1 Supplement

A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake K. A. Yamoah¹, N. Callac¹, E. Chi Fru¹, B. Wohlfarth¹, A. Wiech¹ A. Chabangborn² and R. H. Smittenberg¹ ¹Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, 10691 Stockholm, Sweden ²Departments of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand Correspondence to: K. A. Yamoah (kweku.yamoah@geo.su.se)

1 1 Study area

2 **1.1 Geology**

3 Lake Nong Thale Prong lies in a region characterized by karst topography of Permian limestone and/or dolomitic limestone, which forms part of the Ratburi Group and bounds the 4 5 northern and southern directions of the lake (Raksasakulwong et al., 1989 Department of Mineral Resources of Thailand, 2007). Eastward mountain ranges consist of Jurassic-6 Cretaceous arkosic sandstone, claystone and siltstone (Department of Mineral Resources of 7 Thailand, 2007). Undulating plains of Quaternary alluvial and colluvial sedimentary deposits 8 9 generally surrounds the western part of NTP (Raksasakulwong et al., 1989; Department of 10 Mineral Resources of Thailand, 2007). Vegetation is diverse, with the southern part covered by lowland tropical rainforest, dominated by Dipterocarpaceae and a significantly high 11 12 diversity of Myrtaceae (Santisuk, 2006). The Nakhon Si Thammarat region also has extensive 13 mechanized agricultural activities, consisting mainly of oil palm and natural rubber 14 plantations.

15 **1.2 Thailand hydroclimate**

The study area is controlled by both the southwest and northeast monsoonal winds originating 16 17 from the Indian Ocean and from Mongolia and China, respectively (Climatological Center, Thai Meteorological Department, 2011). The intertropical convergence zone (ITCZ) 18 19 (Climatological Center, Thai Meteorological Department, 2011), El Niño southern oscillation (ENSO) (Singhrattna et al., 2005) and tropical cyclones (Climatological Center, Thai 20 21 Meteorological Department, 2011), contribute substantially to annual precipitation. The mean annual temperature and rainfall averages ~27.3°C and 2380 mm, respectively (Ministry of 22 23 Communications, Thailand, 1977). Rainfall occurs almost all year round except for a short 24 dry season of three months and <50 mm of rainfall in February (Ministry of Communications, Thailand, 1977) 25

26 2 Sediment core dating

The samples were tightly sealed and left standing for 2 to 3 weeks to achieve re-equilibration of decay products (daughter nuclei). The relative efficiency of the gamma detector system was determined by adding an externally calibrated standard (pitchblende, Stackebo, Sweden) to three of the already measured samples and analyzed again. The supported ²¹⁰Pb was assumed to be in equilibrium with ²²⁶Ra, hence the unsupported ²¹⁰Pb activity was calculated by subtracting the activity of ²²⁶Ra from the activity of supported ²¹⁰Pb. Based on
 ²¹⁰Pb_{unsupported} sediment, ²¹⁰Pb chronology was established (see for example Cheevaporn and
 Mokkongpai, 1996, for a detailed description of this approach).

4 **3** δD_{wax} of long chain *n*-alkanes biomarkers

5 Long chain *n*-alkanes are robust and resistant to biodegradation after burial hence widely used 6 as biomarkers for climate reconstructions (Castañeda and Schouten, 2011). They are 7 ubiquitous and produced by a range of organisms, for example, n-C₂₇ to n-C₃₅ alkanes are 8 constituents of epicuticular waxes of higher plants (Rieley et al., 1993; Eglinton and 9 Hamilton, 1963, 1967); n-C₂₃ to n-C₂₅ alkanes are a dominant component of submerged 10 aquatic macrophytes (Ficken et al., 2000; Baas et al., 2000); and n-C₁₇ to n-C₂₁ alkanes are 11 primarily produced by aquatic algae (Robinson et al., 1984; Meyers and Benson, 1988).

