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1 Context 

 Since 2016, strandings of small cetaceans presenting evidence of capture have reached 

high levels on the Atlantic coastline of France. The number of dolphins captured is estimated to 

thousands every year along the French Atlantic coast, essentially in the Bay of Biscay (Peltier et al. 

2020b, Peltier et al. 2020a, ICES 2022). These levels of bycatch could question the viability of the 

common dolphin population in the North East Atlantic (ICES 2022). On this temporal scale, there 

doesn’t seem to be any major change in the abundance of the common dolphins population 

(Blanchard et al. 2021) nor an augmentation of fishing effort in the Bay of Biscay (Demaneche et 

al. 2019). 

On July the 2nd 2020, the European Commission puts France, Spain and Sweden on notice to 

research and apply management measures to prevent bycatch of dolphins and porpoises by 

fishing vessels (EU, 2020). 

On July 15 2022 (EU, 2022), Europe issued a reasoned opinion against France and Spain on the 

grounds that no measures had been taken or they were deemed insufficient (EU, 2022). Both 

countries were then given a delay of two months to solve the small cetaceans bycatch issue. If 

not, the European Commission could decide to refer to the EU’s Court of Justice, thus involving 

financial sanctions against both countries. 

In January 2023, the French government introduced measures to reduce cetacean bycatch. A 

decree obliges  the most active gillnetters of the Bay of Biscay to equip themselves with repellent 

devices otherwise called “pingers”,  while another decree obliges all gillnetters and pelagic 

trawlers longer than 6 meters to have VMS (Vessel Monitoring System) gear by 2023, and finally 

all gillnetters and trawlers longer than 15 meters have to participate each year to an on-board 

observatory program. On the 20th of March 2023, the State Council has ordered the government 

to close some fishing areas of the Bay of Biscay by fall, and to take complementary measures to 

enable a more precise estimation of annual small cetaceans bycatch. The objective is to limit the 

bycatch of small cetaceans and guarantee dolphins conservation in the area (Conseil d’Etat, 2023). 

In this context, the University of La Rochelle – CNRS and the French Institute for the exploitation 

of the sea (Ifremer) in consultation with the French Office of Biodiversity (OFB), the fisheries 

professionals and the French government have created a scientific project called “Delmoges” 

(Delphinus Mouvements Gestion). First and foremost, this project aims to fill the knowledge gaps 

by acquiring new data on common dolphins habitats in the Bay of Biscay, on their trophic 

interactions and their interactions with fishing gears. In addition, this project suggests integrating 

knowledge on the whole socio-ecosystem to comprehend a wide diversity of scenarios that could 

diminish bycatch, including technological solutions, and evaluate the biological and socio-

economic consequences (Delmoges, 2022). 

As part of the study of interactions between dolphins and fishing gears, actions are taken into 

consideration to get a more detailed description of the activity of the fishing sub fleets which may 

be the most concerned by cetacean bycatch. At present, the qualification of fishing effort is based 

on simple decision rules using only a speed filter. European fishing vessels of more than 12 meters 

have been legally equipped with VMS emitting at a frequency of minimum 2h (1h in France) for 

years now, resulting in a substantial spatio-temporal database. 
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The use of data at a higher temporal resolution, such as AIS (Automatic Identification System) 

could allow the development of more advanced algorithms, some studies going in this direction 

being already initiated in Europe (ICES Scientific Report Vol. 4 Issue 10, 2020). 

The work presented here has been undertaken at Ifremer in the HISSEO team (Coordination and 

valorization of Fisheries Observation), which coordinates the Fisheries Information System (SIH). 

In this team, the participation in Delmoges is centered on work package 3, “dolphins-fisheries 

interactions”. 

As part of the Delmoges program and the previous project IAPESCA, machine learning methods 

have been tested on qualified spatialized data for some fishing gears. Most of the algorithms 

developed have been implemented in an R package called “iapesca” (cleaning and handling data, 

calculate covariates to describe trajectories, optimize fishing operation qualification with geo-

informatic methods, Rodriguez, 2023). 

Usual methods of fishing activity qualification rely on the use of speed filters. These methods, 

which have proved their worth on vessels using active gears (trawls, dredges), are not effective 

for vessels using passive gears such as gillnets, especially for small scale fisheries (SSF). The term 

SSF designates boats of less than 12 meters (EMFAF, EU 2021) which are not obliged to be 

equipped with VMS. Furthermore, conventional measures of fishing effort, like the fishing hours, 

are not an effective way to describe passive gears, simply because the gear’s activity is completely 

distinct from the movements of the boat. At the same time, machine learning methods have 

performed well in characterizing different means of transportation (Dodge et al., 2019) and 

identifying fishing gears (Huang et al., 2019) or fishing activity (Mendo et al., 2019) based on 

trajectories. These previous works show that machine learning algorithms are a proper tool for 

spatialized data analysis. Therefore, we will apply machine learning methods to the recognition of 

gillnetter’s fishing operations, on a database containing SSFs as well as larger boats (up to 24 

meters). 

 The goals of this study are to: 

- improve already existing methods and models 

- establish the minimal temporal resolutions allowing the recognition of gillnetters fishing 

operations 

- calibrate and build models using machine learning to predict the fishing operations of 

gillnetters 

- define new fishing effort metrics more appropriate for passive gears 

- produce fishing effort maps using these metrics 

- assess the errors in spatial fishing effort predictions 

- consider an operational way of integrating machine learning methods in SIH algorithms 
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2 Definition of minimum temporal resolutions of geolocation data 

for describing fishing effort and operations 

2.1 Presentation of the data 

First of all, our data has been explored at different temporal scales : 3600s, 1800s, 900s, 600s, 

300s, 120s, 60s, 30s, 20s. These values correspond to the timelapse between two positions of the 

fishing vessel. Geolocation information for 20 vessels associated to 1323 fishing trips was available 

at one second intervals in the OBSCAMe database. Each of our datasets is a result of a linear down 

sampling (after cleaning the raw data) to reach the chosen temporal resolution. We then have 9 

datasets varying from 36 600 observations for the 3600s dataset to 6 500 000 observations for the 

20s dataset. Distribution of covariates and the appropriate decision rules to describe fishing 

operations may vary a lot from one resolution to another (WKSSFGEO2, Rodriguez et al., 2023), 

which explains the need to create different models for each of them. 

 

For each dataset, the following variables are available : Date/Time (time corresponding to the 

position), Vessel FK (vessel identifier), Fishing Trip FK (fishing trip identifier), Fishing Operation 

(Not fishing, hauling, or setting) and Gear (fishing gear used). The vessel identifiers have been 

anonymized. Fishing operations are qualified by observers from the videos acquired by on-board 

cameras. All the covariates that will be used to build our models later on were calculated from 

raw data : timestamps and geographical positions. 

The first step in our approach was to calculate the fishing effort variables that seemed relevant, 

while relying on the WKSSFGEO definitions. We chose to calculate, for each boat and each 

temporal resolution : 

- Number of Fishing Trips : trip of a fishing vessel during which fishing operations take place. 

It starts when the boat leaves the harbor and ends when it comes back (or arrives in 

another harbor). The “harbor” area is defined by a 1 kilometer buffer around its center, 

and there needs to be at least 1h between leaving the harbor and coming back to define 

a new fishing trip. (Rodriguez, 2023) 

- Number of Hauls : number of continuous sequences corresponding to hauling (retrieval 

of a net).  

- Number of Sets : number of continuous sequences corresponding to setting (deployment 

of a net).  

Figure 1. Fishing trip of a 12m vessel at 3600s resolution (left), 600s resolution (middle) and 20s resolution (right)  
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- Fishing days : Days spent at sea with at least one fishing operation. (ICES Scientific Report 

Vol. 4 Issue 10, 2020) 

- Fishing hours : Total time spent fishing, or the hours spent at sea minus the time spent in 

transit. (ICES Scientific Report Vol. 4 Issue 10, 2020) 

- Total Length Hauled : Total net length hauled by a single vessel during a single fishing trip 

- Median Soaking Time : Median of the soaking times of all the nets hauled by a single vessel 

during a single fishing trip 

 

From these variables, we can compare the efficiency of different resolutions for measuring the 

fishing effort, the reference dataset being the finest one at a 20 seconds resolution.  

