
1 
 

Title: Leaf size doesn't matter: environment shapes eelgrass 1 

biodiversity more than a foundation species' traits. 2 

Authors: 3 

Alexandre Muller1, Stanislas F. Dubois1, Aurélien Boyé1, Ronan Becheler1, Gabin Droual1, 4 

Mathieu Chevalier1, Marine Pasquier1, Loïg Roudaut1, Jérôme Fournier2, Isabelle Auby3, Flávia 5 

L. D. Nunes1 6 

1. IFREMER Centre de Bretagne, DYNECO, Laboratoires d’Ecologie Benthique Côtière, 7 

29280 Plouzané, France 8 

2. CNRS, Centre d'Écologie et des Sciences de la Conservation (CESCO), Station de 9 

Biologie marine MNH, 29182 Concarneau, France 10 

3. IFREMER, Laboratoire Environnement Ressources d’Arcachon, 33120, Arcachon, France 11 

Abstract 12 

Aim: Understand the ecological processes that shape community composition in eelgrass 13 

meadows along the coast of France at local and regional scales. 14 

Location: Northeastern Atlantic. 15 

Methods: Combining taxonomic and trait-based approaches with structural equation 16 

modeling, we explored the mechanisms governing community assembly in five meadows 17 

located over a distance of 800 km along the French coast in the Northeast Atlantic. We 18 

assessed the spatial variability of eelgrass-associated invertebrate communities as affected 19 

by environmental parameters or morphological traits of the eelgrass and linked these 20 

mechanisms to their impacts at local and regional scales through analyses of the taxonomic 21 

and functional α and β diversities. We then quantified the direct and indirect effects of 22 

environmental factors on macrofaunal structure and composition.  23 

Results: Eelgrass meadows locally favored higher species abundance, diversity, and 24 

functional traits present in the community relative to nearby bare sediments. At the regional 25 
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scale, eelgrass diversity was comparable between sites, with high species turnover observed 26 

among them, and each site being characterized by different species and different sets of traits. 27 

These differences were due in part to morphological traits of the meadows, but the explanatory 28 

variables that best explained the differences among the meadows were environmental 29 

conditions, including temperature, current velocity, and Δ water level. 30 

Main conclusions: Meadows appear to harbor subsets of species from the regional species 31 

pool, rather than harboring eelgrass-specific assemblages. The processes that maintain 32 

seagrass diversity appear to reflect a seascape-scale meta-community composed of many 33 

habitats connected by source-sink dynamics. Given that eelgrass enhances the diversity and 34 

abundance of species found in neighboring habitats, conservation programs should consider 35 

ecosystem-level protection spanning multiple habitats, including eelgrass, in order to maximize 36 

the protection of biodiversity. 37 
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INTRODUCTION 41 

Marine biodiversity contributes to healthy and resilient ecosystems, but is currently 42 

under threat by a multitude of human activities such as climate change, overharvesting and 43 

pollution (Isbell et al., 2017). In order to make informed decisions about seascape (Kavanaugh, 44 

2019) management and conservation, it is essential to understand the processes that control 45 

the distribution of diversity across marine habitats. Biodiversity varies in response to processes 46 

taking place at both local and regional scales (Boström et al., 2006; Leibold et al., 2004; 47 

Underwood & Chapman, 1996). Therefore, understanding community assembly requires 48 

multiple scales of observations (Chase et al., 2018; Whippo et al., 2018). At broad geographic 49 

scales, evolutionary, geological and colonization histories define a regional species pool, 50 

referred to as 𝛄-diversity (Mittelbach & Schemske, 2015; Whittaker, 1960, 1972). At finer 51 

scales, biotic interactions (predation, competition) and abiotic conditions within habitats filter 52 
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species from the regional pool leading to what is known as 𝛂-diversity (Crist & Veech, 2006; 53 

De Troch et al., 2001; Sanders et al., 2007; Thompson et al., 2020; Whittaker, 1960, 1972). 54 

Interactions between local and regional processes generate spatial gradients in community 55 

structure known as 𝜷-diversity (Airoldi et al., 2008; Anderson et al., 2011; Thompson et al., 56 

2020; Whittaker, 1960, 1972). Examining each of these components of diversity is essential 57 

for determining which factors most influence communities of a given habitat type. 58 

It is now widely recognized that the integration of functional information based on 59 

species traits provides a complementary understanding of community functioning along spatial 60 

scales (Díaz & Cabido, 2001; Pavoine & Bonsall, 2011; Stegen & Hurlbert, 2011; Swenson et 61 

al., 2011). Indeed, comparing taxonomic and functional diversity can provide insights into the 62 

ecological processes that shape community composition (Mori et al., 2018; Swenson, 2011; 63 

Villéger et al., 2010) and the impact of biodiversity loss on ecosystem functioning (Burley et 64 

al., 2016; Cadotte et al., 2011). For example, trait homogenization within communities, when 65 

only species with a specific set of traits are found under certain conditions, are indicative that 66 

selective processes are at work, such as environmental filtering (Münkemüller et al., 2020; 67 

Perronne et al., 2017). Comparing taxonomic and functional diversity (on the basis of 68 

presence–absence and abundance data) can therefore provide key insights into the 69 

mechanisms affecting biodiversity. 70 

 Differences in biodiversity among assemblages (𝜷-diversity) can also be considered 71 

as two separate components: species turnover (the replacement of species or functional 72 

strategies in one assemblage compared to another) and nestedness (differences in richness 73 

when one assemblage is a subset of another, (Baselga, 2010, 2012; Legendre, 2014; Villéger 74 

et al., 2013). Quantifying the relative contributions of turnover and nestedness to 𝜷-diversity 75 

can improve our understanding of the ecological processes that structure communities. 76 

Indeed, two communities may have high taxonomic or functional 𝜷-diversity as a result of 77 

different processes that can be disentangled by partitioning the variation into turnover and 78 

nestedness. For example, high 𝜷-diversity may be due to high functional turnover, indicating 79 

niche differentiation between communities (Loiseau et al., 2017; Villéger et al., 2013), while 80 
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high 𝜷-diversity could also result from high nestedness (accompanied then by low functional 81 

turnover), if the species hosted by one community represent only a small subset of the 82 

functional strategies present in the other community, indicating a different niche filtering 83 

intensity (Loiseau et al., 2017; Villéger et al., 2013). It is therefore important to consider the 84 

contributions of both turnover and nestedness in comparisons among communities. 85 

Biodiversity is typically greater in structurally complex compared to homogeneous 86 

habitats (Lapointe & Bourget, 1999; MacArthur & MacArthur, 1961). Many communities coexist 87 

in habitats that have been modified by organisms that have critical effects on habitat structure 88 

and ecosystem functions; these are called foundation species (Dayton 1972). Foundation 89 

species not only complexify the habitat but also control the availability of resources for other 90 

organisms (Ellison, 2019; Sarà, 1986). By modifying habitat, foundation species can influence 91 

community assembly and its long-term persistence through numerous mechanisms such as 92 

niche partitioning (Willis et al., 2005), altering competitive and predator-prey interactions 93 

(Costello et al., 2015), or providing refuge from physical stressors (Bulleri et al., 2016; Jurgens 94 

& Gaylord, 2018; Scheffers et al., 2014). Habitat complexity also favors microhabitat 95 

heterogeneity (Bulleri et al., 2016; Lassau et al., 2005; Schöb et al., 2012; Williams et al., 96 

2002), which may attract or deter certain species thereby influencing local diversity (Swenson 97 