The dominant carbon chain length distributions and isotopic compositions of *n*-alkanes vary 12 extensively depending on the source organism, the environments of formation and organic 13 14 matter diagenesis (Chikaraishi & Naraoka, 2005). This makes it possible to track back 15 through time their sources and the environmental conditions prevailing at the time of deposition (Pancost & Boot, 2004). Several studies have revealed that the hydrogen isotopic 16 17 composition (D/H ratio or δ D) of both terrestrial and aquatic biomarkers reflect that of their 18 source water, although with an offset (Sachse et al., 2004), primarily due to biosynthetic 19 fractionation effects (Sachse et al., 2012).

20 In the Thailand, δD of precipitation is primarily influenced by the amount effect and El Niño 21 Southern Oscillation (ENSO) dynamics where El Niño leads to decreased rainfall whereas La 22 Niña leads to increase rainfall. The δD_{wax} takes on the primary source water signal, but is in 23 addition influenced by evaporation in soils (Smith and Freeman, 2006) and transpiration (Kahmen et al., 2013). Altogether, δD_{wax} values are thus influenced by rainfall amount – 24 25 greatly connected to ENSO dynamics in the region under study – and evapotranspiration, which together cause an increase in δD_{wax} values under dryer conditions, whereas a decrease 26 27 in δD_{wax} values corresponds to increased rainfall (e.g. Smittenberg et al., 2011; Konecky et al., 28 2012; Niedermeyer et al., 2014).

1 4 Methods

2 4.1 Meteorological rainfall data (instrumental records)

To compare the hydroclimatic conditions from our proxies to local observations, we use a time series of annual precipitation taken from the Global Precipitation Climatology Centre (GPCC Version 6.0, http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html) (Schneider et al., 2011). The dataset has a horizontal resolution of 0.5° (~50 km) and the closest grid point to the proxy is used at 8.25° N and 99.25° W. As the proxy has a resolution of about 2-5 years, a 3 year-running mean for precipitation is used for the period 1901-2010.

9 4.2 Past and present processes, and methodological considerations

The biogeochemical trends suggest multiple processes control the OM input into lake NTP. 10 11 which in turn play a significant role in carbon capture storage. However, in order to correctly interpret the observed patterns, the effects of diagenesis, distinctions between past (fossil) and 12 present (active) microbial populations, as well as the limitations of the methods used must be 13 clarified. It is immediately obvious that the coupled lipid biomarker and qPCR data allow a 14 15 better resolution of key microbial trends in the lake over the last 150 years. For example, the qPCR analysis showed that the Botrvococcus sp. were prominent in units I and III, while 16 17 botryococcene lipids were detected only in the unit III. This shift between the molecular and the lipid biomarker analysis highlights the complementary nature of both methods. 18 19 Phytoplanktons are not typical inhabitants of anoxic sediments deprived of light and are therefore assumed to represent fossil populations originating at various times from the water 20 21 column. Indeed, SEMS imaging specifically revealed well-preserved diatoms (S1 Fig. 7) in 22 parts of the sediments where both the lipid biomarker and qPCR data converged.

23 However, the same cannot be said for the mcrA genes, since the microorganisms associated with the anaerobic methane cycle typically dwell in anoxic sediments (e.g. Knittel and 24 Boetius 2009; Conrad et al., 2010). During methanogenesis, organic matter degradation 25 26 proceeds via a complex microbial community consisting of hydrolytic, fermenting, acetogenic 27 and methanogenic microorganisms (Rudd and Taylor, 1980; Conrad et al., 2010; Zinder 1993; Knittel and Boetius 2009). In anoxic sediments of freshwater systems, organic matter is 28 29 routinely degraded to CO₂ and CH₄ by aceticlastic methanogens (Rudd and Taylor, 1980; 30 Conrad et al., 2010). The CH₄ is then consumed by anaerobic CH₄ oxidizing consortium, 31 which consist of sulfate reducers that oxidizes organic carbon and a syntrophic methanotrophic archaeal population (Knittel and Boetius 2009). The rate of anaerobic CH₄
oxidation by the anaerobic CH₄ oxidizers in lake sediments is estimated to be 0.0001 to 1.0
nmol cm⁻³ dav⁻¹ (Knittel and Boetius 2009).

