	ACCU ADVANCING EARTH AND
1	SPACE SCIENCE
2	[Global Biogeochemical Cycles]
3	Supporting Information for
4 5	Identifying the most (cost-)efficient regions for CO ₂ removal with Iron Fertilization in the Southern Ocean
6 7	Lennart T. Bach ¹ *, Veronica Tamsitt ² , Kimberlee Baldry ¹ , Jeffrey McGee ^{1,3} , Emmanuel C. Laurenceau-Cornec ^{1,4} , Robert F. Strzepek ^{1,5} , Yinghuan Xie ¹ , Philip W. Boyd ^{1,5}
8	¹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
9	² College of Marine Science, University of South Florida, St Petersberg, Florida, USA.
10	³ Faculty of Law, University of Tasmania, Hobart, Tasmania, Australia.
11	⁴ Univ. Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France.
12	⁵ Australian Antarctic Program Partnership, Hobart, Tasmania, Australia.
13	
14	
15	Contents of this file
16	
17	Text S1 to S3
18	Figures S1 to S4
19	Tables S1 to S6

21 Introduction

References

- 22 The supporting information file contains more detailed method descriptions (Text S1-S3), figures
- 23 (S1-S4) and tables (S1-S6) ordered as they occur in the main text of the paper and the
- 24 supplement. Figures and tables provide more detailed aspects of certain parts of the analysis.
- 25 Text S1 provides mathematical details of estimating limitations on OIF (cost-)efficiency set by
- 26 air-sea CO₂ exchange. Text S2 provides details on estimates of DFe limitation in natural
- 27 phytoplankton communities, while Text S3 provides details on estimating light limitation.

28 Text S1 29

30 In the OIF scenario, the DIC perturbation (DIC_{ptb}) cumulatively changes along a particle trajectory according 31 to the amount of DIC that has been added to the system by air-sea gas exchange and always exhibits a 32 33 34 CO₂ influx relative to the no-OIF scenario (i.e. the background biogeochemical state; Fig. S1A). This is represented as:

35

 $DIC_{ptb} \ (t > 0) = 35 - \sum_{t=0}^{n-1} \times (\Delta DIC'(t) - \Delta DIC(t))$ (1)

36 37 where DIC_{ptb}(t=0) is 35 μ mol kg⁻¹, Δ DIC(t) is the DIC added to the system over 5 days due to air-sea gas 38 exchange of the expected biogeochemical state at timestep t, and $\Delta DIC'(t)$ is the DIC added to the system 39 over 5 days due to air-sea gas exchange of the perturbed system at timestep t.

40 To derive DIC_{ptb}, consider the derivation of Δ DIC from air-sea fluxes for the no-OIF and the OIF scenarios. 41 Δ DIC is calculated by first calculating air-sea CO₂ flux (F) over the mixed layer. 42

$$43 F = G \times K_0 \times (pCO_{2_{SW}} - pCO_{2_{air}}) (2)$$

45 where G is the gas-exchange constant (m s⁻¹), K_0 is the solubility constant (mol m⁻³ atm⁻¹), pCO_{2 sw} is the 46 partial pressure of CO₂ in seawater (μ atm) and pCO₂ air is the partial pressure of CO₂ in air (μ atm). Then 47 ΔDIC (µmol kg⁻¹) can subsequently calculated by iteratively integrating F over 5 days 48

$$\begin{array}{ll}
49 & \Delta DIC = \frac{F \times t}{h \times \rho} \\
50 &
\end{array} \tag{3}$$

51 where t is 5 days (s), ρ is the density of seawater (kg m⁻³) calculated from salinity and temperature using 52 53 seacarb (Gattuso et al. 2021), h is the mixed-layer depth (m) from MOM01.

Thus to calculate DIC ptb, equation (1) should be expanded using equations (2) and (3) with the 54 assumption that atmospheric pCO₂ remains unchanged between the two scenarios. 55

56
$$DIC_{ptb}(t > 0) = 35 + \sum_{t=0}^{n-1} \frac{G(t) \times K_0 \times t}{h(t) \times \rho(t)} (pCO'_{2_{SW}}(t) - pCO_{2_{SW}}(t))$$
 (4)

57

58 The gas exchange constant (G) was calculated using daily mean climatologies of wind speed, temperature 59 and salinity (Table S3) according to Wanninkhof (2014). We linearly scaled G to sea-ice concentration 60 (Butterworth and Miller 2016; Prytherch et al. 2017). The solubility constant (K_0) was calculated using the 61 fourth order polynomial of Wanninkhof (2014). MOM01 model mixed layer depth (h) and the density of 62 seawater (ρ) was calculated from salinity and temperature (Table S3) using the function "rho" from the R 63 "seacarb" package (Gattuso et al. 2021).

64 To calculate $pCO'_{2_{SW}}(t)$ and the carbonate system at the alternate state, we calculated perturbed DIC 65 (DIC'(t)) at each time step using the expected DIC from the no-OIF scenario (DIC(t)) and the amount of DIC 66 added by air-sea gas exchange due to the OIF deficit (DIC_{ptb}): 67

$$68 \quad DIC'(t) = DIC(t) - DIC_{ptb}(t) \quad ($$

69

$$'(t) = DIC(t) - DIC_{ptb}(t)$$
 (5)

70 where DIC(t) was calculated from 1x1 monthly mean climatologies and modeled alkalinity (from the Locally 71 Interpolated Alkalinity Regression v2, (Carter et al. 2018)) using the "carb" function in the R package 72 73 "seacarb" (Gattuso et al. 2021) with K1 and K2 constants from Millero et al. (2006). DIC'(t) was then used to calculate the perturbed pCO₂ of the seawater pCO₂'_sw at each time-step (Millero et al. 2006; Gattuso et 74 al. 2021). We assumed that alkalinity changes are negligible.

75 Finally, we can calculate the fraction of the DIC deficit that is replenished by atmospheric CO₂ influx (f_{Eq}) 76 at each time-step: 77

78
$$f_{Eq} = \left(\frac{1 - DIC_{ptb}}{35}\right)$$
 (6)
79

80 We only calculated f_{Eq} where sea-ice concentration was <60%. This minimized the amount of missing data

81 within our calculations and allowed more trajectories to be included in our analysis, but underestimates CO₂ 82 in-gassing over time under sea-ice, as gas exchange is expected to vary linearly with sea-ice concentration

- 83 (Butterworth and Miller 2016; Prytherch et al. 2017). The OIF scenario was considered fully equilibrated
- 84 when $DIC_{ptb} \le 0$, converging to the no-OIF scenario (Fig. S1B).

85

86 **Text S2** 87

88 We synthesized published shipboard iron-amendment experiments using the following search query on 89 Google Scholar (31, July 2019): "phytoplankton" OR "microalgae" OR "algae" OR "diatom" OR 90 "Phaeocystis" AND "iron" AND "growth" AND "Southern Ocean" OR "Antarctic" OR "Antarctica". The first 91 200 hits were inspected. Relevant datasets were those where natural communities from south of the polar 92 front were incubated under iron-replete (+Fe) and iron-deplete (-Fe) conditions and growth rates from both 93 treatments, as well as background dissolved iron (DFe) concentrations were reported (Table S1). An 94 additional search with the same query but restricting the search to papers published since 2015 was done 95 afterwards because there was a bias towards older and more frequently cited literature.

Growth rates (µ) were calculated from chlorophyll a (chla) increase, particulate organic carbon (POC)
 accumulation, or nitrate draw-down. In some studies growth rates were not provided as numbers but had
 to be calculated using the following equation:

$$100 \qquad \mu = \frac{\ln \left(t_{end}\right) - \ln \left(t_{start}\right)}{d} \tag{7}$$

102 where t_{start} and t_{end} is chla or POC concentration at the start and the end of the experiment, respectively 103 and d is the duration of the experiment in days. (Please note that it was ln(tstart)-ln(tend) in the numerator of 104 equation 7 in calculations using nitrate drawdown.). For this calculation, data often (especially in the older 105 literature) needed to be extracted from plots using the data grabbing tool WebPlotDigitizer 106 (https://automeris.io/WebPlotDigitizer/). We calculated the fold change of growth rate and plotted μ_{+Fe}/μ_{-Fe} 107 as a function of the in situ background (i.e. pre-treatment) DFe concentration from the batch of seawater 108 which was incubated. Bioavailability of DFe was not considered as this was seldom reported in the 109 literature. 110

111 Text S3

112 113 We applied the observation-based approach of Venables and Moore (2010) to assess if light could limit 114 phytoplankton growth during summer south of 60°S. Satellite and Argo float data were used to calculate 115 the mean irradiance in the surface mixed layer (I_{MLD}) and compare this to the threshold irradiance above 116 which phytoplankton communities can grow (I_{MLD_min}). 117 I_{MLD} (mol photons m⁻² d⁻¹) was calculated as:

117 118

110
119
$$I_{MLD} = \frac{PAR_{belowsurf}}{K_d h} (1 - e^{-K_d h})$$
 (8)
120

121 where PAR_{belowsurf} is the photosynthetically active radiation (PAR) just below the sea surface (mol photons 122 $m^{-2} d^{-1}$), K_d the diffuse downwelling attenuation coefficient (m^{-1}), and h the mixed layer depth (m). 123 Downwelling PAR_{belowsurf} is lower than PAR above the surface (PAR_{abovesurf}) because part of the sunlight is 124 reflected at the sea surface. The reflected fraction at the air-sea interface depends on a range of factors 125 such as sun zenith angle, wind speed, or cloud cover (Campbell and Aarup 1989; Mobley and Boss 2012). 126 Between $60 - 70^{\circ}$ S, reflection is approximately 7% for clear sky conditions and calm water during summer 127 (less reflection for wind speed >0 m/s and overcast sky (Campbell and Aarup 1989; Mobley and Boss 128 2012). Sea ice is another medium that absorbs light before it can enter the ocean. Light absorption by sea 129 ice depends on snow cover or the presence of melt ponds on ice but was shown to be on average 0.957 130 (mean transmission = 0.043) (Katlein et al. 2019). Using this information, we approximated PAR_{belowsurf} as: 131

132
$$PAR_{belowsurf} = PAR_{abovesurf} * (0.07 * IC + 0.93) * (1 - IC * 0.957)$$
 (9)

where IC is the sea ice cover from 0 (no ice) to 1 (complete coverage). This equation balances the influence
of reflection of PAR at the liquid air-sea interface and the absorption of PAR by sea ice within a grid field.
Kd was estimated from satellite chlorophyll a following (Venables and Moore 2010):

137 138 $K_d = 0.05 + 0.057 * chla^{0.58}$ (10)

139

where chla is the chlorophyll a concentration in mg m⁻³. PAR_{abovesurf}, IC, and chla were obtained from the NASA Giovanni online data system. More specifically, we downloaded gridded data of austral summer averages (December-February (DJF) 2010-2020) of "photosynthetically available radiation (MODISA_L3m_PAR v2018)" and "Sea-ice covered fraction of tile (M2TMNXFLX v5.12.4)" from the MERRA-2 Model, and "Chlorophyll a concentration (MODISA_L3m_CHL v2018)" from the MERRA-2 Model.

