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Abstract : 

The upper branch of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-latitudes of the 
Northeast Atlantic remains poorly studied. This study provides a complete overview of the glacial, 
deglacial and Holocene dynamics of the easternmost portion of the AMOC upper branch, namely the 
European Slope Current (ESC) and its glacial equivalent known as the Glacial Eastern Boundary Current 
(GEBC). This is achieved through the study of the sediment core SU81–44 retrieved from the southern 
Bay of Biscay (BoB) (~1000 m water depth), and by using a multiproxy approach (i.e. benthic foraminiferal 
assemblage, grain size proxies, oxygen and carbon stable isotopes, and neodymium isotopic composition 
of foraminiferal shells). During the glacial period and the onset of the deglaciation, the grain size proxies 
at SU81–44 fluctuate significantly. These fluctuations are coherent with changes in relative densities of 
benthic foraminiferal indicator species of current strength and ventilation, thus highlighting significant 
changes in the GEBC vigor through time. The SU81–44 data confirm the Dansgaard-Oeschger 
interstadial/faster-stadial/slower flow pattern previously observed in northern BoB. Our results also 
provide new constraints on the strength of the slope current during the late deglaciation and Holocene 
period with a significant reinvigoration of the ESC, and by extension the upper branch of the AMOC during 
the Bølling-Allerød warming. This seems to confirm the crucial role of the ESC in deep water formation at 
high northern latitudes, as it is the case today. Finally, our data show a progressive weakening of the ESC 
during the Holocene. We hypothesize a link with a long-term decrease in the density gradient between 
low and high latitudes that can be attributed to long term changes in insolation and the strength of the 
subpolar gyre dynamics. 

Highlights 

► We present a continuous record of the European Slope Current for the last 36 kyr. ► The slope current
intensity peaks during the Bølling-Allerød then gradually decreases throughout the Holocene. ► Changes
in the meridional density gradient likely explain slope current changes. ► Reappearance of the
Mediterranean water in the southern Bay of Biscay at ~16 ka.
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1. Introduction 

The Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the 

distribution of heat to the high latitudes, and changes in its dynamics are responsible for climate 

oscillations through time (Broecker, 1991; Rahmstorf, 2002). During glacial periods, the 

AMOC strength was sensitive to episodic freshwater inflows from the melting of Northern 

Hemisphere ice sheets (Broecker and Denton, 1990; McManus et al., 2004; Lynch-Stieglitz, 

2017) such as the Laurentide Ice Sheet (LIS) covering the North American continent, and the 

European Ice Sheet (EIS), covering northern Europe (Ehlers et al., 2011). For example, during 

the last glacial period (74-11.7 ka; all ages are reported in calendar age before present) and the 

onset of the last deglaciation (i.e. Termination 1, from ca 19 ka; Clark et al., 2012), large 

amounts of icebergs and meltwater were released into the North Atlantic (e.g. Ruddiman and 

McIntyre, 1981; Bond et al., 1992; Zaragosi et al., 2001), resulting in significant and recurrent 

weakening of the AMOC (Vidal et al., 1997; Denton et al., 2010; Ivanovic et al., 2018; Ng et 

al., 2018). These periods of AMOC weakening were concomitant with very cold climate 

intervals (i.e. Heinrich Stadials – HS) detected in Greenland ice cores (Dansgaard et al., 1993), 

North Atlantic marine records (Bond et al., 1993), as well as in numerous European and North 

American continental records (e.g. Grimm et al., 1993; Sanchez Goñi et al., 2002).  

Several studies have highlighted the importance of the upper branch of the AMOC (above 

~1000 m water depth) on rapid glacial climate fluctuations (e.g. Lehman and Keigwin, 1992; 

Chapman and Shackleton, 1998; Rasmussen and Thomsen, 2004) since the northward transport 

of heat and salt plays a fundamental role in ocean-cryosphere oscillatory mechanisms (Webb et 

al., 1997; Shaffer et al., 2004; Arzel et al., 2010; Peltier and Vettoretti, 2014; Saha, 2015; Boers 

et al., 2018). Nevertheless, the study of the upper branch of the AMOC during the last glacial 

period and Termination I remains poorly documented and mainly restricted to the Nordic Seas 

and the Atlantic inflow (e.g. Rasmussen and Thomsen, 2004; Moffa-Sánchez et al., 2019). 

Recent studies from the northern Bay of Biscay (BoB; Northeast Atlantic; Figure 1) revealed 

that the upper branch of the AMOC has strongly affected the European Atlantic margin during 

the last glacial period, compared to the Holocene, through the reinforcement of the northward-
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flowing Glacial Eastern Boundary Current (GEBC; Toucanne et al., 2021; Depuydt et al., 

2022), that is a glacial version of the modern European Slope Current (Pingree and Le Cann, 

1989, 1990; Moritz et al., 2021). These findings highlight strong basin-scale changes in the 

glacial North Atlantic (i.e. changes in meridional density gradients), in agreement with previous 

numerical approaches that suggest that the North Atlantic Current (NAC) flowed zonally and 

further south than at present (as far south as ~40°N) during the last glacial period (e.g. Keffer 

et al., 1988; Otto-Bliesner et al., 2006; Brady and Otto-Bliesner, 2011). This makes the 

European Atlantic margin, and the upper slope environments in particular, a suitable region for 

glacial AMOC reconstructions. Here, we provide a new sedimentary and biotic record from the 

southern BoB that target a more southern location than previous studies (e.g. Peck et al., 2006, 

2007; Toucanne et al., 2021; Depuydt et al., 2022) along the European margin (Southern BoB) 

to better constrain the spatial variability of the slope current dynamics. Our study further 

provides, for the first time in the region, a continuous slope current record, covering the final 

part of the last glacial period, the Termination 1 and the Holocene (i.e. last 11.7 ka). The use of 

sedimentological (grain size and X-ray fluorescence) data, benthic foraminiferal assemblages, 

and foraminiferal-based geochemical proxies (oxygen, carbon and radiogenic neodymium 

isotopes) reveal significant, regional-scale fluctuations in the strength and source of the slope 

current during the last 36 kyrs, in concert with the millennial climate variability of the last 

glacial period. Our data also suggest an overshoot in the strength of the slope current during the 

Bølling–Allerød interstadial, then an overall decrease  of the ESC vigor throughout the 

Holocene, possibly linked to long-term changes in insolation and the Subpolar Gyre dynamics. 

 

2. Geological and hydrographic setting 

2.1. Geological setting  

The BoB is an oceanic embayment located in the Northeast Atlantic, bordered to the east 

and south by the French (i.e. Celtic, Armorican, and Aquitanian) and Spanish (i.e. Galician, 

Asturian and Cantabrian) margins, respectively (Figure 1a). The Celtic-Armorican margin is up 

to 300-1000 km wide with a continental slope dominated by submarine canyons (Bourillet et 

al., 2001, 2006). The Aquitanian margin is much narrower (30-80 km) and the slope is smooth 

and extended by the marginal Landes Plateau (where the sediment core studied here was 

retrieved; Figure 1), dipping gently westward (Bourillet et al., 2006; Mulder et al., 2012). Two 

main canyons border the Landes Plateau, namely the Cap-Ferret Canyon and the Capbreton 

Canyon mainly fed by the Gironde and Adour rivers, respectively (Figure 1b). 
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2.2. Modern and past hydrological setting 

The modern BoB is under the influence of the surface circulation and the anticyclonic eddies 

shed from the slope current, named Slope Water Oceanic eDDIES (SWODDIES; Pingree and 

Le Cann, 1992) (Figure 1a). The SWODDIES can extend until ~600 m depth (Le Groupe 

Tourbillon, 1983) and stimulate the mixing of water mass and exchange of their properties (e.g. 

temperature and salinity) and nutrient contents, from the shelf and slope regions (Ferrer and 

Caballero, 2011). The origin of the BoB surface water is the Eastern North Atlantic Central 

Water (formed in the intergyre zone; Pollard et al., 1996), that can be recognized down to 

~600 m depth (van Aken, 2000). 