4 Several studies have used qPCR methods to quantify and screen microbial population dynamics and functional gene abundance in an ecosystem. However, its sensitivity has been 5 6 challenged due to method biases including sample preservation, efficiency of DNA extraction (Alain et al 2011, Luna et al 2006, Miller et al 1999, Webster et al 2003, Zhou et al 1996) and 7 8 specificity of selected primers (Llovd et al 2013, Smith and Osborn 2009, Teske and Sorensen 9 2007, Wintzingerode et al 1997). Additionally, this method cannot distinguish between the DNA from living and dead cells and also environmental DNA (eDNA). Thus, while the 10 phytoplankton populations are likely from fossils DNA or eDNA, which lived in the water 11 12 column at various times, the methane cyclers are not considered as such.

13 4.3 Comparison between δD_{wax} , instrumental data and ESEM analysis

14 A general coherent trend is observed between proxy data δD_{wax} and the instrumental data of 15 the annual mean precipitation up until 1901, beyond which there are no recorded instrumental data. General increase in precipitation inferred from decreasing δD_{wax} values from ~1900-16 1960 relative to a general decreasing precipitation from ~1960 to present corresponds to 17 relatively increase in annual mean precipitation from ~1900 -1960 relative to a general 18 19 decrease in annual mean precipitation. The seeming coherence between δD_{wax} and the instrumental data is an indication of the ability of δD_{wax} proxy to track precipitation. This is 20 21 further substantiated when compared to the images taken during the ESEM analysis. Increase 22 and decrease in precipitation inferred from the δD_{wax} corresponded with increase and decrease in fluvial deposits, respectively, as observed from the image scans of the sediments. Increase 23 24 in precipitation also coincided with increase in diatom diversity and bloom as was observed 25 both in picture scan and also the abundance of HBIs concentration, a proxy for diatoms.

- 26
- 27
- 28
- 29
- 30

Table 51. Geochemistry data showing Age , Depth, $\sigma = \mathcal{O}_{ofg}$, \mathcal{O}_{ofg} , $\sigma = 10, 10, 10, 50, 50, 2$ and 1									
Age	Depth	$\delta^{13}C_{org}$ (‰)	% C _{org}	δ ¹⁵ N(‰)	% N	C/N	S	02	Р
2010	0,5	-26,55	34,13	0,44	3,80	8,98	5,20	45,93	0,77
1997	6,5	-26,56	36,68	0,64	3,81	9,62			
1988	10,5	-26,81	36,08	0,67	3,77	9,56	6,17	47,80	0,90
1982	13,5	-26,76	35,93	0,71	3,77	9,53	5,17	46,53	0,73
1974	17,5	-26,86	35,88	0,81	3,72	9,65	5,27	47,17	0,83
1957	25,5	-27,73	34,96	0,63	3,47	10,09	5,07	47,10	0,70
1948	29,5	-27,94	35,94	0,52	3,22	11,17	4,77	47,57	0,47
1935	35,5	-27,99	35,61	0,49	3,36	10,61	5,67	48,27	0,53
1920	42,5	-28,14	36,25	0,38	3,33	10,87			
1912	46,5	-28,24	37,00	0,34	3,15	11,75	5,10	48,60	0,73
1901	51,5	-29,35	37,37	0,23	3,50	10,69	6,10	48,20	0,50
1882	60,5	-29,84	38,82	0,08	3,31	11,71	5,47	47,53	0,47
1871	65,5	-33,03	39,74	-0,70	3,09	12,87	6,77	48,07	0,60
1861	70,5	-30,52	31,55	-0,51	2,33	13,55	4,10	48,73	0,37
1855	73,5	-31,28	31,17	-0,47	2,56	12,16			

1 Table S1. Geochemistry data showing Age, Depth, $\delta^{13}C_{org}$, C_{org} , $\delta^{15}N$, N, C/N, S, O₂ and P

1 Table S2. Biomarker data (μ g/g dry sample) and hydrogen isotopes of C₂₇-C₃₁ *n*-alkanes (VSMOW

2 %.). n.d. = not detected; $< 0.1 \ \mu g/g$ dry sample. Estimated standard error for the biomarker based on 3 prior results is 5% and the average standard deviation for hydrogen isotopes is 4%.