& Weiser, 2010; Walters & Wethey, 1991; Wood et al., 2015). Because community composition 98 

can vary greatly within habitats across environmental gradients (Boström et al., 2006; Boyé et 99 

al., 2017), studying the effect of habitat structural complexity on the associated communities 100 

improves our understanding of the processes structuring biodiversity over various geographic 101 

scales (Airoldi et al., 2008). Foundation species are also likely to mediate the impact of climate 102 

and anthropogenic change on biodiversity, particularly because they tend to buffer or attenuate 103 

change (Bulleri et al., 2018; Sunday et al., 2017). While foundation species exert many direct 104 

effects on the communities they support, less is known about the indirect effects that they or 105 

the environment may exert on communities. For many foundation species, a comprehensive 106 

understanding of the direct and indirect influences on biodiversity are lacking (Miller et al., 107 
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2018), which limits our ability to in turn predict the cascading effects of anthropogenic and 108 

climate change on associated fauna.  109 

Zostera marina (Linnaeus, 1753) is a flowering marine plant that occurs from temperate 110 

to subarctic regions (Short & Frederick, 2004), forming meadows that are recognized as being 111 

among the most important coastal marine ecosystems on the planet (Costanza et al., 1997; 112 

Dewsbury et al., 2016; Duarte et al., 2008; Duffy, 2006a). Eelgrass is a foundation species, 113 

providing essential functions and services including coastal protection, erosion control, nutrient 114 

cycling, water purification, carbon sequestration, as well as food and habitat for a variety of 115 

species (Barbier et al., 2011; Cullen-Unsworth & Unsworth, 2013; Duarte, 2002; Fourqurean 116 

et al., 2012; Healey & Hovel, 2004; K. L. Heck et al., 2003; Orth et al., 2006; Schmidt et al., 117 

2011). Eelgrass can have a strong influence on the spatial distribution of associated fauna by 118 

altering the hydrodynamics of the marine environment (Fonseca & Fisher, 1986), providing 119 

abundant resources, available surface area, and increased ecological niches. Meadows also 120 

provide protection from predation by providing greater habitat complexity both above and 121 

below-ground (Gartner et al., 2013; Kenneth L. Heck & Wetstone, 1977; Orth et al., 1984; 122 

Reynolds et al., 2018). At the local scale, it is generally accepted that meadow complexity 123 

parameters (e.g. biomass, shoot density, leaf length) directly influence species-level 124 

responses (e.g. growth, mortality, predation, movement, reproduction). The variability of 125 

eelgrass structure in relation to its physical environment is fairly well understood (Boyé et al., 126 

2022; Fonseca & Bell, 1998; Frederiksen et al., 2004; Robbins & Bell, 2000), as is the effect 127 

of the environment on the community structure (Blake & Duffy, 2012; Douglass et al., 2010; 128 

Yeager et al., 2019). However understanding how these components interact, and the relative 129 

importance of different environmental and biotic factors in explaining biodiversity at multiple 130 

spatial scales has proven more difficult (Bowden et al., 2001; Hovel et al., 2002; Turner et al., 131 

1999). Indeed most of the potential cascading effects studied to date involve the loss or 132 

replacement of foundation species (Airoldi et al., 2008; Ellison et al., 2005; Pessarrodona et 133 

al., 2019; Sorte et al., 2017). Understanding how the environment affects biodiversity directly 134 
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or indirectly by modifying traits of the foundation species, may help us better understand how 135 

eelgrass or other foundation species may mediate the effect of climate change on coastal 136 

biodiversity (Bulleri et al., 2018; Sunday et al., 2017). 137 

In this study, the taxonomic and functional diversity of assemblages associated with 138 

five Z. marina meadows occurring over a distance of 800 km along the coast of France were 139 

investigated with the objective of determining which factors control community composition 140 

within this habitat. To this end, we examined 𝛂- and 𝜷-diversity of species- and trait-based 141 

descriptors, focused on polychaetes, gastropods and bivalves; three diverse groups exhibiting 142 

a wide range of ecological strategies (Jumars et al., 2015) and having central roles in 143 

ecosystem functioning through activities such as bioturbation or trophic regime (Duffy et al., 144 

2015; Queirós et al., 2013). Specifically, we asked the following questions: (i) Are there 145 

differences in terms of abundance, species and trait diversity at fine spatial scales within 146 

eelgrass meadows? We tested the hypotheses that structurally complex habitats (meadows) 147 

host higher diversity than homogeneous habitats (bare sediment) and that stable habitats 148 

(meadow cores) host greater diversity than unstable habitats (meadow edges). (ii) Are there 149 

differences in the taxonomic and functional diversity of assemblages from different 150 

geographical sites? If so, what are the underlying processes that explain differences in diversity 151 

among meadows? We tested the hypothesis that the five meadows would have similar levels 152 

of species and functional 𝛂-diversity, but that species composition would change from meadow 153 

to meadow based on the effect of environmental variables on the regional species pool (i.e., 154 

𝜷-diversity would vary). (iii) Finally, what are the direct and indirect effects of environmental 155 

factors on assemblage structure? Can we quantify and account for indirect or cascading effects 156 

that affect community structure, using piecewise structural equation modeling (Lefcheck et al., 157 

2015)? We tested the hypothesis that the environment and characteristics of the foundation 158 

species affect community structure at different scales and to different degrees. By addressing 159 

these questions, we aim to improve our understanding of community assembly rules at work 160 

in Z. marina meadows, which will ultimately help guide conservation measures in this important 161 

habitat. 162 
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METHODS 163 

Study area and sampling methods 164 

Five sites along the coast of France were selected to quantify diversity in benthic 165 

macrofaunal assemblages associated with Z. marina meadows: three in the English Channel, 166 

and two in the Bay of Biscay (Fig. 1). These sites were chosen to cover a range of 167 

environmental conditions in which Z. marina meadows can be found: from exposed, fully 168 

marine conditions (Ile d’Yeu and Chausey), to semi-open habitats (Dinard and Sainte-169 

Marguerite; Hily et al., 2003, Boyé et al., 2017), to sheltered bays with turbid waters 170 

(Arcachon). Sampling was carried out in autumn 2019 (late September to mid-November) 171 

following a standardized protocol at each site. This sampling period corresponded to the 172 

season of maximum canopy development for eelgrass and to the post-recruitment period for 173 

most macroinvertebrate species (Grall, 2002; Moore & Short, 2006). To study community 174 

diversity and species composition associated with Z. marina meadows over short spatial 175 

scales, benthic macrofauna were sampled in three different modalities at each sampling site. 176 

These modalities were established using cartography of meadows at different time points 177 

and/or aerial photography of the meadows, which allowed to identify a "core" modality 178 

characterized by perennial areas colonized by Z. marina, an "edge" modality characterized by 179 

recently colonized and temporally unstable eelgrass areas, and a "bare sediment" modality not 180 

colonized by Z. marina (Fig. 1, Fig S1). Typically, core areas have been occupied by eelgrass 181 

over the past 10 years or more (up to 80 years for Chausey) whereas edge areas were 182 

colonized more recently (last few years). The only exception to this was Ile d’Yeu where the 183 

meadow had not previously been mapped, so that core and edge quadrats were assigned 184 

based on their spatial position relative to the extent of the meadow and local expert knowledge. 185 

In each site, two quadrats measuring 30 by 25 meters were deployed for each modality 186 