At intermediate depth (~600-1300 m), the Mediterranean Outflow Water (MOW) is the 

dominant water mass (van Aken, 2000). The MOW is formed at Gibraltar Strait by the overflow 

of saline water from the Mediterranean Sea (van Aken, 2000) and is transported into the BoB 

(until ~50°N; Iorga and Lozier, 1999) by the European Slope Current (ESC; Huthnance, 1986; 

Pingree and Le Cann, 1989). The ESC represents the easternmost portion of the upper branch 

of the AMOC (Huthnance et al., 2020) and is forced by the topography of the European margin, 

the meridional density gradients and the wind forcing drive geostrophic flows towards the slope 

and then divert poleward (Huthnance, 1984; Friocourt et al., 2007; Marsh et al., 2017). Marsh 

et al. (2017) recently demonstrated that fluctuations of the ESC strength reflect the variability 

of the strength of the Subpolar Gyre (SPG). The pathway of the ESC ends in the Feroe-Shetland 

Channel (~60°N), where it forms, together with the North Atlantic Current (NAC), the 

Norwegian Atlantic Slope Current (Orvik and Niiler, 2002), that is a major part of the AMOC 

upper branch (down to 1500 m depth ; Lozier et al., 2019; Huthnance et al., 2020). A significant 

part of the latter reaches convection sites and participates to the formation of the North Atlantic 

Deep Water (NADW) which flows southward between 2000 and 4000 m (Dickson and Brown, 

1994).  

 

3. Material and methods 

Core SU81-44 (4.37 m long, 1173 m water depth) was collected from the Landes Plateau 

(44°15.4'N 2°41.7'W) during the CEPAG campaign onboard the R/V Le Suroît (Duplessy, 

1981). The core is composed of homogeneous silty-clay sediments. The study focuses on the 
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upper (undisturbed) ~350 cm of the core (Figure S1) as coring disturbances are evident in the 

lower part of the record (as highlighted by X-ray images; Figure S2).  

3.1. Chronostratigraphy 

The chronological framework for core SU81-44 is based on the synchronization (via 19 tie-

points; Table S1) of the Ca/Ti ratio (obtained through X-ray fluorescence -XRF) with the well-

dated core MD95-2002 (Figure 2b) using the approach detailed in Toucanne et al. (2021). This 

approach was successfully used to establish the age model of core BOBGEO-CS05 (Depuydt 

et al., 2022), which is compared to core SU81-44 later in this study. The age model of core 

SU81-44 is validated by 12 radiocarbon (14C) dates (measured on monospecific or bulk 

planktonic foraminifera and performed at LMC14, France; Figure S1 and Table S2) and the 

recognition of ice-rafted detritus (IRD)-rich layers (visible on X-ray images; Figure 2d) 

deposited during the so-called Heinrich events (HE), i.e. short-lived events of massive iceberg 

discharges in the subpolar North Atlantic (Heinrich, 1988; Hemming, 2004). Nevertheless, the 

overall low occurrence of IRD observed in core SU81-44 compared to the northern records 

indicates that icebergs did not or rarely reach our study site. This may be due to the long distance 

of the study area from the icebergs melting area or to surface currents that prevent icebergs 

from massively reaching our area. Still, because there are some few IRD during Heinrich Event 

1 (HE1; Figure 2d), we suppose that icebergs have reached our site at the time, due to a more 

extended ice cover. Finally, the abundance (%) of the polar planktonic taxon Neogloboquadrina 

pachyderma in core SU81-44 was compared to those of cores MD95-2002 (Grousset et al., 

2000) and BOBGEO-CS05 (Depuydt et al., 2022) (Figure 2c). The striking resemblance 

between the three datasets (despite the low resolution for core SU81-44) confirms the reliability 

of the XRF-based synchronization. This approach reveals that core SU81-44 covers the last 

~36 kyr, thus encompassing the final part of the last glacial period (including the last three 

HSs,during which the HE occurred), the Termination 1 and the Holocene period.  

 

3.2. Foraminiferal data 

For benthic foraminiferal assemblage analysis, core SU81-44 was sampled every 5 to 20 cm 

(1cm-large sections, n = 65, with an average resolution of ~1300 years during the Holocene and 

~400 years during the glacial period). All samples were first weighted wet then dried after 

putting them in a 50°C oven. Then, all samples were washed over 63 µm and 150 µm sieves. 

The >150 µm fraction was split with a dry Otto microsplitter when necessary, until at least 250-
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300 specimens were obtained in the final split. The samples with low densities were picked 

entirely (Table S3). Then, specimens from the >150 µm fraction were picked and mounted on 

Plummer cell slides for taxonomic determination. Following the protocol proposed by Depuydt 

et al. (2023), we assessed the composition of the small fraction (63 - 150 µm) through the study 

of 15 out of the 65 samples (selected strategically based on major sedimentological and 

foraminiferal (>150 µm) changes). These samples were split with a dry Otto microsplitter until 

a minimum of 150 individuals were obtained in the final split. Four out of the 15 samples were 

picked, put on Plummer cell slides and determined. For the rest of the samples, foraminifera 

were counted and determined directly major species under the stereomicroscope. The relative 

abundances of benthic foraminifera (% of total abundance) were calculated for all samples and 

the error bars were computed with the binomial standard error 
√(𝑝(1−𝑝))

𝑛
  (Buzas, 1990; Fatela 

and Taborda, 2002), where p is the species proportion estimate (number of counted individuals 

for a given species/n) and n is the total number of specimens. The benthic foraminiferal 

accumulation rates (BFAR; ind.cm-2.ka-1) were calculated as :  number of individuals per gram 

of dry sediment x linear sedimentation rate (cm.k-1) x dry bulk density (g.cm-3) (Herguera and 

Berger, 1991). The Dry Bulk Density (DBD) was calculated after Auffret et al. (2000) and 

following the relation: DBD = 2.65 x (1.024 – wet density)/(1.024-2.65), where 2.65 g.cm-3 is 

the grain density, and 1,024 g.cm-3 is the interstitial water density. The wet density was 

estimated from the wet weight and the volume of each subsample. Because our sediment core 

was sampled over 40 yrs ago, absolute BFAR values should be taken with caution and 

interpretations should be mainly based on relative variations. Nonetheless, the preservation 

seems to be optimal since the obtained average wet density value of 1.8 g.cm-3 is coherent the 

average density of marine sediments of 1.7 g.cm-3 published by Tenzer and Gladkikh (2014).  

The diversity of the 65 samples of the >150 µm fraction was calculated using PAST 

software (Paleontological Statistics; Version 2.14; Hammer et al., 2001) to determine the 

Shannon index (entropy, H’; Hayek and Buzas, 1997) according to the equation H′ =

−∑i pi. ln(pi) where p is the proportion of the ith species (p = %/100). Error bars representing 

95 % of the confidence interval were computed with a bootstrap procedure.  

In this study, we discuss particularly species >10 % in both size fractions that exhibit 

significant variability. Some of these species, and especially their general evolution between 

glacial and deglacial/Holocene periods, were included in the comparative study of Depuydt et 

al. (2023) on the effect of the chosen size fraction. Paleo-interpretations of benthic habitats are 
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based mostly on studies addressing modern benthic foraminiferal ecology in the BoB (e.g. 

