
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
Environmental Pollution 
January 2024, Volume 340 Issue Part 2 Pages 122785 (10p.)  
https://doi.org/10.1016/j.envpol.2023.122785 
https://archimer.ifremer.fr/doc/00858/97020/ 

Archimer 
https://archimer.ifremer.fr 

Copper isotopes as a tool to trace contamination in 
mangroves from an urbanized watershed 

Barreira João 1, *, Ferreira Araujo Daniel 2, Rodrigues Breno Q.A. 1, Tonhá Myller 3, De Araújo Rafael 2, 
Souto-Oliveira Carlos Eduardo 4, Babinski Marly 4, Knoery Joël 2, Sanders Christian J. 5,  

Garnier Jérémie 3, Machado Wilson 1 

 
1 Geochemistry Program, Chemistry Institute, Fluminense Federal University, Brazil  
2 Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France  
3 Geosciences Institute, University of Brasília, Brazil  
4 Geosciences Institute, University of São Paulo, Brazil  
5 National Marine Science Center, Southern Cross University, Australia 

* Corresponding author : João Barreira, email address : joao_barreira@id.uff.br  
 

Abstract :   
 
This study investigates the chronology of copper (Cu) contamination and its stable isotopes within an 
emblematic Brazilian mangrove impacted by multiple urban and industrial Cu sources, deforestation, and 
eutrophication. In particular, it tests Cu isotopes as tracers of anthropogenic inputs into an anthropized 
watershed impacted by multiple sources. To do so, we used multi-isotopic approaches (δ65Cu, δ13C, 
and δ15N), elemental analyses (Al, Ca, Fe, P, Cu, C, and N), and selective and sequential extractions in 
a210Pb-dated sediment core. This geochemical "toolbox" allowed identifying two main stages of Cu 
evolution in the sediment core. In the first stage, before 1965, Cu isotope fingerprints responded to 
landscape changes, indicating a shift from marine to geogenic dominance due to the remobilization and 
erosion of terrestrial materials. In the second stage, after 1965, the sediment geochemical profile showed 
increased Cu total concentrations with a higher bioavailability (as reflected by sequential extraction data) 
accompanying changes in Cu isotope signatures towards anthropogenic values. The findings evidence 
that local industrial sources, possibly combined with diffuse urban sources, export Cu into downstream 
mangroves with a distinguishable isotope signature compared to natural values. This study demonstrates 
the applicability of Cu isotopes as new environmental forensic tools to trace anthropogenic sources in 
mangrove sediments. Incorporated into a robust geochemical toolbox that combines inorganic and 
organic proxies for sedimentary materials, this new tool provides a comprehensive understanding of Cu 
dynamics in mangrove ecosystems, shedding light on the historical and current sources of Cu. 
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Graphical abstract 
 

 
 
 

Highlights 

► Chronological survey of a well-constrained Brazilian mangrove core. ► Cu isotopes respond to shifts 
from marine to geogenic dominance. ► Sediments record the evolution of Cu fluxes along periods of 
urban and industrial development. ► Mangrove sediments record anthropogenic Cu isotope fingerprint. 
► Anthropogenic inputs yielding increased bioavailability of Cu in mangrove sediments. 
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1. Introduction  45 

Mangrove sediments effectively trap and accumulate particle-reactive pollutants that 46 

are often persistent (Machado et al., 2002a, 2002b; Defew et al., 2005; Tang et al., 2022). 47 

Furthermore, anthropogenic forcing can turn such pollutant traps into secondary, legacy 48 

sources of contaminants that can affect their surrounding areas and food webs (Harbison, 49 

1986; Bastakoti et al., 2019; Lacerda et al., 2022; Queiroz et al., 2022; Tang et al., 2022). 50 

As a result, it is worthwhile to develop tools that can discriminate the status of mangrove 51 

sediments either as sources or traps of contamination in their surrounding environments.  52 

In theory, tracking the stable isotopes of any given trace metal that are unevenly 53 

distributed in the critical zone offers a potential solution to this issue, since they can 54 

provide information on the cycling of their parent element (Albarède, 2004; Komárek, et 55 

al., 2008; Weiss et al., 2008; Wiederhold, 2015; Zhong et al., 2020). Previous studies 56 

have shown that trace metal isotopes can effectively quantify sources of contamination in 57 

mangrove sediments impacted by a single primary source (Araújo et al., 2017, 2018; 58 

Tonhá et al., 2020; Jeong et al., 2023a). However, there is currently no record of the use 59 

of trace metal stable isotopes in mangrove sediments affected by multiple anthropogenic 60 

sources, which is a common scenario in coastal regions with diverse and changing land 61 

uses. 62 

Previous studies have successfully used Cu isotopes to assess source apportionment 63 

and characterize the combined influences of sources and biogeochemical processes (Petit 64 

et al., 2008; Thapalia et al., 2010; El Azzi et al., 2013; Petit et al., 2013; Briant et al., 65 

2016; Araújo et al., 2019b; Briant et al., 2022; Jeong et al., 2023a,b). Thapalia et al. (2010) 66 

are perhaps the only ones using Cu isotopes as chronological anthropogenic source 67 

tracers. There is a limited number of studies that evaluated the contribution of Cu isotopic 68 

tools in coastal areas (Petit et al., 2008; Vance et al., 2008; Petit et al., 2013; Little et al., 69 

