(c) ©

Supplement of

Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands)

Julien Richirt et al.
Correspondence to: Julien Richirt (richirt.julien@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table S1. Oxygen Penetration Depth \pm sd and free H2S detection depth \pm sd for each month in 2012 for both stations 1 and 2 (in mm).

Station	Month	OPD (mm)	$\mathrm{H}_{2} \mathrm{~S}$ depth (mm)
	January	1.7 ± 0.3	16.5 ± 3.2
	February	2 ± 0.4	17.1 ± 2.8
	March	1.7 ± 0.3	17.5 ± 0.7
	April	1 ± 0.2	18.6 ± 4.8
	May	1 ± 0.1	9.9 ± 2.2
Station	June	0.9 ± 0.1	7.9 ± 5.3
1	July	0 ± 0	0.1 ± 0.1
	August	0 ± 0	0.9 ± 1.1
	September	0.7 ± 0.1	0.3 ± 0.2
	October	1.1 ± 0.1	3.3 ± 1.1
	November	0.4 ± 0	10.3 ± 1.9
	December	1.1 ± 0.2	13.4 ± 1.8
	January	2.8 ± 0	19.6 ± 2
	February	2.4 ± 0.2	15.8 ± 1.2
	March	2.6 ± 0.6	20.3 ± 3.3
	April	1.4 ± 0.2	23.3 ± 0.3
	May	1.6 ± 0	26.4 ± 1
Station	June	1.1 ± 0.4	17.1 ± 0.4
2	July	1.3 ± 0.4	1.1 ± 0.8
	August	0 ± 0	0.4 ± 0.2
	September	1.2 ± 0.2	0.8 ± 0.2
	October	1.6 ± 0.3	6.4 ± 2.9
	November	1.3 ± 0.2	9.1 ± 3.3
	December	1.5 ± 0.2	9.2 ± 0.7

Table S2. Living foraminiferal abundances for each replicate for the dominant species and total assemblage (ind. $10 \mathrm{~cm}^{-3}$).
STATION 1

Species		Elphidium selseyense		Ammonia sp. T6		Elphidium magellanicum		Trochammina inflata		Total assemblage	
Year	Month	A	B	A	B	A	B	A	B	A	B
2011	August	2.1	0.4	1.4	1.1	0.0	0.0	0.0	0.0	4.2	2.5
2011	November	0.0	1.1	0.0	0.7	0.0	0.0	0.0	0.0	0.0	2.1
2012	January	2.8	7.4	0.7	5.7	0.0	0.4	0.4	2.1	5.0	18.0
2012	March	28.6	19.1	12.0	13.8	29.4	13.8	2.1	0.7	75.7	48.5
2012	May	141.5	531.6	13.8	4.6	63.0	129.8	0.4	3.2	222.1	677.6
2012	July	76.0	247.9	8.1	12.4	3.9	3.5	0.0	0.0	88.4	270.6
2012	September	21.2	38.2	0.7	3.9	0.0	0.0	0.0	0.7	21.9	46.0
2012	November	0.7	1.4	0.4	0.4	0.0	0.0	0.0	0.0	1.4	1.8
STATION 2											
Species		Elphidium selseyense		Ammonia sp. T6		Elphidium magellanicum		Trochammina inflata		Total assemblage	
Year	Month	A	B	A	B	A	B	A	B	A	B
2011	August	53.8	95.8	72.5	91.6	0.0	0.0	10.6	18.7	140.1	208.0
2011	November	33.2	71.4	61.9	59.8	0.0	0.0	13.1	10.6	111.1	146.4
2012	January	122.0	201.6	263.1	189.2	1.1	0.7	142.5	100.4	545.4	501.9
2012	March	225.6	203.7	275.2	152.8	41.0	56.6	73.9	76.0	624.2	500.5
2012	May	254.6	321.8	165.9	128.4	120.6	111.4	42.1	30.1	602.3	607.3
2012	July	318.3	246.9	172.2	144.7	39.6	36.1	35.4	27.6	589.9	473.2
2012	September	415.2	315.8	141.1	63.7	97.3	46.7	14.9	17.3	681.2	453.8
2012	October	104.7	92.7	87.0	111.1	2.1	1.4	5.3	9.5	205.8	217.2
2012	November	29.4	32.5	66.5	29.7	3.9	4.2	5.0	2.5	108.9	73.2
2012	December	281.2	223.2	78.9	77.1	16.3	34.7	15.9	9.5	405.3	350.5

