the 
histogram of distances. It allows to account for other variables, such as school type or environmental conditions 
(e.g. wind). The shape of the detection function generally is a monotonically decreasing curve, showing a 
shoulder under which detection remains almost certain and is unaffected by other variables. Here, for this 
exercise, the hazard rate detection function was fitted to account for differences in detectability linked to the size 
categories of the schools. However, other effects such as the season of the flight (month), the number of 
observers onboard and the wind strength (beaufort scale) are important factors that have been shown to affect 
detectability. They will have to be included in further analyses. Nonetheless, similarly to what was done for the 
2017 assessment, they were included for the simple update of the index through to 2017. 
 

The mean density, D̄  , from r replicates is estimated as follows: 
 
 

D̄=
1
r
∑
i= 1

i= r

D̂i
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The variance between replicates is estimated as: 
 

V a r (D)=
1

r (r− 1)
∑
i= 1

i = n

(D̂i− D̄)2

 
 
Time series of densities were computed for each model using an Horvitz-Thomson-like estimator for groups (i.e. 
clustered population), implemented in the R package Distance (Miller et al., 2017). This allowed to compute a 
density of clusters (i.e. schools) and a density of individuals depending on the cluster size, thus accounting for 
school surface estimates 
 
2.3  Data acquisition through video cameras and image processing 
 
Initially, one video camera (GOPRO Hero 4, silver) was set-up below each wing of the aircraft, pointing 
vertically to the ground. After the initial tests, only one camera was kept under the right wing of the plane. The 
cameras were attached using succion cups (Figure 2). Extra batteries were used to ensure the energy autonomy 
during the flights and 64GB mini SD cards allowed to record ¾ of the flight when shooting in high resolution 
(4K) and the entire flight when shooting in 1920x1080. Visual observations, GPS waypoints and videos were 
synchronized so that videos detection events would be easier to find on the videos and to double check 
detections.  
 
The videos covered more than 20 flights of about 4 hours each. For this first attempt at estimating school size, 
the entire amount of videos could not be checked. Therefore some flights were selected so that the whole range 
of different school types, “tiny”, “small”, “medium”, “large” or “aggregation” could be captured by the cameras 
(Figure 3). Unfortunately, aggregations have only been spotted in 2009-2012 and never since then. In addition, 
differences still need to be made between aggregations that represent one massive surface and those that 
represent a collection of smaller size schools. They were then excluded from the present analysis. The videos 
were visualized and a picture was extracted for each tuna school detection. 
 
Simple image processing techniques were used to estimate the school surfaces (Figure 4). First the image was 
transformed into grayscale and normalized to remove saturation effects. The background of the image was then 
removed with a median filter, which removed most of the sun reflection. A threshold was then applied to the 
remaining features, which were then suitable for analysis. The location of the school was extracted and an ellipse 
was fitted to it. The surface of the ellipse was then computed and provided an estimate for the surface of the 
school. The conversion from pixels to meters was achieved by filming an object whose size was known from 
300m away with the camera on the same settings as during the survey. The libraries Imager and conicfit from the 
statistical software R were used. 
 
2.4  Robustness analysis 
 
When attributing school types to detections, one source of error lies in different observers that diverge in school 
type attribution, i.e. who attribute a same school to different school types. For the French aerial survey, within 
one year, this is controlled by randomly cross checking school type attribution between observers. However, 
there is still a possibility to observe changes in school type attribution across years. If that was not expected to 
affect the index of abundance when only accounting for school numbers, it has potential to be problematic when 
accounting for school sizes. 
 
To assess the effect of this type of error on the index, the following procedure was followed. The schools 
detected further than 1800m away from the plane, half the maximum distance considered during the surveys, 
were considered prone to error. Among these schools, it was considered that 10% of them could be wrongly 
attributed to a larger school type and 5% of the remaining could be attributed to a smaller school type. These 
percentages were arbitrarily attributed, but from field experience it was believed more likely to attribute a larger 
school size than a smaller. The distributions of school sizes for each school types were then bootstrapped to 
attribute school size to each school type. The procedure was set-up to avoid sampling the same schools for the 
movement towards a larger school type and a smaller school type. For the 1000 bootstraps the detection curve 
was then fitted and the abundance estimated with this procedure.  
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3.  Results 
 
3.1  Distribution of estimated surfaces for the different school types 
 
Fitting ellipses on schools images did not prove complex, but was sometimes affected by the sun glare, which 
caused white patches. In particular this affected the fit for the large schools as they occupied a large surface of 
the picture and couldn’t be clearly separated from the sun. However, the ellipses fitted reflected the size of the 
schools. 
 