2017; Araújo et al., 2019a,b; Ciscato et al., 2019; Briant et al., 2022; Jeong et al., 70 

2023a,b), and only seven dealt with modern sedimentary samples (Little et al., 2017; 71 

Araújo et al., 2019a; Araújo et al., 2019b; Ciscato et al., 2019; Briant et al., 2022; Jeong 72 

et al., 2023a,b). Jeong et al. (2023a) identified a single anthropogenic source 73 
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(electroplating industry wastes) imprinting particular Cu isotope signature in mangrove 74 

sediments.  75 

The application of Cu isotopes in the context of mangrove sediments affected by 76 

multiple urban and industrial sources presents certain challenges. First, there is the 77 

potential for isotopic fractionation of Cu caused by low-temperature biogeochemical 78 

processes (Wang et al., 2021). Second, the geochemical reactivity of sedimentary trace 79 

metals in highly productive coastal environments can be elevated due to redox reactions 80 

(Clark et al., 1998; Marchand et al., 2006, 2014), leading to significant isotopic 81 

fractionation (Huan et al., 2020; 2021), which may overshadow source fingerprints. 82 

Finally, isotopic signatures of anthropogenic sources of trace metals can vary widely. In 83 

some urban areas it is impractical to assess each anthropogenic source isotopic ratio, 84 

making it difficult to differentiate their resulting group from natural sources.  85 

Therefore, when considering mangrove sediments under this scenario, it is helpful to 86 

combine Cu isotopes with multiple geochemical analyses to aid in the elucidation of 87 

source apportionment, as performed in previous geochemical “toolbox” approaches (He 88 

et al., 2020; Tonhá et al., 2020, 2021). Proxies include sequential extractions combined 89 

with isotopic data, and furthermore, chronologies of the study area are imperative to 90 

validate the use of these proxies for reconstructing the environmental changes controlling 91 

the metal pollution history. 92 

Based on these premises, and with the purpose of advancing the current 93 

understanding of the role of mangroves in trace metal cycling, we conducted a series of 94 

analyses on a sediment core extracted from a mangrove in the Estrela River basin in Rio 95 

de Janeiro, Brazil. The study area is subject to various environmental stressors, including 96 

mangrove deforestation (Borges et al., 2006, 2009), high levels of metal contamination 97 

(Rebello et al., 1986; Leal & Rebello, 1993; Rangel et al., 2011), and nutrient inputs that 98 

lead to eutrophication in most parts of the bay (Soares-Gomes et al., 2016; Fries et al., 99 

2019). The core was dated using 210Pb and subjected to various analyses including multi-100 

isotopic (δ65Cu, δ13C, δ15N), elemental (Al, Ca, Fe, P, Cu, C and N), and partial 101 

extractions (BCR method; Tonhá et al., 2020; Rauret et al., 1999). The primary aim of 102 

the present study was to reconstruct historical changes on geochemical compositions of 103 

mangrove sediments influenced by urban and industrial development while also assessing 104 

the suitability of Cu isotopes for use in this context.  105 

 106 

2. Materials and methods 107 
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2.1. Study Area 108 

 109 

Figure 1 shows the sampling point in Guanabara Bay, Rio de Janeiro, Brazil and its 110 

surrounding land use. The study area is bordered to the north by an urban agglomeration 111 

and to the south by the Guanabara Bay. Deforestation around 1980 is witnessed by 112 

residents and revealed by remote sensing data (Borges et al., 2009, 2006). 113 

The sampling point is situated in the Estrela River basin, which discharges into the 114 

northwest section of Guanabara Bay. The river separates the southern part of the cities of 115 

Magé (to the east) and Duque de Caxias (to the west). The middle part of the hydrographic 116 

basin and some lower areas have been highly urbanized, and half of the sewage is 117 

untreated before discharging (SNIS, 2020). Unsurprisingly, the sampling location has the 118 

second lowest water quality rating in the Bay (Kjerfve et al., 1997; Fries et al., 2019). 119 

The industrialization of the Estrela River hydrographic basin dates back to the 1830s 120 

when the Gunpowder Factory, now known as the Brazilian War Material Industry 121 

(IMBEL), began operations (AN, 2016). Since then, numerous other industries have been 122 

established in the region. 123 

Previous studies reported varying Cu concentrations in sediments from the Estrela 124 

River bed. Rebello et al. (1986) found a high concentration of Cu (up to 2,112 mg/kg), 125 

while Rangel et al. (2011) found a maximum Cu concentration of 74.5 mg/kg. 126 

Two significant historical events from the 20th century have a highlighted potential 127 

of impacting mangrove sediments in the watershed. The first event was the road's opening 128 

connecting the cities of Rio and Petrópolis in 1928, which marked a step in the regional 129 

economic development (AGEVAP, 2021). The second event was the period of intense 130 

industrialization and population growth in the 1960s, corresponding to the worsening of 131 

the environmental problem in the Guanabara Bay (Alencar, 1980; Godoy et al., 1998; 132 

Monteiro et al., 2012). This unplanned urban development resulted in mangrove 133 

deforestation for land reclamation, as observed in the study area.   134 

 135 

2.2. Sampling and samples preparation 136 

 137 

Sediment samples were collected from a mangrove area at the estuary of the Estrela 138 

River using a Cu-clean polyethylene tube. A sedimentary core of 41 cm (-22.7203°N and 139 