Table S3. Living foraminiferal abundances for each replicate, year and month for all the species of the assemblage (ind. $10 \mathbf{c m}^{-3}$). Empty cases represent the absence in the sample. Last column: absolute abundance of the total fauna.

$\begin{gathered} \dot{む} \\ \stackrel{y}{*} \end{gathered}$				Ammonia falsobeccarii					$\begin{aligned} & \text { N } \\ & \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \dot{\omega} \\ & \vdots \\ & i \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			Elphidium margaritaceum			Haynesina depressula						$\begin{aligned} & \dot{6} \\ & \text { E } \\ & \text { U } \\ & \text { B } \\ & 0 \end{aligned}$	Quinqueloculina leavigata	$\begin{aligned} & \dot{n} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{gathered} \text { F゙్ } \\ \end{gathered}$
2011	1	A	August					1.4						2.1										0.4				0.4				4.2
2011	1	A	November																													
2012	1	A	January					0.7						2.8						1.1											0.4	5.0
2012	1	A	March	0.4		1.1		12.0	0.4					28.6	29.4			0.4		0.4								0.7		0.4	2.1	75.7
2012	1	A	May					13.8	1.1		0.4			141.5	47.7	15.2								0.4		0.4	1.1		0.4		0.4	222.1
2012	1	A	July					8.1						76.0	1.8	2.1													0.4			88.4
2012	1	A	September					0.7						21.2																		21.9
2012	1	A	November			0.4		0.4						0.7																		1.4
2011	1	B	August					1.1						0.4			1.1															2.5
2011	1	B	November					0.7						1.1														0.4				2.1
2012	1	B	January			0.7		5.7						7.4	0.4		0.4										1.1	0.4			2.1	18.0
2012	1	B	March					13.8						19.1	13.8					0.4				0.4			0.4				0.7	48.5
2012	1	B	May					4.6	0.4					531.6	93.4	36.4	0.4		0.7	0.4				2.1		0.4	0.4	1.1	2.5	0.4	3.2	677.6
2012	1	B	July			0.4		12.4	0.4		0.7			247.9	2.1	1.4	1.4	0.4						0.7			0.7	0.4	1.8			270.6
2012	1	B	September					3.9						38.2			0.4												2.5	0.4	0.7	46.0
2012	1	B	November					0.4						1.4																		1.8
2011	2	A	August					72.5						53.8			0.7				0.4		1.1			0.4		0.4		0.4	10.6	140.1
2011	2	A	November					61.9						33.2			0.7							1.1				1.1			13.1	111.1
2012	2	A	January	0.7		2.5	8.8	263.1		1.1				122.0	1.1		0.7	0.4	1.1						0.7	0.4				0.4	142.5	545.4
2012	2	A	March			1.4		275.2				1.8		225.6	40.0	1.1	0.4		0.4						0.7	0.7		1.4		1.8	73.9	624.2
2012	2	A	May			1.1		165.9			0.4	3.9		254.6	38.6	82.1	0.4		1.4							3.2	0.4	2.1	1.4	5.0	42.1	602.3
2012	2	A	July			1.8		172.2	6.0	2.1	0.4	0.4		318.3	3.9	35.7	1.4		0.4	0.7						0.4		7.1	1.8	2.1	35.4	589.9