Caralp et al., 1970; Pujos, 1972; Fontanier et al., 2002, 2003, 2006; Duchemin et al., 2008; 

Pascual et al., 2008; Mojtahid et al., 2010; Martínez-García et al., 2013).  

Principal component analyses (PCA) was performed on the species with abundances >10 % 

of the total assemblage, using the variance-covariance matrix in PAST software 

(Paleontological Statistics; Version 2.14; Hammer et al., 2001). 

The planktonic taxon N. pachyderma was counted for 22 samples from the >150 µm 

fraction, where relative abundances were determined in a single sample split with at least 300 

planktonic individuals. 

 

3.3. Sedimentology: X-ray images and grain-size measurements 

2D X-ray images were acquired with a Geotek XCT system (Ifremer, Brest) from split 

core sections (Figure S2). Grain-size analyses (n = 113) were performed with a Mastersizer 

3000 laser diffraction particle size analyzer coupled to a Hydro LV wet dispersant unit (Ifremer, 

Brest). Sediment samples were acidified beforehand with 1N acetic acid to remove the biogenic 

carbonate fraction, then rinsed with Milli-Q water. Near-bottom current flow speed are 

commonly reconstructed using the Sortable Silt (𝑆𝑆̅̅ ̅; 10 − 63 µ𝑚) proxy of McCave et al., 

(1995). In core SU81-44, the 𝑆𝑆̅̅ ̅ fraction (or %SS) is low (i.e. ~34 ±3 % with 40 % maximum), 

excluding the use of 𝑆𝑆̅̅ ̅ to reconstruct the strength of the slope current. Instead, we used both 

the UP10 proxy (i.e. percentage of grains >10 µm) of Frigola et al. (2007, 2008) and the silt/clay 

ratio (Hall and McCave, 2000). These constitute relevant alternatives for paleoflow 

reconstructions (see Frigola et al., 2007 for a thorough discussion). We also calculated the 

median particle size D50 (i.e. 50th percentile).  

 

3.4. Inorganic Geochemistry 

3.4.1. X-ray fluorescence data 

The relative abundances of the major elements calcium (Ca) and titanium (Ti) were 

obtained using an Avaatech X-ray fluorescence (XRF) scanner (Ifremer, Brest). XRF data were 

collected every 1 cm along the entire length of the core with a counting time of 10 s, setting the 

voltage to 10 kV (no filter) and 30 kV (Pd thick filter) and the intensity to 600 and 1000 μA, 
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respectively. Results are presented in logarithmic ratios of element intensities (Weltje and 

Tjallingii, 2008). 

 

3.4.2. Oxygen, carbon and neodymium isotopes 

For carbon and oxygen stable isotope analyses (δ13C and δ18O as ‰ VPDB), 52 benthic 

foraminiferal samples were measured every 3 to 26 cm (depending on the sedimentation rate, 

with an average resolution of ~1760 years during the Holocene and ~530 years during the 

glacial period). These analyses were obtained on 2 to 8 specimens of Cibicidoides 

kullenbergi/pachyderma, hand-picked from the >150 µm fraction. δ13C and δ18O were 

measured at the Pôle Spectrométrie Océan (IUEM, Brest) using a MAT 253 (Thermo Scientific) 

isotope ratio mass spectrometer coupled with a KIEL IV Device (Thermo Scientific) to 

transform carbonates in gas. The standard deviation analytical precision is calculated using an 

in-house homogeneous calcite standard. It is ± 0.03 ‰ for δ18O and ± 0.02 ‰ for δ13C for this 

range of mass (120-250 µg). To formulate the values in the V-PDB scale, all samples were 

calibrated using two international carbonate standards: NBS-19 (δ18O = -2.20 ‰ and δ13C = 

1.95 ‰) and NBS-18 (δ18O = -23.20 ‰ and δ13C = 5.01 ‰). 

To investigate the evolution of the isotopic signature of bottom water masses, radiogenic 

isotopes of neodymium (εNd) were measured on 31 samples of planktonic foraminiferal shells 

(from 8 to 30 mg). Detrital materials were removed with sonication in double distilled water 

several times, then crushed shells were dissolved using acetic acid following the procedure 

described in (Tachikawa et al. (2014). The neodymium content of foraminiferal shells was 

extracted following the two steps columns procedure described in Bayon et al. (2012). The 

isotopic measurements were performed at the Pôle Spectrométrie Océan (IUEM, Brest) using 

a Thermo Scientific Neptune ICPMS multi-collector. Nd isotopic compositions were 

determined using a sample-standard frame with internal standard solution (SPEX-Nd) analyzed 

every two samples. Nd isotope ratios were corrected for mass discrimination by normalising to 

146Nd/144Nd = 0.7219 using an exponential law. In addition, the isotopic ratios were normalised 

to 143Nd/144Nd = 0.512115 for the JNdi-1 certified Nd standard (Tanaka et al., 2000). Analyses 

were monitored using JNdi-1 standard solutions at concentrations similar to those of the 

measured samples (25 ppb) giving 143Nd/ 144 Nd of 0.512071 ± 0.000038 (2σ, n = 7) 

corresponding to an external reproducibility of ∼±0.74 εNd (2σ). The Nd isotopic ratios are 
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expressed with the epsilon notation (εNd) calculated using the 143Nd/ 144Nd chondritic reservoir 

value (CHUR) of 0.512630 (Bouvier et al., 2008). 

 

4. Results 

4.1. Benthic foraminifera 

4.1.1. >150 µm size fraction  

The BFAR values vary around ~700 ind.cm-2.ka-1 (Figure 3a) Minimum BFAR values are 

found during each HS (~500 ind.cm-2.ka-1), between HS2 and HS3 and at ~21 ka. The highest 

BFAR values (>1000 ind.cm-2.ka-1) are found before HS3, at the onset of the LGM, during late 

HS1, and during the Holocene. 

The Shannon index varies between 1.5 to 2.5 with an average of 2 along the record (Figure 3b). 

Minimal values are recorded during the early part of HS2 (at ~25.3 ka), at the onset of the LGM 

(at ~22.6 ka), and during early HS1 (at ~17.4 ka). The highest values are observed during HS3, 

late HS2 (at ~23.9 ka), late HS1 (at ~16 ka), and most of the LGM and the Holocene.  

Based on the PCA analysis (Figure S3), species >10 % of the total assemblage can be separated 

into two main groups: 

i) The glacial assemblage is dominated by two main species: Cibicidoides pachyderma with 

relative abundances varying between 10 and 70 % (Figure 3c), and Sigmoilopsis schlumbergeri 

varying between ~0 and 30 % (Figure 3d). Both species show a comparable evolution through 

time with an overall increase in percentages from 36 ka to early HS2 and the onset of the LGM 

where they reach their maximum percentages. After, an overall decrease is recorded until 

reaching minimum values during the Holocene. Cibicides wuellerstorfi (0 - 17 %; Figure 3j), 

Quinqueloculina spp. (1 - 10 %; Figure 3k), Gavelinopsis praegeri (0 - 8 %) (Figure 3Figurem) 

and Gyroidina orbicularis (0 - 10 %; Figure 3n) record their lowest abundances during HS1 

and HS2. During HS3, some of these species (i.e. C. wuellerstorfi and G. orbicularis) are 

present with high abundances. Globobulimina spp. (1 - 35 %; Figure 3g), Bolivina albatrossi 

(0 - 12 %; Figure 3h) and Bulimina spp. (0 - 20 %; Figure 3i) show abrupt increases during HS2 

and early HS1, with values up to 40 %, 10 % and 15 % respectively.  

ii) The deglacial/Holocene assemblage is mainly dominated by Uvigerina mediterranea (Figure 

3e) and Uvigerina peregrina (Figure 3f) with relative abundances varying between 10 and 55 % 

and 10 and 20 % respectively. Both appear during the last deglaciation and are highly abundant 
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during the Holocene. Melonis affinis (5 - 11 %; Figure 3l) is abundant during the Holocene and 

nearly absent during the last glacial period except at the start of the record and at HE3. 