We used an Argo-based climatology to obtain mean DJF mixed layer depths (h) for south of 60°S (Holte et al. 2017). Spatial resolution differed between PAR_{abovesurf}, chla (both 1/24 degree), IC (0.5 x 0.625 (lat x lon) degree), and h (0.5 degree), so that they were re-gridded to 0.5 degrees using raster functions and bilinear interpolation with the software R. Mixed layer depth, as well as K_d, IC, and PAR_{belowsurf} are shown in Fig. S2.

151 Venables and Moore (2010) determined an I_{MLD min} of 3 mol photons m⁻² d⁻¹ in the Southern Ocean by 152 comparing IMLD in Fe-limited regions with IMLD in naturally Fe-fertilized regions (e.g. near the Kerguelen 153 Islands). To further constrain I_{MLD min}, we explored the literature for growth vs. irradiance curves with 154 Southern Ocean phytoplankton species. Our goal was to approximate the daily irradiance above which 155 growth rates are saturated. The reason why we specifically looked for growth rates and not photosynthesis 156 rates is that growth rates are measured over days to weeks while photosynthesis rates are usually 157 measured for hours. Thus, phytoplankton can be assumed to be acclimated to the light levels they are 158 exposed to during the incubation. To find relevant studies we used Google Scholar (29 April 2020) and 159 searched for: "Light" OR "Irradiance" OR "radiation" AND "Southern Ocean" AND "phytoplankton". We only 160 found 2 relevant studies in the first 100 hits so we looked more specifically into the reference lists of these 161 2 studies and found another 2. We normalized growth rates at each light level to the maximum growth rate 162 measured within a growth vs. irradiance curve (Table S2). Finally, we fitted a growth vs. irradiance model 163 (Eilers and Peeters 1988) to the binned data to determine the irradiance that corresponds to the onset of 164 irradiance saturation. The data also suggest the potential for light inhibition at high irradiance but this aspect 165 is not considered in our study as it may reduce growth rates but is unlikely to stop growth (i.e. growth rates 166 remained positive in the data compiled at high irradiance).

Fig S1. Conceptual framework of the air-sea CO₂ equilibration calculation. (A) 169 170 Representation of the "bucket" approach. The initial DIC deficit (equivalent to a seawater CO₂ 171 deficit) of 35 µmol/kg gradually (white bar) fills up with atmospheric CO₂ (red bar) over time until the water parcel carrying the deficit subducts below the mixed layer. The extent to which the 172 173 bucket is full at the time of exiting the mixed layer (f_{Eq}) is the target variable of this calculation. (B) Representation of the background biogeochemical state of DIC (no OIF scenario; blue line) 174 and how a hypothetical OIF operation which generated a 35 µmol/kg DIC deficit (red line) 175 approaches the background state over time through atmospheric CO₂ influx. Strengths and 176 177 weaknesses of this approach are discussed in section 3.1.5.

180 Fig. S2. The four parameters used to calculate austral summer (December-February) I_{MLD}. (A)

181 Mixed layer depth (h). The attenuation of PAR (K_d). (C) Ice cover (IC). (D) Incoming

- 182 photosynthetically available radiation just below the sea surface (PAR_{belowsurf}).

Fig. S3. Mean net distance neutrally-buoyant particles seeded in January drift horizontally within 1 month from release. Particles are binned in 0.5° latitude by 1° longitude bins by starting location and the color indicates the average distance traveled (net horizontal distance in km) from the starting location of all particles released within each bin. Distances are large in the Antarctic Circumpolar Current (ACC) but generally shorter in the Weddell and Ross Gyres and coastal areas, except for some faster coastal currents.

193 194

- 195
- 196
- 197
- 198

Fig. S4. Monthly surface (0-100 m) DFe surface concentrations. Red squares = 0 - 0.25 = "limited"; Blue circles = >0.25 - 0.5 nM = "mildly-limited"; Grey pyramids = >0.5 = non-limited).

Table S1. Summary of the literature analysis to constrain the onset of Iron limitation. Lon. is longitude. Lat. is latitude. Depth is the

207 depth from where the incubated communities were collected (in m). DoE are the days of experiment. V. is the incubation volume (in

208 L). Incub. indicates whether communities were incubated on the deck of a research vessel or in its laboratories. PAR is the

209 photosynthetically active radiation the communities were exposed to during the experiments. Numbers are either given in µmol m⁻² s⁻¹

210 or as percentage of ambient light provided. L:D is the light/dark cycle (hour:hour) during a day. Ambient indicates an L:D cycle at the

211 position of the research vessel during the experiment. T is the incubation temperature in °C. Ambient indicates a temperature at the

position of the research vessel during the experiment. DFe, N, P, and Si are the background concentrations of dissolved iron, nitrate,

phosphate, and silicate, in the batch of the incubated water when it was collected. Meth. indicates how growth rates were measured

(chla = increase of chlorophyll a concentration; POC = increase of particulate organic carbon concentrations; NO3 = decrease of

nitrate concentrations). μ_{+Fe} are the community growth rates in the +Fe treatment. μ_{-Fe} are the community growth rates in the un-

amended controls. μ_{+Fe}/μ_{-Fe} is the fold-change in community growth rates due to Fe enrichment.

217

Reference	Lon.	Lat.	Depth	DoE	V.	Incub.	PAR	L:D	Т	DFe	Ν	Р	Si	Meth.	μ +Fe	µ- _{Fe}	μ+Fe/μ-Fe
(Coale et al. 2003)	178.0 0	-76.50	25	8	20	Deck	120 %	amb.	amb.	0.03	21.6	1.64	71	chla ^a	0.23 0	0.13 7	1.683
(Coale et al. 2003)	176.0 0	-74.30	25	13	20	Deck	120 %	amb.	amb.	0.04	26.9	1.9	63.5	chla ^a	0.20 7	0.09 6	2.153
(Coale et al. 2003)	170.0 0	-62.30	50	18	20	Deck	120 %	amb.	amb.	0.1	31.1	2.06	45.9	chla ^a	0.25 0	0.14 6	1.717
(Coale et al. 2003)	170.0 0	-59.30	50	16	20	Deck	120 %	amb.	amb.	0.06	26.8	1.83	15.2	chla ^a	0.11 0	0.05 3	2.065
(Coale et al. 2003)	170.1 0	-67.80	20	15	20	Deck	120 %	amb.	amb.	<0.0 3	25.1	1.56	59.8	chla ^a	0.26 0	0.07 1	3.646
(Coale et al. 2003)	170.1 0	-62.00	25	16	20	Deck	120 %	amb.	amb.	0.11	22.6	1.43	4.9	chlaª	0.12 0	0.03 6	3.337
(Bertrand et al. 2007)	- 179.3 8	-74.43	5-8	6	1.1	Deck	20%	amb.	amb.	0.31	19.8 9	1.36	63.6 4	chla⁵	0.22 8	0.11 0	2.077
(Bertrand et al. 2007)	179.1 1	-76.00	5-8	9	1.1	Deck	20%	amb.	amb.	0.11	20	1.33	62	chla ^c	0.25 4	0.09 5	2.686
(Bertrand et al. 2007)	173.3 0	-75.00	5-8	8	1.1	Deck	20%	amb.	amb.	0.13	22.9 8	1.63	62	chla ^c	0.46 5	0.21 5	2.165

(Bertrand et al. 2007)	168.9 6	-76.65	10	7	0.0 6	Deck	20%	amb.	amb.	0.09	13.3 7	1.49	74.7 5	chla ^c	0.36 0	0.24 0	1.500
(Takeda 1998)	140.7 0	-64.20	10-15	7	12	Deck	40%	amb.	amb.	0.16	22.8	1.24	18.7	chla	0.43 0	0.13 0	3.308
(Takeda 1998)	140.7 0	-64.20	10-15	7	12	Deck	2.60 %	amb.	amb.	0.16	22.8	1.24	18.7	chla	0.40 0	0.13 0	3.077
(Cullen et al. 2003)	- 170.1 0	-67.80	20	10.7	20	Deck	120 %	amb.	amb.	0.03	25.1	1.54	60	chla	0.28 0	0.15 0	1.867
(Öztürk et al. 2004)	6.00	-56.5	15	13	12	Deck	50%	amb.	amb.	0.47	29		60	chla	0.32 3	0.23 6	1.368
(Sedwick et al. 2000)	179.9 5	-76.48	0.3	6	1.2	Deck	50%	amb.	amb.	0.82	27.5			chla⁵	0.16 7	0.30 6	0.545
(Sedwick et al. 2000)	170.7 3	-76.50	0.4	7	2.2	Deck	50%	amb.	amb.	2.2	26			chla⁵	0.33 5	0.33 5	1.000
(Van Leeuwe et al. 1997)	-6.20	-57.3			20	Lab	100	16:8	1	0.6	repl.	repl.	repl.	chla ^d	0.19 7	0.23 0	0.857
(Van Leeuwe et al. 1997)	-6.00	-48.82			20	Lab	100	16:8	1	0.5	repl.	repl.	repl.	chla⁴	0.28 0	0.21 5	1.302
(Van Leeuwe et al. 1997)	-6.00	-47			20	Lab	100	16:8	1	3.5	23	1.6	14	chla ^d	0.45 0	0.35 0	1.286
(Van Leeuwe et al. 1997)	-6.27	-59			20	Lab	100	16:8	1	0.5	repl.	repl.	repl.	chla⁴	0.38 5	0.34 5	1.116
(Sedwick et al. 2007)	173.2 3	-73.4	0.3		1	Deck	15%	amb.	0	0.38	20	1.5	55	chla ^c	0.39 0	0.38 6	1.008
(Sedwick et al. 2007)	173.2 3	-73.4	0.3		1	Deck	15%	amb.	0	0.38	20	1.5	55	chla ^c	0.21 0	0.17 9	1.169