2012	2	A	September		0.7		141.1		1.4	0.4			415.2	16.3	81.0	0.4	0.4	3.2			1.4						0.4	1.4	3.2	14.9	681.2
2012	2	A	October		0.4	0.7	87.0	1.1	2.5	0.4			104.7		2.1							0.4							1.4	5.3	205.8
2012	2	A	November				66.5	0.7		0.4			29.4		3.9	0.4					2.1							0.7		5.0	108.9
2012	2	A	December	0.7		1.8	78.9	1.1	0.7	1.4			281.2	0.4	15.9			0.7	0.4		1.8		0.4		0.4		0.4	0.4	3.2	15.9	405.3
2011	2	B	August				91.6				0.4		95.8						0.7	0.4			0.4							18.7	208.0
2011	2	B	November				59.8				0.4		71.4			1.1			1.1				1.1				1.1			10.6	146.4
2012	2	B	January		0.4	2.1	189.2		0.4				201.6	0.7			1.1										5.7		0.4	100.4	501.9
2012	2	B	March			1.1	152.8	0.4			2.1		203.7	56.2	0.4	1.1	0.7	1.4						1.1	0.4		1.8	0.7	0.7	76.0	500.5
2012	2	B	May			1.4	128.4	2.1		0.7		0.4	321.8	25.8	85.6			0.4	0.4				1.8		2.8	1.1	0.7	1.1	2.8	30.1	607.3
2012	2	B	July		1.1	1.4	144.7	0.4	1.8	1.8	2.1		246.9	8.1	27.9	0.7		1.1	1.1						0.4	2.1	1.1	0.7	2.5	27.6	473.2
2012	2	B	September			0.4	63.7	1.8	0.7				315.8	8.1	38.6	1.4	0.4	2.1		0.4							0.4	1.4	1.4	17.3	453.8
2012	2	B	October		0.7	1.1	111.1	0.4					92.7	1.1	0.4			0.4												9.5	217.2
2012	2	B	November			0.4	29.7	1.1		0.4			32.5	1.8	2.5	0.4		0.7									0.4	0.4	0.7	2.5	73.2
2012	2	B	December				77.1	1.4	0.7				223.2	5.7	29.0	1.1		1.4			0.4					0.4	0.4		0.4	9.5	350.5

Figure S1. SEM images of spiral side and a 1000x magnification of the penultimate chamber for four individuals from Grevelingen station 1 identified $\mathbf{T 6}$ by molecular identification.

Raw picture

Foraminifera isolation

Individual measurement

Figure S2: Numerical treatment used for the size measurement for each image performed with ImageJ software. The three size fractions (125-150, 150-315, >315 $\boldsymbol{\mu m}$) were analysed together for the size distribution analyses. The left figure shows the untreated image, the middle figure presents the next step, when all individual foraminifera are depicted. Finally, the figure on the right shows the individual foraminiferal outlines which were measured.

Station 2
\qquad

January

January

February

March

April

April

August

September

October

November

December

at this station (Supplementary Figure 3). At station 2, a group of individuals with smaller diameters ($<\mathbf{3 0 0} \boldsymbol{\mu m}$) was always present. The overall size distribution showed a clear shift to higher diameters between March (median $=279 \mu \mathrm{~m}$) and May (median $=\mathbf{3 7 3} \mu \mathrm{m}$, Fig. 7), which is also evidenced by the much higher proportion of larger individuals. Specimens larger than $400 \mu \mathrm{~m}$ were abundantly found until November (median $=378 \mu \mathrm{~m}$), but started to diminish in December, as is also shown by the decrease of the median to $339 \mu \mathrm{~m}$. Our tentative to distinguish cohorts by using a deconvolution method to separate the total size distributions into a sum of Gaussian curves was not conclusive. The main problem was the fact that we did not have any information concerning individuals smaller than $125 \mu \mathrm{~m}$, so that our size distributions were systematically skewed on the left side (i.e. toward small individuals). An additional problem was the large number of smaller specimens which were always present. Because the identification of individual cohorts was not successful, parameters like reproduction rate, growth rate or lifespan were not assessable. Nevertheless, the size distribution data give some clues concerning the population dynamics of the two dominant species.