-43.1961°E) was obtained, and sectioned at 2 cm intervals, with each slice constituting a 140 
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sample. The sediment samples were then lyophilized, disaggregated, and homogenized 141 

by grinding with agate mortar and pestle. 142 

A portion of the samples was sieved eliminate the sand (>63µm) fraction, for the 143 

analysis of total composition of elements including Al, Ca, Fe, P and Cu, and for the study 144 

of solid partition using the BCR procedure, and Cu isotopic composition. Sieving aimed 145 

to remove larger particles and debris that may affect the accuracy of the results. Non-146 

sieved sediment samples were analyzed for total organic C, δ13C, total N, δ15N, 147 

granulometry, apparent density, and 210Pb.  148 

 149 

2.3. Cleaning procedures 150 

 151 

All glassware used for sample preparation underwent a 24-hour immersion in 10% 152 

HCl (v/v) and was then rinsed with Milli-Q® water, which was purified through the Milli-153 

Q® purification system (18.2 M.Ohm.cm). Plastic materials used were previously 154 

decontaminated with 3% HNO3 (v/v) and rinsed with Milli-Q® water. Savillex® 155 

digestion plasticware (PFA) were washed with detergent and Milli-Q® water, 156 

decontaminated in a 50% HNO3 solution (v/v) by boiling for 1 hour. The bottles were 157 

then rinsed and the previous step was repeated, followed by triple rinsing in Milli-Q® 158 

water. 159 

Resins used for chromatographic separation were washed with Milli-Q® water, left 160 

to stand for one night, then washed with 0.5 M HNO3 and left to stand again for one night. 161 

This cycle was repeated three times. Finally, the resin was stored in 0.1M HNO3 before 162 

use.  163 

 164 

2.4. Analytical Procedures 165 

2.4.1. Physical characterization: granulometry and dry bulk density 166 

 167 

Sediments were analyzed for their granulometry using a CILAS 1064 laser 168 

granulometer. The size fractions were measured from 0.04 to 500 μm by diffraction, and 169 

the data generated were analyzed using GRADISTAT, a package for grain size 170 

distribution and statistics. The apparent densities of the sediments were measured to 171 

calculate the sediment and Cu flux, and were obtained by dividing the dry weight of the 172 

samples by their wet volume: 173 

 174 
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ρ=
𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑟𝑦

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
 (Eq. 1) 175 

 176 

Lyophilization (vacuum drying) was used to dry the samples prior to density 177 

measurement. 178 

 179 

2.4.2. Organic matter quality and eutrophication indicators: C, δ13C, N and 180 

δ15N 181 

  182 

The samples were analyzed for organic matter quality and eutrophication indicators, 183 

including organic C, δ13C, total N, and δ15N, using a Flash Elemental Analyzer coupled 184 

to an IRMS Delta V from Thermo Fisher (Thermo Flash EA 1112). Prior to the analysis 185 

of sedimentary organic carbon (C), the samples were decarbonated by adding 1M HCl. 186 

 187 

2.4.3. Total and partial digestion and elemental analysis  188 

Total digestion of about 100 mg dry sediment aliquots were performed in Teflon 189 

Savillex© vials heated on a coated graphite block using multiple-step acid concentrated 190 

procedure with HF, HCl and HNO3. Blanks and certified reference materials (CRM 191 

BHVO-1 and MESS-4) were joined to batch samples. Once completed digestion, acid 192 

extracts were transferred to Falcon® tubes and diluted to 50 ml with high-purity water. 193 

Aliquots of the final extract were split for subsequent analysis of concentrations and 194 

isotopes.  195 

Total concentrations of Cu, Ca, Al, Fe and P were determined using ICP-OES 196 

(Spectrometry of Optical Emission by Inductively Coupled Plasma) at Geoquímica 197 

Laboratory at University of Brasília. The measured values were always within 10% of the 198 

certified values of the CRM BHVO-1 for considered elements. The solid partition of Cu 199 

was evaluated using sequential extractions following the modified BCR extraction 200 

procedure proposed by Tonhá et al. (2020) based on the original protocol from Rauret et 201 

al. (1999) (Supplementary Material). This procedure allows the quantification of elements 202 

in four fractions: F1, the exchangeable and carbonate fraction of sediment particles 203 

extracted with 0.11 M acetic acid (HAc); F2, the fraction associated with Fe-Mn 204 

oxyhydroxides extracted with a 0.5 M hydroxylamine hydrochloride solution; F3, mainly 205 

composed of metals associated with reactive sulfides, authigenic pyrites, and organic 206 
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matter, extracted with pure H2O2 and a 1 M ammonium acetate solution; and F4, assessed 207 

by subtracting the results of the first three extractions from the total concentrations.  208 

The concentrations of the fractions were determined using ICP-OES 209 

(Spectrometry of Optical Emission by Inductively Coupled Plasma) at Geoquímica 210 

Laboratory at University of Brasília. The internal control of the sequential extraction 211 

method, calculated as F% = 100 × (F1 + F2 + F3 + F4)/(total digestion), reached values 212 

lower than 90 or larger than 110% for unknown samples and reference material (BCR 213 