(i.e. core, edge and bare sediment), and were at least 10 m apart. In each quadrat, three 187 

samples were randomly collected by pooling the eelgrass shoots and sediment retrieved with 188 
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three 0.03 m2 manual push cores and placed into 1 mm nylon mesh collection bags, which 189 

allowed pre-sieving and washing away most sediments directly in the field (Fig. 1). Once in 190 

the laboratory, the content of each sample was preserved in 70% ethanol. To ensure optimal 191 

species fixation, ethanol was replaced every 2 days, for a total of three renewals. In the 192 

laboratory, cores were sieved on a 1 mm mesh. Macrofauna was then extracted from the 193 

sediments and counted. All individuals belonging to polychaetes, gastropods and bivalves 194 

were identified to the lowest taxonomic level possible, most often to the species level. All 195 

species names were used according to the World Register of Marine Species and references 196 

used for taxonomic identification are listed in Appendix S1 in Supporting Information. To 197 

ensure consistent taxonomic resolution across samples, a unique operator (A. Muller) was 198 

involved and uncertain identifications were cross-checked by a taxonomic expert (G. Droual).  199 

Morphological and structural trait measurements 200 

All shoots in each sample were counted to measure Z. marina densities. Five shoots 201 

were randomly selected for morphometric measurements, which included sheath height, leaf 202 

length and width, and the number of leaves per shoot. Sheath height was measured from the 203 

first node to the leaf separation mark. The length of each leaf was measured from the node 204 

mark to the apex. The width was taken at mid-length. The biomass of leaves, sheaths, roots 205 

and rhizomes were measured separately for each of the 2 core and 2 edge quadrats (i.e. a 206 

total of 15 measurements in each quadrats) in each of the 5 sites, and were measured as dry 207 

weight following 48 hours of desiccation at 60°C. Total biomass and densities were expressed 208 

per square meter. To assess the relative investment of Z. marina between its above-ground 209 

and below-ground compartments, we calculated the ratio between the biomass of leaves and 210 

sheaths and the biomass of roots and rhizomes (Boyé et al., 2022). Average leaf, root and 211 

rhizome biomass per shoot were estimated by dividing the total biomass by the shoot densities. 212 

The Leaf Area Index (LAI) was then calculated as the ratio between the total leaf area of the 213 

plant and the substrate area it covers. For all other variables (densities, sheath height, leaf 214 

length and width, number of leaves per shoot, proportion of broken leaves), mean values (and 215 
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standard errors) were calculated. Broken leaves were retained in the calculation of average 216 

leaf length to reflect the physiological and mechanical impacts of the eelgrass environment 217 

(Boyé et al., 2022). However, leaves cleanly cut by the corer were removed to avoid bias 218 

related to the sampling method. All morphological and structural trait measurements are listed 219 

in Tab. S1.2. 220 

Environmental variables 221 

Two sediment cores were collected from each quadrat for measuring grain size 222 

distribution and organic matter content, respectively (Fig. 1). Sediments were dried in an oven 223 

(72 h at 60°C), separated into 25 fractions for which the weights were measured. Fractions 224 

were afterwards grouped into gravels (> 2 mm), sand (63 μm to 2 mm) and silt and clay (< 63 225 

μm; Fournier et al., 2012). Loss-on-ignition (450°C for 4 h) estimates of organic matter in 226 

sediments was conducted. 227 

Information regarding physical environmental conditions at each site (e.g., water 228 

temperatures, salinities and current velocities) were obtained from the publicly available MARC 229 

database (https://marc.ifremer.fr/en) which modeled physical oceanographic parameters using 230 

the MARS3D hydrodynamic model (2.5 km resolution, 40 depth levels; 231 

https://marc.ifremer.fr/en). All variables were extracted daily for the year prior to the study at 232 

midday near the sediment surface. Biogeochemical environmental variables were retrieved 233 

from the ECO-MARS3D model also available from the MARC database (4 km resolution, 30 234 

depth levels; https://marc.ifremer.fr/en). The biogeochemical variables included suspended 235 

inorganic particulate matter, ammonium, nitrate, phosphate and dissolved oxygen. Given that 236 

the English Channel and Bay of Biscay have different tidal regimes, from mega-tidal in the 237 

central English Channel to meso-tidal in the southern Bay of Biscay, the amplitude of water 238 

level over a meadow varied depending on the geographical location of the sites. The estimated 239 

average changes in water level (Δ water level) over the meadows were obtained based on the 240 

difference between the maximum and minimum water level predictions for each site based on 241 
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the harmonic components of tidal heights and currents computed from the MARS3D models 242 

(https://marc.ifremer.fr/en; Le Roy and Simon, 2003) and the TidalToolBox (Allain, 2016).  All 243 

environmental variables are listed in Tab. S1.2. 244 

Biological traits 245 

To assess functional diversity, biological traits were scored for polychaetes, gastropods 246 

and bivalves, three phylogenetically diverse groups composed of a large diversity of species 247 

exhibiting a wide range of ecological strategies (Aldea et al., 2008; Gosling, 2015; Jumars et 248 

al., 2015; Lassau et al., 2005; Teso et al., 2019). Eight biological traits (divided into 30 249 

modalities) were selected (Tab. S2.2), providing information related to the ecological functions 250 

performed by the associated macrofauna. These traits characterized the maximum size, 251 

feeding and reproductive ecology, mobility, and bioturbation potential of the species (Tab. 252 

S2.2) and were chosen to reflect key biological and ecological processes (Queirós et al., 2013; 253 

Solan et al., 2004; Thrush et al., 2006). Species were scored for each trait modality based on 254 

their affinity using a fuzzy coding approach (Chevene et al., 1994), where multiple modalities 255 

can be assigned to a species if appropriate, and allowed for incorporation of intraspecific 256 

variability in trait expression. A trait matrix containing total abundances of each modality by 257 

sites was calculated using the matrix product of the site-species matrix with the species-trait 258 

matrix, after normalizing scores to 1 per trait and species. Information for polychaetes was 259 

primarily extracted from Fauchald et al (1979), Jumars et al (2015), and Boyé et al (2019). 260 

Information for gastropods and bivalves was obtained either from biological trait databases 261 

(www.marlin.ac.uk/biotic, www.univie.ac.at/arctictraits) or from publications (e.g. Bacouillard, 262 

2019; Martini et al., 2020; Queirós et al., 2013; Thrush et al., 2006). Information was collected 263 

at the lowest possible taxonomic level and when missing was based on data available in other 264 

species of the genus, or in some cases, in the same family (only for traits with low variability 265 

for these families). 266 

Statistical analyses 267 

https://marc.ifremer.fr/en
http://www.marlin.ac.uk/biotic
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We studied changes in total abundance, taxonomic and functional diversity across 268 

different spatial scales, from within habitat modalities (edge vs. core) to local habitat conditions 269 

(meadow vs. bare sediment) to regional habitat conditions (meadow vs. meadows) using three 270 

different characterizing α-diversity measures. Taxonomic diversity was estimated using the 271 

Simpson index for each modality in each site to characterize the α-diversity of polychaetes, 272 

gastropods and bivalves and its spatial variation. The Simpson diversity index was chosen 273 

because of its property of reducing the influence of rare species (Hill, 1973), to emphasize the 274 

effect of species accounting for most of the total abundance. The functional structure of 275 

polychaetes, gastropods and bivalves assemblages was characterized using two 276 

complementary indices: functional richness (FRic) and functional evenness (FEve, Laliberte & 277 