To anonymize the vessels, we chose to indicate the size range of boats instead of their names 

when looking at fishing effort. Furthermore, using the size range allows us to examine a possible 

size effect when comparing the different temporal resolutions.  

2.2 Fishing trips detection and fishing hours computation 

 

 

 

For the boats over 12 meters, the number of fishing trips detected remains the same through all 

different temporal resolutions. However, SSFs (<12m) need a temporal resolution of 900 seconds 

or less to be able to detect all fishing trips.  

In fact, small vessels generally work close to shore and go on short fishing trips, which are not 

detected at all resolutions because they do not contain enough points when the information is 

degraded (we see this effect in Fig. 1).To distinguish the fishing trips, we use a buffer of 1 kilometer 

around the harbor, and if a boat spends less than two hours outside this zone, it is likely to have 

only one point at the most degraded resolution (3600s), involving that its journey will not be 

qualified as a fishing trip (at least 2 points outside the buffer to define a new fishing trip).  

Figure 2. Number of Fishing Trips by boat at different resolutions  
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The temporal resolution needed in order to acquire the total Fishing Hours for each fishing trip 

appears to be dependent on the vessel’s size. We’ll look at a 24 meters boat and a 10 meters boat 

to see the effect size can have on how much information we lose when degrading the resolution. 
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For the 24 meters boat, the fishing hours is already reliable at 3600s (R² = 0.99) (Fig. 4). For the 10 

meters boat, the correlation coefficient is almost null at 3600s and close to 1 at 60s (Fig.5). At 900s 

the variable is still very degraded but consistent with reality (R² = 0.66) and it gets much better at 

300s, with a R² of 0.93. 

As a conclusion, to describe the aggregated number of fishing trips and aggregated fishing hours 

by fishing trip, a temporal resolution of 1h is enough for boats over 12 meters, but SSFs need at 

least 15 minutes resolution.  

As for vessels operating passive gear, the fishing hour is not a satisfactory measure of fishing effort 

(Mendo et al., 2023), we will look at the number of setting and hauling events by fishing trip 

aggregated by boat. 

2.3 Detection of fishing operations and computation of gear metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concerning fishing operations, their detection deteriorates in a very fast manner when 

degrading the temporal resolution, because these events take place in a small temporal space 

(they can last only a few minutes, especially for the smaller boats using small gear).  

In fact, even for the 24 meters boat, we need a temporal resolution of 600 seconds to detect all 

the hauling events. For the 15-24 meters vessels, we need a 300 seconds resolution to reach the 

same objective, and 120 seconds for the 10-15 meters. Finally, for the boats under 12 meters, 120 

seconds seems appropriate but there is still some information loss, so 60 seconds would be best. 

As for the setting operations, 120 seconds is acceptable for boats bigger than 15 meters, but at 

least 60 seconds resolution is needed for the smaller ones. In fact, setting operations are harder 

to predict (and even to observe) than hauling operations, as they take less time and are carried 

out at high speed. The use of positions resampled by the minute seems to be the best compromise, 

potentially allowing the recovery of almost all operations for vessels under 12 meters (Fig. 6). 

These initial results were presented at the ICES WKSSFGEO2 (Workshop on Geospatial data for 

Figure 6. Number of Hauls and Sets by fishing trip aggregated by boat at different resolutions (mean) 
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Small Scale Fisheries) in Faro and corroborate other studies on passive gear (Portugal, Denmark, 

Scotland...), contributing to recommendations on the frequency of geospatial data acquisition for 

artisanal vessels. 

 

The iapesca R-package (Rodriguez, 2023) gives its users the possibility to create nets objects from 

the positions of the boat and the fishing operations associated to each position (see part 5.1 “Gear 

creation”). We can then use these nets to calculate two new fishing effort metrics : total length 

hauled in a fishing trip and median soaking time of a fishing trip. 

As a general rule, the larger the boat, the greater the total length of net it deploys per fishing trip. 

There is a disparity in the evolution of these values as a function of resolution, with no overall 

trend towards growth or decline. It should be noted that if for 6-10m (or even 10-12m) boats the 

total length deployed per fishing trip doesn't seem to move much from 3600 to 20 seconds, it's 

only because these values are minimal compared to those of larger vessels, but at 3600 some 

estimates are twice as large as those at 20 seconds (Fig. 7).  

This counter-intuitive effect is associated with net creation methods that take into account half 

the sequence following the last fishing operation, which can generate this effect when the data is 

too degraded. 

As for the soaking time, it is overestimated at degraded resolutions for every boats (Fig. 7). This 

can be explained by the fact that many setting operations are missing at these resolutions, and, if 

a haul is found to have no associated setting, the function will also look at previous fishing trips 

for a position that might correspond. Since this implementation has been developed to enable the 

detection of associated setting events occurring during different fishing trips, it can easily lead to 

an overestimation of soaking times if some setting events are missing when the data is too much 

degraded. As we refine the resolution, most of these overestimates fade with the ability to detect 

true setting operations. For some vessels, a decrease in soaking times may be observed for 

temporal resolutions less than 60 or 120 seconds. This trend was linked to a misinterpretation of 

setting events by the function for higher temporal resolution, this glitch has been corrected in a 

dedicated commit.  
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3 Description of the vessel’s activity, optimization and calibration 

of the machine learning models 

3.1 Calculation of the covariates 

 

- Speed : The speed at a position is defined between the position and the previous one. The 

distance between the two positions is calculated according to Vicenty’s formula (1975) 

and called 𝑑(𝑃𝑛−1,𝑃𝑛) . Then, the time difference Δt between these two positions is used to 

calculate the speed 𝑆𝑝𝑛
=  

𝑑(𝑃𝑛−1,𝑃𝑛)

∆𝑡
 . 

- Acceleration : The difference of speed observed between a position and the previous one 

divided by the time difference Δt between them : 𝐴𝑃𝑛
=

𝑆𝑃𝑛+1
−𝑆𝑃𝑛

∆𝑡
. 

- Proximity Index : The number of observation in a specific spatio-temporal window. We 

define a radius according to the temporal resolution, which corresponds to the distance 

covered between two consecutive positions by a boat travelling at a constant speed of 

4.5knots (nautical mile per hour). Under the threshold of 4.5knots a boat is considered as 

fishing by the ALGOPESCA operational treatments (Ifremer, 2021). This covariate is 

calculated as such : 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = ∑ ∑ 𝑛𝑖,𝑘
2
𝑘=0

𝑡+1
𝑖=𝑡−1  with ni,k the number of 

observations happening at a time between 𝑡 − 𝑟𝑒𝑠 ∗ 4 and 𝑡 + 𝑟𝑒𝑠 ∗ 4  that are 

geographically inside the previously defined radius. 

- Jerk : Rate of change between acceleration and deceleration, frequently used in 

transports study and a covariate of major importance for identifying transportation means 

(Dabiri and Heaslip, 2018), its formula is 𝐽𝑝𝑛
=  

𝐴𝑃𝑛+1− 𝐴𝑃𝑛

∆𝑡
  . 

- Bearing : Angle between a trajectory and the geographical North. At a position, trajectory 

is calculated with the next position. We first calculate 𝑦 =  sin[𝑃𝑛+1(𝑙𝑜𝑛𝑔) − 𝑃𝑛(𝑙𝑜𝑛𝑔)] ∗

 cos[𝑃𝑛+1(𝑙𝑎𝑡)] and 𝑥 =  cos[𝑃𝑛(𝑙𝑎𝑡)] ∗ sin[𝑃𝑛+1(𝑙𝑎𝑡)] −

sin[𝑃𝑛(𝑙𝑎𝑡)] ∗ cos[𝑃𝑛+1(𝑙𝑎𝑡)] ∗ cos[𝑃𝑛+1(𝑙𝑜𝑛𝑔) − 𝑃𝑛(𝑙𝑜𝑛𝑔)] to finally calculate 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔(𝑃𝑛) = 𝑎𝑟𝑐𝑡𝑎𝑛2 (𝑥, 𝑦) . 