701). All extractions were performed in three independent replicates, and standard 214 

deviation between replicates were lower than ±10%. Analytical blanks were made 215 

according to the recommendation of  Rauret et al. (1999).  216 

 217 

2.4.4. Cu isotope analyses  218 

 219 

To prepare samples for isotope analysis, we employed a pre-purification step using 220 

an ion exchange chromatography column packed with pre-cleaned BioRad AG MP1 resin 221 

to remove matrix interferents following the Souto-Oliveira (2018)’s protocol. Briefly, the 222 

resin was cleaned three times with 12 mL of 0.5 mol/L HNO3 and 8 mL of MilliQ water, 223 

and then conditioned with 12 mL of 6 mol/L HCl. Samples were loaded in 1 mL of 7 224 

mol/L HCl. Matrix elements were eluted with 1.5 mL of 7 mol/L HCl, and Cu was eluted 225 

with 10 mL of 7 mol/L HCl. This step was repeated again to complete Cu purification. 226 

Then, the eluted Cu solutions were evaporated to dryness at 120 °C, and a few drops of 227 

concentrated HNO3 were added to break down any possible residue of organic matter, 228 

followed by another evaporation to dryness at 120 °C. Finally, the samples were 229 

redissolved in 2 mL of 2% (m/m) HNO3 for instrument analyses. The total procedural 230 

blank of Cu was < 3 ng, which is negligible compared with the total Cu sample used in 231 

analysis (~1 μg).  232 

The Cu isotope analyses were performed in the Multi Collector (MC)-ICP-MS 233 

Neptune Plus at CPGeo’s Lab (University of São Paulo. Samples were introduced into 234 

the spectrometer with a microconcentric PFA nebulizer (50 µL/min flow) coupled with a 235 

two-step expansion chamber and a quartz torch and assisted by an automatic sampler 236 

(CETAC ASX-100). Data was obtained through 40 cycles of a 4 s integration 237 

measurements, with instrumental baseline and peak blank corrections for each measure.  238 

The samples run bracketed with our in-house “USP” Cu standard and external 239 

normalization and exponential law used for mass bias correction. The in-house “USP” 240 
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standard is calibrated against the international isotope reference standard for Cu 241 

(NIST/SRM-976). The calibration value of δ65CuUSP/SRM-976 = 0.17 ± 0.04‰ (2σ, n=15) 242 

was used to convert data to the NIST/SRM-976. Thus, final isotope compositions were 243 

expressed as follows 244 

 245 

δ65CuNIST/SRM 976(‰) = (

𝐶𝑢

𝐶𝑢𝑠𝑎𝑚𝑝𝑙𝑒
63

65

𝐶𝑢

𝐶𝑢NIST 976
63

65 − 1) ∗ 1000   − 0.17                        (Eq. 2) 246 

 247 

 248 

The calculated δ65CuNIST/SRM 976 values represent the average and the two standard 249 

deviations (2 s) of two or three individual measures run in a single analytical session. The 250 

routine precision obtained for individual samples and replicates of reference materials 251 

was generally better than ±0.05 ‰. The MESS-4 analysis yielded a value of δ65CuNIST/SRM 252 

976 = -0.05 ± 0.01 (2s, n = 4). This value concurs with that from Sullivan et al. (2020) of 253 

δ65CuNIST/SRM 976 = -0.09 ± 0.07‰ (2s). 254 

 255 

2.4.5. Enrichment Factors (EF) and flux calculations with 210Pb dating 256 

 257 

Enrichment Factor is a geochemical index conceived to reduce dilution effects and 258 

thus better estimate anthropogenic contributions.  259 

The minimum Cu concentration detected in the present study (6.61 mg/kg, Table 1, 260 

Supplementary Material) is higher than background concentrations for other areas in the 261 

Guanabara Bay (2.3 to 2.7±0.8 mg/kg; Monteiro et al., 2012; Machado et al., 2002; 262 

Rebello et al., 1986; Godoy et al., 1998), yet similar to that from the Jurujuba Cove 263 

(9.0±4.7 mg/kg, Baptista-Neto et al., 2000).  264 

The range of Cu background concentrations in Guanabara Bay vary from 2.3 to 265 

9.0±4.7 mg/kg (Rebello et al., 1986; Godoy et al., 1998; Machado et al., 2002; Monteiro 266 

et al., 2012; Baptista-Neto et al., 2000), and the industrial development of the Estrela 267 

River basin is earlier that the period covered by the sediment core. Therefore, enrichment 268 

factors were determined by normalizing the Cu/Al ratio of the Upper Continental Crust 269 

(UCC) (Rudnick and Gao, 2003) as follows: 270 

 271 
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𝐶𝑢 𝐸𝐹 =
𝐶𝑢

𝐴𝑙
𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑢

𝐴𝑙
 (𝑈𝐶𝐶 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

 (Eq. 3) 272 

 273 

Al is widely used in EF calculation because it is a conservative element that correlates 274 

with sediment particle size. It is a major constituent of fine-grained aluminosilicates, with 275 

which the bulk of the trace metals associate in natural sediments (Loring, 1991).  276 

Cu fluxes to the sediments were calculated from the equation below, where ρ is the 277 

apparent density and s is the sedimentation rate, determined after 210Pb dating. 278 

 279 

𝐶𝑢 𝑓𝑙𝑢𝑥 = 𝐶𝑢 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑥 𝜌 𝑥 𝑠 (Eq. 4) 280 