(Timmerm ans et al. 1998)	-91.83	-67.21	40	3	20	Lab	80	8:16	3.5	0.31	24.7 2	1.73	14.2 2	chla	0.00 3	0.00 5	0.531
(Rose et al. 2009)	177.3 6	-75	surfac e		4.5	Deck	18%	amb.	0	0.15	25.8	1.9	68	chla	0.29 6	0.14 2	2.087
(Kustka et al. 2015)	178.0 0	-74.5	33-44	10	8	Lab	40	24:0	1.5	0.23 5	18.6		56.9	chla	0.25 8	0.09 9	2.606
(Kustka et al. 2015)	178.5 0	-72.58	25-35	9	8	Lab	40	24:0	1.5	0.18 8	27.7		58.5	chla	0.24 2	0.11 8	2.051
(Kustka et al. 2015)	176.6 5	-74.14	30-40	9	8	Lab	40	24:0	1.5	0.12	27.6		66	chla	0.26 2	0.10 5	2.495
(Kustka et al. 2015)	178.7 5	-74.20	25-35		8	Lab	40	24:0	1.5	0.12 7	22.4		61.4	chla	0.36 5	0.16 0	2.281
(Hopkinso n et al. 2007)	-57.70	-60.5	20	7-14	4	Lab	218	24:0	2.5	0.14				chla	0.32 0	0.15 0	2.133
(Hopkinso n et al. 2007)	-57.70	-60.5	85	7-14	4	Lab	37	24:0	2.5	0.12				chla	0.34 0	0.14 0	2.429
(Hopkinso n et al. 2007)	-54.10	-59.6	25	7-14	50	Lab	185	24:0	2.5	0.09				chla	0.24 0	0.11 0	2.182
(Hopkinso n et al. 2007)	-54.90	-59.4	20	11	4	Lab	139	24:0	2.5	0.11	22			chla	0.23 0	0.08 0	2.875
(Hopkinso n et al. 2007)	-54.90	-59.4	50	7-14	4	Lab	34	24:0	2.5	0.31				chla	0.34 0	0.17 0	2.000
(Hopkinso n et al. 2007)	-58.00	-61.2	20	7-14	4	Lab	218	24:0	2.5	1.74				chla	0.21 0	0.19 0	1.105
(Hopkinso n et al. 2007)	-54.40	-60.9	20	14	4	Lab	218	24:0	2.5	1.59	28			chla	0.42 0	0.37 0	1.135
(Viljoen et al. 2018)	0.00	-65	30		2.4	Lab	25	amb.	0	0.19	25.2		74.3	chla ^e	0.23 0	0.13 0	1.769

(Viljoen et al. 2018)	0.00	-65	30		2.4	Lab	65	amb.	0	0.19	25.2		74.3	chla ^e	0.26 0	0.15 0	1.733
(Wu et al. 2019)	166.6 7	-77.85		7	0.3	Lab	80	24:0	0.5	1.01				chla	0.22 1	0.12 6	1.752
(Wu et al. 2019)	166.6 7	-77.85		8	0.3	Lab	80	24:0	0.5	0.47				chla	0.17 2	0.19 0	0.903
(Alderkam p et al. 2019)	177.5 1	-77	10.2	6	2	Deck	3%	amb.	-0.5	0.08 6	20.3	1.45	71.7	POC	0.18 0	0.12 4	1.452
(Alderkam p et al. 2019)	177.5 1	-77	10.2	6	2	Deck	30%	amb.	-0.5	0.08 6	20.3	1.45	71.7	POC	0.22 5	0.16 9	1.331
(Alderkam p et al. 2019)	177.5 0	-77.32	9.97	6	2	Deck	3%	amb.	-0.5	0.06 7	23.2	1.61	70.8	POC	0.20 8	0.14 1	1.475
(Alderkam p et al. 2019)	177.5 0	-77.32	9.97	6	2	Deck	30%	amb.	-0.5	0.06 7	23.2	1.61	70.8	POC	0.24 5	0.16 8	1.458
(Alderkam p et al. 2019)	171.0 0	-77	25.01	6	2	Deck	3%	amb.	-0.5	0.09	21.7	1.53	70.1	POC	0.12 0	0.09 2	1.304
(Alderkam p et al. 2019)	171.0 0	-77	25.01	6	2	Deck	30%	amb.	-0.5	0.09	21.7	1.53	70.1	POC	0.20 6	0.15 9	1.296
(Alderkam p et al. 2019)	171.0 0	-76.5	23.5	6	2	Deck	3%	amb.	-0.5	0.06 1	17.7	1.06	57.4	POC	0.06 7	0.02 4	2.792
(Alderkam p et al. 2019)	171.0 0	-76.5	23.5	6	2	Deck	30%	amb.	-0.5	0.06 1	17.7	1.06	57.4	POC	0.15 6	0.09 1	1.714
(Alderkam p et al. 2019)	10.03	-53.01	24	10- 15	4	Lab	30	24:0	3	0.23	24.6	1.6	32.1	NO3 ^f	0.05 2	0.03 1	1.692
(Endo et al. 2017)	140.0 5	-59	15	3.3	9	Lab	100	17:7	3.6	0.04 3	24.9 6	1.59	11.1 1	chla	0.35 1	0.10 3	3.400

(Endo et al. 2017)	110.0 0	-60	15	3.7	9	Lab	100	18.5: 5.5	2.5	0.05 2	25.8 2	1.61	29.5 4	chla	0.40 5	0.08 4	4.816
(Endo et al. 2017)	138.0 8	-60.35	15	4	9	Lab	100	19.2 5:4.7 5	1	0.02 4	25.7	1.65	39.7 5	chla	0.48 2	0.46 2	1.042

^adata extracted from plots except for the control.

^bdata extracted from plots. t_{end} was the value before N, P, or Si were limiting.

^cdata extracted from plots.

²²¹ ^dthe authors excluded the lag phase that occurred directly after the Fe addition

²²² ^ethe authors also measured POC based growth and these values were different to the chla based values. We chose their chla based

223 values for consistency with most other datasets.

²²⁴ ^fthe authors diluted the experiment multiple times. We used only values before the first dilution.

225

226

Table S2. Summary of the literature analysis for growth vs. irradiance curve of Southern

229 Ocean phytoplankton. I is the growth irradiance in µmol m⁻² s⁻¹. L:D is the light:dark cycle

230 of the incubation in hour:hour. PAR is the photosynthetically active radiation the

communities were exposed to in mol $m^{-2} d^{-1}$. T is the incubation temperature in °C.

Ambient indicates a temperature at the position of the research vessel during the

233 experiment. N, P, and Si are the concentrations of dissolved nitrate, phosphate, and

silicate during incubations. Rel. μ is the growth rate normalized to the maximum growth

- rate observed in a growth vs. irradiance curve. Exp. indicates that data belongs to the
- same growth vs. irradiance curve.

(Strzepek et al. 30 10 Phaeocystis 2012) 570 24:0 49.2 3.0 0 10 0 antarctica 0.82 1 (Strzepek et al. 30 10 10 0 antarctica 0.82 1	(Strzopok										
et al. 30 10 Phaeocystis 2012) 570 24:0 49.2 3.0 0 10 0 antarctica 0.82 1 (Strzepek 30 30 10 10 Phaeocystis 0.82 1	Guzepek										
2012) 570 24:0 49.2 3.0 0 10 0 antarctica 0.82 1 (Strzepek	et al.					30		10	Phaeocystis		
(Strzepek	2012)	570	24:0	49.2	3.0	0	10	0	antarctica	0.82	1
	(Strzepek										
	et al.					30		10	Phaeocystis		
2012) 400 24:0 34.6 3.0 0 10 0 <i>antarctica</i> 1.00 1	2012)	400	24:0	34.6	3.0	0	10	0	antarctica	1.00	1
(Strzepek	(Strzepek										
et al. 30 10 Phaeocystis	et al.					30		10	Phaeocvstis		
2012) 98 24:0 8.5 3.0 0 10 0 <i>antarctica</i> 0.61 1	2012)	98	24:0	8.5	3.0	0	10	0	antarctica	0.61	1
(Strzepek	(Strzepek										
et al. 30 10 Phaeocystis	et al.					30		10	Phaeocvstis		
2012) 57 24:0 4.9 3.0 0 10 0 antarctica 0.64 1	2012)	57	24:0	4.9	3.0	0	10	0	antarctica	0.64	1
(Strzepek	(Strzepek							-			
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012 34 24.0 2.9 3.0 0 10 0 antarctica 0.45 1	2012)	34	24·0	29	3.0	0	10	0	antarctica	0 45	1
(Strzenek	(Strzenek		2.110	2.0	0.0					0110	•
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012 18 24.0 1.6 3.0 0 10 0 <i>antarctica</i> 0.42 1	2012)	18	24·0	16	30	0	10	0	antarctica	0 42	1
(Strzepek	(Strzepek		2.110		0.0					0112	
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012 8 24:0 0.7 3.0 0 10 0 antarctica 0.21 1	2012)	8	24:0	0.7	3.0	0	10	0	antarctica	0.21	1
(Strzepek	(Strzepek					-		-			-
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012 3 24:0 0.3 3.0 0 10 0 antarctica 0.15 1	2012)	3	24:0	0.3	3.0	0	10	0	antarctica	0.15	1
(Strzepek	(Strzepek			0.0	0.0						
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012 100 24.0 8.6 3.0 0 10 0 antarctica 1.00 2	2012)	100	24·0	86	30	0	10	0	antarctica	1 00	2
(Strzepek	(Strzepek		2.110	0.0	0.0						_
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012 70 24.0 6.0 3.0 0 10 0 antarctica 0.97 2	2012)	70	24·0	60	30	0	10	0	antarctica	0.97	2
(Strzenek	(Strzenek		2.110	0.0	0.0					0.01	_
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012 30 24.0 2.6 3.0 0 10 0 antarctica 0.91 2	2012)	30	24.0	26	3.0	0	10	0	antarctica	0.91	2
(Strzenek	(Strzenek		20	2.0	0.0	Ŭ	10			0.01	
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012 10 24.0 0.9 3.0 0 10 0 antarctica 0.67 2	2012)	10	24.0	09	3.0	0	10	0	antarctica	0.67	2
(Strzenek	(Strzenek		20	0.0	0.0	Ŭ	10			5.07	-
et al 30 10 Phaeocystis	et al					30		10	Phaeocystis		
2012) 3 24:0 0.3 3.0 0 10 0 <i>antarctica</i> 0.47 2	2012)	3	24:0	0.3	3.0	0	10	0	antarctica	0.47	2