- Bearing rate : Absolute value of the difference of bearing between a position and the next 

one. 

- Speed Change : The absolute variation of speed between a position and the next one. 

- Straightness : It describes the difference between the trajectory of the boat from a 

position to the next and their Euclidian distance. Its formula is 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =  
∆𝐷(𝑛,𝑘)

𝐿(𝑛,𝑘)
 

where ΔD(n,k) represents the Euclidian distance between a position (Pn) and the next (Pn+k 

with k = 1), and L(n,k) is the distance really covered by the boat (Baschelet, 1981). 

- Sinuosity : The measure of sinuosity between points P1 and P2 introduced by Dutton 

(1999) corresponds to a distance ratio of the euclidian distance between points P1 and P2 

and the distance actually travelled between these two points. Sinuosity between point P 

and Pk is expressed as follows : 𝑆𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦𝑃,𝑘 =
∑ 𝑑𝑖,𝑖+1

𝑖=𝑝+𝑘−1
𝑖=𝑝−𝑘

𝑑𝑝−𝑘.𝑝+𝑘
 with k the lag parameter 

and d the distance measured. 

- Turning angle : Its calculation uses Bachelet’s method (1981), calculating the step angles 

(radians) of each segment in relation to the previous one. 
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- Direction change : Variation of trajectory between consecutive trajectories (Kitamura and 

Imafuku, 2015). It’s calculated as such : 𝐷𝐶∝2 = (180 −
180

𝜋
𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑎2+𝑏2+𝑐2

2𝑎𝑏
)) ∗

1

𝑡
, 

arccos is the trigonometric function, t is the timelapse between the first and last point, a 

is the length of the segment between the first and the second point, b is the length of the 

segment between the second and third point, and c is the length of the segment between 

the first and third point (Fig. 8). 

 

 

For each observation, we calculate these covariates in a moving window varying with 
resolution (previous and next positions). For example, at 900s, for one position we calculate 
“Speed”, “Speed_previous” the speed at the previous positions (900s earlier) and “Speed_next” 
the speed at the next position (900s later). The same goes for every covariate, at every temporal 
resolution. 
 
To understand better the importance these covariates could have in our machine learning 
algorithms, histograms of their distribution have been drawn :  

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Histogram of covariate distribution at 60s 

Hauling 
Setting 
NotFishing  

Figure 8. A butterfly's flight path (Kitamura and Imafuku, 2015) 
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3.2 Presentation of the machine learning methods 

 In this part are described the different machine-learning models tested. It is important to 

note that we will not be using the 20 and 30 seconds resolutions from now on. First of all our 

exploratory work on resolutions showed that at 60 seconds we can retrieve all the fishing 

operations, and running our models optimization on datasets as big as the 30 (4 400 000 

observations) and 20 seconds (6 500 000 observations) would have taken a longer time than we 

had.  

3.2.1 SVM 

Support Vector Machines (SVM) have been the object of numerous studies in the field of 

transportation modes classification (Bolbol et al., 2012; Jahangari and Rakha, 2014; Zheng and Xie, 

2008). Their application to the maritime field and most importantly to the identification of fishing 

vessels typology (Kim and Lee, 2020; Marzuki et al., 2018) also displayed a great potential. These 

algorithms relying on supervised learning are well known for their ability to resolve discrimination 

problems. Their operation is based on the search of the optimal margin hyperplane which will 

allow classification or separation of the data and whose generalization ability (ability to separate 

the data) is the greatest (Tong and Chang, 2001). SVMs can use different kernels : linear, 

polynomial… the one we chose for our study is  the radial kernel SVM, because it was the one 

showing the best results during an exploratory phase. 

To optimize the radial SVM model, the R-package “kernlab” was used (Karatzoglou et al., 2004), 

with the following hyperparameters :  

- C : represents the wrong classification rate. If it has a high value, the optimization will 

choose a hyperplane with a smaller margin if it classifies more precisely the training data. 

A low value of C will force the optimization to look for a larger margin, even if it gives a 

wrong classification for a bigger part of the training data. 

- Sigma : affects the linearity of the margin. With a low value of sigma, the decision frontier 

will ignore the farthest points, thus creating a nonlinear margin. In the case of a high 

sigma, these same points will have more weight, and the margin will tend to be more 

linear. 

3.2.2 CART 

Decision Trees (DT) classification categorizes the data at every step. This implies creating a 

tree specific to the training data which will be used to simplify the dataset. The tree is made up of 

nodes and branches, the first correspond to the decisions while the branches go left or right at 

each node to put the data in one of two classes or, if the tree keeps going, continue selection. The 

simplicity of their execution and of the interpretation of the results have made them one of the 

most popular classification algorithm. It has also been widely used in the recognition of 

transportation modes (Dabiri et Heaslip, 2018; Xiao et al., 2017; Zheng et Xie, 2008). For the 

aforementioned reasons it has been chosen for our study, even though it has less potential in 

terms of precision than the other three. A major contribution to our decision is that CART 

optimization lasts less than an hour for a dataset of more than 2 000 000 observations, while it 

lasts between 20 and 48 hours for the other three. 

The R-package “rpart” has been used to work with CART models, the hyperparameters are the 

following : 
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- Minsplit : minimum size of a node, or the smallest number of observations needed to split 

data in two. 

- Max depth : maximum depth of the tree (number of nodes). 

3.2.3 Random Forests  

Random Forests algorithms (Breiman, 2001) are made up of multiple decision trees. These 

trees are obtained randomly during the learning process, with a “bootstrap” method. The 

randomization of this process suppresses the overfitting effect often encountered when dealing 

with simple decision trees (Breiman, 2001). Their use in the identification of transportation modes 

(Dabiri and Heaslip, 2018; Xiao et al., 2017) and fishing gears (Marzuki et al., 2018, 2015) has given 

promising results. Hence, these algorithms have a great potential for the data analysis of the 

experimental fishing fleet’s data collected for this study.  

The R-package “ranger” (Wright et al., 2015) was preferred to the classic “randomforest” because 

its computation times are shorter.  

- Num trees : number of decision trees created. 

- Mtry : this parameter controls the number of covariate available for use when creating 

each decision tree. 

- Min Node Size : The minimum number of observations to create a node in each decision 

tree. 

3.2.4 XGBoost  

EXtreme Gradient Boosting (XGBOOST) classification algorithms use ensemble methods 

based on tree aggregation. This type of algorithm is based on learning from error in an iterative 

process. Thus, at each iteration, the tree constructed learns from the errors committed by the 

tree previously constructed (Chen and Guestrin, 2016). In this way, the decision rule constructed 

results from the sum of the results of each tree, enabling a high level of reliability to be achieved. 

Their ability to be run in parallel makes these algorithms particularly well suited to large volumes 

of data (Chen and Guestrin, 2016; Huang et al., 2019). Studies carried out in the transportation 

domain (Xiao et al., 2015) and in fishing gear identification (Huang et al., 2018) revealed that these 

algorithms responded very well to these problems, and proved to be the best performing of those 

tested in this work. These results tend to encourage their use in these areas and particularly 

support their ability to discriminate between the gear types used within the French fishing fleet.  

The booster chosen is "gbtree", as it is the only one based on trees rather than linear models, and 

a non-linear response is strongly expected. The R-package "xgboost" (Chen and Guestrin, 2016) 

enables the optimization of XGBoost models via the following hyperparameters: 

- Eta : corresponds to the learning rate. After each boosting step, the eta reduces the weight 

of each covariate to make the process more conservative. 

- Gamma : specifies the minimum reduction in loss required to make a knot. The greater 

the gamma, the more conservative the algorithm. 

- Max depth : maximum depth of a tree. 

- Subsample : fraction of observations randomly sampled for each tree. 

- Colsample by tree : resampling rate used for the construction of each tree. 

- Objective : definition of the loss function to be minimized. For multiclass prediction, either 

multi:softmax or multi:softprob is used. In this study, multi:softprob is used because it 

gives the probability of an individual belonging to each class. 
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- Eval metric : metric used for data validation, we used mlogloss because the variable we 

predict (fishing operation) is multiclass. 