 

4.1.2. >63 µm size fraction 

When considering the small size fraction, the composition of the total assemblage (>63 µm = 

63-150 µm + >150 µm) is different from the >150 µm fraction and it is largely dominated by 

Cassidulina carinata during the last glacial period with relative abundances of ~65 % on 

average (Figure 3o), whereas the abundance of C. pachyderma becomes minor (Figure 3c). 

Additionally, new (and/or rare in the >150 µm fraction) taxa are found to be dominant in the 

>63 µm fraction: Trifarina angulosa, nearly absent in the large fraction, is dominant (10-15 %) 

during HS2 and late HS1 (Figure 3q). Alabaminella weddellensis and Epistominella exigua are 

exclusively present in the small size fraction (Figure 3p) and show the same trend as the 

uvigerinids with values around 25 % and 5 % from the end of HS1, respectively.  

 

4.2. Sedimentological and geochemical results 

4.2.1. Sedimentological proxies 

Grain size measurements of the carbonate-free fraction shows that most samples are unimodal, 

with a mode value at ~7 µm (Figure 4b). There are few samples showing a bimodal distribution 

with a second mode around 100 - 230 µm, when the median grain size (D50) increases abruptly, 

i.e. at 27.2 and 24.2 ka (Figure 4c). Most of D50 values vary between 6 and 7 µm, but peaks at 

8.5 to 10 µm occur at 30.7, 27.2 and 24.2 ka. The lowest D50 values (i.e. <6 µm) occur during 

early HS1 (i.e. 18 – 16.7 ka), HS2 (i.e. 26 – 23 ka) and the end of HS3 (i.e. 30 – 29 ka). These 

minimum values are followed by rapid increases in the D50 value, reaching a maximum at 

12.8 ka, followed by a gradual decrease during the Holocene. The average values of UP10 and 

silt/clay ratios are 37 ± 2.6 % and 7.6 ± 0.1, respectively, and follow the same trend as the D50 

record (Figure 4c).  

 

4.2.2. Bottom-water chemical signature 

The benthic δ13C data values vary around an average value of ~0.9 ± 0.1 ‰. Minimal values of 

0.8 ‰ and 0.4 ‰ are found at the end of HS2 and HS1 respectively (Figure 4f). Benthic δ18O 
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values fluctuate between ~2.5 to ~3 ‰ during the glacial period before an abrupt decrease from 

18.2 ka (i.e. early HS1) reaching values of 2 ‰ (Figure 4e), values which are maintained during 

the Holocene. 

Glacial εNd values of benthic foraminifera are around -8.7 ± 0.5 (n = 14) until 20 ka (Figure 4d). 

After 20 ka, the εNd values decreased rapidly to reach a minimal value of -11.7 ± 0.3 at 16.9 ka. 

After, εNd values increased to reach ~-10.2 ± 0.7 (n = 5) at 14 ka and during the Holocene. 

 

5. Discussion 

5.1. Paleoceanographic significance of the SU81-44 dataset 

The sedimentological paleocurrent sensitive proxies (UP10, silt/clay ratio) at site SU81-

44 showed significant fluctuations during the last 36 kyr. These fluctuations are concomitant 

with the main climate changes recognized over this period, including the abrupt Dansgaard-

Oeschger (D-O) oscillations, thus highlighting a strong climatic/oceanographic forcing on the 

sedimentary characteristics of the Landes Plateau. Typically, low grain size values characterize 

the HSs (HS3, HS2 and HS1) and the Late Holocene (i.e. last 4 kyr), while coarser sediments 

characterize D-O interstadials (namely Greenland Interstadials-GI) GI7 to GI5.2, GI3, the mid-

HS2 event and the Bølling-Allerød (Figure 4). The relative abundances of Trifarina angulosa, 

an indicator species of high-bottom energy regimes (Mackensen et al., 1985; Austin and Evans, 

2000; Gooday and Hughes, 2002), mimics the grain size variability through a positive 

relationship (i.e. higher abundance of T. angulosa correlates to coarser grain size) (Figure 5a). 

Furthermore, the evolution of both abiotic (i.e. UP10, silt/clay ratio, and D50) and biotic (i.e. T. 

angulosa) data from core SU81-44 is coherent with the glacial slope paleoflow (i.e., GEBC) 

reconstruction of Toucanne et al. (2021) from the northern BoB (~1,000 m depth; Figure5a). 

Therefore, we assume that the grain size variability at site SU81-44 is controlled by changes in 

near-bottom flow speed, and that site SU81-44 record the strength of the GEBC during the last 

glacial period in concert with the sites from the northern BoB (Toucanne et al., 2021; Depuydt 

et al., 2022). 

Nowadays, mean velocities of the slope current, namely the ESC, increase poleward 

(Huthnance, 1986; Pingree and Le Cann, 1989, 1990). During the last glacial period, we assume 

that this was also the case, since we record a significant difference in the average grain size 

between the southern (fine-grained sediments; mean UP10 of 37.4 ± 3.2, n=101) and the 

northern BoB slope (coarse-grained sediments; e.g. at site BOBGEO-CS05, with a mean UP10 
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of 68.3 ± 6.9, n=148). Nevertheless, part of this difference can be also explained by the steeper 

slope in the northern BoB influencing the current velocity. It is interesting to note that these 

oceanographic and physiographical features along the BoB margin also affects the size of some 

benthic foraminiferal species, including the high-energy indicator T. angulosa. The latter 

dominates the >150 µm size fraction in the northern BoB (Mojtahid et al., 2017; Depuydt et al., 

2022) while it mostly occupies a finer fraction (63-150 µm) at SU81-44 site (Depuydt et al., in 

press). This indicates that benthic foraminiferal species are capable of displaying different types 

of ecological strategies depending on the environmental conditions at the seafloor (e.g. quality 

and quantity of organic matter, velocity of currents; see Depuydt et al., 2023, for a thorough 

discussion).  