Crtai. 100 24:0 8.6 3.0 0 10 0 Proboscia inermis 1.00 3 (Strzepek 30 10 0 10 0 Proboscia inermis 1.00 3 (Strzepek 30 10 30 10 0 Proboscia inermis 0.92 3 (Strzepek 6.0 3.0 0 10 0 Proboscia inermis 0.92 3 (Strzepek 30 10 0 Proboscia inermis 0.92 3 (Strzepek 30 10 0 Proboscia inermis 0.92 3 (Strzepek 30 24:0 2.6 3.0 0 10 0 Proboscia inermis 0.75 3 (Strzepek 30 10 30 10 0 Proboscia inermis 0.44 3 (Strzepek 30 10 0 0 Proboscia inermis 0.44 3	(Strzepek					30		10			
Lot Ly Hot Line Line Ord	2012)	100	24.0	86	3.0	0	10	0	Proboscia inermis	1 00	3
(Str2epok 30 10 0 Proboscia inermis 0.92 3 (Strzepek 30 10 0 Proboscia inermis 0.75 3 (Strzepek 30 10 0 Proboscia inermis 0.75 3 (Strzepek 30 10 0 Proboscia inermis 0.75 3 (Strzepek 30 10 0 Proboscia inermis 0.44 3 (Strzepek 0.9 3.0 0 10 0 Proboscia inermis 0.44 3	(Strzepek	100	21.0	0.0	0.0		10			1.00	0
2012) 70 24:0 6.0 3.0 0 10 0 Proboscia inermis 0.92 3 (Strzepek et al. 30 10 0 10 0 Proboscia inermis 0.92 3 (Strzepek et al. 30 24:0 2.6 3.0 0 10 0 Proboscia inermis 0.75 3 (Strzepek et al. 30 24:0 2.6 3.0 0 10 0 Proboscia inermis 0.75 3 (Strzepek et al. 30 10 30 10 0 Proboscia inermis 0.44 3 (Strzepek 6 <t< td=""><td>et al.</td><td></td><td></td><td></td><td></td><td>30</td><td></td><td>10</td><td></td><td></td><td></td></t<>	et al.					30		10			
(Strzepek et al. 30 10 Proboscia inermis 0.75 3 2012) 30 24:0 2.6 3.0 0 10 0 Proboscia inermis 0.75 3 (Strzepek et al. 30 10 0 Proboscia inermis 0.75 3 (Strzepek et al. 30 10 0 Proboscia inermis 0.44 3 (Strzepek 10 24:0 0.9 3.0 0 10 0 Proboscia inermis 0.44 3	2012)	70	24:0	6.0	3.0	0	10	0	Proboscia inermis	0.92	3
et al. 30 24:0 2.6 3.0 0 10 0 Proboscia inermis 0.75 3 (Strzepek 30 24:0 2.6 3.0 0 10 0 Proboscia inermis 0.75 3 (Strzepek 30 10 30 10 10 0 Proboscia inermis 0.75 3 (Strzepek 30 10 10 0 Proboscia inermis 0.44 3 (Strzepek 5 5 5 5 5 5 5 5	(Strzepek							-			
2012) 30 24:0 2.6 3.0 0 10 0 Proboscia inermis 0.75 3 (Strzepek et al. 30 10	et al.					30		10			
(Strzepek et al. 2012) 10 24:0 0.9 3.0 10 10 Proboscia inermis 0.44 3 (Strzepek 30 10 0 Proboscia inermis 0.44 3	2012)	30	24:0	2.6	3.0	0	10	0	Proboscia inermis	0.75	3
et al. 30 10 2012) 10 24:0 0.9 3.0 0 10 0 Proboscia inermis 0.44 3 (Strzepek 30 10 33 33	(Strzepek										
2012) 10 24:0 0.9 3.0 0 10 0 Proboscia inermis 0.44 3 (Strzepek 3	et al.					30		10			
(Strzepek	2012)	10	24:0	0.9	3.0	0	10	0	Proboscia inermis	0.44	3
	(Strzepek										
et al. 30 10	et al.					30		10			
2012) 3 24:0 0.3 3.0 0 10 0 Proboscia inermis 0.22 3	2012)	3	24:0	0.3	3.0	0	10	0	Proboscia inermis	0.22	3
(Strzepek	(Strzepek										
	et al.	100	04.0	0.0		30	10	10		4 00	
2012) 100 24:0 8.6 3.0 0 10 0 Eucampia antarctica 1.00 4	2012)	100	24:0	8.6	3.0	0	10	0	Eucampia antarctica	1.00	4
	(Strzepek					20		10			
et al. 30 10 2012) 70 24:0 6.0 2.0 0 10 5.0 1.00 4.0	et al.	70	24.0	6.0	20	30	10		Eucompio optoration	1 00	1
2012) 70 24.0 0.0 5.0 0 10 0 Eucampia antarctica 1.00 4	2012)	70	24.0	0.0	3.0	0	10	0	Eucampia antarctica	1.00	4
						30		10			
2012 30 $24\cdot0$ 2.6 3.0 0 10 50 50 10 20	2012)	30	24.0	26	3.0	0	10		Eucampia antarctica	0 72	4
(Strzenek	(Strzenek	50	24.0	2.0	5.0	0	10	0		0.72	4
	et al					30		10			
2012 10 24.0 0.9 3.0 0 10 0 Fucampia antarctica 0.74 4	2012)	10	24.0	0.9	30	0	10	0	Fucampia antarctica	0 74	4
(Strzepek	(Strzepek		2	010	0.0		10		Zubampia amarbiba	011 1	
et al. 30 10	et al.					30		10			
2012) 3 24:0 0.3 3.0 0 10 0 <i>Eucampia antarctica</i> 0.55 4	2012)	3	24:0	0.3	3.0	0	10	0	Eucampia antarctica	0.55	4
(Arrigo et 30 rep Fragilariopsis	(Arrigo et					30		rep	Fragilariopsis		
al. 2010) 5 24:0 0.4 2.0 0 10 I. <i>cylindrus</i> 0.55 5	al. 2010)	5	24:0	0.4	2.0	0	10	l. [.]	cylindrus	0.55	5
(Arrigo et 30 rep <i>Fragilariopsis</i>	(Arrigo et					30		rep	Fragilariopsis		
al. 2010) 25 24:0 2.2 2.0 0 10 I. cylindrus 0.91 5	al. 2010)	25	24:0	2.2	2.0	0	10	Ι.	cylindrus	0.91	5
(Arrigo et 30 rep Fragilariopsis	(Arrigo et					30		rep	Fragilariopsis		
al. 2010) 65 24:0 5.6 2.0 0 10 I. cylindrus 1.00 5	al. 2010)	65	24:0	5.6	2.0	0	10	Ι.	cylindrus	1.00	5
(Arrigo et 30 rep <i>Fragilariopsis</i>	(Arrigo et					30		rep	Fragilariopsis		
al. 2010) 125 24:0 10.8 2.0 0 10 l. <i>cylindrus</i> 0.82 5	al. 2010)	125	24:0	10.8	2.0	0	10	Ι.	cylindrus	0.82	5
(Arrigo et 30 Phaeocystis	(Arrigo et	_				30	4.0		Phaeocystis	0.00	
al. 2010) 5 24:0 0.4 2.0 0 10 antarctica 0.26 6	al. 2010)	5	24:0	0.4	2.0	0	10		antarctica	0.26	6
(Arrigo et 30 Phaeocystis	(Arrigo et	05	04.0	0.0	2.0	30	10		Phaeocystis	0.00	0
al. 2010) 25 24:0 2.2 2.0 0 10 antarctica 0.86 6 (Arring at	al. 2010)	25	24:0	Z.Z	2.0	0	10		antarctica Dha a a suatia	0.86	6
(Arrigu et 30 Phaeocystis 100 65 24:0 5.6 2.0 0 10 enteration 100 6		65	24.0	56	2.0	30	10		rnaeocystis	1 00	6
Al. 2010 05 24.0 5.0 2.0 0 10 Allalclica 1.00 0 (Arrigo of Lemma 1.00 30 30 Dependentia 1.00 0	(Arrigo of	05	24.0	5.0	2.0	20	10		Dhaqquetic	1.00	0
$\begin{vmatrix} r \\ r $		125	24.0	10.8	20	0	10		antarctica	0 63	6
(Arrigo et 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(Arrigo et	125	27.0	10.0	2.0	30	10		Phaencvetie	0.00	0
al. 2010) 5 24:0 0.4 2.0 0 10 <i>antarctica</i> 0.20 7	al. 2010)	5	24:0	04	20	0	10		antarctica	0 20	7
(Arrigo et 30 30 Phaeocystis	(Arrigo et			0.1		30			Phaeocystis	0.20	•
al. 2010) 25 24:0 2.2 2.0 0 10 <i>antarctica</i> 0.34 7	al. 2010)	25	24:0	2.2	2.0	0	10		antarctica	0.34	7

(Arrigo et					30	10		Phaeocystis	0.74	_
al. 2010)	65	24:0	5.6	2.0	0	10		antarctica	0.71	7
(Arrigo et					30			Phaeocystis		
al. 2010)	125	24:0	10.8	2.0	0	10		antarctica	0.63	7
(Timmerm										
ans et al.										
2007)	15	16:8	0.8	4.0	80	5	80	Chaetoceros brevis	0.00	8
(Timmerm										
ans et al.										
2007)	18	16:8	1.0	4.0	80	5	80	Chaetoceros brevis	0.58	8
(Timmerm										
ans et al.										
2007)	38	16:8	2.2	4.0	80	5	80	Chaetoceros brevis	0.71	8
(Timmerm										
ans et al.										
2007)	45	16:8	2.6	4.0	80	5	80	Chaetoceros brevis	0.86	8
(Timmerm										
ans et al.										
2007)	65	16:8	3.7	4.0	80	5	80	Chaetoceros brevis	0.91	8
(Timmerm			•							•
ans et al										
2007)	78	16.8	45	4 0	80	5	80	Chaetoceros brevis	0.92	8
(Timmerm	10	10.0	1.0	1.0	00	•	00		0.02	Ŭ
ans et al										
2007)	100	16.8	57	4 0	80	5	80	Chaetoceros brevis	1 00	8
(Timmerm	100	10.0	0.7	1.0	00	0	00		1.00	0
ans et al								Thalassiosira		
2007)	12	16.8	07	40	80	5	80	antarctica	0.01	g
(Timmerm	12	10.0	0.7	7.0	00	0	00	antarotioa	0.01	0
ans et al								Thalassiosira		
2007)	1/	16.8	0.8	10	80	5	80	antarctica	0.53	٩
(Timmerm	17	10.0	0.0	+.0	00	5	00	antarctica	0.00	5
ans of al								Thalassiosira		
2007)	30	16.8	17	10	80	5	80	antarctica	0.68	Q
(Timmorm		10.0	1.7	4.0	00	5	00	antarctica	0.00	3
								Thalassiasira		
2007)	40	16.9	22	4.0	<u>م</u>	Б	<u>م</u>	antaratica	0.71	0
2007) (Timmorm	40	10.0	2.3	4.0	00	5	00	antarctica	0.71	9
								Thelessiasire		
2007)	70	16.0	10	4.0	00	5	٥٨	Inalassiosira	0.96	0
2007) (Timmorm	70	10.0	4.0	4.0	00	5	00	antarctica	0.00	9
								Thelessissing		
	100	16.0	FO	10	00	F	00	TTIAIASSIOSIFA	1 00	0
2007)	103	0.0	5.9	4.0	σU	Э	δU	ลาแลเวเเตล	1.00	9
(Baumann								Dharas ('		
et al.		04.0		4.0	~~	~	7-	Pnaeocystis	0.00	4.0
1994)	4	24:0	0.3	-1.6	29	2	75	antartica	0.20	10
(Baumann										
et al.						_		Phaeocystis		
1994)	17	24:0	1.5	-1.6	29	2	75	antartica	0.44	10