- Num class : number of classes of the predicted variable (three for fishing operations : Haul, 

Set, NotFishing). 

- Numtrees : number of trees created. 

 

3.3 Model optimization 

To optimize these models, hyperparameters are selected through systematic sampling 

covering a broad array of possibilities. These form a fairly large multi-dimensional grid, which 

can be reduced in a second step by systematic sampling.  This enables the algorithm to be run 

with each of the hyperparameter combinations, to then select those that enable the 

construction of the model giving the best prediction performance. 

To calculate the precision of each model built during the optimization process we use cross 

validation. Cross-validation involves dividing the dataset into n subsets, each of which acts in 

turn as a training sample and a test sample. So, for a 3-fold cross-validation, we divide the set 

into 3, for a 5-fold cross-validation, we divide it into 5, and so on. 

For the optimization process, 3-fold cross-validation was chosen rather than 5-fold, as the 

computation time is shorter. Rather than testing each sample in turn, one of the three samples is 

selected as the test sample from the outset. This again reduces calculation times. As the 

positions are not independent, the object of the cross-validation in this case is the fishing trip 

and not the line indexes as in most procedures. The results are thus better able to describe the 

object of the prediction, which in our case will be either a new fishing trip or later on a new ship. 

Once we gathered the results of the first hyperparameters grid, we can narrow it down and 

select new hyperparameters to get better results if needed, and if the best result hasn’t been 

obtained yet. 

The tables below show, for each model, the hyperparameters retained at each resolution during 

the optimization phase. The colors in the "Acc" column (model accuracy) are defined based on a 

k-means clustering of accuracies : 

 

 

The choice of CART model hyperparameters varies very little from one resolution to the next, 

but the accuracy score (Acc) increases almost linearly with the temporal resolution up to 60 

seconds. 

Table 1. CART hyperparameters at various resolutions 
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In this case, no particular trend appears in the choice of hyperparameters. The highest precision 
is reached at 300, exceeding that at 120 by a few hundredths, and well ahead of 60 seconds. 

 

 

As in the previous table, there is a drop in accuracy of several tenths after 300, with the accuracy 

score decreasing significantly at 60 seconds. 

 

 

Again, the precision rises until and reaches a maximum at 300 seconds, then drops down a notch. 

The optimization phase reveals two results. Firstly, SVM does not perform as well as Random 
Forest and XGBoost (Tab. 2-4), both of which achieve similar scores, with only 1% in favor of the 
latter.  

Table 2. SVM hyperparameters at various resolutions 

Table 3. Random Forest hyperparameters at various resolutions 

Table 4. XGBoost hyperparameters at various resolutions 
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Secondly, accuracy does not increase with resolution. Or rather, it increases up to 300 seconds, 
then decreases slightly with each step as we continue to refine the resolution, with the exception 
of CART, which only decreases after 60 seconds (Tab. 1). What's more, CART achieves almost the 
same score as SVM, although the former takes much less time to run (at 3600 seconds, CART 
optimization takes a few seconds and SVM around an hour).  

For both SVM and Random Forest, the choice of hyperparameters varies greatly, demonstrating 
the importance of optimizing a model for each resolution. This also explains why the accuracy 
score decreases after 300 seconds: although the learning base is more detailed, this does not 
mean that the model will be any better. 

3.4 Model evaluation 

Once the models have been optimized to select the best hyperparameters, their 

performances may be evaluated. An initial evaluation has been carried out in the form of 5-folds 

cross-validation by fishing trip (5 subsets, each consisting of randomly selected one fifth of the 

total fishing trips), to assess the ability to predict a new fishing trip for an existing vessel in the 

calibration database. 

 

We compute accuracy scores as follows : 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 with TP the true positives, 

TN the true negatives, FN the false negatives and FP the false positives (R is rate). 

 

 

Table 5. Evaluation of 5fCV models by fishing trip at 3600s 

Table 6. Evaluation of 5fCV models by fishing trip at 900s 

Table 7. Evaluation of 5fCV models by fishing trip at 300s 

Table 8. Evaluation of 5fCV models by fishing trip at 60s 
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The ranking of models in terms of accuracy remains the same for the different resolutions: 

XGBoost is in first place, closely followed by Random Forest, then SVM and finally CART. The 

resolution for which the models give the best results is 300 seconds, except for CART, which 

achieves this at 60 seconds (Tab. 5-8). 

Model evaluation highlights the main difficulty of the subject: classifying setting operations. 

Indeed, model accuracy for setting (acc.set) never exceeds 66%, which is very low when 

compared to the 90% accuracy more frequently achieved for hauling (Tables 5-8). In fact, hauls 

are slower movements with a very specific behavior, whereas setting is a short-lived operation 

that is difficult to characterize even at low resolutions. 

 

The decision rules of the different CART models are represented as trees with their branches 

describing the decisions (Fig. 9). At 3600 seconds, only speed covariates are used: speed for the 

first two nodes, speed at the previous point for the third, and speed at the next point for the 

last. At 900 seconds, the first, second and fourth nodes use speed, the second uses the speed at 

the previous point, and the last the acceleration. At 60 seconds, first the speed at the next point 

is used, then twice the speed at the previous point. Depending on the third node, either the 

speed at the previous point is used, or the Jerk and then the Bearing Rate. Linked to an event 

happening at  lower speed, the addition of the BearingRate takes into account changes in 

direction, with a low value indicating a straight path and a high value indicating a winding path. 

It has indeed appeared on high-resolution maps that some boats seem to have a sinuous 

trajectory when hauling their nets, but this is a result that will have to be validated with 

fishermen later on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. CART decision trees at the following resolutions, from left to right and top 

to bottom: 3600s, 900s, 60s 
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For the XGBoost too, speed covariates are the most important. At 900 seconds, the proximity 

index is the third most important covariate. At 60 seconds, speed at the current point is used 

very little compared to other resolutions, and it is the speed at the previous and next points that 

are most important. 

As these three speed variables are highly correlated at finer resolutions, the importance graph is 

skewed. Indeed, between the velocity at the previous point and that at the current point, we 

have an R² coefficient of 0.97 at 60 seconds, compared with 0.53 at 900 and 0.17 at 3600. This 

Figure 10. Importance des variables des modèles XGBoost aux résolutions 

suivantes, en allant de haut en bas : 3600s, 900s, 60s 
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may explain why model performance deteriorates after 300 seconds, when neighbors are too 

close to each other to use velocities over the moving window as independent variables. We will 

have another look at this hypothesis in section 3.5 . 

We have also carried out a leave-one-out cross-validation per vessel (cross-validation with as 

many levels as there are vessels in the dataset), so that the fishing operations of each vessel are 

predicted from the qualified data of all the other vessels, but not of the vessel in question. This 

validation procedure is closer to our final objective (applying these models to the 500 Bay of 

Biscay gillnetters) than using a validation performed by fishing trip. It enables us to assess the 

model's predictive capabilities on vessels not present in the database, so cross-validation by 

vessel shows the extent to which these models will be applicable to the entire French gillnet 

fleet operating in the Bay of Biscay. 

The choice of leave-one-out for cross-validation will prove more severe than using fishing trips, 

but these results will be more in line with what can be expected when applying these models to 

new vessels. These results were finally used to calculate the gear metrics. 

 

 

 

 

 

 

Cross-validation (CV) by vessel gives slightly poorer results than CV 5-folds by fishing trip: at 300 

seconds for CART we get 82.8% accuracy in validation by fishing trip vs. 81.2% by vessel, 89.7% 

by fishing trip vs. 87.4% by vessel at 300 seconds for XGBoost. This result was expected as the 

variability between different vessels is higher than between different fishing trips of the same 

boat, involving also that "atypical" boats will be less well predicted and cause global scores to fall 

slightly. 