Legendre, 2010; Mouchet et al., 2010; Villéger et al., 2008). Differences between core vs edge 278 

and meadow vs bar sediment were tested with two-way nested ANOVA and meadow vs 279 

meadow were tested with one-way ANOVA. Pairwise comparisons were carried out with the 280 

Tukey-test (p < 0.05). 281 

Community structure associated with Z. marina among the five sites were compared 282 

using Principal Component Analysis (PCA) of Hellinger-transformed species abundances for 283 

polychaetes, gastropods and bivalves combined. Abundance based dissimilarities can be 284 

strongly influenced by overabundant species or by a high proportion of rare species. Applying 285 

a Hellinger transformation to abundance data allows Euclidean-based methods to be used, 286 

while also not overweighting rare species (Legendre & Gallagher, 2001). In addition, 287 

Sørensen's dissimilarity index (Sørensen, 1948) was calculated based on presence-absence 288 

data for each community sample. For each pair of samples, taxonomic β-diversity and its two 289 

components, turnover and nestedness, were computed using the Baselga partitioning scheme 290 

(Baselga, 2017; Schmera et al., 2020). Functional β-diversity was computed based on fuzzy 291 

correspondence analysis, where axes were synthetic components summarizing functional 292 

traits (Mouillot et al., 2014; Villéger et al., 2011). The first two axes were used for calculating 293 

the Jaccard’s dissimilarity index according to Villeger’s equation (2013) for all pairwise 294 



12 
 

comparisons between samples (1) belonging to the same site (within site), or (2) belonging to 295 

different sites (among site). 296 

A Redundancy analysis (RDA) was used to investigate to which extent species 297 

composition was affected by two sets of predictors, namely on site environmental variables 298 

and morphological and structural characteristics of Z. marina. Collinear variables were 299 

removed using variance inflation factors (VIF) with a threshold of five as recommended in 300 

Legendre & Legendre (2012), which resulted in the removal of some of the variables 301 

characterizing the distribution of the sediment, salinity, dissolved oxygen and nutrients. Then, 302 

a stepwise selection based on adjusted coefficients (R²adj) was applied to remaining 303 

environmental variables and the morphological characteristics of Z. marina (Blanchet et al., 304 

2008). The results of the RDA were used to ultimately select six environmental and four 305 

morphometric variables that most explained the variation in the community dataset (Fig. S5.2) 306 

- which included: temperature, current velocity, Δ water level, mean grain size, mud content, 307 

below-ground biomass, leaf width and leaf length. These variables were then used to construct 308 

piecewise structural equation models (SEM, Lefcheck, 2016) to explore the direct and indirect 309 

effects (through eelgrass trait responses) of environmental factors on the structure and 310 

composition of the macrofauna. This technique allows fitting complex networks, facilitating the 311 

identification of cascading effects (Airoldi et al., 2008; Barnes, 2017; Elbrecht et al., 2017; 312 

Ellison et al., 2005; Lefcheck et al., 2015; Pessarrodona et al., 2019; Wernberg et al., 2012). 313 

We implemented a model that considered the effects of environmental and morphometric 314 

variables on regional gradients of taxonomic composition (using the first two axes of the PCA 315 

on Hellinger-transformed abundances), and on local diversity indices (using total abundance, 316 

species richness, FRic, and FEve). 317 

All diversity and functional metrics calculations and statistical analyses were performed 318 

using the G2Sd (Fournier et al., 2014), 'ade4' (Dray & Dufour, 2007), 'vegan' (Oksanen et al., 319 

2019), 'FD' (Laliberté et al., 2014), 'betapart' (Baselga, 2012) packages and multivariate 320 
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analysis in the form of piecewise SEM was conducted using the packages 'nlme', and 321 

'piecewiseSEM' (Lefcheck et al., 2015) in R 4.0.3 (R Development Core Team, 2008). 322 

Results 323 

A total of 90 community samples were collected in the five sites, for a total of 9277 324 

individuals and 138 species (56 molluscs and 82 polychaetes). Rare species accounted for a 325 

large proportion of the samples: 43% of the species were observed in a single sample and 326 

38% were represented by one or two individuals. 327 

Spatial patterns of 𝛂 diversity 328 

The abundance and diversity of polychaetes, gastropods and bivalves differed among 329 

core, edge and bare sediment modalities (Tab. 1, Fig. S1.2). Samples collected within the 330 

meadows (core + edge) showed marked differences in community structure compared to bare 331 

sediments: the mean abundance (ind.m-2) and the average number of species was significantly 332 

higher in meadows than in bare sediments at all localities, except Ile d’Yeu where abundances 333 

in meadows and bare sediment were not significantly different (Tab. 1). Communities 334 

associated with meadows showed greater variation in both mean abundance (2384 to 6188 335 

ind.m-2) and average number of species (11 to 19), than the more homogeneous bare 336 

sediments (Ile d’Yeu excluded) which had a abundances of only 303 to 2729 ind.m-2 and 4 to 337 

11 species (Tab. 1). Similarly when looking at functional diversity indices, bare sediments had 338 

small, trait-poor functional space (low FRic) with evenly distributed abundances (high FEve). 339 

In comparison, meadows had larger functional spaces (higher FRic) with abundances being 340 

concentrated on a few traits (low FEve). This indicates that the dominant species shared the 341 

same functional traits and that a large part of the functional space was occupied by less 342 

abundant species with rarer traits. 343 

In contrast to mean species richness and Simpson index, which displayed comparable 344 

values among meadows, marked spatial differences were observed for mean abundances 345 

(Tab.1). Indeed, the abundances of macrofauna were seven fold greater in the most densely 346 
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populated meadow (Dinard) relative to the most sparsely populated meadow (Ile d'Yeu). 347 

Similarly, when core and edge samples within a meadow were averaged, significant 348 

differences were observed for both abundance and richness among meadows (Fig. S1.2). 349 

Chausey and Ile d’Yeu showed significantly lower average abundance values than other 350 

meadows. However, Chausey showed greater total species richness than other meadows 351 

(Fig. S1.2). Finally, we found no significant difference in abundance, richness or Simpson 352 

diversity among quadrats sampled in the core or edges of the meadows except for Ile d’Yeu. 353 

In Ile d’Yeu, core quadrats had significantly higher values of richness and Simpson diversity 354 

than edge quadrats. Finally, significant spatial differences were observed in the relative 355 

abundances of polychaetes, gastropods and bivalves and the contributions of these three 356 

groups to overall species richness across the five studied meadows. Chausey, Dinard and Ile 357 

d’Yeu had higher abundances of bivalves, Arcachon of gastropods, and Sainte-Marguerite of 358 

polychaetes (Fig. 2). In most meadows, polychaetes, gastropods and bivalves contributed 359 

similarly to the total richness, except for Sainte-Marguerite where the relative percentage of 360 

polychaetes was greater than that of gastropods and bivalves (Fig. 2). However, only six taxa 361 

appear to be strongly associated with the presence of Zostera marina and were found in all 362 

five sampled meadows (Fig. S2.2). 363 

Variation in taxonomic and functional compositions (𝛃-diversity) 364 

Changes in polychaete, gastropod and bivalve composition associated with both cores 365 

and edges of the eelgrass meadows showed strong site-specific differences (Fig. 3 A). PCA 366 

axis 1 (20.5% of total variability) discriminated sites based on the bivalve composition, with the 367 