(Baumann		
et al. Phaeocystis	0.65	10
(Baumann	0.05	10
et al. Phaeocystis		
1994) 100 24:0 8.7 -1.6 29 2 75 antartica	0.83	10
(Baumann		
et al. Phaeocystis		
1994) 161 24:0 13.9 -1.6 29 2 75 antartica	0.95	10
Baumann		
et al. Phaeocysus 1994) 351 24:0 30.3 1.6 29 2 75 aptartica	1 00	10
(Baumann	1.00	10
et al Phaeocystis		
1994) 5 24:0 0.4 1.0 29 2 75 antartica	0.45	11
(Baumann		
et al. Phaeocystis		
1994) 19 24:0 1.6 1.0 29 2 75 antartica	0.62	11
(Baumann		
et al. Phaeocystis		
1994) 52 24:0 4.5 1.0 29 2 75 antartica	0.63	11
Baumann		
et al. Phaeocystis	0.78	11
(Baumann	0.70	
et al Phaeocystis		
1994) 161 24:0 13.9 1.0 29 2 75 antartica	0.87	11
(Baumann		
et al. Phaeocystis		
1994) 353 24:0 30.5 1.0 29 2 75 antartica	1.00	11
(Baumann		
	0.40	10
1994) 4 24:0 0.3 -1.6 29 2 75 Chaetoceros socialis	0.13	12
(Baumann		
1994) 18 24.0 16 -16 29 2 75 Chaetoceros socialis	0.28	12
	0.20	12
et al.		
1994) 50 24:0 4.3 -1.6 29 2 75 Chaetoceros socialis	0.43	12
(Baumann		
et al.		
1994) 100 24:0 8.7 -1.6 29 2 75 Chaetoceros socialis	1.00	12
(Baumann		
	0.50	40
1994) 100 24:0 13:0 -1:0 29 2 75 Chaetoceros socialis	0.50	12
1994) 350 24:0 30.2 -1.6 29 2 75 Chaetoceros socialis	0.15	12

(Baumann										
et al. 1994)	5	24.0	0.4	10	20	2	75	Chaetoceros socialis	0.23	13
(Baumann	5	24.0	0.4	1.0	25	~ ~	10	Onacioceros socians	0.20	10
et al.										
1994)	19	24:0	1.7	1.0	29	2	75	Chaetoceros socialis	0.43	13
(Baumann										
et al.	50	24.0	4 5	10	20	0	75	Chasterer encielie	0.00	10
(Baumann	52	24:0	4.5	1.0	29	2	75	Chaeloceros socialis	0.88	13
et al										
1994)	101	24:0	8.8	1.0	29	2	75	Chaetoceros socialis	0.91	13
(Baumann										
et al.										
1994)	162	24:0	14.0	1.0	29	2	75	Chaetoceros socialis	1.00	13
(Baumann										
et al.	050		00.4	4.0		•			0.05	10
1994)	352	24:0	30.4	1.0	29	2	75	Chaetoceros socialis	0.95	13
(Baumann										
1004)	З	24.0	03	-16	29	2	75	Nitzschia curta	0 16	14
(Baumann	5	24.0	0.0	-1.0	25	~	75		0.10	17
et al.										
1994)	18	24:0	1.5	-1.6	29	2	75	Nitzschia curta	0.37	14
(Baumann										
et al.										
1994)	50	24:0	4.4	-1.6	29	2	75	Nitzschia curta	1.00	14
(Baumann										
et al.	00	24.0	0.6	16	20	0	75	Nitzachia aurta	0 50	11
(Baumann	99	24.0	0.0	-1.0	29	2	75		0.00	14
et al										
1994)	160	24:0	13.8	-1.6	29	2	75	Nitzschia curta	0.37	14
(Baumann										
èt al.										
1994)	350	24:0	30.3	-1.6	29	2	75	Nitzschia curta	0.36	14
(Baumann										
et al.	_			4.0		•			0.05	4.5
1994)	5	24:0	0.4	1.0	29	2	75	Nitzschia curta	0.25	15
(Baumann										
1004)	18	24.0	16	10	29	2	75	Nitzschia curta	0.63	15
(Baumann	10	24.0	1.0	1.0	25	~	75		0.00	10
et al.										
1994)	51	24:0	4.4	1.0	29	2	75	Nitzschia curta	1.00	15
(Baumann										
et al.										
1994)	100	24:0	8.6	1.0	29	2	75	Nitzschia curta	0.93	15

(Baumann										
et al.	150	24.0	12.0	10	20	2	75	Nitzachia aurta	0.01	15
(Baumann	159	24.0	13.0	1.0	29	Z	75		0.91	15
et al										
1994)	350	24:0	30.2	1.0	29	2	75	Nitzschia curta	0.91	15
(Baumann										
et al.										
1994)	4	24:0	0.4	-1.6	29	2	75	Thalassiosira tumida	0.00	16
(Baumann										
et al.										
1994)	18	24:0	1.5	-1.6	29	2	75	Thalassiosira tumida	0.27	16
(Baumann										
et al.										10
1994)	52	24:0	4.5	-1.6	29	2	75	Thalassiosira tumida	0.74	16
(Baumann										
et al.	101	24.0	07	16	20	n	75	Thelessiesire turide	1 00	16
(Boumonn	101	24.0	0.7	-1.0	29	Z	75	11181855105118 [U111108	1.00	10
1994)	160	24.0	13.8	-16	29	2	75	Thalassiosira tumida	0.94	16
(Baumann		2	1010						0.01	
et al.										
1994)	351	24:0	30.3	-1.6	29	2	75	Thalassiosira tumida	0.74	16
(Baumann										
et al.										
1994)	4	24:0	0.3	1.0	29	2	75	Thalassiosira tumida	0.10	17
(Baumann										
et al.	10		4 5	4.0		•		_ , , , .,	0.47	47
1994)	18	24:0	1.5	1.0	29	2	75	Thalassiosira tumida	0.47	17
(Baumann										
et al.	50	24.0	12	1.0	20	n	75	Thelessiesire turide	0 00	17
(Boumonn	50	24.0	4.3	1.0	29	2	75		0.09	17
1994)	100	24.0	87	10	29	2	75	Thalassiosira tumida	1 00	17
(Baumann	100	21.0	0.1	1.0	20				1.00	.,
et al.										
1994)	160	24:0	13.8	1.0	29	2	75	Thalassiosira tumida	0.99	17
(Baumann										
et al.										
1994)	351	24:0	30.4	1.0	29	2	75	Thalassiosira tumida	0.89	17

238

239 **Table S3.**

Sources of the required mean climatologies for salinity, temperature, dissolved oxygen, phosphate, silicate, nitrate, total alkalinity (TA), pCO₂, wind speed, and sea-ice concentration for the Southern Ocean south of 60°S. Daily mean climatologies were generated for sea-ice concentration, wind speed, temperature and salinity for calculations of air-sea gas exchange. Coarser, monthly mean climatologies were used for carbonate

- parameters, as the spatiotemporal variability of these data has a small influence on CO₂
 equilibration time-scales (Jones et al. 2014). Mean climatologies were bi-linearly
 interpolated along MOM01 particle trajectories (position saved every 5 days), without
 linear interpolation between months to avoid significant data loss due to sea-ice coverage.
 WOA https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
- 250 CCMP http://data.remss.com/ccmp/v02.0
- 251 NSIDC https://nsidc.org/data/seaice_index/archives
- 252 OISST https://www.ncdc.noaa.gov/oisst

Variable	Time period	Source	Resolution
surface salinity	All data	WOA (0-10m average) (Boyer et al. 2018)	1x1 degree, monthly
dissolved oxygen	All data	WOA (0-10m average) (Boyer et al. 2018)	1x1 degree, monthly
phosphate	All data	WOA (0-10m average) (Boyer et al. 2018)	1x1 degree, monthly
silicate	All data	WOA (0-10m average) (Boyer et al. 2018)	1x1 degree, monthly
nitrate	All data	WOA (0-10m average) (Boyer et al. 2018)	1x1 degree, monthly
temperature	2010-2018	NOAA OISST (Huang et al. 2021)	0.25x0.25 degree, daily
pCO _{2 sea}	2010-2016	(Gregor et al. 2019)	1x1 degree, monthly
wind speed	2010-2018	CCMP reanalysis (Wentz et al. 2015)	0.25x0.25 degree, daily
sea-ice	2010-2018	NSIDC (Maslanik and Stroeve 1999)	25 km x 25 km, daily

- 253
- 254

255 Table S4. Export-ratios compiled for all available data from the Southern Ocean south of 256 60°S. Export-ratios were calculated as the ratio of particulate organic carbon (POC) flux 257 at 100 m to net primary productivity (NPP) integrated over the euphotic zone. Flux data 258 and locations were extracted from the given references. The applied method (Sediment 259 trap or Thorium-based) is provided in the "Method" column. The NPP data were satellite-260 derived, using a 8 day climatology calculated with the CAFE algorithm (Silsbe et al. 261 2016) available at http://sites.science.oregonstate.edu/ocean.productivity/index.php. 262 NPP values were spatially averaged over a 0.25 x 0.25° box centered on the location of 263 flux measurements, and temporally averaged over 16 days in case of Thorium-based 264 fluxes (²³⁴Th residence time; (Henson et al. 2011)) or over the duration of trap 265 deployments to better account for horizontal advection and export time-lags (Laws and Maiti 2019). Six export-ratios exceeding 1 (i.e. export flux > NPP) were removed from 266 the analysis.