 

 

Table 9. Results of ship-based cross-validation of the CART model at different resolutions 

Table 10. Results of ship-based cross-validation of the XGBoost model at different resolutions 
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To compare the predictions of different vessels, the resolutions chosen are 3600 (1 hour), 900 

(15 minutes) and 60 seconds (1 minutes). The first was chosen to look at the most degraded data 

available, the 15 minutes resolution corresponding to the frequencies that will be used for the 

deployment of the coastal VMS stream intended to equip certain French vessels of less than 12 

meters, and finally the minute resolution being the one that seems suitable to be able to assess 

SSF operating passive gears correctly (ICES Scientific Reports Vol. 4 Issue 10, 2020). 

 

Since we're talking about "atypical" boats, let's look at the prediction results boat by boat (Table 

9). For almost all boats, the prediction scores increase with a finer resolution (Table 9). However, 

two boats (0159 and 0173) score better at 900 than at 60 seconds, and one boat (0170) scores 

better at 3600 than at 900 and 60 seconds. 

The least well predicted boat is 24 meters long and the only dominant offshore hake gillnetter in 

the OBSCAMe database  as described in the typology of French gillnetters defined in Demaneche 

et al., 2021. The difficulty in predicting this vessel could come from a different behavior directly 

linked to a single fishing method in the dataset. This could be a major obstacle that will have to 

be taken into account if we are to create models applicable to all French gillnetters. 

Fortunately, all classes of gillnetters that could be involved in cetacean bycatch in the Bay of 

Biscay seem to be present in the whole calibration dataset. The model built are then expected to 

be suitable for that purpose but probably not for application in other contexts (for example, 

gillnetters targeting monkfish in the English Channel…). 

 

Table 11. XGBoost leave-one-out cross-validation results for each vessel at various resolutions 
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3.5 Improving the 60s XGBoost model 

 After our work on model optimization/evaluation was done, we were wandering how 

come our 60 seconds XGBoost model gives worse performances than the 300 seconds model. 

One of the main aspect we wanted to explore was the moving window. As said earlier, at 60 

seconds the R² coefficient between the speed at the previous position and the speed at the 

current position is 0.97, which makes these two covariates highly correlated. It implies that using 

these two variables together does not give much more information than using only one of both. 

At 300 seconds, they are less correlated, as the behavior of the boat tends to change much more 

over the course of 5 minutes than it does over the course of a minute. So, we decided to keep 

the moving window of 1 neighbor at 60 seconds (although correlated, this moving window still 

provides new information, particularly for some other features used in the models), but we 

added the 5th previous and next neighbors for all covariates to include the information that was 

available in the 300 seconds dataset.  

Below are presented the results of previous leave-one-out cross-validation by boat merged with 

the result attained at 60 seconds with the 5th neighbors : 

 

By adding the 5th previous and next neighbors, the performance of our 60s XGBoost model 

improves significantly (Tab. 10), raising it from a 86.33% accuracy to 87.41%, the overall accuracy 

being now slightly better than the one obtained with the 300 s model. 

One of the main takeouts is that, even though the model gained more than 1% of accuracy, 

calculation time was also greatly affected. The optimization took around 72 hours, while the 

evaluation using leave-one-out cross-validation by boat lasted just a little bit less (and both 

processes were ran on computing servers using parallelization methods and 12 cores). 

Table 12. XGBoost leave-one-out cross-validation results  
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4 Calculation of vessel effort as fishing hours 

For the rest of our study, we decided to narrow down the data and algorithms we were using. 

We only kept four temporal resolutions, 3600, 900, 300, and 60 seconds. As for the models, we 

will keep using only the CART, which is the easier and fastest to implement and the XGBoost, 

which performs better. At 60 seconds, we will always add the 5th previous and next neighbors 

from now on. 

4.1 Methodology 

The aim of this part is to evaluate the efficiency of our XGBoost and CART models for estimating 

the vessel effort expressed in fishing hours. We will also see how these models fare compared to 

a speed filter and an improved speed filter. To do so, we will compare the fishing hours 

estimated by each model to the fishing hours calculated from the OBSCAMe database at two 

different temporal resolutions : 3600 and 900 seconds. We chose these resolutions because 

3600s corresponds to the mandatory VMS available for French vessels, and 900s may be 

available for most of the SSF vessels already equipped with geolocation devices. In part 2.2, it 

was also shown that this resolution could be sufficient for identifying the fishing trips and 

calculate the fishing hours for SSF vessels. 

4.1.1 Metrics for evaluating the quality of predictions 

To evaluate each model, different metrics were chosen, such as the R², RRMSEP, and bias.  

The R² (Pearson's coefficient of determination) is defined as such :  

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦�̂�)²𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)²𝑛
𝑖=1

 ,  

where 𝑦𝑖  is the actual value,𝑦�̂� is the predicted value, and �̅� is the mean of observed values, and 

𝑛 the number of observations/predictions.  

The RMSEP (Root Mean Square Error of Prediction is calculated with the formula  

𝑅𝑀𝑆𝐸𝑃 =  √
∑ (𝑦𝑖−𝑦�̂�)²𝑛

𝑖=1

𝑛
  

, and the RRMSEP is equal to 

𝑅𝑅𝑀𝑆𝐸𝑃 =  
𝑅𝑀𝑆𝐸𝑃

�̅�
  

 Finally, the bias is calculated as: 

 Bias = 
∑ (𝑦𝑖−𝑦�̂�)𝑛

𝑖=1

𝑛
 . 

4.1.2 Aggregations and grids for mapping fishing effort 

To evaluate our models performances, the predicted fishing hours were first aggregated by 

Fishing Trip to produce fishing effort data that could be linked to declarative data from the 

fishermen. Then, the predicted fishing hours were aggregated by CSquare in order to produce 

fishing effort maps containing every vessel available in the OBSCAMe dataset. 

Csquares is a system for storage and display of spatial data that uses numbered squares on the 

earth's surface measured in degrees (or fractions of degrees) of latitude and longitude as 
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fundamental units of spatial information, which can then be quoted as single squares in which 

one or more data points are located (Hintzen et al., 2012). The CSquare 0.05° will be used as it is 

the reference grid for answering the ICES VMS datacalls. 

4.2 Viability of the models for describing fishing effort at the fishing trip scale 

First of all, we wanted to compare the results of machine-learning models with the existing 

method applied in the ALGOPESCA algorithm used by the French Fisheries Information System to 

predict fishing hours of French vessels. This algorithm uses a Speed Filter, whenever a position is 

associated to a speed below 4.5 knts it is considered as “Fishing”, and “Not Fishing” otherwise.  

As we could not merge directly the ALGOPESCA fishing predictions with our database, this one 

not being available in the geolocation workflow, we applied a simple speed filter of 4.5 knts. We 

also made predictions with an improved speed filter which classifies a position as “Fishing” if the 

vessel has a speed below 3.5 knts and over 0.15 knts (Speed Filter 2). Finally, we added our CART 

and XGBoost models predictions obtained using the cross-validation by vessel process 

We then used the iapesca function “Calc_VesselFE” (Rodriguez, 2023) to calculate the fishing 

hours for each fishing trip in our database, using either OBSCAMe qualified fishing operations as 

reference or the predictions from the different methods described before. 

We can now look upon the error by Fishing Trip for each predictions, using simple regression 

plots with the R², RRMSEP ( (Root Mean Square Error of Prediction / mean) * 100 ), Average and 

Bias as our evaluation metrics. 

 

 

 

Figure 11. Error of predictions of the “Fishing Hours by Fishing Trip” metric 

for the CART, XGBoost, Speed Filter, and Speed Filter 2 at 3600s 
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At both resolutions, the best model to estimate the Fishing Hours is the XGBoost, followed by 

CART, the improved speed filter  with minimal threshold, and at last  the generic speed filter. The 

XGBoost and CART models do not seem to improve much between 3600s and 60s, but, as we 

have shown before, even though 900s is necessary to calculate the fishing hours of vessels under 

12m in length, the 3600s resolution is perfectly fitted for the bigger boats. As these boats are 

bigger and do longer fishing trips, they have higher values of fishing hours and pull the relation 

towards higher values of R². However, when we look at the RMSEP and Bias, we see a real 

improvement between the two resolutions.  

The simple Speed Filter (SPF) deteriorates at 900s compared to 3600s, but it appears that 

adjusting the thresholds already improve greatly its performance. Using a minimal threshold 

being really important for that gears, even for degraded resolutions. 