 281 

Sedimentation rates and dating were determined using 210Pb. Excess 210Pb 282 

activities are linked to atmospheric deposition and were calculated using the differences 283 

between total 210Pb and 226Ra activities (Appleby & Oldfield, 1978). A gamma ray 284 

spectrometer equipped with a CANBERRA Ge hyper-pure detector was used to collect 285 

data, and the Genie-2000 software was used for interpretation.  286 

 287 

2.4.6. Statistical analysis 288 

Pearson correlations were performed to evaluate linear relationships between 289 

variables. The confidence degree used was the widely accepted and conventional p < 0.05. 290 

Principal components analysis (PCA) was performed using the STATISTICA© software 291 

package to gain an overview understanding of the various parameters evaluated, and their 292 

main controlling factors. To compare the isotope data from the present study with 293 

literature values, including the central tendency, dispersion, and potential outliers, we 294 

provided histograms with theoretical normal distributions. 295 

 296 

3. Results and discussion 297 

3.1. Temporal variation of marine and continental proxies    298 

 299 

Table 1 (Supplementary Material) summarizes all data obtained from the sediment 300 

sample analyses, while Figure 2 shows the temporal evolution of the main parameters 301 

analyzed in the study, along with historical markers. To establish a robust basis for the 302 

further interpretation of Cu parameters, the vertical distributions of Ca/Al, C/N, δ13C, and 303 

δ15N were evaluated beforehand. Ca/Al values were used to access the proportions of 304 
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marine CaCO3 and terrestrial materials in the form of Al oxides. The ratio of C/N, δ13C, 305 

and δ15N assist in interpreting the relative contributions of marine and terrestrial organic 306 

matter to aquatic environments, as the elemental and isotopic compositions of organic 307 

matter typically preserve source information (Peters et al., 1978; Monteiro et al., 2012; 308 

Meyers, 2014; Sanders et al., 2014). 309 

The combination of results indicates the presence of three distinct layers along the 310 

core (Table 1 and Fig. 2), relating to the marine and continental proxies. The bottom layer 311 

is characterized by larger contributions of both organic and inorganic marine-sourced 312 

material, as evidenced by high Ca/Al, δ13C, and δ15N values and low C/N. The middle 313 

and upper layers present relatively lower and constant values of Ca/Al ratios but differ in 314 

terms of organic matter quality proxies. C/N, δ13C, and δ15N reflect a higher influence of 315 

terrestrial/mangrove material in the middle part of the core, and a gradually increasing 316 

prevalence of marine organic matter in the upper layers. 317 

The transition from marine to terrestrial sedimentary characteristics between the 318 

bottom (1910s to 1920s) and middle (1930s to 1950s) layers of the sediment core is likely 319 

the result of man-induced alterations near the coastline, such as extensive river dredging 320 

in the early 1910s (Britto et al., 2019) and the construction of the Rio-Petrópolis Road in 321 

1928 (Fig. 2). Human activities can significantly impact the geomorphology, leading to 322 

alterations in the source and properties of the river-borne sediment.  323 

The higher clay content in the bottom layers is likely related to the proximity of the 324 

site to marine clayey mud flats. The middle layer of the core, which has lower sediment 325 

depositional fluxes and clay content, may have been deposited when the material source, 326 

e.g., a mud flat that is frequently disturbed by tides and supplies sediments to nearby 327 

areas, was further away from the sampling site (Smoak & Patchineelam, 1999). Monteiro 328 

et al. (2012) also identified increasing sand contents in the northeastern part of the 329 

Guanabara Bay before 1950’s, associated with land use changes, such as deforestation, to 330 

allow for urban and agriculture growth.  331 

The changing organic matter characteristics between the middle (from 1930’s to 332 

1950’s) and the most recently deposited layers (from 1960’s to 2010’s) likely stems from 333 

a transition between terrestrial to eutrophic marine sediments. This is evidenced by the 334 

C/N, δ13C and δ15N values in the upper layer, which are typical for organic matter inputs 335 

from algal origin (Peters et al., 1978; Monteiro et al., 2012; Meyers, 2014; Sanders et al., 336 

2014). Eutrophication is further supported by increasing concentrations in P and N along 337 

the sediment column.  338 
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 339 

3.2 Identifying historical stages of Cu contamination  340 

 341 

Overall, the data indicates an increasing anthropogenic impact over time. Before 342 

1965, Cu EF and Cu flux were relatively low and stable. In this period, a slight increase 343 

(up to 2 μg.cm-²year-¹) coincides with higher terrigenous inputs due to river dredging and 344 

the inauguration of the Rio-Petrópolis Road in 1928 (Fig. 2). After 1965, period with 345 

eutrophic marine sediments (see Section 3.1), Cu EFs increased up to 3.79 (reached in 346 

1971), corroborating with the significant historical contamination identified by previous 347 

studies in the Estrela River sediments (Rebello et al., 1986; Rangel et al., 2011). These 348 

results reflect the intense industrialization and population growth in the watershed, 349 

paralleled by elevated trace metal contamination and eutrophication in the Guanabara Bay 350 

after the 1960’s (Alencar, 1980; Godoy et al., 1998; Monteiro et al., 2012).  351 

Based on this context and intervals of Cu EF along the sedimentary core, two stages 352 

of Cu contamination were defined to evaluate the evolution of Cu isotopes and speciation 353 

(Fig. 2):  354 

 355 

• Stage I – landscape changes (22 – 42 cm below SWI – sediment water 356 

interface, 1913 – 1965; Cu EF < 2). 357 

• Stage II –intense industrialization and urbanization (0 - 22 cm below SWI, 358 

after 1965; Cu EF > 2). 359 

 360 

A previous study in Guanabara Bay also identified two analogous phases during the 361 