Reference	Latitude	Longitude	Date	Method	Export- ratio
(Asper and Smith 1999)	-77.1	173.1	23/11/94	Trap	0.179
(Asper and Smith 1999)	-76.6	173	6/12/94	Trap	0.088
(Asper and Smith 1999)	-76.5	172.9	18/11/94	Trap	0.054
(Asper and Smith 1999)	-76.5	171.8	24/12/95	Trap	0.180
(Asper and Smith 1999)	-76.5	170.8	27/12/95	Trap	0.148
(Asper and Smith 1999)	-76.5	165	2/1/96	Trap	0.160
(Asper and Smith 1999)	-76.5	177.6	7/1/96	Trap	0.177
(Asper and Smith 1999)	-76.5	165	12/1/96	Trap	0.166
(Cochran et al. 2000)	-76.5	-175.6	19/1/97	Thorium	0.204
(Cochran et al. 2000)	-76.5	-175.6	1/1/97	Thorium	0.707
(Cochran et al. 2000)	-76.5	-175.6	14/2/97	Thorium	0.294
(Cochran et al. 2000)	-76.5	165.8	13/1/97	Thorium	0.230
(Cochran et al. 2000)	-76.5	165.8	8/2/97	Thorium	0.962
(Cochran et al. 2000)	-76.5	165.8	18/2/97	Thorium	0.758
(Cochran et al. 2000)	-76.5	-175.6	19/1/97	Thorium	0.120

(Cochran et al. 2000)	-76.5	-175.6	1/2/97	Thorium	0.557
(Cochran et al. 2000)	-76.5	-165.8	13/1/97	Thorium	0.399
(Asper and Smith 1999)	-75	173	27/11/94	Trap	0.230
(Langone et al. 1997)	-74.7	175	13/12/94	Trap	0.007
(Langone et al. 1997)	-74	175	12/12/94	Trap	0.005
(Cochran et al. 2000)	-73.5	-175.4	24/1/97	Thorium	0.269
(Rodriguez y Baena et al. 2008)	-70.5667	-9.0333	20/12/03	Thorium	0.168
(Rodriguez y Baena et al. 2008)	-70.4667	-9.2	20/12/03	Thorium	0.051
(Rodriguez y Baena et al. 2008)	-70.3667	-9.3333	19/12/03	Thorium	0.025
(Rutgers van der Loeff et al. 2011)	-69.4	0	11/3/08	Thorium	0.240
(Rutgers van der Loeff et al. 2011)	-69.05	-17.35	15/3/08	Thorium	0.183
(Rutgers van der Loeff et al. 2011)	-69	-6.9	13/3/08	Thorium	0.109
(Rutgers van der Loeff et al. 2011)	-68.5	0	10/3/08	Thorium	0.081
(Buesseler et al. 2001)	-67.8	-170.1	17/1/98	Thorium	0.321
(Buesseler et al. 2003)	-67.8	-170	16/1/98	Thorium	0.357
(Shimmield et al. 1995)	-67.6	-84.9	7/12/92	Thorium	0.392
(Buesseler 1998)	-67.6	-84.9	15/11/92	Thorium	0.288
(Buesseler et al. 2001)	-67	-170	28/1/98	Thorium	0.347
(Buesseler et al. 2001)	-67	-170	15/2/98	Thorium	0.543
(Rutgers van der Loeff et al. 2011)	-66.93	-25.28	17/3/08	Thorium	0.160
(Rutgers van der Loeff et al. 2011)	-66.46	0	8/3/08	Thorium	0.123
(Buesseler et al. 2001)	-66.1	-168.7	28/2/98	Thorium	0.690

(Buesseler et al. 2003)	-66.1	-170	26/2/98	Thorium	0.713
(Buesseler et al. 2005)	-66	-172.5	29/1/02	Thorium	0.041
(Buesseler et al. 2005)	-66	-172.5	30/1/02	Thorium	0.082
(Buesseler et al. 2005)	-66	-172.5	3/2/02	Thorium	0.235
(Buesseler et al. 2005)	-66	-172.5	13/2/02	Thorium	0.304
(Buesseler et al. 2005)	-66	-172.5	19/2/02	Thorium	0.150
(Buesseler et al. 2005)	-66	-172.5	20/2/02	Thorium	0.376
(Rutgers van der Loeff et al. 2011)	-66	-32.76	20/3/08	Thorium	0.114
(Buesseler et al. 2001)	-65.2	-170.1	28/1/98	Thorium	0.903
(Buesseler et al. 2003)	-65.2	-170	27/1/98	Thorium	0.894
(Buesseler et al. 2001, 2003)	-65.167	-170.1	28/1/98	Thorium	0.903
(Rutgers van der Loeff et al. 2011)	-65.11	-40.31	22/3/08	Thorium	0.133
(Buesseler et al. 2001, 2003)	-64.833	-170.1	18/1/98	Thorium	0.597
(Buesseler et al. 2001)	-64.8	-170.1	18/1/98	Thorium	0.593
(Buesseler et al. 2003)	-64.8	-170	17/1/98	Thorium	0.694
(Rutgers van der Loeff et al. 2011)	-64.78	-42.88	23/3/08	Thorium	0.258
(Buesseler et al. 2001)	-64.7	-169.2	18/12/97	Thorium	0.302
(Buesseler et al. 2001)	-64.7	-169.3	8/3/98	Thorium	0.553
(Buesseler et al. 2001, 2003)	-64.7	-169.333	8/3/98	Thorium	0.556
(Buesseler et al. 2003)	-64.7	-170	17/12/97	Thorium	0.310
(Buesseler et al. 2003)	-64.7	-170	7/3/98	Thorium	0.557
(Buesseler et al. 2001, 2003)	-64.673	-169.186	18/12/97	Thorium	0.302
(Rutgers van der Loeff et al.	-64.48	0	28/2/08	Thorium	0.123

2011)					
(Buesseler et al. 2001)	-64.2	-169.2	16/12/97	Thorium	0.136
(Buesseler et al. 2003)	-64.2	-170	16/12/97	Thorium	0.122
(Buesseler et al. 2001, 2003)	-64.153	-169.186	16/12/97	Thorium	0.139
(Rutgers van der Loeff et al. 2011)	-64.03	-48.26	25/3/08	Thorium	0.155
(Buesseler et al. 2001)	-63.5	-170	25/12/97	Thorium	0.250
(Buesseler et al. 2001)	-63.5	-170	28/1/98	Thorium	0.533
(Buesseler et al. 2001)	-63.5	-170	15/2/98	Thorium	0.312
(Rutgers van der Loeff et al. 2011)	-63.46	-52.1	28/3/08	Thorium	0.280
(Le Moigne et al. 2016)	-63.45	-25.28	3/2/13	Thorium	0.210
(Rutgers van der Loeff et al. 2011)	-63.35	-52.85	29/3/08	Thorium	0.199
(Buesseler et al. 2001)	-63.1	-169.2	19/12/97	Thorium	0.288
(Buesseler et al. 2001)	-63.1	-169.9	24/2/98	Thorium	0.581
(Buesseler et al. 2003)	-63.1	-170	18/12/97	Thorium	0.293
(Buesseler et al. 2003)	-63.1	-170	23/2/98	Thorium	0.601
(Buesseler et al. 2001, 2003)	-63.087	-169.186	19/12/97	Thorium	0.288
(Buesseler et al. 2001, 2003)	-63.083	-169.883	24/2/98	Thorium	0.582
Charette unpublished	-62.553	-59.348	24/1/06	Thorium	0.097
(Buesseler et al. 2001)	-62.5	-170	4/11/97	Thorium	0.518
(Buesseler et al. 2003)	-62.4	-170	27/10/97	Thorium	0.587
(Buesseler et al. 2001, 2003)	-62.317	-170.003	28/10/97	Thorium	0.604
Charette unpublished	-62.254	-62.997	16/1/06	Thorium	0.241
Charette unpublished	-62.25	-58.002	24/1/06	Thorium	0.208

(Buesseler et al. 2001, 2003)	-62.033	-170.1	20/1/98	Thorium	0.532
(Buesseler et al. 2001)	-62	-170.1	20/1/98	Thorium	0.532
(Buesseler et al. 2001)	-62	-170.1	25/1/98	Thorium	0.278
(Buesseler et al. 2001, 2003)	-62	-170.1	25/1/98	Thorium	0.278
(Buesseler et al. 2003)	-62	-170	24/1/98	Thorium	0.262
(Buesseler et al. 2003)	-62	-170	19/1/98	Thorium	0.524
Charette unpublished	-61.999	-54.998	23/1/06	Thorium	0.190
Charette unpublished	-61.749	-59.029	19/1/06	Thorium	0.066
Charette unpublished	-61.748	-57.007	21/1/06	Thorium	0.290
Charette unpublished	-61.748	-55.752	22/1/06	Thorium	0.215
Charette unpublished	-61.747	-62	17/1/06	Thorium	0.646
(Buesseler et al. 2001)	-61.7	-168.8	14/12/97	Thorium	0.194
(Buesseler et al. 2001)	-61.7	-170.1	11/3/98	Thorium	0.185
(Buesseler et al. 2003)	-61.7	-170	13/12/97	Thorium	0.197
(Buesseler et al. 2003)	-61.7	-170	9/3/98	Thorium	0.177
(Buesseler et al. 2001, 2003)	-61.667	-168.833	14/12/97	Thorium	0.194
(Buesseler et al. 2001, 2003)	-61.667	-170.1	11/3/98	Thorium	0.185
Charette unpublished	-61.5	-60.491	18/1/06	Thorium	0.419
Charette unpublished	-61.5	-55.001	23/1/06	Thorium	0.152
Charette unpublished	-61.5	-54	23/1/06	Thorium	0.115
(Rutgers van der Loeff et al. 2011)	-61.48	0	27/2/08	Thorium	0.097
(Buesseler et al. 2001, 2003)	-60.917	-169.253	12/12/97	Thorium	0.415
(Buesseler et al. 2001)	-60.9	-169.3	12/12/97	Thorium	0.413

(Buesseler et al. 2003)	-60.9	-170	11/12/97	Thorium	0.420
(Buesseler et al. 2001)	-60.5	-169	1/11/97	Thorium	0.547
(Buesseler et al. 2001, 2003)	-60.5	-169	1/11/97	Thorium	0.548
(Buesseler et al. 2003)	-60.5	-170	31/10/97	Thorium	0.568
Charette unpublished	-60.261	-57.517	20/1/06	Thorium	0.123
Charette unpublished	-60.244	-57.01	21/1/06	Thorium	0.106
(Buesseler et al. 2001, 2003)	-60.233	-170.067	22/2/98	Thorium	0.478
(Buesseler et al. 2001, 2003)	-60.231	-170.071	10/12/97	Thorium	0.198
(Buesseler et al. 2001)	-60.2	-170.1	10/12/97	Thorium	0.198
(Buesseler et al. 2001)	-60.2	-170.1	22/2/98	Thorium	0.478
(Buesseler et al. 2003)	-60.2	-170	10/12/97	Thorium	0.194
(Buesseler et al. 2003)	-60.2	-170	20/2/98	Thorium	0.487
(Rutgers van der Loeff et al. 2011)	-60.1	-55.26	2/4/08	Thorium	0.490
(Buesseler et al. 2001)	-60	-170	4/11/97	Thorium	0.467
(Buesseler et al. 2001)	-60	-170	25/12/97	Thorium	0.274
(Buesseler et al. 2001)	-60	-170	15/2/98	Thorium	0.442
(Le Moigne et al. 2016)	-60	-29.48	5/2/13	Thorium	0.670

270 Table S5. All available b-values compiled for the Southern Ocean south of 60°S. All data 271 that were available and accessible in the peer-reviewed literature were considered for 272 the calculations of a b-value. b-values were calculated based on carbon fluxes from at 273 least 3 depth levels by fitting the power-law function (Martin et al. 1987). Flux data were 274 based on 3 different methods as indicated for each value (Sediment trap, Thorium-275 based, or estimated with underwater cameras (UVP)). We note that UVP-derived flux 276 estimates have been validated before by Guidi et al. (2015), who found no statistical 277 difference to thorium-derived flux estimates. All b-values are within a reasonable range

278 (Berelson 2001), except for one outlier (3.95 (i.e., very high rates of POC flux

			-		•	•	-	-		
279	attenuation) from	(Asper and	Smith	1999))	which w	e rei	moved	d from the	e analysis.