Although for this preliminary study the sample sizes were low (Table 1), the histogram of the surfaces estimated 
from the different school types detected seem to displayed separated modes, which was confirmed by the boxplot 
that displayed little overlap between school types (Fig. 5). A T-test performed on the log-transformed surface 
data showed that school types explained 81% of variance and that the average surface of the different school 
types were significantly different between each type (p<0.001 for all school types). Investigating the residuals 
did not show any strong departure from a normal distribution. 
 
The surface of tiny schools ranged between 2 m2 and 54 m2, their average length (i.e. average length of estimated 
main axes) was 3 m. The surface of small schools ranged between 9 m2 and 743 m2, their average length was 10 
m. The surface of medium schools ranged between 627 m2 and 1929 m2, their average length was 23. The surface 
of large schools ranged between 59490 m2 and 73536 m2, their average length was 132m. 
 
3.2 Including school surfaces in to the index and robustness analysis, update of the index for 2017 
 
The updated index of abundance for 2017, which did thus not include school surfaces, displayed a general 
increasing trend (Figure 6). The year 2017 displayed a sharp decrease in density compared to 2016, at a similar 
level to the 2014 density. The estimates of school surfaces were then used to recompute the index of abundance 
and the effect of mis-attributing school types was tested. The 1000 runs displayed variability, but the overall 
trend remained the same over the bootstraps, suggesting that the index obtained was robust to errors in school 
type attribution. The time series for the abundance index obtained displayed a long-term increasing trend over 
the whole time period, with 2016 and 2017 being the two highest densities (Figure 6). Compared to the index 
including the school surfaces, the main difference was that the 2009-2012 period was relatively higher compared 
to 2014 and 2015. The year 2017 also appeared much more important than in the updated index, and was also 
greater than 2016. This was likely to be due to a large amount of Large school types spotted during the 2017 
survey compared to other years. 
 
 
4.  Discussion 
 
The present manuscript present for the first time an objective approach to estimate EABFT school surfaces 
during the aerial surveys. Traditional approaches to estimate school sizes rely -in the best cases- upon the 
expertise of professional tuna spotters, which are complex to experimentally validate and inter-calibrate between 
spotters. The approach used here allows to circumvent errors and/or inter-calibration issues between 
spotters/years. It provides an objective way of improving the index of abundance derived from the French aerial 
survey. 
  
Our results suggest that the school types used in the survey are sensible, as the size of EABFT schools were 
found to be statistically different between them. This is interesting for further work in understanding the 
underlying reasons for potentially emerging school sizes distinct distributions. However, the data analyzed here 
for school size estimate has a small sample size and does not accurately represent inter-annual variations as only 
two years of data were available. The analysis of the complete available dataset and further data acquisition is 
likely to bring more insights into this aspect. 
 
The update through to 2017 of the French aerial survey index displayed a decrease in 2017. This was counter-
intuitive as a large number of schools was detected this year, second to 2016 in total number. Attempt to modify 
the detection function by excluding the wind or the number of observers from the fit showed that it affected the 
index. Removing these effects increased the density for 2017, placing it second to 2016. This suggests that the 
effects accounted for by the detection function should be revised in the future. 
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The index obtained by integrating the school surfaces into the distance approach, using the R distance package, 
showed a similar long-term increase than the updated index stock assessment. The main difference observed was 
that 2014-2015 were not anymore above the 2009-2012 period. This was due to a higher number of large schools 
during this period compared to 2014-2015, which was composed by more tiny and small schools. The bootstrap 
approach suggested that the index obtained was also robust to mis-attribution of school types, as this trend did 
not substantially change when a percentage of schools far from the plane was attributed to a different school 
type. This was reinsuring about the capacity of the index to provide consistent results. In the present approach, 
the probabilities of mis-attribution were arbitrary fixed, but this could be improved by estimating it from the 
overlap between the surface distributions between school types. Once again, a more complete dataset may 
provide more insights into this aspect. 
 