20th century, one of land use change before the 1950’s, succeeded by a phase of significant 362 

sewage input (Monteiro et al., 2012). 363 

Cu enrichment is positively correlated to P and δ15N (Pearson r = 0.78 and 0.59, 364 

respectively, p < 0.05 for both), suggesting a possible Cu sourcing into the bay by sewage 365 

inputs. However, TOC (%) in the sediments did not significantly change between stages, 366 

which would be expected during exclusively untreated sewage contamination. Moreover, 367 

the stepwise increase in Cu concentrations, in contrast to the more gradual increase in 368 

population (Fig.2), suggests the contribution of Cu emissions from punctual industrial 369 

sources. Hence, Cu contamination probably results from a mixing between diffuse urban 370 

sources and punctual industrial sources (see Section 2.1), which will be further addressed 371 

in Section 3.2. This flux is associated with increasing sediment deposition and Al contents 372 
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(representative of continental aluminosilicates) during stage II, suggesting land inputs of 373 

Cu contaminated particles to the coastal area.  374 

The population growth (Fig. 2), and the observed Cu and P data in stage II may have 375 

been influenced by two significant societal factors. The first one is the transition to the 376 

creation of the State of Rio in 1975 (de Oliveira & Rodrigues, 2009), which increased the 377 

integration, and hence development and industrialization of the region. The second factor 378 

is the implementation of the 2nd NDP (National Development Plan) in the early 1970s. 379 

It was a strategic economic and development plan created by the Brazilian government to 380 

guide the country's growth and progress, which promoted the industrialization and 381 

economic development in the State of Rio de Janeiro (de Oliveira & Rodrigues, 2009), 382 

leading to higher industrial activities, and hence related pollution.  383 

Subsequently, a gradual decrease of Cu and P fluxes (and buried levels) could be 384 

attributed to the implementation of the National Sanitary Plan (PLANASA) in 1971 385 

addressed to improve the caption and treatment of sewage. While there was no reliable 386 

information about the sanitation services at the time, it is generally accepted that only 387 

about one third of the sewage generated by the population in the hydrographic basin of 388 

the Guanabara Bay was treated in 2015, which improved to one half in 2020, according 389 

to SNIS (2020).  390 

Second-order fluctuations of Cu observed in the core can be explained as described 391 

below. The slight decrease in Cu and P concentrations in the 1980’s coincides with the 392 

deindustrialization of the Rio de Janeiro State caused by the Brazilian economic woes in 393 

this period (de Oliveira & Rodrigues, 2009). Likewise, the later increasing values of Cu 394 

concentrations and fluxes from the 1990s reflect the impacts of the regrowth of the Rio 395 

de Janeiro industry (de Oliveira & Rodrigues, 2009). Notably, the maximum Cu flux (>12 396 

µg.cm-2.year-1) reached in 2013 is nearly twice the values reported elsewhere for the 397 

Environmental Protection Area located in the opposite side of the Guanabara Bay 398 

(Monteiro et al., 2012), which strengthens environmental concerns in this area of the 399 

Guanabara Bay (Fries et al., 2019). 400 

 401 

3.3 Inferring anthropogenic and natural Cu sources 402 

 403 

Both the PCA (Fig. 3) and the plotting of δ65Cu against 1/Cu (Fig. 4) evidence a 404 

binary mixing model between natural and anthropogenic sources. The PCA showed two 405 

principal components responding for approximately 70% of the dataset total variance. 406 
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The first component (PC1) reflects relative contributions of natural and anthropogenic 407 

Cu. The correlations between Cu EF, F1, F2, and P suggests that anthropogenic Cu is 408 

present in more mobile and potentially bioavailable forms. The anticorrelation of δ65Cu 409 

with these parameters implies that anthropogenic sources of Cu have a lighter isotope 410 

signature than natural sources. Indeed, δ65Cu values in the present study are lower than 411 

most of the δ65Cu values reported in previous studies for pristine sediments, and in the 412 

range of industrial sources of contamination (Fig. 5). Moreover, the sediment samples 413 

from the anthropogenic stage II were found to be enriched in 63Cu (δ65Cu= -0.42±0.05‰) 414 

compared to the slightly anthropized sediments from stage I (δ65Cu= -0.15±0.18‰; after 415 

1928; Fig. 4).  416 

Similarly, Jeong et al. (2023b) found coastal sediments from Korea impacted by 417 

multiple urban and industrial sources with relatively lower Cu isotope values (0.46‰ in 418 

Busan compared to 0.73‰ in Shihwa-Incheon). Authors associated this with the 419 

influence of industrial and roadway activities, based on δ65Cu dust from industrial 420 

(0.24‰; Jeong et al., 2021a) and urban areas (0.26‰; Jeong and Ra, 2021). Moreover, 421 

Jeong et al. (2021a) found road dust with the highest Cu concentrations from industrial 422 

areas of Korea with highlighted low δ65Cu value of -0.12‰ (Jeong and Ra, 2021).   423 

The plotting of δ65Cu against 1/Cu (Fig. 4) shows a statistically significant 424 

correlation (Pearson r = 0.92, p <0.05) from the 1930’s on, after the inauguration of the 425 