Reference	Latitude	Longitud e	Date	Method	b-value
(Cochran et al. 2000)	-76.5	-178	2/11/96	Thorium	1.37
(Cochran et al. 2000)	-76.5	-178	19/1/97	Thorium	1.22
(Cochran et al. 2000)	-76.5	-178	1/2/97	Thorium	0.51
(Cochran et al. 2000)	-76.5	165.9	13/1/97	Thorium	0.47
(Cochran et al. 2000)	-76.5	165.9	8/2/97	Thorium	1.58
(Guidi et al. 2015)	-58.83	-21.25	20/10/95	UVP	1.26
(Guidi et al. 2015)	-58.83	-21.27	20/10/95	UVP	1.28
(Guidi et al. 2015)	-58.83	-21.22	20/10/95	UVP	1.37
(Guidi et al. 2015)	-58.67	-28.62	23/10/95	UVP	0.90
(Guidi et al. 2015)	-58.67	-31.17	24/10/95	UVP	0.95
(Guidi et al. 2015)	-58.67	-31.2	24/10/95	UVP	0.76
(Asper and Smith 1999)	-76.5	168.5	17/11/94	Trap	3.95
(Asper and Smith 1999)	-77.1	173.1	23/11/97	Trap	1.38
(Asper and Smith 1999)	-75	173	27/11/94	Trap	0.97
(Asper and Smith 1999)	-76.6	173	6/12/94	Trap	1.30
(Asper and Smith 1999)	-76.5	171.8	24/12/95	Trap	1.02
(Asper and Smith 1999)	-76.5	170.8	27/12/95	Trap	1.97
(Asper and Smith 1999)	-76.5	165	2/1/96	Trap	0.74
(Asper and Smith 1999)	-76.5	-177.6	7/1/96	Trap	0.72

(Asper and Smith 1999)	-76.5	165	21/1/96	Trap	0.56
(Buesseler et al. 2005)	-66.34	-171.96	30/1/02	Thorium	0.96
(Buesseler et al. 2005)	-66.34	-171.96	30/1/02	Thorium	1.10
(Buesseler et al. 2005)	-65.91	-170.79	19/2/02	Thorium	0.25
(Berelson 2001)	-61.5	-170	spring/summer (1997-1998)	Thorium, Trap	0.88
(Berelson 2001)	-65.5	-170	spring/summer (1997-1998)	Thorium, Trap	0.77
(Berelson 2001)	-68	-170	spring/summer (1997-1998)	Thorium, Trap	0.86
(Cavan et al. 2015)	-60.97	-48.14	3/2/13	MSC	1.51
(Cavan et al. 2015)	-60.97	-48.14	4/2/13	MSC	1.89
(Cavan et al. 2015)	-60.97	-48.14	5/2/13	MSC	1.03
(Shimmield et al. 1995)	-67.6	-84.93	7/12/92	Thorium	0.31
(Langone et al. 1997)	-74	175	12/12/94	Trap	0.70
(Langone et al. 1997)	-74.7	175	13/12/94	Trap	0.58

- **Table S6.** Fertilization cost estimates of OIF (\$US per km² of fertilized area) for different assumptions of fertilizer costs, daily ship costs, the distance to the OIF site, and the
- fraction of iron that becomes bioavailable (e.g., 0.8 means that 80% becomes
- bioavailable and 20% of the added Fe is lost due to inorganic particle sinking). The cost
- calculation equations are provided in the methods.

Fertilizer costs (US\$ t ⁻¹)	Ship costs (\$US d ⁻¹)	Inorganic particle sinking (fraction from 0- 1)	Fertilization costs (\$US km ⁻²)
600	5000	0.2	101
600	5000	0.5	51
600	5000	0.8	39
600	7000	0.2	124
600	7000	0.5	65
600	7000	0.8	50
900	5000	0.2	121
900	5000	0.5	60
900	5000	0.8	44
900	7000	0.2	145
900	7000	0.5	74
900	7000	0.8	55

288 References

- Alderkamp, A. C., G. L. Van Dijken, K. E. Lowry, and others. 2019. Effects of iron and
 light availability on phytoplankton photosynthetic properties in the Ross Sea. Mar.
 Ecol. Prog. Ser. 621: 33–50. doi:10.3354/meps13000
- Arrigo, K. R., M. M. Mills, L. R. Kropuenske, G. L. Van Dijken, A. C. Alderkamp, and D.
 H. Robinson. 2010. Photophysiology in two major southern ocean phytoplankton
 taxa: Photosynthesis and growth of phaeocystis antarctica and fragilariopsis
 cylindrus under different irradiance levels. Integr. Comp. Biol. 50: 950–966.
 doi:10.1093/icb/icq021
- Asper, V. L., and W. O. Smith. 1999. Particle fluxes during austral spring and summer in
 the southern Ross Sea, Antarctica. J. Geophys. Res. **104**: 5345–5359.
- Baumann, M. E. M., F. P. Brandini, and R. Staubes. 1994. The influence of light and
 temperature on carbon-specific DMS release by cultures of Phaeocystis antarctica
 and three antarctic diatoms. Mar. Chem. 45: 129–136. doi:10.1016/03044203(94)90097-3
- Berelson, W. M. 2001. The Flux of Particulate Organic Carbon Into the Ocean Interior: A
 Comparison of Four U.S. JGOFS Regional Studies. Oceanography 14: 59–67.
- Bertrand, E. M., M. A. Saito, J. M. Rose, C. R. Riesselman, M. C. Lohan, A. E. Noble, P.
 A. Lee, and G. R. DiTullio. 2007. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 52: 1079–1093.
 doi:10.4319/lo.2007.52.3.1079
- Boyer, T., H. Garcia, R. Locarnini, and others. 2018. World Ocean Atlas 2018. NOAA
 National Centers for Environmental Information.
- Buesseler, K. O. 1998. The decoupling of production and particulate export in the
 surface ocean. Global Biogeochem. Cycles 12: 297–310.
- Buesseler, K. O., J. E. Andrews, S. M. Pike, M. A. Charette, L. E. Goldson, M. A.
 Brzezinski, and V. P. Lance. 2005. Particle export during the Southern Ocean Iron
 Experiment (SOFeX). Limnol. Oceanogr. 50: 311–327.
 doi:10.4319/lo.2005.50.1.0311
- Buesseler, K. O., L. Ball, J. Andrews, J. K. Cochran, D. J. Hirschberg, M. P. Bacon, A.
 Fleer, and M. Brzezinski. 2001. Upper ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along 170°W. Deep. Res. Part II Top.
 Stud. Oceanogr. 48: 4275–4297. doi:10.1016/S0967-0645(01)00089-3
- Buesseler, K. O., R. T. Barber, M. L. Dickson, M. R. Hiscock, J. K. Moore, and R.
 Sambrotto. 2003. The effect of marginal ice-edge dynamics on production and export in the Southern Ocean along 170°W. Deep. Res. Part II Top. Stud.
 Oceanogr. 50: 579–603. doi:10.1016/S0967-0645(02)00585-4
- Butterworth, B. J., and S. D. Miller. 2016. Air-sea exchange of carbon dioxide in the
 Southern Ocean and Antarctic marginal ice zone. Geophys. Res. Lett. 43: 7223–

- 327 7230. doi:10.1002/2016GL069581
- Campbell, J. W., and T. Aarup. 1989. Photosynthetically available radiation at high latitudes. Limnol. Oceanogr. **34**: 1490–1499. doi:10.4319/lo.1989.34.8.1490
- Carter, B. R., R. A. Feely, N. L. Williams, A. G. Dickson, M. B. Fong, and Y. Takeshita.
 2018. Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate. Limnol. Oceanogr. Methods 16: 119–131. doi:10.1002/lom3.10232
- Cavan, E. L., F. A. C. Le Moigne, A. J. Poulton, G. A. Tarling, P. Ward, C. J. Daniels, G.
 M. Fragoso, and R. J. Sanders. 2015. Attenuation of particulate organic carbon flux
 in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets.
 Geophys. Res. Lett. 42: 821–830. doi:10.1002/2014GL062744.Received
- Coale, K. H., X. Wang, S. J. Tanner, and K. S. Johnson. 2003. Phytoplankton growth
 and biological response to iron and zinc addition in the Ross Sea and Antarctic
 Circumpolar Current along 170°W. Deep. Res. Part II Top. Stud. Oceanogr. 50:
 635–653. doi:10.1016/S0967-0645(02)00588-X
- 341 Cochran, J. K., K. O. Buesseler, M. P. Bacon, and others. 2000. Short-lived thorium
 342 isotopes (234Th, 228Th) as indicators of poc export and particle cycling in the ross
 343 sea, southern ocean. Deep. Res. Part II Top. Stud. Oceanogr. 47: 3451–3490.
 344 doi:10.1016/S0967-0645(00)00075-8
- Cullen, J. T., Z. Chase, K. H. Coale, S. E. Fitzwater, and R. M. Sherrell. 2003. Effect of
 iron limitation on the cadmium to phosphorus ratio of natural phytoplankton
 assemblages from the Southern Ocean. Limnol. Oceanogr. 48: 1079–1087.
 doi:10.4319/lo.2003.48.3.1079
- Eilers, P. H. C., and J. C. H. Peeters. 1988. A model for the relationship between light
 intensity and the rate of photosynthesis in phytoplankton. Ecol. Modell. 42: 199–
 215. doi:10.1016/0304-3800(88)90057-9
- Endo, H., H. Hattori, T. Mishima, G. Hashida, H. Sasaki, J. Nishioka, and K. Suzuki.
 2017. Phytoplankton community responses to iron and CO2 enrichment in different
 biogeochemical regions of the Southern Ocean. Polar Biol. 40: 2143–2159.
 doi:10.1007/s00300-017-2130-3
- Gattuso, J.-P., J.-M. Epitalon, H. Lavigne, and J. Orr. 2021. Seacarb: seawater
 carbonate chemistry with R. R package version 3.0.
- Gregor, L., A. D. Lebehot, S. Kok, and P. M. Scheel Monteiro. 2019. A comparative
 assessment of the uncertainties of global surface ocean CO2 estimates using a
 machine-learning ensemble (CSIR-ML6 version 2019a)-Have we hit the wall?
 Geosci. Model Dev. 12: 5113–5136. doi:10.5194/gmd-12-5113-2019
- Guidi, L., L. Legendre, G. Reygondeau, J. Uitz, L. Stemmann, and S. A. Henson. 2015.
 A new look at the ocean carbon remineralization for estimating deepwater
 sequestration. Global Biogeochem. Cycles 29: 1044–1059.
 doi:10.1002/2014GB005063