 We said the R² coefficient is not very reliable for the error by Fishing Trip because the 

relation between predictions and observations is pulled by the big vessels who have higher 

values of Fishing Hours by Fishing Trip. One may wonder how these relations would fare when 

we take into account only one small vessel (7,7m) of our dataset. 

 

 

 

Table 12. RRMSEP of the “Fishing Hours by Fishing Trip” metric for the CART, 

XGBoost, SPF, and SPF2 at 3600s, 900s, 300s and 60s for a boat < 10m 

Figure 12. Error of predictions of the “Fishing Hours by Fishing Trip” 

metric for the CART, XGBoost, Speed Filter, and Speed Filter 2 at 900s 
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As expected, we need a finer temporal resolution to assess correctly the fishing effort of this 

small boat. Even at 900 seconds the RRMSEP remains over 100% and the bias over one hour. For 

this boat the average fishing hours by Fishing Trip value is around two hours, so a bias over one 

hour wouldn’t be acceptable.  

Although the overall results demonstrate good performance even for the more degraded 

dataset, it appears that, for the smaller boats, a temporal resolution of at least 5 minutes may be 

necessary to be able to interpret correctly the vessel behavior.  

Now, we can have a look at the Fishing Hours predictions on a map of the Gulf of Biscay. We 

used the methods implemented in the “iapesca” R-package to spatialize our data and then 

rasterize it with the Gulf of Biscay as our extent and CSquare 0.05°. The same breaks values were 

used on each plot so that we can compare each model. 

Table 13. Bias of the “Fishing Hours by Fishing Trip” metric for the CART, 

XGBoost, SPF, and SPF2 at 3600s, 900s, 300s and 60s for a boat < 10m 
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4.3 Viability of the models for mapping fishing effort on a 0.05° C-square grid 

By looking at the breaks values and the colors on the different maps, we can already oberve that 

both Speed Filters and particularly the one using only one upper threshold overestimate the 

FishingHours values. This result was expected, as the use of only one upper threshold lead to 

include in fishing effort the expectation time on fishing grounds, typical for these kind of 

fisheries. Including complexity in these models with two decision rules for the improved speed 

filter, four for the CART model and the XGB being even more complex. Allow a better description 

of fishing activity.  

Next, we can calculate the error by CSquare between predictions and OBSCAMe values. To do 

so, we first calculate the DiffFishingHours as  
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
× 100 . In some cases, the 

overestimation of predictions is so strong that values over 100 may be reached. To make a 

distinction between erroneous pixels(fishing occurs in Csquare for predictions but not for 

observations) and greatly overestimated pixels, we decided that all values over 98.99 would be 

given a value of 98.99, and erroneous pixels a value of 100. The same goes for missing pixels 

(fishing occurs in Csquare for observations but not for predictions) which were given values of -

100. 

 

 

 

Figure 13. Fishing Hours values aggregated by CSquare 0.05 for the CART, XGBoost, 

Speed Filter, and Speed Filter 2 at 3600s 
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Figure 14. Error in Fishing Hours predictions aggregated by CSquare 

0.05 for the CART, XGBoost, Speed Filter, and Speed Filter 2 at 3600s 

Figure 15. Error in Fishing Hours predictions aggregated by CSquare 0.05 for 

the CART, XGBoost, Speed Filter, and Speed Filter 2 at 900s 
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Just by looking at the maps the XGBoost model’s cartographic error appears  to be less 

important at 900s than it is at 3600s. The CART predictions are generally underestimated at 900s 

(Fig. 14). In fact, when we look at the error computed by Fishing Trip (Fig. 9-10), it appears that 

the CART also has a negative Bias at 900s. 

For further analysis the histograms of values are plotted to observe the overall distribution (Fig. 

16-17), and then evaluation metrics are calculated (RRMSEP, average, R² and Bias) (Fig. 18-19).    

  

The histograms above summarize the values plotted on the maps. As expected, the CART model 

underestimates the FishingHours at 900s. At both resolutions, the histogram which is more 

centered around zero is the XGBoost, which means the bias is minimized compared to the other 

models, showing once again this model’s high predictive ability. 

We will now look at the relations between OBSCAMe fishing hours and the predictions of our 

different models aggregated by CSquare 0.05. 

 

  

Figure 16. Histograms of DiffFishingHours by CSquare 

0.05 for the CART, XGBoost, Speed Filter, and Speed 

Filter 2 at 3600s 

Figure 17. Histograms of DiffFishingHours by CSquare 

0.05 for the CART, XGBoost, Speed Filter, and Speed 

Filter 2 at 900s 
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Compared to the method used at present to describe the fishing effort for gillnetters with the 

existing VMS workflow (3600s), an improved speed filter contributes to reduce the error by a 

factor of 3, the CART and XGB models by respectively factors of 4 and 6. The effort being 

Figure 18. Error of predictions of the Fishing Hours computed by 0.05° 

CSquare for the CART, XGBoost, Speed Filter, and Speed Filter 2 at 3600s 

Figure 19. Error of predictions of the Fishing Hours computed by 0.05° 

CSquare for the CART, XGBoost, Speed Filter, and Speed Filter 2 at 900s 
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overestimated by a factor over two with the current method, the bias is respectively reduced by 

factors of 3 and 5 and is negligible when using the XGB model. 

Surprisingly, the use of 900 seconds resolution instead of 3600 seconds does not seem to bring a 

significant improvement and even leads to a stronger overestimation when applying a simple 

speed filter. The bias seems to be reduced for more complex models.  

The goal of this study, however, is not to calculate FishingHours, as we know this metric isn’t 

adapted to fisheries using passive gears (such as gillnetters) (Mendo et al., 2023). In the next 

section we will go over the process of gear modelling and calculating gear effort, which will 

require an even finer resolution as demonstrated in part 2. 

 

4.4 Application to the VMS data 

  

Three of the different methods tested (speed filter <4.5 knots, CART and XGBoost) were applied 

to the VMS data available for the Bay of Biscay. Only the gillnetters were extracted from the 

VMS database, and all the fishing trips using other types of gears were removed. The temporal 

window chosen is from January 2022 to September 2023. Then, the data went though the 

process described in part 4.3, which resulted in the maps below. 

 

 

 

 

 

Figure 20. Fishing Hours values computed by a speed filter (<4.5 knots) applied to 

the VMS data (3600s) for all French gillnetters between 01/2022 and 09/2023 
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These maps highlight the overestimation of the speed filter compared to the machine learning 

methods. Following this work, improved maps of fishing hours using the VMS flow can now be 

routinely produced.  

 

Figure 21. Fishing Hours values computed with the CART model at 3600s applied to 

the VMS data (3600s) for all French gillnetters between 01/2022 and 09/2023 

Figure 22. Fishing Hours values computed with the XGBoost model at 3600s applied 

to the VMS data (3600s) for all French gillnetters between 01/2022 and 09/2023 
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5 Calculation of gear effort as total length and soaking time 

5.1 Gear creation issued from the geocomputation process developed in the 

“iapesca” R-package (Rodriguez, 2023) 

We will use the R package "iapesca" to calculate gear metrics (Rodriguez, 2023). Using a dataset 
containing the fishing positions and the qualification of operations, methods available in this  
package create spatial objects representing the nets and compiling  the information regarding the 
whole fishing operation (length, soaking time, fishing trip identifier for setting and hauling, etc.). 

We can therefore create the "real" nets from the qualified database, and the predicted nets from 
the results of cross-validation by vessel, using the “Create_NetsByBoat” function. This process will 
create a spatial object from a sequence of contiguous positions qualified as hauling.  

Two methods are available for consolidating the generated nets: "BehaviourChange" and 
"AutoThresholdDetection". 
Activation of the "BehaviourChange" method takes into account a local classification of speed and 
direction changes to generate net separations within continuous sequences if a change in behavior 
is detected. This method was first developed and proved to be useful for degraded resolutions 
(900 s) to qualify straight nets.  
Activation of the "AutoThresholdDetection" method determines threshold values based on 
generated net statistics (length, immersion time, hauling speed, etc.), to compensate for gear 
expertise when knowledge of these parameters is not available and can’t be defined explicitly in 
the function. We chose to use the “AutoThresholdDetection” process but to deactivate the 
“BehaviourChange”, as at the finest resolutions this argument of the function generally generated 
far too many nets, with numerous changes of direction appearing as we refined the temporal 
resolution. 