4	Age	Depth	C ₁₇ <i>n</i> - alkanes	Total Botryococcenes	C ₂₅ HBI	δD of C ₂₇ -C ₃₁ <i>n</i> -alkanes
-	2008	1,5				
5	2006	2,5	53,8	1,3	73,8	
	2001	4,5	49,7	0,9	59,7	-172
6	1999	5,5	2,0	1,1	59,0	-168
	1995	7,5	39,4	1,4	64,3	-174
7	1993	8,5	43,2	2,2	92,7	-171
/	1991	9,5	36,3	1,8	71,5	-171
0	1986	11,5	31,5	2,0	79,9	-178
8	1984	12,5	31,1	1,9	69,0	-175
	1980	14,5	31,8	2,4	96,5	-171
9	1978	15,5	28,4	2,3	139,5	-177
	1976	16,5	7,0	n.d	n.d	-176
10	1972	18,5	20,5	1,7	73,3	-177
10	1969	19,5	17,5	1,8	68,9	-165
11	1967	20,5	17,6	1,5	76,7	-171
11	1963	22,5	16,7	2,4	143,5	-168
	1961	23,5	12,7	2,5	159,4	
12	1959	24,5	13,2	3,2	201,1	-166
	1955	26,5	6,8	3,3	215,7	-181
13	1952	27,5	4,1	2,8	177,5	-180
15	1950	28,5	4,0	3,1	179,7	-179
	1946	30,5	2,6	3,1	180,5	-179
14	1944	31,5	2,4	3,0	177,4	-180
	1942	32,5	2,5	4,0	213,8	-178
15	1940	33,5	2,2	2,9	n.d	-181
	1938	34,5	1,7	2,9	165,4	-179
16	1933	36,5	1,6	3,6	89,6	-179
10	1931	37,5	1,5	3,6	151,3	-168
	1929	38,5	2,0	4,8	n.d	-176
17	1927	39,5	1,9	4,5	147,8	-177
	1925	40,5	1,7	4,8	147,3	-170
18	1923	41,5	1,5	3,9	160,1	-177
10	1918	43,5	0,3	2,7	21,5	-180
10	1916	44,5	0,6	4,1	28,2	-177
19	1914	45,5	0,5	3,7	25,5	
	1910	47,5	0,5	4,2	25,0	-176
20	1908	48,5	0,6	5,7	24,5	-172
	1906	49,5	0,5	6,3	17,5	-175
21	1903	50,5	0,6	7,3	16,4	-178
<u> </u>	1899	52,5	0,5	8,7	12,7	-176
22	1897	53,5	0,3	4,9	6,2	-168
22	1895	54,5	0,3	6,3	5,9	-176
	1893	55,5	0,4	8,4	8,7	-173
23	1889	57,5	0,7	8,5	9,8	-170
	1886	58,5	0,5	6,3	8,2	-172
24	1884	59,5	0,5	7,6	9,2	-166
24	1880	61,5	0,4	8,5	4,7	-174
	1878	62,5	0,4	10,5	5,0	-171
25	1876	63.5	0.4	7.8	6.0	-175
	1874	64.5	0.4	5.2	5.5	-172
26	1869	66.5	0.6	8.4	8.0	-177
20	1867	67.5	0.6	7.0	8 7	-177
	1865	68 5	0.4	5 1	10.6	-184
27	1861	70.5	03	4 4	12.2	-168
	1859	71.5	0.3	4 5	11.2	-169
	1857	72.5	03	53	11.1	-178
	1007	, _	5,5	-,-	· · , ·	