 We found similar εNd, benthic δ13C and benthic δ18O values for both this site and the 

northern BoB (Toucanne et al., 2021) (Figure 5). This highlights a homogeneous intermediate 

water mass flowing all along the BoB upper slope, especially during the glacial period, most 

likely transported by the GEBC. Until now, the nature of the glacial intermediate water mass 

moving northward by the GEBC remained elusive. Nowadays, the ESC at the BoB latitude, 

mainly transports the MOW, which is found up to ~50°N (south Porcupine Bank; Iorga & 

Lozier, 1999; McCartney & Mauritzen, 2001). This modern configuration is reported for the 

whole Holocene, as suggested by coral- (Copard et al., 2011; Boavida et al., 2019) and 

foraminifera-based (Mojtahid et al., 2013; Depuydt et al., 2022) studies from the BoB. The εNd 

values of planktonic foraminifera from core SU81-44 support this oceanographic pattern with 

a mean Holocene εNd signature of -10.2 ± 0.7 (n=4; Figure 5), close to the values of -10.9 ± 0.3 

and -11.2 ± 0.3 for both modern Mediterranean-sourced water off Portugal (at 1200 m water 

depth), and Holocene corals in the southern Bay of Biscay (at 1150-1200 m depth) (Piepgras 

and Wasserburg, 1983; Copard et al., 2011). Glacial (>20 ka) εNd values are more radiogenic at 

both SU81-44 (-8.7 ± 0.5, n=14) and the northern BoB (-9.1 ± 0.4, n=35) sites (Figure 5), 

revealing a different regional paleohydrographic structure. During the LGM, the MOW was 

reduced in volume (Rogerson et al., 2012; Zahn et al., 1997) and flowed deeper (about 700 m 

deeper than today) due to higher salinity and colder temperatures of Mediterranean waters 

(Schönfeld and Zahn, 2000; van Dijk et al., 2018; Sierro et al., 2020). This MOW adjustment 

could explain the increased flow speed recorded on the lower slope at the LGM in the northern 

BoB (Toucanne et al., 2021). However, without any evidence for mor radiogenic MOW during 

glacial (e.g. Jimenez-Espeio et al., 2015), the glacial εNd values observed at sites BOBGEO-

CS05 and SU81-44 cannot be explained by the influence of the MOW at intermediate depth in 
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the BoB. On the other hand, such εNd values most likely indicate a north Atlantic origin of the 

water mass similar to those found for the Nordic Seas overflow (εNd ~ -8 to -10 ; Piepgras and 

Wasserburg, 1987; Lacan and Jeandel, 2004). In the northern BoB, the glacial εNd values were 

attributed to recirculated northern-sourced waters transported eastward by the glacial NAC and 

ultimately entrained into the GEBC (Toucanne et al., 2021), as for the Labrador Sea Water 

today (Rhein et al., 2015; Zou and Lozier, 2016). Another possibility for the signature of the 

glacial water mass is the impact (through mixing) of low latitude water (i.e. subtropical gyre, 

where the NAC forms), where Nd values range from -9 to -10 above ~1000 m water depth (van 

de Flierdt et al., 2016), but this assumption remains speculative and highlights, as a whole how 

complex the use of εNd to trace MOW and other water masses in the BoB is (Stumpf et al., 

2010). This is further confirmed, between ~20 and 17 ka, when enhanced continental inputs 

into the BoB most likely overwhelmed  the oceanographic signal of isotopic signature (through 

reversible scavenging and/or sediment-seawater interactions, Jeandel and Oelkers, 2015; Blaser 

et al., 2019). Enhanced continental inputs are probably the result of the massive deglacial 

Channel River discharges (R4 event; Figure 5b) occurring at that time in the BoB. This is 

supported by coarser materials brought into the Landes Plateau area between 18 and 14 ka 

(Figure 4c) and by systematic unradiogenic values (down to -14;7) in the detrital εNdrecord off 

the paleo Channel River mouth (Toucanne et al., 2015).  

 

 

5.2 Glacial and Holocene dynamics of the slope current in the southern BoB: biotic 

and abiotic signals 

5.2.1. Heinrich Stadials 

At site SU81-44, the overall low values of bottom flow speed proxies (i.e. UP10, 

silt/clay ratio) indicate a weak GEBC during the three last HSs (Figure 4c). The decrease in the 

GEBC strength occurs well before the HEs, that usually occurred towards the end of the 

corresponding stadials (Figure 4c). Similar findings are reported from several sites along the 

French Atlantic margin and the northern BoB (Toucanne et al., 2021; Depuydt et al., 2022). A 

detailed look at the biotic data also reveals that HSs are characterized by low oxygen 

concentrations, as indicated by the systematic presence of Globobulimina spp. (less clear for 

HS3 due to the low sampling resolution), deep infaunal species tolerant to anoxia (e.g. 

Risgaard-Petersen et al., 2006; Pina-Ochoa et al., 2010; Koho et al., 2011). These observations 
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are in line with results obtained from the northern BoB sites (Mojtahid et al., 2017; Depuydt et 

al., 2022) suggesting an establishment of a pervasive sluggish bottom water circulation during 

HSs on the western European margin, and well before the triggering of the HEs. Because the 

GEBC is part of the upper branch of the AMOC, our new data also support the idea that AMOC 

weakening, likely triggered by the release of EIS meltwaters (e.g. Stanford et al., 2011; 

Toucanne et al., 2015; Ivanovic et al., 2018), precedes the destabilisation of the Hudson Strait 

Ice Stream and the subsequent HEs (Barker et al., 2015 and references therein). In addition, a 

sluggish circulation at that depth might also result from the deepening of the MOW during the 

Heinrich Stadials (van Dijk et al., 2018; Sierro et al., 2020). If correct, this scenario highlights 

a strong relationship in between the Atlantic-Mediterranean exchanges and the Northern 

Hemisphere climate changes (e.g. Cacho et al., 1999; Voelker et al., 2006). 

Despite the above-mentioned common features, our SU81-44 foraminiferal record 

points out several specifics of each of the three HSs. A particular feature can be seen for HS2 

during which our bottom flow speed proxies show a reinvigoration of the GEBC at 24.2 ka. 

This is also emphasised with a peak in the abundance of the high energy indicator species T. 

angulosa, while a concomitant increase in the abundance of the polar planktonic N. pachyderma 

indicates a warming of surface waters (Figure S6). These data reveal a rapid mid-HS2 

reventilation event. This occurred at time of a well‐known reorganization of the North Atlantic 

oceanic and atmospheric circulation (Rasmussen et al., 2008; Austin et al., 2012), of which the 

origin is still poorly understood. This rapid change has also been reported from the northern 

BoB records (Toucanne et al., 2021; Depuydt et al., 2022), confirming that both north and south 

BoB upper slope settings respond similarly to ocean-atmosphere-cryosphere dynamics, even at 

millennial timescales.  

The detailed comparison of the three HSs of the SU81-44 record also reveals that HS1 and HS2 

are characterised by the presence of both Globobulimina spp. and Bulimina spp., whereas 

Globobulimina spp., M. affinis and C. wuellestorfi dominate during HS3 (Figure S4). While 

Globobulimina spp. are low-oxygen indicator species, Bulimina spp. are usually found in highly 

eutrophic environments (Jorissen, 1987; Hermelin and Shimmield, 1990; Bernhard and Alve, 

1996). Melonis affinis is an intermediate infaunal species considered as tolerating suboxia 

(Kaiho, 1994) and degraded organic matter (Fontanier et al., 2002) while C. wuellerstorfi is a 

suspension feeder living in well oxygenated environments (Mackensen et al., 1985; Bauch et 

al., 2001). Therefore, the combination of occurrences of Globobulimina spp. and Bulimina spp. 

suggests a higher export of organic fluxes to the seafloor during HS2 and HS1 than during HS3 
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in our study site, and that bottom waters during HS3 might have been better ventilated than 

during the other HSs as indicated by the higher abundance of C. wuellerstorfi. A better 

ventilation during HS3 is not coherent with sedimentological bottom flow speed proxies at our 

study site showing overall similar UP10 minima during HSs (Figure 5). This discrepancy 

between foraminiferal and sedimentological data might simply be the result of a lower organic 

flux during HS3 in the study site, limiting the consumption of oxygen. In the northern BoB site 

(BOBGEO-CS05; Figure 1) however, benthic foraminiferal assemblage distinguishes HS1 

characterized by high organic fluxes from HS2 and HS3 where high organic indicator species 

were absent (Depuydt et al., 2022). Therefore, during HS3, low flux of organic matter 

characterized both northern and southern sites whereas the opposite was observed during HS1 