In a second step implemented in the function “Retrieve_SettingOperations”, a spatial buffer is 
generated to look for past sequences of points that could correspond to the setting by spatial 
overlapping. These sequences are then hierarchized based on their probability to be the related 
setting event with a process similar to the one described in Mendo et al., 2023, being based on 
their temporal proximity and the best match between respective lengths of the sequence. The 
function additionally provides a score based on the qualifications as “setting” operations if they 
are available. The default buffer value was defined using the qualified data set available in iapesca. 

We decided to use the following variables to compare the boats and the predictive capabilities of 
the models at different resolutions:  

- Median soaking time per fishing trip 

- Total length deployed per fishing trip 

- Total length * soaking time 

Once these metrics have been calculated for both qualified and predicted data, we will compare 
observations with predictions. The R² over all fishing trips  will be calculated, as well as the RRMSEP 
and Bias (see part 4.1). 

To have a better understanding of what our computed nets look like for the whole calibration 
database, below you will find screenshots of the interactive maps created with the R-package 
“mapview” showing the spatial objects generated with the “Create_NetsByBoat” and 
“Retrieve_SettingOperations” functions from iapesca (Fig. 19). 
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5.2 Gear effort metrics aggregated by Fishing Trip 

From now on, the work carried out on the gear effort metrics (Total Length Hauled, Median Soak 
Time, and Length*SoakTime) will be similar to what we did with the FishingHours earlier. In this 
case, the function Calc_VesselFE will not only take the positions as inputs, but also the gears. For 
the observations, we consider the nets generated from the 60 seconds OBSCAMe database. For 
the predictions, we will now only look at the XGBoost models cross-validation by vessel results 
obtained at different temporal resolutions, for the simple reason that it is the most accurate of 
the models studied (see 3.4), the best possible accuracy being a prerequisite for applying this 
geocomputation process (Mendo et al., 2023).  

The nets without related setting event were removed (argument “remove.orphans” in 
“Retrieve_SettingOperations”). Implementing the gears in the “Calc_VesselFE” function allows us 
to compute the total length hauled, median soaking time, and the product of these metrics 
described as Length*SoakTime by fishing trip, as well as consolidating the FishingHours metric by 
removing some false positive hauling events.  

 

Figure 24. Error in predictions of the XGBoost model for different metrics aggregated 

by Fishing Trip at 3600s 

Figure 23. Nets created from the OBSCAMe data (green) and from the XGBoost model predictions (red) at 300s 
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We have tabulated the result by gear effort metric. 

 

These results show that the 300s or 60s resolution are needed to be able to predict the gear effort 
correctly. The best of these two temporal resolutions cannot be determined based on the results 
shown here. At last, the aim of this study is not to predict the aggregation of gear effort metrics 
by Fishing Trip, but rather by  CSquare, which will be done in the following part. 

Table 15. Error in predictions of the XGBoost model for the total length hauled aggregated 

by Fishing Trip at various resolutions. 

Table 16. Error in predictions of the XGBoost model for the soaking time aggregated by 

Fishing Trip at various resolutions. 

Table 17. Error in predictions of the XGBoost model for the length * soak time metric 

aggregated by Fishing Trip at various resolutions. 
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5.3 Gear effort metrics aggregated by CSquare 0.05° 

Once again, we use iapesca functions to spatialize (Spatialize_FE) and then rasterize 
(Rasterize_FE2Csq) our data. We end up with a Raster containing the aggregated gear effort 
metrics values by CSquare. We decided to use the CSquare 0.05° again to compare the four 
different temporal resolutions (3600s,900s,300s,60s) because it is the reference grid used for 
answering ICES VMS datacalls and that using a smaller CSquare wouldn’t be suited to the 3600 
seconds resolution. Once this process ends, we can plot the raster object over an outline of the 
Gulf of Biscay. 

 

 
 
 

 

 

 

 

 

 

Figure 25. Gear effort by CSquare 0.05° for the “FishingHours”, “Length Hauled”, “Soaking Time”, and 

“Length * Soak Time” at a 60s resolution (OBSCAMe data on the left, XGB predictions on the right) 
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Just like in part 4.2 with the fishing hours, differences between predictions and observations will 
be computed at the scale of the CSquare 0.05° for each metric in a raster object, which will be 
plotted over a map outline with histograms of its values next to it. 

Figure 26. Error in “FishingHours”, “Length Hauled”, “Soaking Time”, and “Length * Soak Time” 

XGBoost predictions aggregated by CSquare 0.05° at a 60s resolution 
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The main outtake of these maps is that fishing operations located on the continental shelf seem 
harder to predict. Fortunately, the histograms values are all pretty centered around 0, which goes 
to show how promising XGBoost predictions are for fishing effort cartography. 

Now let’s look at the error by CSquare for the four gear effort metrics. “Av.Pix” being the average 
prediction value of a pixel (or CSquare).  

 
Once again, the results get better from the most degraded resolution (3600s) until the 300 
seconds resolution, and the 60 seconds resolution does not improve the latter. 

 

5.4 Gear effort metrics aggregated by CSquare 0.01° 

To obtain a finer spatial resolution, we can go through the whole process of part 5.3 using 

CSquare 0.01° instead of 0.05°.  We will no longer need the 3600 seconds resolution, as the 

granularity is not fine enough. 

At the latitudes studied, the CSquare 0.01° has a  diagonal measuring around 1.2km. If a boat is 

fishing (~2.5 knots) it will travel a distance of 4.6km in an hour, 1.15km in 15 minutes. Hence the 

choice not to use a resolution more degraded than 900 seconds. 

Table 19. Error in predictions of the XGBoost model for the Total Length Hauled metric 

aggregated by CSquare 0.05° at various resolutions. 

Table 20. Error in predictions of the XGBoost model for the Soaking Time metric aggregated 

by CSquare 0.05° at various resolutions. 

Table 21. Error in predictions of the XGBoost model for the Length * Soak Time metric 

aggregated by CSquare 0.05° at various resolutions. 
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Let’s have a look at the error maps of the metrics aggregated by CSquare 0.01°. 

Figure 27. Error in “FishingHours”, “Length Hauled”, “Soaking Time”, and “Length * Soak Time” XGBoost 

predictions aggregated by CSquare 0.01° at a 60s resolution 
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The bias for each metric except the Soaking Time appears to be better with a CSquare 0.01° than 
with a CSquare 0.05°. Obviously, we cannot really compare both spatial resolutions because the 
information they provide is so different, however it is reassuring to see that even with a resolution 
as thin as 0.01° the 60 seconds XGBoost model still makes few mistakes. 

 
 
The 60 and 300 seconds resolution still have pretty similar results, based on these results we 
cannot say that one of both is better than the other. However, the 60 seconds resolution is better 
for the Length Hauled.  

 

 

Table 23. Error in predictions of the XGBoost model for the Length Hauled metric aggregated 

by CSquare 0.01 at various resolutions. 

Table 24. Error in predictions of the XGBoost model for the Soaking Time metric aggregated 

by CSquare 0.01 at various resolutions. 

Table 25. Error in predictions of the XGBoost model for the Length * SoakTime metric 

aggregated by CSquare 0.01 at various resolutions. 
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6 Validation using on-board observations 

 

OBSMER is an on-board observation program for professional fishing vessels at sea, set up at 
national level in 2009 by the DGAMPA (General Directorate for Maritime Affairs, Fisheries and 
Aquaculture). Between 2021 and 2023, 13 of the 20 vessels in the OBSCAMe database for a total 
of 26 fishing trips have been sampled by OBSMER. For each vessel, a spatio-temporal join of the 
OBSMER and OBSCAMe fishing operations was carried out, giving priority to the temporal link. . 
In total, 86 OBSCAMe nets were associated with 97 hauls observed in OBSMER, the numbers differ 
because 10 nets appearing to be consistent in OBSCAMe actually correspond to several hauling 
events in OBSMER. 