Dinard meadow showing the highestmollus diversity of bivalves and the greatest abundances 368 

in species Loripes articulatus, Lucinoma borealis and Tricolia pullus. PCA axis 2 (16.6% of 369 

total variability) discriminated sites based on the gastropod and polychaete compositions, with 370 

the Sainte-Marguerite meadow exhibiting the highest abundances of polychaetes such as 371 

Platynereis dumerilii or Spio cf. martinensis in contrast with the Arcachon meadow which 372 

exhibited the highest diversity and high of gastropods abundances of species such as 373 
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Jujubinus striatus and Bittium reticulatum (Fig. 3B). Finally, when considering the site 374 

presence/absence data independently, the core and edge modalities showed differences in 375 

terms of species composition (Fig. S3.2). 376 

A functional analysis of assemblages gave a complementary vision of the structure of 377 

benthic macrofauna. Positive values of PC1 represented the abundance of small suspension 378 

feeders and surficial modifiers with medium life span as found in Dinard and Ile d’Yeu 379 

meadows, and negative values of PC1 represented greater abundance of larger biodiffusors 380 

and upward/downward conveyors with short life spans, as found in Sainte-Marguerite meadow. 381 

PC2 was primarily related to greater abundance of very small free-living grazers with little effect 382 

on bioturbation, as found in the Arcachon meadow (Fig. 4). However, presence/absence of 383 

the trait modalites within the sites did not show any differences in the functional composition 384 

among meadows nor between core and edge modalities (Fig. S4.2). 385 

When considering the different components of β diversity using Jaccard's dissimilarity 386 

decomposition, polychaete, gastropod and bivalve communities sampled within a meadow 387 

shared on average 34.7% (± 12.8%) of species, compared to higher compositional differences 388 

observed among meadows, which shared on average only 13.0% of species (± 8.1%). Within-389 

site comparisons had always two-fold greater similarity than between-site comparisons, 390 

indicating consistently greater variation in species composition from meadow to meadow. On 391 

average, when considering pairs of assemblages (samples) within a site, 65% of the species 392 

were found in only one assemblage: 56% of species changed in terms of identity (turnover) 393 

and 10% of differences were due to nestedness (Fig. 5; Within site). For pairwise comparisons 394 

among assemblages from different sites, differences were even more pronounced, with an 395 

average of 87% of species being found in only one assemblage, 83% of which was due to 396 

turnover and 4% to nestedness (Fig. 5; Among site). Overall, variation in species composition 397 

within and between sites were primarily due to changes in species identity. Functional β-398 

diversity values for macrofauna associated with Z. marina also showed  greater functional 399 

similarity within sites (67 ± 27 % ; Fig. 5) than among meadows (53 ± 27 %; Fig. 5). The 400 

relatively high levels of similarity in functional traits within and among meadows, indicates high 401 
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levels of overlap in functional space. Functional β-diversity was mostly driven by nestedness 402 

(i.e. difference in the volume of the functional space filled by the assemblages; 22 ± 23 % 403 

within site and 32 ± 30 % among site; Fig. 5) rather than by turnover (i.e. functional spaces not 404 

shared by the two assemblages; 10 ± 20 % within site and 15 ± 18 % among site; Fig. 5). 405 

Variation in community structure in relation to environmental conditions and 406 

morphological characteristics of the meadows 407 

Overall, the pSEM models provided a good fit for the data (AIC= 169.623, χ2= 67.623, 408 

p = 0.686, Fig. 6). At the regional scale, Δ water level had the greatest effects on assemblage 409 

composition, having direct effects on PC1 (positively correlated with bivalves, β= -0.85, p < 410 

0.0001) and PC2 (positively correlated with gastropods, β= -1.70, p < 0.0001). Assemblage 411 

composition was also strongly correlated with temperature and current velocity, having direct 412 

negative correlations with bivalves (PC1, 0.38, p < 0.0001 and  1.02, p < 0.0001 respectively) 413 

and direct negative correlations with gastropods (PC2, β= -1.34, p < 0.0001 and 0.23, p < 414 

0.0001 respectively). Similarly, mean sediment coarseness (D50) and mud content was also 415 

directly correlated with polychaetes (PC2, 0.38, p < 0.0001, 0.30, p < 0.0001). Indirect effects 416 

of environmental variables were also observed on assemblage compositions: temperature had 417 

indirect effects on bivalves (PC1, β= -0.15, p < 0.02) mediated by their effects on below-ground 418 

biomass. Therefore, the indirect effect of temperature enhanced its direct effect on PC1. At the 419 

local scale, diversity indices identified a different set of conditions and more cascading effects 420 

of the environment mediated by eelgrass trait responses (Fig. 6). The Δ water level had the 421 

greatest effects on richness, having positive direct effects on species richness (β= 1.00, p< 422 

0.0001) and functional richness (FRic, β= 0.98, p< 0.0001). Species richness was also 423 

positively correlated with temperature (β= 0.39, p< 0.02). Indirect effects of environmental 424 

variables were also observed on local diversity indices: temperature, Δ water level and current 425 

velocity had indirect effects on species richness abundance and FRic mediated by their effects 426 

on leaf width and length. Because of these indirect effects on species richness, the direct 427 
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positive effect of temperature and Δ water level was attenuated. Abundance and richness was 428 

also correlated with PC1 and PC2, showing direct positive correlation with polychaetes and 429 

bivalves, respectively. Morphological characteristics of the eelgrass beds had overall weaker 430 

effects on assemblage composition at regional scale than environmental variables, but had 431 

greater effects on species richness abundance and FRic. All coefficients and their associated 432 

p-values for the SEMs model are presented in Table S3.2. 433 

Discussion 434 

Eelgrass engineers highly productive habitats providing physical structure in 435 

sedimentary bottoms, enhancing community diversity and biomass, as well as affecting 436 

ecological key functions such as primary and secondary production (Boyé et al., 2019; Duffy, 437 

2006b; Kenneth L. Heck et al., 2008). Here we examined multiple facets of biodiversity in five 438 

meadows spanning ~800 km of the Atlantic coast of France in order to better understand the 439 

factors that explain community diversity associated with eelgrass at different spatial scales. 440 

Processes underlying local diversity 441 

The foundation species Z. marina tends to have positive effects on the diversity and 442 

abundance of its associated organisms (Boström et al., 2006). Data collected for the five sites 443 

studied here showed that at the local scale, the number of polychaete, bivalve and gastropod 444 

species, and in particular their abundances, were significantly greater in meadows when 445 

compared to nearby bare sediments in nearly all sites. On average less than 15% of the 446 

species were found only in the bare sediments, while more than 60% were unique to meadows. 447 

Eelgrass has been shown to favor high levels of species richness and densities throughout its 448 

distribution (Orth, 1977; Edgar et al., 1994; Fonseca et al., 1990; Fredriksen et al., 2010; Orth 449 

et al., 1984; Stoner, 1980; Törnroos et al., 2013). This is likely due to a variety of trophic 450 

resources being available in meadows, such as epiphytes on eelgrass leaves or the 451 

accumulation of organic matter in meadows (Hemminga & Duarte 2000, Duffy 2006). In 452 

addition, meadows promote greater sediment stability, which may favor the colonization and 453 
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accumulation of species (Boström et al., 2010; Fonseca & Fisher, 1986; Evamaria W. Koch & 454 

Verduin, 2001). Habitat complexity associated with eelgrass also results in enhanced shelter 455 

provisioning and lower predation (Kenneth L. Heck & Orth, 2006), favoring higher species 456 

abundances. Our results confirm that eelgrass meadows, like other bioengineered habitats, 457 

support greater species richness than geogenic habitats (Boyé et al., 2019; Henseler et al., 458 