1 Table S3. QPCR data showing Archaea, Bacteria, Cyanobacteria, Eukarya, Diatoms,

2 Botryococcus and *mcrA* genes abundance.

	Archaea		Bacteria		Cyanobacteria		Eukarya		Diatoms		Botryococcus		mcrA	
Age	abundance cells g-1	Standard error	abundance cells g-1	Standard error	abundance cells g-1	Standard error	absolute abundance cells g-1	Standard error						
2010	7,14E+09	7,56E+08	2,97E+11	3,22E+10	7,94E+10	1,64E+10	1,55E+10	3,86E+09	1,68E+08	2,69E+07	1,16E+11	6,39E+09	6,10E+08	3,91E+07
1997	6,18E+09	2,26E+08	2,35E+11	1,28E+10	5,23E+10	3,81E+09	8,96E+09	2,49E+09	9,01E+07	1,76E+07	9,14E+10	1,42E+10	3,39E+08	1,86E+07
1988	1,16E+10	1,00E+09	3,25E+11	3,53E+10	3,58E+10	2,07E+09	1,15E+10	1,71E+09	1,62E+08	1,73E+07	2,88E+10	2,94E+09	4,79E+08	1,85E+07
1982	6,18E+09	6,85E+08	2,03E+11	1,92E+10	1,05E+10	4,47E+08	3,90E+09	6,26E+08	4,22E+07	6,92E+06	7,03E+09	7,99E+08	1,40E+08	4,70E+07
1974	7,39E+09	1,30E+09	2,25E+11	1,07E+11	1,85E+10	4,46E+09	1,00E+10	1,00E+09	1,59E+08	1,99E+07	3,01E+10	4,85E+08	4,04E+08	8,33E+07
1957	4,30E+08	4,00E+07	7,67E+09	7,30E+08	2,95E+08	4,00E+06	2,49E+08	5,38E+07	5,11E+06	1,24E+06	2,98E+08	8,72E+07	1,22E+07	1,31E+06
1948	1,69E+10	3,29E+09	5,73E+11	1,48E+10	7,54E+09	6,24E+08	1,32E+10	9,16E+08	1,15E+08	2,25E+07	2,41E+09	2,69E+08	4,74E+08	1,52E+07
1935	6,72E+08	3,53E+07	1,80E+10	8,31E+08	2,21E+08	9,64E+06	1,68E+08	1,78E+07	2,27E+06	3,08E+04	1,40E+08	6,24E+07	9,73E+06	1,21E+06
1920	3,20E+07	2,27E+06	3,61E+08	1,60E+08	5,26E+06	1,81E+06	8,85E+06	9,86E+05	ND		1,78E+07	3,08E+07	5,25E+05	1,54E+05
1912	6,91E+09	2,29E+09	1,54E+11	2,95E+10	2,72E+09	1,18E+08	4,11E+09	3,24E+08	5,58E+07	5,18E+06	1,36E+09	6,93E+07	1,82E+08	7,43E+07
1901	4,51E+08	9,32E+07	8,10E+09	3,76E+08	2,08E+08	2,02E+07	1,20E+08	3,17E+07	8,21E+05	5,43E+04	6,96E+07	4,37E+07	4,62E+06	1,24E+06
1882	4,48E+09	3,37E+08	1,03E+11	1,38E+10	1,01E+09	1,51E+08	3,57E+09	7,96E+08	1,57E+07	3,67E+06	2,07E+09	3,21E+08	1,39E+08	1,89E+07
1871	2,34E+10	1,79E+09	2,86E+11	4,66E+09	3,84E+09	2,73E+08	6,57E+09	3,87E+09	4,96E+07	7,55E+06	6,77E+09	9,98E+08	5,26E+08	1,01E+08
1861	5,51E+09	5,52E+08	8,37E+10	1,98E+09	6,51E+08	4,74E+07	3,05E+09	2,26E+08	2,73E+07	3,08E+06	2,49E+10	3,35E+09	1,62E+08	1,26E+07
1855	1,13E+10	3,45E+08	2,33E+11	1,14E+10	7,41E+08	1,53E+08	1,12E+10	6,92E+08	5,18E+07	3,69E+06	1,08E+11	1,17E+10	3,09E+08	1,55E+07

2 Figure S1. A comparison between proxy data (a) δD_{wax} and instrumental data (b) Annual mean 3 precipitation. The dashed line represents the polynomial fit.