(i.e. both settings experience high organic fluxes). During HS2, only the southern BoB records 

high organic matter fluxes to the sea floor. This is probably due to a different source of organic 

material leading to a local effect. Indeed, today the sedimentation of the study area is under the 

influence of the Adour-Garonne River system (e.g. Ruch et al., 1993; Jouanneau et al., 1999), 

and with them nutrients that trigger primary production (Borja et al., 2019). The Adour-Garonne 

River basin drains the Pyrenean chain and thus the dynamics of organic export in the ocean 

during HSs may have depended on the dynamics of the Pyrenean glaciers. The recent study of 

Allard et al. (2021) shows that Pyrenean glaciers retreated during HSs, in agreement with the 

warm Heinrich summers hypothesis of Denton et al. (2022). The study of Allard et al. (2021) 

further shows a difference in the glacial activity between HS1 and HS2 where a retreat was 

recorded, whereas during HS3, glaciers either stalled or retreated. This suggests that during 

HS3, the Garonne-Adour River system may have delivered less sediment (and therefore less 

nutrients and organic matter) to our study site than during HS2 and HS1. That said, and despite 

the dominant northward current direction, we cannot completely rule out that fine sediments 

originating from EIS meltwaters have reached our latitudes. Indeed, it could be especially true 

during early HS1 since it considered as a paroxysmal melting phase, when the estimated annual 

sediment load was ~25 times higher than that of the present-day rivers in the BoB (Toucanne 

et al., 2010). This might explain the concomitant peak of Bolivina spp. during early HS1, that 

is found in all foraminiferal records in the BoB (from north to south): MD99-2328 (Mojtahid 

et al., 2017), BOBGEO-CS05 (Depuydt et al., 2022), SU81-44 (this study) and PP10-12 

(Pascual et al., 2020) (Figure S4 and Figure S5). 

5.2.2. The deglacial period (19-11.7 ka) 
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During the deglacial period, the abundances of the uvigerinids (U. peregrina and U. 

mediterranea), that were nearly absent during the glacial period, increased significantly from 

~15.5 ka (rapidly after HE1). This suggests that Uvigerina spp. have a stronger affinity to the 

interglacial configuration of surface productivity, e.g. nature of primary producers and 

seasonality in phytoplankton blooms (Schönfeld and Altenbach, 2005). This likely explains 

their near-absence during the glacial period, and their dominance during the Holocene and in 

the modern BoB between ~500 and 2000 m water depths (e.g. Schönfeld and Altenbach, 2005; 

Schönfeld, 2006; Barras et al., 2010; Mojtahid et al., 2010; Duros et al., 2011, 2012). The 

increase in their abundances starting from ~15.5 ka is coherent with the Iberian mid-slope 

records of Pascual et al. (2020) and Schönfeld and Altenbach (2005), showing a significant 

increase of uvigerinids from ~15.7 - 14 ka. In the northern BoB, Mojtahid et al. (2017) record 

the presence of the uvigerinids only in the Holocene portion of the record, but due to the poor 

preservation of the Holocene at their site (i.e. MD99-2328), the timing of their first appearance 

could not be constrained. In higher latitudes, Schönfeld and Altenbach (2005) observed the 

appearance of the uvigerinids at the Rockall Plateau later than at our study site, around 10 ka. 

Rüggeberg et al. (2007) observed a maximum abundance of Uvigerina spp. during the last 

10 kyr at the Porcupine Seabight without specifying the timing of their appearance. Based on 

the above, there was probably a delay in their latitudinal settlements at intermediate depths in 

the Northeast Atlantic. Some studies hypothesized a link between the settlement of Uvigerina 

spp. in the BoB and the northward migration of the MOW with the deglacial sea-level rise and 

the concomitant increase in Mediterranean-Atlantic exchanges (Mojtahid et al., 2013; Depuydt 

et al., 2022). The maximum Uvigerina spp. abundance that we record at ~15.2 ka coincides 

with an increase in δ13C data and a stable benthic foraminiferal δ18O and εNd values over the 

last 15 ka (Figure 5). This means potentially that a unique water mass was present between 

~15.2 ka and late Holocene. The εNd values support the hypothesis of a Mediterranean-sourced 

water in the BoB since 15 ka (see section 5.1). Therefore, we hypothesize a link between the 

high density of Uvigerina spp. and a strengthened flow of the MOW along the BoB slope. This 

would also explain the early appearance of the uvigerinids along the Iberian margin and the 

southern BoB compared to the higher latitudes, probably because of a progressive latitudinal 

settlement of uvigerinids associated to the gradual MOW expansion at intermediate depths of 

the Northeast Atlantic. In such a scenario, without excluding a change towards higher 

productivity during the warmer Holocene time period, the rise of the benthic δ13C since 15 ka 

can also be interpreted as the northward’s expansion of the warmer and more saline MOW 
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towards intermediate depths which, therefore, will improve the ventilation conditions at that 

site. 

Bottom flow speed proxies from both the southern and northern BoB records (Figure 

5a) show a rapid increase in the vigor of the slope current, and by extent that of the upper branch 

of the AMOC, in the second part of HS1 (i.e. after 17-16 ka). These observations in both 

southern and northern records of the BoB are evidence of regional signal, which is most likely 

linked to a oceanographic change. Our study further shows that this increase in the slope current 

attained a peak between 13.6 ka, coinciding with the mid- Bølling-Allerød (BA) interval and 

12.0 ka that correspond to the mid-Younger-Dryas (YD) interval. This reinvigoration of the 

upper branch of the AMOC precedes by about 1.5 to 2 kyr the abrupt resumption of the deeper 

branch of the AMOC (>2400 m) in the western North Atlantic at the start of the BA warming 

ca. 14.7 ka (McManus et al., 2004; Ng et al., 2018). This AMOC “overshoot” during the BA 

warming occurs despite persistent deglacial meltwater fluxes that counteract vigorous North 

Atlantic deep-water formation(Liu et al., 2009). Modelling studies show that deglacial CO2 rise 

and ice sheet decline modulate the sensitivity of the AMOC to these fluxes, as an alternative to 

or in combination with changes in the magnitude or routing of meltwater discharges (e.g. Barker 

et al., 2010; Sun et al., 2022). The reinforcement of the slope current in the Northeast Atlantic 

is coeval with increasing bottom water oxygenation and temperatures on the Celtic margin 

(Mojtahid et al., 2017), suggesting a subsurface warming that was transported northwards via 

the more vigorous slope current. This subsurface warming in the upper branch of the AMOC 

would have led to accelerated high latitude ice-sheet melting (Brendryen et al., 2022).  