2019; Jones et al., 2018), and are thus of high conservation value (Boström et al., 2011; Boyé 459 

et al., 2019; Whippo et al., 2018). 460 

Marine habitats are often spatially heterogeneous and habitat edges (vs. core) may 461 

have significant effects on population dynamics, community structure, and species diversity 462 

(Barnes & Hamylton, 2015; Bologna & Heck, 1999; Boström et al., 2011; Hovel et al., 2002; 463 

Wong & Dowd, 2015). Z. marina meadows are dynamic habitats that are constantly evolving 464 

in space and time (Clarke, 2019; Ferguson et al., 1993; Ferguson & Korfmacher, 1997; 465 

Robbins, 1997; Ward et al., 1997). However, some sectors of the meadows appear to be more 466 

stable over time (here called the core of the meadow), while environmental disturbances may 467 

lead other sectors of the meadow to be ephemeral (here termed edges). Since meadows can 468 

only exist in areas with soft bottom sediments, changes in substrate or topography can affect 469 

their distribution and productivity. The sedimentary environment can be altered by various 470 

processes such as wave disturbance due to strong storms (Koch, 2001; Reusch & Chapman, 471 

1995), mobile dune migration caused by the prevailing coastal current (Marba & Duarte, 1995), 472 

and siltation due to sediment discharge in estuarine systems (Terrados et al., 1997). The 473 

mechanical effects of wave action on the sediment may be responsible for the loss of habitat 474 

where the more exposed parts of a meadow transition to bare sediment via the uprooting of 475 

shallow rhizomes (Fletcher & Fletcher, 1995; Kirkman & Kuo, 1990; Orth et al., 2006), while 476 

an increase in sediment input may bury the meadow (Terrados et al., 1997). Habitat edges 477 

may have impoverished communities as a result of instability or they may be ecotones 478 

(transition zones between meadows and bare sediment) that harbor species from both 479 

habitats, thus having higher diversity (Arponen & Boström, 2012; Fahrig, 2020; Fahrig et al., 480 
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2019; Kark & van Rensburg, 2006). In this study, faunal assemblages found in the core or 481 

edges of the meadows did not show strong differences in richness or abundance, although the 482 

cores of some meadows tended to have greater diversity or richness (but none showed both). 483 

Studies that examined fine-scale differences in diversity within meadows did not identify any 484 

consistent trend when comparing core and edge sectors, with most taxa showing no significant 485 

edge responses. (Boström et al., 2011). However, peracarid crustaceans consistently showed 486 

greater densities along edges compared to interior parts of a patch or meadow (Boström, 2006; 487 

and references therein) and fish also showed higher abundance and/or richness in meadow 488 

edges (Boström et al., 2011). In contrast, infaunal assemblages have generally shown no 489 

significant differences in diversity when comparing habitat cores and edges (Bowden et al., 490 

2001; Tanner, 2003; Turner et al., 1999). Taxa with high mobility may respond differently to 491 

habitat edges than less mobile species. In our study, polychaete, gastropod and bivalve 492 

assemblages, three largely infaunal groups, showed no difference in trait composition, nor 493 

proportions of mobile species at meadow edges. The absence of highly mobile species in our 494 

dataset may therefore partly explain why no differences in abundance or richness were 495 

detected between the core and the edges of the meadows. Infaunal communities may be less 496 

affected by differences in predation pressure, predation avoidance, or other factors prevalent 497 

in edges which may have stronger effects on mobile fauna (Frost et al., 1999). In sum, at the 498 

local scale, community diversity and abundance were strongly favored by the presence of 499 

meadows over bare sediment, but meadow modality (core or edge) did not have a strong effect 500 

on the communities studied here, suggesting that ephemeral patches of eelgrass may provide 501 

similar benefits to biodiversity as stable cores. 502 

Taxonomic and functional diversity at the regional scale 503 

Significant spatial variation was observed in assemblages from the five meadows 504 

studied here. Taxonomic differences among sites were accompanied by changes in the 505 

abundances of specific trait combinations. The Dinard meadow was rich in bivalves and 506 

characterized by high abundances of small suspension feeders, the Sainte-Marguerite 507 
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meadow by greater abundances of small to large bio diffusers and upward/downward 508 

conveyors, most of which were polychaetes, and the Arcachon meadow by greater abundance 509 

of very small free-living grazers with little effect on bioturbation (gastropods). The Chausey 510 

meadow was not characterized by any specific trait combinations, but rather a combination of 511 

all the traits found in the other meadows. In our analysis of Jaccard dissimilarity, high 512 

taxonomic turnover was observed among meadows, with taxonomic turnover being often > 513 

70%, while functional turnover was only 10% on average. Previous observations have shown 514 

significant variation in species composition among meadows, confirming that the faunal 515 

composition of meadows is not a fixed or constant attribute (Henseler et al., 2019; Törnroos et 516 

al., 2013; Wong & Dowd, 2015). Despite significant changes in community composition among 517 

sites, species nestedness remained within a narrow range. This indicates that changes in 518 

species composition were mostly driven by simultaneous species gains and losses with 519 

richness remaining comparable from meadow to meadow. The narrow range of species 520 

richness described in these meadows would therefore correspond to the carrying capacity 521 

(sensu Hansen et al., 2011) of species richness for eelgrass (Boyé et al., 2017). High 522 

taxonomic turnover may indicate a large number of transient species, either observed in one 523 

meadow but not another by chance, or present only for a given amount of time (Boyé et al., 524 

2019; Umaña et al., 2017). This spatial dynamics appears to create source-sink dynamics 525 

involving interactions among local communities at larger scales, allowing the persistence of 526 

many species that disperse from nearby habitats (Hillebrand et al., 2008; Leibold et al., 2004). 527 

Meadows, which are sink areas, provide refuge for larvae and organisms in more exposed 528 

environments such as bare sediments (Bostrom & Bonsdorff, 2000; Bouma et al., 2009). The 529 

high species replacement as well as high levels of overlap in functional space may indicate 530 

that the studied meadows share essential properties in terms of resource availability despite 531 

varying local conditions (Boyé et al., 2017; Cornell & Lawton, 1992). However, resource-rich 532 

environments can favor species with certain traits when competition is focused on limiting 533 

resources (Boyé et al., 2019; Perronne et al., 2017; Wong & Dowd, 2015). Epiphytes present 534 

on Z. marina leaves or the amount of detrital material feeding the food webs of meadows 535 
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(Ouisse et al., 2012) may act as a central resource leading to the observed difference in 536 

dominance of grazers, suspensory sessile microphages, or species with upward and 537 

downward transport activity (Boyé et al., 2019). Here we showed the importance of considering 538 

multiple components of diversity and especially β-diversity patterns to fully understand 539 

meadow richness at broad spatial scales. 540 

Link between environmental variables and meadow characteristics in 541 

structuring communities at different scales 542 

At local scales, parameters that describe meadow complexity (e.g. biomass, LAI, shoot 543 

density) have been shown to directly influence species-level responses (e.g. growth, mortality, 544 

predation, movement, reproduction; (Boyé et al., 2022; Fonseca & Bell, 1998; Koch, 2001; 545 