8 Figure S2. A GC-MS chromatogram of Nong Thale Pron sample, depth 70.5 cm. X-axis=
9 retention time [min] and y-axis= abundance of compound. Chromatograms in yellow box

10 represent botryococcenes (details below).

Figure S3. An enhancement of the marked area in Figure 2 showing the botryococcenes with their
retention times and corresponding peak heights/areas. X-axis= retention time [min] and y-axis=
abundance of compound.

Figure S5. Spectrum showing the C₂₅ Highly branched Isoprenoid (HBI). The x-axis= molecular mass
while the y-axis= the ratio of intensity of abundance in the molecule.

9 Figure S6. Spectrum showing the C34:5 monocyclic Botryococcene, with x-axis= molecular mass
10 while the y-axis= the ratio of intensity of abundance in the molecule.

- 3 Figure S7. Examples of electron scan images of the sediment samples showing different
- 4 morphologies' or tests of diatoms

References

2	Al-Samarrai, T. and Schmid, J. A.: Simple method for extraction of fungal genomic DNA,
3	Lett. Appl. Microbiol., 30, 53-56, 2000.
4	Alain, K., Callac, N., Ciobanu, M-C., Reynaud, Y., Duthoit, F. and Jebbar, M.: DNA
5	extractions from deep subsea floor sediments: Novel cryogenic-mill-based procedure and
6	comparison to existing protocols, J. Microbiol. Meth., 87, 355-362, 2011.
7	Baas, M., Pancost, R., Van Geel, B. and Sinninghe Damsté. J. S.: A comparative study of
8	lipids in Sphagnum species, Org. Geochem., 31, 535-541, 2000.
9	Castañeda, I. and Schouten, S.: A review of molecular organic proxies for examining modern
10	and ancient lacustrine environments, Quat. Sci. Rev., 30, 2851-2891, 2011.
11	Cheevaporn, V. and Mokkongpai, P.: Pb-210 radiometric dating of estuarine sediments from
12	the eastern coast of Thailand. Journal of Science Society, Thailand, 22, 313-324, 1996.
13	Chikaraishi, Y. and Naraoka, H.: $\delta^{13}C$ and δD identification of sources of lipid biomarkers in
14	sediments of Lake Haruna (Japan), Geochim. Cosmochim. Acta, 69, 3285-3297, 2005.
15	Climatological Center.: Tropical cyclones in Thailand historical data 1951-2010.
16	Meteorological Development Bureau Thai Meteorological Department,
17	http://www.ptcwmoescap.org/AdhocGroupAttachments/26_TROPICAL%20CYCLONE
18	<u>S%20IN%20THAILAND.pdf</u> , 2011.
19	Conrad, R., Calus, P. and Casper, P.: Stable isotope fractionation during the methanogenic
20	degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse
21	Fuchskuhle, Limnol. Oceanogr., 55, 1932–1942, 2010.
22	Crépeau. V, Cambon, B. M-A., Lesongeur, F., Randrianalivelo, H., Sarradin, P-M., Sarrazin,
23	J. and Godfroy, A.: Diversity and function in microbial mats from the Lucky Strike
24	hydrothermal vent field, FEMS Microbiol. Ecol., 76, 524-540, 2011.
25	Department of Mineral Resources of Thailand: Geological map of Nakhon Si Thammarat,
26	Thailand, Scale 1:50,000, (in Thai), 2007.
27	Dilworth, E. and Frey, J. E.: A rapid method for high throughput DNA extraction from plant
28	material for PCR amplification, Plant Mol. Biol. Rep., 18, 61-64, 2000.