 

5.2.3. The Holocene (11.7-0 ka) 

During the Holocene, benthic foraminiferal assemblages at SU81-44 show an overall increase 

in the abundances of the uvigerinids (i.e. U. peregrina and U. mediterranea), in agreement with 

the results obtained at the nearby site PP10-12 (Pascual et al.,2020) (Figure S6). The overall 

increase of these species abundances during the Holocene indicates a progressive enrichment 

in organic matter compared to the last glacial period (e.g. Fontanier et al., 2002; Mojtahid et 

al., 2010; Singh et al., 2015), which is consistent with the decrease in grain size at the studied 

site (Figure 5). Indeed, clay minerals favor the adsorption of organic matter (e.g. Keil et al., 

1994; Bock and Mayer, 2000). Meanwhile, our bottom flow speed proxies show a decreasing 

trend through the Holocene (Figure 4c), indicating the strength of the ESC is most likely 
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progressively diminished. This long-term decrease in the ESC flow speed might be linked to a 

long-term change in oceanographic/climatic conditions. In the modern settings, the mechanisms 

controlling the ESC strength are mostly linked to meridional density gradients (Pingree and Le 

Cann, 1990; Friocourt et al., 2007; Marsh et al., 2017). Thus, the long-term decreasing flow 

speed of the ESC might be a result of a long-term weakening of this gradient. The early 

Holocene (before ~8 ka) was characterized by large cold freshwater inputs advected by the 

continuing melting of ice sheets in the high latitudes (e.g. Hillaire-Marcel et al., 2001; 

Thornalley et al., 2009). Conversely, due to increasing insolation, subtropical waters were likely 

warming. Therefore, we suggest that this increasing difference between low and high latitude 

settings established a high-density gradient, explaining the intense ESC recorded at SU81-44 

during the early Holocene. Following the same logic, the decreasing insolation from mid-to late 

Holocene and the cessation of large freshwater inputs from the ice-sheets, would decrease this 

gradient and, by extension, the overall ESC strength. The hypothesis of a strong MOW 

influence seems to be contradictory with this decreasing ESC flow speed since the MOW 

production should increase due to a declining summer insolation (e.g. Bahr et al., 2015). Marsh 

et al. (2017) further showed a modern positive correlation between the intensity of the ESC and 

the dynamics of the SPG, i.e. strong (weak) transport is associated with to a strong (weak) SPG, 

with colder (warmer) water to the north setting up a stronger (weaker) northward density 

gradient. For the early Holocene, this link might not have been present due to a weakened SPG 

caused by advection of melting waters. As a result of this weakened SPG, Thornalley et al. 

(2013) hypothesized a weakened AMOC. Since the ESC is the easternmost branch of the 

AMOC, the vigorous slope current that we record would be inconsistent with this suggestion. 

That said, other studies report an active AMOC during the early Holocene (e.g. Hoogakker et 

al., 2011; McCave and Andrews, 2019; Sicre et al., 2021), in agreement with our observations 

along the European margin. Model simulations also show that the vigor of the AMOC is not 

simply related to sea-ice concentrations in the north Atlantic during periods of increasing 

atmospheric CO2 (Zhang et al., 2017), such as the deglaciation and early Holocene. Increasing 

CO2 affects the transport of atmospheric moisture across Central America, which modulates the 

freshwater budget of the North Atlantic and hence deep-water formation (Leduc et al., 2007; 

Zhang et al., 2017). From ~8 ka onwards, studies show an overall long-term contraction of the 

SPG and the AMOC (e.g. Colin et al., 2019; Thornalley et al., 2009, 2013), which, for this time 

period, would be coherent with the decreasing ESC vigor that we record. Thornalley et al. 

(2013) presented a stacked sortable silt record from the Reykjanes Ridge, which is indicative 

of the Iceland Scotland overflow strength (an important component of the deep branch of the 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



AMOC), and results reveal a decrease in its strength from mid to late Holocene, as for the ESC 

on the western European margin. This overall decrease paralleled the long-term westward 

contraction of the SPG from ~8 to 3 ka, superimposed on millennial-scale variability not 

observed in our data (likely due to the low temporal resolution) (Colin et al., 2019). Based on 

the above, we conclude that the link between SPG and ESC, and by extension AMOC, seems 

to be more straightforward after ~8 cal ka BP, probably because the advection of freshwaters 

form ice-sheets is no longer a primary forcing factor.  

 

6. Conclusions 

This study provides new constraints on the dynamics of the ESC, and on the associated benthic 

paleoenvironments characterizing the southern BoB over the last 36 ka. Our data show that: 

- Upper slope paleocurrent dynamics reconstructed by sedimentological and 

foraminiferal proxies at site SU81-44, southern BoB, are in concordance with the 

northern BoB records, that all show paleoceanographic fluctuations in concert with the 

Northern Hemisphere climatic events. This shows a regionally consistent signal for the 

BoB that is strongly linked to a global climatic/oceanic forcing. 

- During the last three HSs, our results show a slowing down of the GEBC and the 

consequent decreasing ventilation of bottom waters highlighted by the presence of low 

oxygen tolerant benthic foraminiferal taxa. 

- The foraminiferal assemblages show some specificities to each HS. During HS2, when 

GEBC was weak in the BoB, our data indicate a short episode of GEBC reinvigoration 

around 24.2 ka similarly to the northern BoB.  

- The appearance of uvigerinids in our record at around 15.5 ka may be an indication of 

the earliest post-glacial incursion of the MOW in the BoB.  

- Our results show a peak in ESC vigor during the Bølling-Allerød, that we relate with 

the AMOC overshoot described at intermediate depths in the North Atlantic. 

- Finally, our results showed a progressive decrease in the strength of the ESC during the 

Holocene, which could be partially related to a long-term decrease in the density 

gradient between high and low latitudes. 
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9. Figure captions 

Figure 1. Location of the study area. a) Figures showing the modern configuration of the study 

area. On the upper left panel, a figure modified from Depuydt et al. (2022) showing a 3D 

representation (N–S, W–E and in water depth) of the modern oceanic circulation in the North 

Atlantic representing the main currents (acronyms written in black), water masses (acronyms 

written in colours) and the subpolar (in blue) and subtropical (in red) gyres in the North Atlantic. 

On the right panel, bathymetric maps of the Bay of Biscay showing the modern circulation 

conditions, physiography, and the location of our study core SU81-44 (purple star), together 

with nearby upper slope sediment cores: MD95-2002 (brown star; Ménot et al., 2006; Eynaud 

et al., 2012; Toucanne et al., 2015), MD99-2328 (blue star; Mojtahid et al., 2017), BOBGEO-

CS05 (orange star; Toucanne et al., 2021; Depuydt et al., 2022); PP10-12 (black star; Pascual 

et al., 2020). b) Bathymetric map showing the glacial conditions of the Bay of Biscay and the 

location of sediment cores, similarly to (a).  

 

Figure 2. Chronostratigraphy of core SU81-44. a) NGRIP δ18O (GICCS05 chronology; 

Rasmussen et al., 2006, 2014). b) Chronostratigraphic framework of core SU81-44 based on 

the synchronization of XRF-Ca/Ti ratios with cores MD95-2002 and BOBGEO-CS05 

(Zaragosi et al., 2006; Toucanne et al., 2021; Depuydt et al., 2022). c) Percentages of the polar 
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planktonic species N. pachyderma in core SU81-44 (this study), core MD95-2002 (Grousset et 

al., 2000) and core BOBGEO-CS05 (Depuydt et al., 2022). The dashed purple line indicates 

the semi-quantitative analysis showing the absence of polar planktonic taxa in the top ~20 cm 

of core SU81-44 (J. Duprat: unpublished data). d) X-Ray photograph (see Figure S2 for the 

whole core) showing the ice-rafted debris (IRD) which allowed us to identify the Heinrich event 

1. Purple diamonds indicate 14C ages in core SU81-44 (cf. Figure S1).  

 

Figure 3. Benthic foraminiferal data from core SU81-44. a) Benthic foraminiferal accumulation 

rates (BFAR; ind.cm-3.ka-1) for the >150 µm. b) Shannon index (H’). c-j) Relative abundances 

(%) of the fifteen most representative benthic foraminiferal species (>10 %). Full lines and 

dashed lines represent respectively, the >150 µm and >63 µm fractions. Greenland Interstadials 