Robbins & Bell, 2000). However, the relative importance of different biotic and abiotic factors 546 

in explaining the variability and diversity of communities associated with eelgrass at the 547 

regional scale has proven more difficult to understand because they typically covary (Bowden 548 

et al., 2001; Hovel et al., 2002; Turner et al., 1999). Our pSEM model has helped to clarify the 549 

relative contribution of certain parameters that influence community composition, as well as 550 

taxonomic and functional diversity in eelgrass, as has been determined for other foundation 551 

species (Lamy et al., 2020; Miller et al., 2018). The pSEM shows that differences in faunal 552 

assemblages at the regional level are primarily explained by direct effects of the environment, 553 

particularly by positive relationships of temperature and Δ water level on the relative 554 

proportions of bivalves and gastropods. Current velocity had a significant negative direct effect 555 

only on the relative proportion of bivalves, while sediment coarseness and mud content favored 556 

polychaete assemblages. Temperature and Δ water level were therefore the main drivers of 557 

assemblage in the meadow of Arcachon and Dinard, characterized by high abundances of 558 

gastropods and bivalves respectively. Sediment coarseness and mud content were the main 559 

drivers of diversity in a meadow such as Sainte-Marguerite which was rich in polychaetes or 560 

Ile d’Yeu which presented species specific to certain types of sediment as the genus Magelona. 561 

In general, polychaete assemblages appear to be primarily controlled by sediment stability and 562 
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composition, as observed in previous studies (Bostrom & Bonsdorff, 2000; Boström & 563 

Bonsdorff, 1997; Bowden et al., 2001).  564 

Environment was also found to affect assemblages indirectly via modification of 565 

meadow characteristics. The only significant cascade pathway involved the indirect influence 566 

of temperature on the relative proportion of bivalves, mediated by below-ground biomass. 567 

Thus, temperature had a very positive total effect, when its direct and indirect effects were 568 

combined. Water level and current velocity only had small effects on canopy structure, with 569 

low water level fluctuation and higher current velocity favoring greater leaf width. The pSEM 570 

results are at odds with previous findings that showed that low water level fluctuation favored 571 

canopy height (leaf length) to obtain light for photosynthesis (Larkum et al., 2006), or that areas 572 

with greater wave exposure tended to have increased below-ground biomass for stability 573 

(Fonseca & Bell, 1998). Rather, temperature had greater effects on leaf length and below-574 

ground biomass in our study sites. The southernmost meadow of Arcachon had significantly 575 

higher temperatures and lower water level variations than all other sites, which may explain 576 

the particular canopy structure of this meadow having very long and wide leaves coupled with 577 

low shoot density as a result of these environmental conditions. While hydrodynamics have 578 

been considered to have a strong influence on meadow structure (Fonseca & Bell, 1998; 579 

Schmidt et al., 2011), our results only showed a regional effect for below-ground biomass, but 580 

not for canopy height or shoot density. One possible explanation is that variation within sites 581 

was too great to establish regional effects.  Strong variability among eelgrass meadows has 582 

been reported for in the Atlantic coast of France, including inter-annual variability within the 583 

same site (Boyé et al., 2022). Our study considered a single season of a particular year, which 584 

may not have captured all of the possible environmental drivers that influence community 585 

structure in eelgrass. 586 

In contrast to community composition, the pSEM did show that meadow characteristics 587 

affected taxonomic and functional diversity indices locally, but these were primarily explained 588 

as by indirect effects of the environment (temperature, water level and current velocity). Leaf 589 
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width had positive effects on species abundances, taxonomic richness, functional richness, 590 

and to a lower extent, on functional evenness.  Leaf length also had positive effects on all of 591 

these diversity metrics, except for functional evenness, and belowground biomass has 592 

moderate effects on abundances. Species richness and abundance has often been related to 593 

variation in eelgrass aboveground structure (Attrill et al., 2000; Leopardas et al., 2014). An 594 

increase in leaf area (such as broad rather than long leaves) may favor a greater presence of 595 

epiphytes and diatoms, thus favoring species such as the mesograzer (Fredriksen et al., 2005) 596 

or species such as the tube-building polychaete Platynereis dumerilii commonly found on 597 

Zostera leaves (Jacobs & Pierson, 1979). It also favors the presence of species from adjacent 598 

habitats (e.g. Pusillina inconspicua or Musculus costulatus; (Rueda et al., 2008), including 599 

species that use the eelgrass bed as a foraging and spawning site (e.g. Rueda et al., 2008). 600 

Similar trends in the effect of leaf area on species richness, diversity, and total abundance 601 

have been recorded in other eelgrass beds (Guidetti et al., 2002; Jacobs et al., 1983; Laugier 602 

et al., 1999; Rueda et al., 2008). Some studies suggest that eelgrass invertebrates may not 603 

respond to habitat complexity directly (Attrill et al., 2000) but rather to increased food 604 

availability in eelgrass beds (Bologna & Heck, 1999). Accumulation of detrital material such as 605 

drift algae as commonly observed in the St. Margaret's meadow (Boyé et al., 2019), may 606 

explain why this meadow was rich in polychaetes as Spio cf. martinensis. In our study, we did 607 

not quantify epiphytic or detrital biomass, only organic matter present in the sediments. 608 

Incorporating these additional parameters in future work, may help to explain additional factors 609 

that affect biodiversity associated with eelgrass, not accounted for here. Nevertheless, the 610 

pSEM allowed us to disentangle the influence of the multi-scale approach and quantify the 611 

biotic and abiotic factors that drive biodiversity in eelgrass (Lefcheck et al., 2015). 612 

Conservation and management action  613 
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The results presented here have implications for future conservation of eelgrass 614 

meadows. Our results did not show strong differences in diversity or community composition 615 

between stable cores or unstable edges of eelgrass beds. 616 

Future management may therefore not need to consider age or density of patches, and may 617 

not need to prioritize protection of different sectors of meadows (such as old stable cores). Our 618 

results indicate that once eelgrass becomes established, its positive effects on abundance and 619 

diversity of the fauna are quickly established as well; therefore, protecting any modality of 620 

eelgrass may provide benefits to protecting biodiversity. Eelgrass meadows are dynamic 621 

habitats that may expand or recede over annual or pluriannual cycles - but this may not 622 

necessarily be cause for concern (unless receding cycles do not reverse), because the 623 

diversity of associated communities appears to be established quickly. Finally, these results 624 

also show that meadow traits such as density, aboveground biomass may not necessarily 625 

provide good proxies for diversity of the fauna associated with eelgrass. Conservation 626 

programs aiming to protect biodiversity should therefore not rely on these kinds of 627 

morphological metrics as a replacement for estimates of faunal composition. In addition, 628 

management that focuses on protecting eelgrass because of its positive effects on biodiversity 629 

should also consider protecting adjacent habitats, and not only biogenic habitats, but also 630 

homogeneous or bare sediments or substrates. Management may need to consider protecting 631 

whole ecosystems, which may include a diversity of habitats found in a given region in order 632 

to maximize its benefits to protecting biodiversity and associated services. Conservation plans 633 

that aim at protecting marine habitats as ecosystems may therefore benefit from spatial 634 

mapping and monitoring. Mapping will help identify habitats of special interest like eelgrass but 635 

also adjacent habitats that also serve as sources of biodiversity that ultimately seek protection 636 

in eelgrass. Mapping that takes place at regular intervals may also help alert drastic changes 637 

in meadow size or receding cycles that do not reverse.  638 

Finally, this study demonstrated that the geographic distribution of the meadows at the 639 

regional scale had stronger effects of benthic community composition, with only small effects 640 
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of the structural characteristics of the meadows. Meadows appear to harbor subsets of species 641 

observed at regional scales, and patterns of community diversity are consistent with the spatial 642 

distribution of the meadows, rather than with meadow-scale dynamics. These patterns may be 643 

indicative of a metacommunity system and suggest that the processes that maintain diversity 644 

in meadows may reflect a seascape composed of many habitats connected by source-sink 645 

dynamics. If this is the case, conservation of eelgrass systems will require a spatially diverse 646 

network approach that preserves many habitats rather than considering meadows only. 647 
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displayed with their standard deviations. Values in bold indicate the number of species 1246 
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unshared with the other modalities of the site. Different letters indicate significant differences 1247 

at Tukey’s test (p < 0.05) 1248 

Sites Modality Total 
species 
richness 

Mean 

species 

richness 

Mean 

simpson 

diversity 

Mean 

abundance per 

m2 

Mean 

FRic 

Mean 

FEve 

Chausey Bare 

sediment 

13 - 5  
(7%) 