- Henson, S. A., R. Sanders, E. Madsen, P. J. Morris, F. Le Moigne, and G. D. Quartly.
 2011. A reduced estimate of the strength of the ocean's biological carbon pump.
 Geophys. Res. Lett. 38: 10–14. doi:10.1029/2011GL046735
- Holte, J., L. D. Talley, J. Gilson, and D. Roemmich. 2017. An Argo mixed layer
 climatology and database. Geophys. Res. Lett. 44: 5618–5626.
 doi:10.1002/2017GL073426
- Hopkinson, B. M., B. G. Mitchell, R. A. Reynolds, and others. 2007. Iron limitation across
 chlorophyll gradients in the southern Drake Passage: Phytoplankton responses to
 iron addition and photosynthetic indicators of iron stress. Limnol. Oceanogr. 52:
 2540–2554.
- Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H. M.
 Zhang. 2021. Improvements of the Daily Optimum Interpolation Sea Surface
 Temperature (DOISST) Version 2.1. J. Clim. 34: 2923–2939. doi:10.1175/JCLI-D20-0166.1
- Jones, D. C., T. Ito, Y. Takano, and W. C. Hsu. 2014. Spatial and seasonal variability of
 the air-sea equilibration timescale of carbon dioxide. Global Biogeochem. Cycles
 28: 1163–1178. doi:10.1002/2014GB004813
- Katlein, C., S. Arndt, H. J. Belter, G. Castellani, and M. Nicolaus. 2019. Seasonal
 Evolution of Light Transmission Distributions Through Arctic Sea Ice. J. Geophys.
 Res. Ocean. 124: 5418–5435. doi:10.1029/2018JC014833
- Kustka, A. B., B. M. Jones, M. Hatta, M. P. Field, and A. J. Milligan. 2015. The influence
 of iron and siderophores on eukaryotic phytoplankton growth rates and community
 composition in the Ross Sea. Mar. Chem. **173**: 195–207.
 doi:10.1016/j.marchem.2014.12.002
- Langone, L., M. Frignani, J. K. Cochran, and M. Ravaioli. 1997. Scavenging processes
 and export fluxes close to a retreating seasonal ice margin (Ross Sea, Antarctica),
 p. 705–715. *In* D. Evans, J. Wisniewski, and J. Wisniewski [eds.], The Interactions
 Between Sediments and Water. Springer.
- Laws, E. A., and K. Maiti. 2019. The relationship between primary production and export
 production in the ocean: Effects of time lags and temporal variability. Deep Sea
 Res. Part I Oceanogr. Res. Pap. doi:10.1016/j.dsr.2019.05.006
- Van Leeuwe, M. A., R. Scharek, H. J. W. De Baar, J. T. M. De Jong, and L. Goeyens.
 1997. Iron enrichment experiments in the Southern Ocean: Physiological responses
 of plankton communities. Deep. Res. Part II Top. Stud. Oceanogr. 44: 189–207.
 doi:10.1016/S0967-0645(96)00069-0
- 401 Martin, J. H., G. a. Knauer, D. M. Karl, and W. W. Broenkow. 1987. VERTEX: carbon
 402 cycling in the northeast Pacific. Deep Sea Res. Part A. Oceanogr. Res. Pap. 34:
 403 267–285. doi:10.1016/0198-0149(87)90086-0
- 404 Maslanik, J., and J. Stroeve. 1999. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar
 405 Gridded Sea Ice Concentrations.

- Millero, F. J., T. B. Graham, F. Huang, H. Bustos-Serrano, and D. Pierrot. 2006.
 Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. **100**: 80–94. doi:10.1016/j.marchem.2005.12.001
- Mobley, C. D., and E. S. Boss. 2012. Improved irradiances for use in ocean heating,
 primary production, and photo-oxidation calculations. Appl. Opt. 51: 6549–6560.
 doi:10.1364/AO.51.006549
- Le Moigne, F. a. C., S. A. Henson, E. Cavan, and others. 2016. What causes the inverse
 relationship between primary production and export efficiency in the Southern
 Ocean? Geophys. Res. Lett. 4457–4466. doi:10.1002/2016GL068480
- Öztürk, M., P. L. Croot, S. Bertilsson, K. Abrahamsson, B. Karlson, R. David, A.
 Fransson, and E. Sakshaug. 2004. Iron enrichment and photoreduction of iron under UV and PAR in the presence of hydroxycarboxylic acid: Implications for phytoplankton growth in the Southern Ocean. Deep. Res. Part II Top. Stud.
 Oceanogr. 51: 2841–2856. doi:10.1016/j.dsr2.2000.10.001
- 420 Prytherch, J., I. Brooks, P. Crill, and others. 2017. Direct determination of the air-sea
 421 CO2 gas transfer velocity in Arctic sea ice regions. Geophys. Res. Lett. 44: 3770–
 422 3778. doi:10.1002/2017GL073593
- Rodriguez y Baena, A. M., R. Boudjenoun, S. W. Fowler, J. C. Miquel, P. Masqué, J. A.
 Sanchez-Cabeza, and M. Warnau. 2008. 234Th-based carbon export during an iceedge bloom: Sea-ice algae as a likely bias in data interpretation. Earth Planet. Sci.
 Lett. 269: 596–604. doi:10.1016/j.epsl.2008.03.020
- Rose, J. M., Y. Feng, G. R. Ditullio, and others. 2009. Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages.
 Biogeosciences 6: 3131–3147. doi:10.5194/bg-6-3131-2009
- Rutgers van der Loeff, M., P. H. Cai, I. Stimac, A. Bracher, R. Middag, M. B. Klunder,
 and S. M. A. C. van Heuven. 2011. 234Th in surface waters: Distribution of particle
 export flux across the Antarctic Circumpolar Current and in the Weddell Sea during
 the GEOTRACES expedition ZERO and DRAKE. Deep. Res. Part II Top. Stud.
 Oceanogr. 58: 2749–2766. doi:10.1016/j.dsr2.2011.02.004
- Sedwick, P. N., N. S. Garcia, S. F. Riseman, C. M. Marsay, and G. R. DiTullio. 2007.
 Evidence for high iron requirements of colonial Phaeocystis antarctica at low
 irradiance. Biogeochemistry 83: 83–97. doi:10.1007/s10533-007-9081-7
- 438 Sedwick, P. N., G. R. Di Tullio, and D. J. Mackey. 2000. Iron and manganese in the
 439 Ross Sea, Seasonal iron limitation in Antarctic. J. Geophys. Res. Ocean. 105:
 440 11321–11336. doi:10.1029/2000JC000256
- Shimmield, G. B., G. D. Ritchie, and T. W. Fileman. 1995. The impact of marginal ice
 zone processes on the distribution of 21OPb, 21OPo and 234Th and implications
 for new production in the Bellingshausen Sea, Antarctica. Deep. Res. Part II 42:
 1313–1335. doi:10.1016/0967-0645(95)00071-W
- 445 Silsbe, G. M., M. J. Behrenfeld, K. H. Halsey, A. J. Milligan, and T. K. Westberry. 2016.

- 446The CAFE model: A net production model for global ocean phytoplankton. Global447Biogeochem. Cycles **30**: 1756–1777. doi:10.1002/2016GB005521
- Strzepek, R. F., K. A. Hunter, R. D. Frew, P. J. Harrison, and P. W. Boyd. 2012. Ironlight interactions differ in Southern Ocean phytoplankton. Limnol. Oceanogr. 57:
 1182–1200. doi:10.4319/lo.2012.57.4.1182
- Takeda, S. 1998. Influence of iron availability on nutrient consumption ratio. Nature 393:
 774–777.
- Timmermans, K. R., M. A. Van Leeuwe, J. T. M. De Jong, and others. 1998. Iron stress
 in the Pacific region of the Southern Ocean: Evidence from enrichment bioassays.
 Mar. Ecol. Prog. Ser. 166: 27–41. doi:10.3354/meps166027
- Timmermans, K. R., M. J. W. Veldhuis, and C. P. D. Brussaard. 2007. Cell death in three
 marine diatom species in response to different irradiance levels, silicate, or iron
 concentrations. Aquat. Microb. Ecol. 46: 253–261. doi:10.3354/ame046253
- Venables, H., and C. M. Moore. 2010. Phytoplankton and light limitation in the Southern
 Ocean: Learning from high-nutrient, high-chlorophyll areas. J. Geophys. Res. 115.
 doi:10.1029/2009jc005361
- Viljoen, J. J., R. Philibert, N. Van Horsten, T. Mtshali, A. N. Roychoudhury, S. Thomalla, and S. Fietz. 2018. Phytoplankton response in growth, photophysiology and community structure to iron and light in the Polar Frontal Zone and Antarctic waters. Deep. Res. Part I Oceanogr. Res. Pap. 141: 118–129. doi:10.1016/j.dsr.2018.09.006
- Wanninkhof, R. 2014. Relationship between wind speed and gas exchange over the
 ocean revisited. Limnol. Oceanogr. Methods 12: 351–362.
 doi:10.4319/lom.2014.12.351
- Wentz, F. J., J. Scott, R. Hoffman, M. Leidner, R. Atlas, and J. Ardizzone. 2015. Remote
 sensing systems Cross-Calibrated Multi-Platform (CCMP) 6-hourly ocean vector
 wind analysis product on 0.25 deg grid, Version 2.0. Remote Sens. J.
- Wu, M., J. S. P. McCain, E. Rowland, R. Middag, M. Sandgren, A. E. Allen, and E. M.
 Bertrand. 2019. Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators. Nat.
 Commun. 10: 1–10. doi:10.1038/s41467-019-11426-z
- 477