(GI); grey bands: Heinrich Events (HEs); blue bands: Heinrich Stadial (HSs); orange band: 

Bølling-Allerød (BA); Marine Isotope Stage (MIS). The vertical dashed grey line represents 

the limit between early HS1 (ca. 18–16.7 ka ) and late HS1 (ca. 16.7–14.7 ka ). To better 

highlight the variations of the different species groups, the scale of the ordinate axis is not 

constant. Purple diamonds indicate 14C ages in core SU81-44 (cf. Figure S1) 

 

Figure 4. Abiotic data from core SU81-44. a) NGRIP δ18O (GICCS05 chronology; 

(Rasmussen et al., 2006, 2014). b) the most representative grain size distribution of our core. c) 

Median grain-size record (red line), silt/clay ratio (blue line) and UP10 (green line) as proxies 

for the reconstruction of GEBC flow speed changes (Frigola et al., 2007). d) Neodymium 

isotopic composition from planktonic foraminifera in core SU81-44 (expressed in εNd). e) and 

f) respectively, δ18O and δ13C of benthic foraminifera (‰). Greenland Interstadials (GI); grey 

bands: Heinrich Events (HEs); blue bands: Heinrich Stadial (HSs); orange band: Bølling-

Allerød (BA); Marine Isotope Stage (MIS). The vertical dashed grey line represents the limit 

between early HS1 (ca. 18.2–16.7 cal ka BP) and late HS1 (ca. 16.7–14.7 cal ka BP). Purple 

diamonds indicate 14C ages in core SU81-44 (cf. Figure S1) 

 

Figure 5. Reconstructions of slope current changes on the French Atlantic margin during the 

last 36 ka. a) Near-bottom flow speed on the upper slope (∼1000 m) reconstructed from 

dimensionless UP10 data of the composite record of the northern Bay of Biscay (orange line) 
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and the core SU81-44 (black line); and from relative abundance of T. angulosa (dashed black 

line) in this study. b) Water mass signature from εNd composite record of the northern Bay of 

Biscay (orange dashed line) and from this study (black line). c) Detritic Neodymium isotopic 

composition (εNd; blue line) in core MD95-2002 (Toucanne et al., 2015). d) and e) respectively, 

δ18O and δ13C of benthic foraminifera (‰) from the upper slope composite record of the 

northern Bay of Biscay (orange line) and from this study (black line). Greenland Interstadials 

(GI); grey bands: Heinrich Events (HEs); blue bands: Heinrich Stadial (HSs); orange band: 

Bølling-Allerød (BA); Marine Isotope Stage (MIS). The vertical dashed grey line represents 

the limit between early HS1 (i.e. 18.2–16.7 ka) and late HS1 (i.e. 16.7–14.7 ka). R4 event 

represents a Channel River meltwater discharge during 20.3 ± 0.2 to 18.7 ± 0.3 ka (Toucanne 

et al., 2015). Purple diamonds indicate 14C ages in core SU81-44 (cf. Figure S1) 

 

10. Supplementary information 

Figure S1. Age model of core SU81-44 based on synchronization of XRF-Ca/Ti ratios (full 

purple line) with cores MD95-2002 and BOBGEO-CS05 (Zaragosi et al., 2006; Toucanne et 

al., 2021; Depuydt et al., 2022). Sediment accumulation rate (SAR; dashed purple line) in 

SU81-44. Corrected 14C ages (purple square) were calibrated using the atmospheric calibration 

curve IntCal20 (Reimer et al., 2020). 

 

Figure S2. X-Ray radiographs of core SU81-44. Green box represents the worked sections in 

this study. Red box (S3) represents the unused section since it shows signs of core piston (red 

arrow). 

 

Figure S3. PCA analysis based on covariance between the percentages of major species 

(>10 %). 

 

Figure S4. Relative abundances (%) of the most representative benthic foraminiferal species 

(>10 %) in core SU81-44 (black line) and nearby cores: MD99-2328 (brown line; Mojtahid et 

al., 2017) and BOBGEO-CS05 (orange line; Depuydt et al., 2022). Full lines and dashed lines 

represent respectively, the >150 µm and >63 µm fractions. Greenland Interstadials (GI); grey 
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bands: Heinrich Events (HEs); blue bands: Heinrich Stadial (HSs); orange band: Bølling-

Allerød (BA); Marine Isotope Stage (MIS). The vertical dashed grey line represents the limit 

between early HS1 (ca. 18.2–16.7 cal ka BP) and late HS1 (ca. 16.7–14.7 cal ka BP). To 

better highlight the variations of the different species groups, the scale of the ordinate axis is 

not constant. 

 

Figure S5. Relative abundances (%) of the most representative benthic foraminiferal species 

(>10 %) in core SU81-44 (dashed black line) and the nearby core PP10-12 (blue line; Pascual 

et al., 2020) in the >63 µm fraction. Greenland Interstadials (GI); grey bands: Heinrich Events 

(HEs); blue bands: Heinrich Stadial (HSs); orange band: Bølling-Allerød (BA); Marine Isotope 

Stage (MIS). The vertical dashed grey line represents the limit between early HS1 (i.e. 18.2–

16.7 ka ) and late HS1 (i.e. 16.7–14.7 ka cal BP). To better highlight the variations of the 

different species groups, the scale of the ordinate axis is not constant. 

 

Figure S6. Focus on HS2 in core SU81-44. a) Relative abundances (%) of the planktonic 

species N. pachyderma s. in core SU81-44 (black line; this study), BOBGEO-CS05 (orange 

line; Depuydt et al., 2022) and MD95-2002 (blue line; (Grousset et al., 2000). b) (𝑆𝑆̅̅ ̅) composite 

records from the northern Bay of Biscay (Toucanne et al., 2021) and UP10 data from this study 

as proxies for the reconstruction of GEBC flow speed changes (Frigola et al., 2008; Toucanne 

et al., 2021). c) Relative abundances of high-energy indicator species (% C. lobatulus + % T. 

angulosa) in core SU81-44 (dashed black line; this study) and in core BOBGEO-CS05 (orange 

line; Depuydt et al., 2022). Dashed vertical line: Heinrich Event 2 (HE2) sensu-stricto according 

to the regional Ca/Ti synchronization (see Table S2 in Toucanne et al., 2021); blue bands: the 

HS2a,b cold events (Bard et al., 2000); yellow band: the mid-HS2 reventilation event. To better 

highlight the variations of the different species groups, the scale of the ordinate axis is not 

constant. 

 

Table S1. Main tie-points for SU81-44 based on their synchronization to the reference core 

MD95-2002 (see age scale in Toucanne et al., 2021) with the XRF log (Ca/Ti) ratio. HS (HS1 

to 3) refers to Heinrich Stadials. HE refers to Heinrich Event sensu-stricto (i.e. discharge of 
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iceberg from the Laurentide Ice Sheet to the Northeast Atlantic); GI- (1 to 7) refers to Greenland 

Interstadials. LGM- (1 to 7) refers to the Last Glacial Maximum. 

 

Table S2. 14C dates of core SU81-44 and calendar age range following age model of core 

MD95-2002. 

 

Table S3. Benthic foraminiferal raw data available on https://doi.org/10.17882/91758  
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Highlights  

 We present a continuous record of the European Slope Current for the last 36 kyr 

 The slope current intensity peaks during the Bølling-Allerød then gradually decreases 

throughout the Holocene 

 Changes in the meridional density gradient likely explain slope current changes 

 Reappearance of the Mediterranean water in the southern Bay of Biscay at ~16 ka 
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Figure 1



Figure 2



Figure 3



Figure 4



Figure 5