4 ±4 A 0.50 ±0.3 A 322 ±527 A 0.13 ±0.19 A 0.62 ±0.1 

Meadow 65 - 57 
(81%) 

17 ± 4 B, 2 0.83 ±0.04 B 2483 ±838 B, 1 0.59 ±0.13 B, 2 0.72 ±0.05 13 

Core 41 - 15 
(21%) 

15 ±2 0.84 ±0.03 2384 ±836 0.58 ±0.15 0.71 ± 0.04 

Edge 50 - 23 
(32%) 

19 ±4 0.83 ±0.1 2582 ±906 0.60 ±0.11 0.72 ±0.05 

Dinard Bare 

sediment 

31 - 11 
(19%) 

11 ±8 A 0.67 ±0.35 1004 ±843 A 0.38 ±0.23 A 0.75 ±0.07 A 

Meadow 46 - 26 
(46%) 

16 ±4 B, 2 0.69 ±0.9 5835 ± 1577 B, 1 0.61 ±0.12 B, 2 0.62 ±0.06 B, 23 

Core 32 - 6 
(10%) 

18 ±2 0.74 ±0.04 6189 ±898 0.63 ±0.08 0.65 ± 0.05 

Edge 40 - 11 
(19%) 

14 ±5 0.64 ±0.1 5482 ±2089 0.60 ±0.15 0.58 ±0.05 

Sainte 

Marguerite 

Bare 

sediment 

22 - 11 
(23%) 

8 ±2 A 0.53 ±0.17 A 2729 ±2105 A 0.28 ±0.04 A 0.60 ±0.16 

Meadow 37 - 26 
(54%) 

13 ±3 B, 2 0.71 ±0.14 B 4550 ±2038 B, 1 0.46 ±0.18 B , 2 0.61 ±0.112 

Core 28 - 8 
(17%) 

14 ±2 0.65 ±0.15 5763 ±976 0.51 ±0.19 0.59 ±0.03 

Edge 28 - 9 
(19%) 

11 ±2 0.76 ±0.12 3338 ±2159 0.40 ±0.16 0.62 ±0.15 

Ile d’Yeu Bare 

sediment 

8 - 1 (3%) 4 ±2 A 0.55 ±0.30 429 ±231 0.04 ±0.04 0.77 ±0.16 
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Meadow 38 - 31 
(82%) 

8 ±4 B, 1 0.69 ±0.18 774 ±449 2 0.22 ±0.18 1 0.73 ±0.14 1 

Core 34 - 22 
(57%) 

11 ±4 a 0.78 ±0.11 a 1010 ±526 0.32 ±0.20 a 0.75 ±0.08 a 

Edge 16 - 3  
(8%) 

5 ±1 b 0.59 ±0.2 b 537 ±181 0.12 ±0.10 b 0.72 ±0.19 

Arcachon Bare 

sediment 

19 - 5 
(10%) 

6 ±2 A 0.79 ±0.5 303 ±154 A 0.24 ±0.2 A 0.84 ±0.07 A 

Meadow 43 - 29 
(60%) 

14 ±3 B, 2 0.70 ±0.15 5505 ±3787 B, 1 0.65 ±0.08 B, 2 

 

0.63 ±0.08 B, 123 

 

Core 32 - 8 
(17%) 

13 ±2 0.64 ±0.2 5949 ±4305 0.56 ±0.1 0.61 ±0.08  

Edge 34 - 7 
(15%) 

15 ±3 0.75 ±0.1 5061 ±3541 0.56 ±0.1 0.66 ±0.09 

FIGURES 1249 
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 1250 
Figure 1. Map indicating the locations of the 5 study sites of Zostera marina meadows in 1251 

France: three in the The English Channel, and two in the Bay of Biscay. (All sites were 1252 

sampled in six different stations). 1253 

 1254 

 1255 
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Figure 2. Richness and density relative percentage of the different taxonomic groups present 1256 

according to sites: Chausey (CHY), Dinard (DND), Sainte-Marguerite (SMA), Ile d’Yeu (IDY), 1257 

Arcachon (ARC). 1258 

 1259 
Figure 3. Principal component analyses of the Hellinger-transformed abundances for total (A 1260 

& B), mollusca (C & D), and polychaeta (E & F) fauna of the five Zostera marina beds sampled 1261 

on two modalities, core and edge. A. the sites for each point sampled in core and edge with 1262 

their 95% confidence dispersion ellipses, represented in scaling 1 (distance biplot) preserving 1263 

the distances among the sites. Within-site dispersions represent variation of the communities 1264 

among modalities. B. Positions of the species for which the two first axes represented at least 1265 

40% (cumulative R2) of their variance, represented in scaling 2 (correlation biplot) preserving 1266 

the covariances among the species. 1267 
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 1268 
Figure 4. Principal component analysis (PCA) of Hellinger‐ transformed trait modality 1269 

abundances. A. the sites for each point sampled in core and edge with their 95% confidence 1270 

dispersion ellipses, represented in scaling 1 preserving the distances among the sites. B. 1271 

positions of the trait modality for which the two first axes represented at least 40% (cumulative 1272 

R2) of their variance, represented in scaling 2. 1273 
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 1274 
Figure 5: Triangular plots illustrating the spatial variations of the taxonomic β-diversity. 1275 

Sorensen dissimilarity between the species composition (presence/absence data) of the five 1276 

seagrass beds was used to quantify their similarity, and the two components of their beta 1277 

diversity nestedness (i.e. influenced by the difference in number of species between the two 1278 

communities) and turnover (i.e. species replacement between two communities). Contributions 1279 

were calculated separately, for comparisons between samples belonging: to the same 1280 

meadow (within meadows), to different meadows (among meadows). Red lines indicate the 1281 

centroid value for each graph with its associated mean values for the three components of 1282 

dissimilarity. 1283 
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 1284 

Figure 6: Best model fitted with piecewiseSEM (structural equation modeling) describing the 1285 

relationships among Zostera marina traits (in green) and environmental variables (in blue) on 1286 

the principal component analyses of the Hellinger-transformed abundance (in gray). Arrows 1287 

indicate directional effects. Arrow and dot lines indicate positive and negative relationships, 1288 

respectively. Values over the lines denote the standardized effect size (regression coefficient) 1289 

of each relationship. Nonsignificant relationships (P > 0.05) have been omitted for clarity (Table 1290 

S3). Line thickness is proportional to the effect size. R²: Belowground biomass= 0.25; PC1= 1291 

0.87; PC2= 0.93, Leaf length= 0.30; Leaf width= 0.72; Abundance= 0.39; Richness= 0.58; 1292 

FRic= 0.57, FEve= 0.14. 1293 