Rio-Petrópolis Road. The isotope value of 0.10‰ (1929) is the only within the range of 426 

the Upper Continental Crust (δ65Cu UCC = 0.08±0.17%; Vance et al., 2008; Takano et 427 

al., 2014; Thompson et al., 2014; Moynier et al., 2017) and pristine modern sediments 428 

around the world (0.29 ±0.37; Little et al., 2017; Araújo et al., 2019a; Ciscato et al., 2019), 429 

indicating that this sediment is representative of the major natural source in the mixing 430 

model.  431 

The anthropogenic end-member, which probably integrate multiple sources, was 432 

estimated to be ~-0.49‰ by linear extrapolation to the origin (i.e., to x =0) of the linear 433 

regression between 1/Cu and δ65Cu. This estimation is constrained to a limited number of 434 

samples in the model (n = 9), which should be carefully considered. It would be difficult 435 

to determine the isotope values of single end-members, since the Estrela River watershed 436 

is occupied by multiple punctual sources (see section 2.1), besides diffuse sources from 437 

the bay. The presence of industrial sourced material is evident by the ranges of δ65Cu 438 

(Fig. 5) and the stepwise increase in Cu concentrations (Fig. 2). Correlations of Cu EF 439 

with P and δ15N (see Section 3.2), suggest possible Cu sourcing into the bay by sewage 440 
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inputs, but to date, there is no record of δ65Cu from domestic sewage. Araujo et al. (2019) 441 

found coastal sediments contaminated by diffuse sources tending to negative δ65Cu values 442 

(down to -0.79‰). Therefore, the value of δ65Cu ~-0.49‰ reflects the mixing between 443 

major punctual industrial sources, and possibly diffuse urban sources.  444 

While the shift in Cu isotope values between the 1930’s and 1960’s is 445 

satisfactorily explained by the mixing of isotopically light contaminated land particles 446 

and natural UCC-derived sediment, the bottom layer requires a separate evaluation. The 447 

sample from 1913 is enriched in 63Cu (-0.36‰), within the range of δ65Cu in the 448 

anthropogenic period after the 1960’s (stage II; Fig 2). Since Cu concentrations in the 449 

pre-anthropogenic period (stage I) are mostly natural, it is natural sources or diagenetic 450 

processes that have caused this significant isotopic fractionation.  451 

The most straightforward explanation for the isotopic difference between 1913 and 452 

1929 relies on the fact that they are characterized by distinct sediment types, driven by 453 

coastline changes (see Section 3.2). The bottom layer (1913) exhibits noticeable 454 

differences in δ13C and Ca/Al (Fig. 4), indicating the presence of distinct natural sources 455 

that control δ65Cu, in the absence of significant anthropogenic influence. The second 456 

principal component of the PCA, accounting for 28% of the variation in the data, 457 

evidences the control between marine and terrestrial influence in the area (Fig. 3).  458 

To summarize, the findings suggest that after the inauguration of the Rio-Petropolis 459 

Road, there were increased continental inputs that had specific δ65Cu background values 460 

and high Fe contents (Fig. 2), which are typical for tropical soils (Rieuwerts, 2015). Such 461 

inputs, accompanied by coastline changes, overshadowed/drowned the 65Cu depleted 462 

marine source. With rapid urbanization and industrialization after the 1960’s, this natural 463 

continental source was mixed with Fe depleted land material, contaminated by 464 

isotopically light Cu and further transported to the coastal zone (Fig. 2). 465 

 466 

3.4 Geochemical partition of anthropogenic Cu: a speciation analysis on 467 

Cu mobility and bioavailability  468 

  469 

The most significant change in the geochemical distribution of Cu was observed 470 

between Stages I and II, which is dominated by labile forms of anthropogenic Cu (average 471 

F4Stage I = 81.70%; average F4Stage II= 65.08%). Leal & Rebello (1993) found a similar 472 

enrichment of bioavailable Cu in recent sediments from the Estrela River. In other words, 473 

anthropogenic Cu from the continent is reallocated within reactive phases in mangroves. 474 

Jo
urn

al 
Pre-

pro
of



A set of various processes such as mineral dissolution, mineral precipitation, compaction, 475 

organic matter degradation, and bacterial activity, involved in diagenesis can alter internal 476 

Cu distribution among geochemical sediment phases.  However, this is unlikely, since 477 

particulate matter from the Estrela River, once deposited in the sediments, undergoes only 478 

limited transformation (Leal and Rebello, 1993). Indeed, Cu diffusion from sediments to 479 

water column through upwelling pore waters in anoxic coastal sediments tend to be low 480 

and not substantial to alter the bulk sediments phases. For instance, Rangel et al. (2011) 481 

detected nearly depletion of soluble Cu in sediments from the Estrela River. This suggests 482 

that diagenetic processes do not drive significant isotopic fractionation in the area, since 483 

it requires substantial loss of Cu from the bulk sediments to water or biota. Moreover, 484 

previous works show that Cu isotope variability in particulate material tend to be 485 

conservative across fluvial estuarine biogeochemical processes, being well described in 486 

terms of source mixing models (Petit et al., 2008; Guinoiseau et al. 2018; Araújo et al., 487 

2019a). Finally, the profile of 210Pb in dated sediment layers is consistent with the 488 

historical changes in Cu concentrations during the period of industrialization and 489 

urbanization of a bay (Alencar, 1980; Monteiro et al., 2012), suggesting the preservation 490 

of geochemical records in the mud flats. Anyway, estimates of potential isotope 491 

fractionation caused by sorption process do not unsustain a diagenetic effect on bulk 492 

sediments from both stages (details the Supplementary Material: Geochemical processes 493 

assessed by partitioning of Cu). 494 

Finally, It is worth noting that the lowest relative contents of non-mobile Cu (F4 of 495 