Another important aspect is that the detection curve fitted to the detection data through the distance package only 
included the school type effect for this preliminary analysis, i.e. it only accounted for changes in detection 
probability linked to the school size and did not include the effect of the spotting team, weather conditions etc., 
as was done for the 2017 stock assessment. This has only been included for the update of the index. They will 
have to be included and/or revised for a definitive version of the index. Last but not the least, in the present 
analysis, very large schools were discarded from the analysis, because they were not spotted during the data 
acquisition. These will need to be used for a definitive index including school surface. In the database, two types 
of very large schools have been spotted in the GoL. The first category is a high collection of a collection of 
smaller school types; the second is one large dense surface of EABFT. These two cases can be analyzed within 
the same framework as for the second category of ‘very large school’ GPS points delimiting the perimeter of the 
school are available to estimate the surface. Overall this method looks promising to provide a robust index of 
abundance for the next stock assessment. 
 
As stressed throughout this manuscript, the analysis performed was preliminary and numerous aspects are to 
improved. Besides analysing the whole database to increase sample size and representativity, the distortion 
induced by the lens used on the cameras affect the size of distance estimates depending on where they appear on 
the picture. Greater distortion occurs at the edge of the pictures captures by the camera. The variability of 
locations at which the schools were shot on the camera screen allow to partially make up for this by inducing 
variability in school size estimate and could explain part of the overlap between the tiny and small categories. 
Also, the conversion from pixel size to meters was done by taking pictures of a known object placed 300m away, 
equivalent to the plane altitude. However, the altitude is never completely stable and accounting for changes in 
altitude through the log of the GPS track could also allow for controlling such an effect and improve the final 
conversion. 
 
The present approach has interesting perspectives to control other aspects of the survey. For instance, one of the 
main hypotheses for applying the distance approach is a 100% coverage under the plane. This could be 
controlled using a video approach and would also allow to estimate the percentage of schools missed by spotters 
depending on their size, as well as errors in distance estimates. These could then be fed into the abundance index 
to increase its robustness. Finally, using high resolution cameras is under trial to improve school size estimates 
and get a better understanding of school dynamics. This would enable for using machine learning techniques to 
automatically detect EABFT schools captures by the cameras. Nonetheless, these techniques are still limited in 
that they are constrained to analysing the surface. A next substantial improvement would be to study the 
underwater volume of schools in relationship to the different school types observed from the plane. Indeed, the 
present approach assumes that the number of tunas is proportional to the school surface observed at the surface, 
but this has not been experimentally proven yet. Hyperspectral technologies provide interesting perspectives in 
that respect. 
 
Environmental conditions are known to affect the spatial distribution of bluefin tuna in the GoL, through 
foraging in relationship to frontal structures and mixed layer depth (Royer et al., 2005). This can translate into 
changes in the horizontal and vertical behaviour of EABFT in the GoL, affecting its detectability and availability 
to the survey (Bauer et al., 2017). Such effects could be accounted for in the index of abundance, using suitable 
habitat approaches to derive the probability of occurrence in the survey area and at the surface, depending on 
environmental conditions (Druon et al., 2011, 2016). 
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Table 1. Range of surface estimates, average of length estimate and sample size for the different school types. 
 

School Type Surface min in 
m2 

Surface max in m2 Average length in m N 

Tiny 2 54 3 33 

Small 9 743 10 13 

Medium 627 1929 23 3 

Large 59,490 73,536 132 2 
 
 
 
 

 
 
 

 

Figure 1. Maps of the different routes followed for the aerial surveys above the Gulf of 
Lions in the Northwestern Mediterranean. 
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Figure 2. Cessna pushpull 337, with the camera installed with the succion cup and the distance marks set-up on the 
wing arm.  
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Figure 3. School types encountered during aerial surveys over the Gulf of Lions. The photos were obtained from 
videos shot by a GOPRO Hero 4 installed under the aircraft wing. 
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Figure 4. Different steps involved in the image processing for school surface estimation. Top Left, original image. Top 
Right, gray scaling. Bottom Left, substracting background. Bottom Right, thresholding. 
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Figure 5. Histogram and boxplot of the log surfaces (in m2) estimated for each school type. 
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Figure 6. Index of abundance for 1000 bootstraps reflecting mis-attribution of school types and random attribution of 
school surface for each school type, and updated index for 2017. The latter refers to the inclusion of 2017 data to the 
2000-2016 dataset and a re-run of the index using the same model specification than for the 2017 assessment. 