1	Dong, H., Jiang, H., Yu, B., Liu, X. and Zhang, C.: Impacts of environmental change and
2	human activity on microbial ecosystems on the Tibetan Plateau, NW China, GSA Today,
3	20, 4–10, 2010.
4	Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science, 156, 1322-1335, 1967.
5	Eglinton, G., Hamilton, R. J.: The distribution of alkanes, in: Swain, T. (Ed.), Chemical Plant
6	Taxonomy, Academic Press, 187–217, 1963.
7	Felder, M., Poli, P., and Joiner, J.: Errors induced by ozone field horizontal inhomogeneities
8	into simulated nadir-viewing orbital backscatter UV measurements, J. Geophys. Res.,
9	112, D01303, doi:10.1029/2005JD006769, 2007.
10	Ficken, K. J., Li, B., Swain, D. L. and Eglinton, G.: An n-alkane proxy for the sedimentary
11	input of submerged/floating freshwater aquatic macrophytes, Org. Geochem., 31, 745-
12	749, 2000.
13	Knittel, K, and Boetius, A.: Anaerobic oxidation of methane: progress with an unknown
14	process, Annu. Rev. Microbiol., 63, 311-334, 2009.
15	Konecky, B. L., Russell, J. M., Rodysill, J. R., Vuille, M., Bijaksana, S. and Huang, Y.:
16	Intensification of southwestern Indonesian rainfall over the past millennium, Geophys.
17	Res. Lett., 40, 386–391, 2013.
18	Lloyd, K. G., May, M. K., Kevorkian, R. T and Steen, A. D.: A meta-analysis of
19	quantification methods shows that archaea and bacteria have similar abundances in the
20	subseafloor, Appl. Environ. Microbiol., 79, 7790-7799, 2013.
21	Luna, G. M., Dell'Anno, A. and Danovaro, R.: DNA extraction procedure: a critical issue for
22	bacterial diversity assessment in marine sediments, Environ. Microbiol., 8, 308-320, doi:
23	10.1111/j.1462-2920.2005.00896.x, 2006.
24	Mayhew, P. J., Jenkins, G. B. and Benton, T. G.,: A long-term association between global
25	temperature and biodiversity, origination and extinction in the fossil record, Proc. Royal
26	Soc. B., 275, 47–53, 2008.
27	Mayhew, P. J., Jenkins, G. B. and Benton, T. G.: A long-term association between global
28	temperature and biodiversity, origination and extinction in the fossil record. Proc. Royal.