60%) were observed in 1981, which was accompanied by the lowest δ65Cu of the core (-496 

0.51‰), and relatively low Cu flux (5.6 µg.cm-2.year-1; Fig 2). We suggest that inputs of 497 

isotopically light and more bioavailable anthropogenic Cu, combined with the loss of 498 

UCC-derived 65Cu-rich sediments due to deforestation, could be responsible for this 499 

observation.  500 

 501 

4. Conclusions 502 

 503 

This study demonstrated that Cu isotopes combined with established proxies for 504 

organic and inorganic matter in mangrove sediments allow to identify landscape changes. 505 

The variation in Cu isotopes observed in the mangrove sediment profile can be explained 506 

by the relative contribution of natural and anthropogenic sources. The natural Cu include 507 

marine and terrestrial end-members with distinct isotope compositions resulting from 508 
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underlying biogeochemical processes. The origin of the terrigenous Cu isotope 509 

composition is likely attributed to weathering, while the processes that give rise to the 510 

marine Cu isotope composition remain unclear.  511 

Cu isotopes were found to be valuable tools for tracking anthropogenic inputs into 512 

mangrove sediments. This study found that land-derived particles affected by multiple 513 

anthropogenic sources in coastal areas present distinguishable Cu isotope compositions. 514 

This is a pertinent application to regulate emission policies, particularly in areas under 515 

the multiple environmental pressures, such as Guanabara Bay. Solid partition data 516 

indicates that anthropogenic inputs increase the proportion of Cu in its labile forms, 517 

resulting in higher mobility and bioavailability.  518 

In many coastal areas, such as Guanabara Bay, it is challenging to assess each 519 

anthropogenic source. Here we show the possibility of differentiating anthropogenic 520 

pools, as opposed to natural sources, in complex urban scenarios where the datasets pose 521 

logistical and resource limitations. This is also relevant for cases in which sediments were 522 

historically contaminated by closed or controlled facilities, preventing the isotope 523 

analysis of specific sources. In summary, trace metal stable isotopes can be useful tools 524 

for tracing sources when multiple primary sources - both contemporary and legacy - 525 

combine into a resultant mixture with distinct isotope signatures. Further studies with 526 

complementary compartments, such as porewaters, can help elucidate mechanisms of 527 

inter-compartmental transfers and Cu incorporation into by local benthonic fauna. 528 

Studying mangrove systems under distinct environmental conditions and degrees of 529 

anthropogenic pressure can also provide a more comprehensive view in the role of these 530 

ecosystems in Cu cycling. Finally, to enhance the understanding of source apportionment 531 

in future studies within this study area, it is recommended to investigate runoff patterns 532 

and perform end-member characterization. 533 
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 902 

903 
Figure 1 - Location of the sampling point and land occupation of its surroundings in Guanabara Bay (SE 904 

Brazil). Basemap source: Esri (2018) 905 
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 908 

 909 
Figure 2 – Historical evolution of the main parameters. aBrito et al. (2019); bBorges et al. (2009); 910 

cAGEVAP (2021); dde Oliveira & Rodrigues (2009); eLima (2006).  911 
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 912 

Figure 3.Principal Components Analyses (PCA) of the geochemical dataset.  913 

Projection of the variables on the factor-plane (  1 x   2)
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 914 

 915 

Figure 4 - δ65Cu x 1/Cu (ppm). Gradients of grey refer to the range of δ13C values, while gradients of size 916 

refer to the range of Ca/Al values. The red arrow represents increasing anthropogenic contamination 917 

between Stage I (after 1928) Stage II. Green arrow: “increased terrestrial inputs”; Red arrow: “increased 918 

contamination”; Grey arrow: increased eutrophication”. UCC – Upper Continental Crust (0.08±0.17%; 919 

Vance et al., 2008; Takano et al., 2014; Thompson et al., 2014; Moynier et al., 2017). 920 
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 922 

Figure 5 – δ65Cu in this work and potential sources. δ65Cu histograms in environmental matrices include 923 

the expected normal. Y axis displays the number of observations. Sources: Agricultural sources (El Azzi 924 

et al., 2013 ; Babicsanyi et al., 2014; 2016 ; Blotevogel et al., 2018 ), Industrial sources (Bigalke et al., 925 

2010 ; Novak et al., 2016; Viers et al., 2018; Xia et al., 2022) ; Urban sources (Dong et al., 2017 ; Souto-926 

Oliveira et al., 2018 ; 2019 ; Jeong et al., 2021a) ; Sediments (Petit et al., 2008; Thapalia et al., 2010; El 927 

Azzi et al., 2013; Babcsányi et al., 2014; Little et al., 2017; Roebbert et al., 2018;; Ciscato et al., 2019 ; 928 

Jeong et al., 2023). 929 
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Highlights 
 

• Chronological survey of a well-constrained Brazilian mangrove core  

• Cu isotopes respond to shifts from marine to geogenic dominance  

• Sediments record the evolution of Cu fluxes along periods of urban and industrial 

development  

• Mangrove sediments record anthropogenic Cu isotope fingerprint  

• Anthropogenic inputs yielding increased bioavailability of Cu in mangrove 

sediments 
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