These operations were also linked with the nets generated from the XGBoost predictions by the 
geocomputation process. The nets corresponding to the operations available in the calibration 
database are created from the by-vessel cross-validation predictions, and those corresponding to 
later operations (after September 2022) are derived from the predictions of the final model for 
these new fishing-trips. 

From this link between operations,  fishing gear effort measurement from fishermen’s 
declarations can be extracted from OBSMER (and compared with the dimensions computed from 
OBSCAMe and XGBoost predictions. 

 

6.1 Nets length 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The difference between the lengths computed from OBSCAMe and the OBSMER source remains 
very small (RRMSEP = 20.7%, Bias = -2.7%). The results for predictions show comparable error 

Figure 28. comparison of OBSMER length hauled with OBSCAMe (left) and XGBoost (right) 
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levels of 21.3%, but with a slightly higher bias of -4.7%. On average, the assessment method does 
not generate an overestimate. However, as this relationship is highly dependent  on  nets several 
kilometers long, a check is carried out on nets less than 1500 m long. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
OBSCAMe net lengths remain consistent despite a higher error of the order of 39%, but a bias 
which, although positive, remains low: 6.3%. The results for the predictions show comparable 
error levels: 41.6%; they also remain coherent with observations, with a few exceptions and a 
lower bias of 3.4%.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. comparison of OBSMER length hauled with OBSCAMe (left) and XGBoost (right) for all nets < 

1500m. 
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6.2 Soaking Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBSCAMe soaking times remain consistent, but with a higher mean error of 52.2% and a bias of 

17.6%. The results for predictions are logically worse than the previous ones, with 78.4% and a 

bias of 28.8%. This deterioration is mainly due to an observation for which the predicted value is 

very far from the value in OBSMER.  

Being based on declarative data, the reference data is subject to a degree of uncertainty. Despite 

a non-negligible error when reduced to the operation, the data remain globally consistent with 

observation, with a tendency to over-estimate (+6h) the model's predictions, to be compared 

with an average immersion time of 22.2 hours (27% Bias). 

 

 

6.3 Exploring net height data in OBSMER 

Unlike the OBSCAMe data or the XGBoost predictions, the OBSMER data gives us access to other 

dimensions like the net height, mesh size…. We tried to explore relations between net height 

and hauling/setting speeds depending on net type, to evaluate the feasibility to assess heights 

from the OBSCAMe data or other high resolution geolocation source.  

Figure 30. comparison of OBSMER soaking time with OBSCAMe (left) and XGBoost (right)  
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There appears to be a great variability depending on the vessel or gear type and there is no 

apparent relation between net height and setting speed. 

For trammel nets (GTR), a relationship seems to exist between net height and hauling speed. 

The latter could be an indicator of the height of trammel nets, which does not seem to be the 

case for straight nets. 

Based on the data collected, the height of a trammel net could be described by the relationship: 

Figure 31. Net height by vessel (A), net height by type of gear (B), net height compared with hauling speed 

(C) and net height compared with setting speed (D). 
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Height = 2.2083 ×  hs−0.73, R² = 0.92 (hs = hauling speed). This relationship is indicated by a red 

dotted line on the graph above (Fig.28 C.). This relationship is indicated by a red dotted line on 

the graph above (Fig.28 C.). This relationship should be confirmed by a larger number of 

references involving a larger number of boats, as the vessel effect could be a major source of 

bias. 
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7 Conclusion 

It has been shown that the one hour resolution currently mandatory in France for VMS is not 

enough to assess the fishing effort for passive fishing gears. In the case of the gillnetters, a 

resolution of 60s is needed to observe all the fishing operations (300s would be sufficient for larger 

boats but not for some vessels less than 15 meters long). This implies that, in order to be able to 

predict gear effort for the 500 French gillnetters operating in the Bay of Biscay, acquiring 

geolocation data at a much finer temporal resolution is necessary. 

Regarding the machine learning methods that were developed and tested, the XGBoost model is 

the one giving the best results whatever the temporal resolution, while the CART models that have 

been built have a much shorter computation time and are easier to implement in existing 

algorithms (cf. ALGOPESCA). The work carried out on these models has shown there is a high 

variability between different vessels, which demonstrates the importance of having a learning 

database that is representative of the entire fleet that will be later studied using these models 

The fishing hours could be well predicted from both 3600s and 900s resolutions, and their 

aggregation by CSquare was surprisingly no better at the finest resolution (900s) than at the 

degraded one (3600s). As this trend may be driven by larger ships, it has nevertheless been 

demonstrated than using a pole frequency of at least 15 minutes for the smaller vessels under 12 

meters is a prerequisite for being able to distinguish the fishing trips and compute the vessel’s 

fishing effort. Finally, the CART and XGBoost models represent a major improvement for 

calculating the fishing hours compared to the method implemented in ALGOPESCA which uses an 

upper speed filter. An improved version of the speed filter with a lower threshold was also 

presented and obtained much  better results than the method currently in use . 

The creation of gears and retrieval of setting events methods from the “iapesca” geocomputation 

process  (Rodriguez, 2023) was conclusive at the finest resolutions (300s and 60s). Three gear 

effort metrics were calculated: the total length hauled, the median soaking time, and the product 

of the last. These metrics were aggregated both by fishing trip and by CSquare (0.05 and 0.01) to 

evaluate the performance of the XGBoost model. It was shown that a resolution of at least 300 

seconds is required to build a XGBoost model that allows accurate calculations of the gear effort 

metrics. The model built at a 60 seconds resolution did not seem to improve on the one built using 

300s, but further work should be carried out to better understand the differences between their 

respective predictions, and how these differences may affect the geocomputation process and the 

accuracy of the metrics calculations. 

Finally, a validation of our results was carried out by matching the OBSCAMe data (60s) and 

XGBoost predictions (60s model) with the nets described in OBSMER when it was possible. In total, 

26 fishing trips for 13 boats were matched, and a spatio-temporal join of the nets was conducted 

in order to compare the gear effort metrics. From this comparison, it was confirmed our model’s 

ability to compute the length of a net is higher than its ability to compute its soaking time, but 

both show satisfactory results as the predictions and the reference were in most cases consistent 

with errors that seem acceptable. 
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8 Perspectives 

First of all, for any future studies regarding the fishing activity of vessels using passive gears, and 

especially for small scale fisheries, there is a real urge to acquire data at a finer temporal 

resolution. Instead of the mandatory VMS (1 hour resolution), some fishing vessels already use 

the AIS (Automatic Identification System) tracking system, which has a temporal resolution that 

can reach the scale of the second. If more boats were equipped with AIS and its data flow was 

made available, the knowledge we have on fisheries and their management could improve greatly.  

Using the VMS data flow currently available, it seems already possible to generate improved effort 

maps in fishing hours with a method that can be deployed in ALGOPESCA, the algorithm used by 

the French Fisheries Information System (FIS).  At present, it is based on a speed filter to compute 

the fishing hours for all the vessels equipped with VMS working in the Bay of Biscay.  

Part 4. of this paper shows that CART and XGBoost models make better predictions than the speed 

filter used by ALGOPESCA. As CART models are quite easy and fast to compute, implementing this 

decision tree in the ALGOPESCA algorithm could improve greatly its results. It is important to 

understand that ALGOPESCA is more complex than a single speed filter, as the algorithm also uses 

expert rules which make it better than using the speed filter only. However, these expert rules 

could also be an addition to a CART model. In addition, effort maps for hauled length and soaking 

time could be derivated from models exploiting the vessels characteristics and their catch profiles 

during the fishing trip based on logbooks. 

Regarding high resolution data, the next step could also be the use of deep learning methods. 

Neural networks perform very well in applications to the recognition of transport modes and 

fishing gear (Dabiri and Heaslip, 2018; Kim and Lee, 2020) and could lend themselves to the 

qualification of fishing operations. These models could be even more appropriated than the 

machine learning methods that were calibrated because they take into account the 

autocorrelation between the positions. 
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