29 Soc. B., 275, 47–53, 2008.

- Meyers, P. and Benson, L. V.: Sedimentary biomarker and isotopic indicators of the
 paleoclimatic history of the Walker Lake basin, western Nevada. Org. Geochem., 13,
 807–813, 1988.
- Miller, D. N., Bryant, J. E., Madsen, E. L. and Ghiorse, W. C. : Evaluation and optimization
 of DNA extraction and purification procedures for soil and sediment samples, Appl.
 Environ. Microbiol., 65, 4715-4724, 1999.
- Ministry of Communications, Thailand: Climatological Data of Thailand, 25 Year Period
 (1951–1975), Meteorological Department, Ministry of Communications, Bangkok, 1977.
- 9 Niedermeyer, E. M., Sessions, A. L., Feakins, S. J. and Mohtadi, M.: <u>Hydroclimate of the</u>
 10 <u>Indo-Pacific Warm Pool during the past 24,000 years</u>, PNAS, 111, 9402-9406, 2014.
- Pancost, R. D. and Boot, C. S.: The palaeoclimatic utility of terrestrial biomarkers in marine
 sediments, Mar Chem, 92, 239–261, 2004.
- Rahalkar, M., Deutzmann, J., Schink, B. and Bussmann, I.: Abundance and activity of
 methanotrophic bacteria in littoral and profundal sediments of Lake Constance
 (Germany), Appl. Environ. Microbiol., 75, 119-126, 2009.
- Raksasakulwong, L., Teerarungsigu, N., Tunpisit, P., Jungsamran, S.: Report of geological
 map of Amphoe Thung Yai, Ban Thang Luang, and Ban Nua Klong, scale 1:50,000.
 Meeting of Bureau of Geological Survey. Department of Mineral Resources of Thailand,
 161-166, (in Thai), 1989.
- Rieley, G., Collister, J. W., Stern, B. and Eglinton, G.: Gas chromatography/Isotope ratio
 mass spectrometry of leaf wax *n*-alkanes from plants with differing carbon dioxide
 metabolisms, Rapid Commun. Mass Spectrom., 7, 488–491, 1993.
- Robinson, N., Cranwell, P. A., Finlay, B. J. and Eglinton G.: Lipids of aquatic organisms as
 potential contributors to lacustrine sediments, Org. Geochem. 6, 143–152, 1984.
- Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R.: Isotopic patterns in modern global
 precipitation. In: Climate change in continental isotopic records (Swart, P. K., Lohmann,
 K. C.; McKenzie, J. A.; Savin, S., editors), AGU Monograph, 78, 1-36, 1993.
- Rudd, J. W. M. and Taylor, C. D.: Methane cycling in aquatic environments, Adv. Aquat.
 Microbiol., 2, 77–150, 1980.

1 2 3 4 5 6	 Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F.A., van der Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, HL., Sessions, A. L., White, J. W. C., West, J. B. and Kahmen, A.: Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms, Annu. Rev. Earth Planet. Sci., 40, 221 – 249, 2012.
7	Sachse, D., Radke, J. and Gleixner, G.: Hydrogen isotope ratios of recent lacustrine
8	sedimentary n-alkanes record modern climate variability, Geochim. Cosmochim. Acta,
9	68, 4877–4889, 2004.
10	Santisuk, T.: Forests of Thailand, The Forest Herbarium, <u>http://www.dnp.go.th/Botany/pdf/</u> ,
11	2006.
12 13 14 15	Schneider, U., Andreas, B., Peter, F., Anja, M-C., Bruno, R. and Markus, Z.: GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. DOI: 10.5676/DWD_GPCC/FD_M_V6_050, 2011.
16 17	Smith, C. J. and Osborn, A. M.: Advantages and limitations of quantitative PCR (Q-PCR)- based approaches in microbial ecology, FEMS Microbiol. Ecol., 67, 6-20, 2009.
18 19 20	Smittenberg, R. H., Baas, M., Schouten, S. and Sinninghe Damsté, J. S., The demise of the alga Botryococcus braunii from a Norwegian fjord was due to early eutrophication, The Holocene, 15, 133-140, 2005.
21 22	Teske, A. and Sorensen, K. B.: Uncultured archaea in deep marine subsurface sediments: have we caught them all?, The ISME J., 2, 3-18, 2007.
23 24 25	Thomson, J. A.: An improved non-cryogenic transport and storage preservative facilitating DNA extraction from 'difficult' plants collected at remote sites, Telopea, 9, 755-760, 2002.
26	Tierney, J. E., Oppo, D. W., Rosenthal, Y., Russell, J. M. and Linsley, B. K.: Coordinated
27	hydrological regimes in the Indo-Pacific region during the past two millennia,
28	Paleoceanography, 25, PA1102, doi: 10.1029/2009PA001871, 2010.

- Webster, G., Newberry, C. J., Fry, J. C. and Weightman, A. J.: Assessment of bacterial
 community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques:
 a cautionary tale, J. Microbiol. Meth., 55, 155-164, 2003.
- Wintzingerode, F., Göbel, U. B. and Stackebrandt, E.: Determination of microbial diversity in
 environmental samples: pitfalls of PCR-based rRNA analysis, FEMS Microbiology
 Reviews, 21, 213-229, 1997.