
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
Mineralogy And Petrology 
August 2022, Volume 116 Issue 4 Pages 311-335  
https://doi.org/10.1007/s00710-022-00786-y 
https://archimer.ifremer.fr/doc/00865/97695/ 

Archimer 
https://archimer.ifremer.fr 

Variscan lamprophyres of the South Armorican Domain and 
comparison with lamprophyres of the Western European 

Variscan belt 

Pouclet André 1, *, Bardintzeff Jacques-Marie 2, Bellon Hervé 3 

 
1 Institute of Earth Sciences, University of Orléans, 3, rue des foulques, 45000, 85560, Orléans, 
Longeville-sur-mer, France  
2 UMR CNRS 8148 GEOPS, University Paris-Saclay, Sciences de La Terre, bât. 504, 91405, 
Volcanologie, PlanétologieOrsay, France  
3 University of Brest Laboratoire Géosciences Océan, Institut Universitaire Européen de La Mer, Place 
Nicolas Copernic, 29280, Plouzané, France 

 

* Corresponding author : André Pouclet, email address :  andre.pouclet@sfr.fr 
 
 

Abstract :   
 
Late to post-orogenic lamprophyres of the European Variscides attest variable compositions of the mantle 
beneath the structural zones of the belt. These compositions resulted from different contributions of 
mantle components involving geotectonic processes during the orogeny, such as oceanic subduction of 
mafic crust and sediments, continental subduction, collision with mantle input, and delamination of 
overriding plates. For documenting these processes, we have surveyed three sites of lamprophyre 
intrusions in the Vendean part of the South Armorican tectonic Zone with spessartite sills and minette 
dykes, and a fourth site in the West-Armorican kersantite swarm. The age of spessartite is estimated 
between 320 and 315 Ma on the base of structural relationships with the dated neighbouring granite. 
Dykes of minette share similar intrusive setting along the post-orogenic NW-SE dextral shear zones. One 
dyke is dated at 286.2 +/- 6.6 Ma (Early Permian) by K/Ar method. The Western Brittany kersantite swarm 
is Middle to Late Carboniferous in age. All these rocks display common mineral and chemical 
compositions of lamprophyres. A review of the Variscan European lamprophyres is conducted in order to 
document their geochemical fingerprints compared with those of the studied samples. 
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Abstract
Late to post-orogenic lamprophyres of the European Variscides attest variable compositions of the mantle beneath the struc-
tural zones of the belt. These compositions resulted from different contributions of mantle components involving geotectonic
processes during the orogeny, such as oceanic subduction of mafic crust and sediments, continental subduction, collision
with mantle input, and delamination of overriding plates. For documenting these processes, we have surveyed three sites of
lamprophyre intrusions in the Vendean part of the South Armorican tectonic Zone with spessartite sills and minette dykes,
and a fourth site in the West-Armorican kersantite swarm. The age of spessartite is estimated between 320 and 315 Ma on
the base of structural relationships with the dated neighbouring granite. Dykes of minette share similar intrusive setting
along the post-orogenic NW–SE dextral shear zones. One dyke is dated at 286.2 ± 6.6 Ma (Early Permian) by K/Ar method.
The Western Brittany kersantite swarm is Middle to Late Carboniferous in age. All these rocks display common mineral and
chemical compositions of lamprophyres. A review of the Variscan European lamprophyres is conducted in order to document
their geochemical fingerprints compared with those of the studied samples.

Keywords Lamprophyre · Variscan belt · South-Armorican zone · West-European Variscides · Late and post-orogenic 
magmatism

Introduction

Lamprophyre dykes and sills are common throughout the 
Western European Variscan realm from England and France 
to Germany, Czech Republic, Poland, and Spain (Fig. 1). The 
lamprophyric occurrences also extend north of the Variscan 
orogenic front in Scotland, Norway, and Sweden (Kirstein et al. 

2006). The widespread dyke and sill swarms are dated from 
Late Devonian to Permian and can be devoted from syn- to post-
orogenic magmatic activities of the Variscan belt. They display 
various calc-alkaline and alkaline to peralkaline compositions 
with spessartites, vogesites, kersantites, minettes, camptonites, 
and monchiquites, some being associated with lamproites. Argu-
ably, such large compositional and age ranges betray different 
geodynamics and magmatic conditions of genesis.

Petrogenesis of lamprophyres was a long-standing matter of 
debate. Once it was admitted that lamprophyres may represent 
primary-mantle melts (Rock 1987, 1991), different sources 
and melting conditions were considered. Present statement 
rather favours a deep depth melting of metasomatized mantle 
sources previously enriched in large ion lithophile and high 
field strength elements, with the contribution of subducted con-
tinental crust and/or altered oceanic lithosphere. Enrichment 
may be found in subduction related processes from assimilation 
of the sedimentary cover or from mixing with fluids or melts 
resulting from partial melting of subducted material. Diversity 
of lamprophyre magmas resulted from various combinations 
of magma mixing and mingling, fractional crystallization, 
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assimilation of crustal components and volatile enrichment 
(Turpin et al. 1988; Hegner et al. 1998; von Seckendorff et al. 
2004; Awdankiewicz 2007; Seifert 2008; Soder and Romer 
2018; Krmiček et al. 2020a, b).

In the South Armorican Domain, we investigated sills and 
dykes of spessartite and minette in the Vendean Atlantic coast 
and a sill of kersantite in the westernmost Brittany area, for 
their petrological and geochemical features. The aim of this 
work is to discuss the geotectonic and magmatic significances 
of this regional lamprophyric activity, taking into account 
recent and numerous accurate studies of the lamprophyres 
widely distributed in the whole European Variscan belt.

West Vendean lamprophyres: Geological 
background

Generalities

The West Vendean lamprophyres consist of sills and 
dykes intruding the Variscan structural Units along the 

Atlantic coast (Fig. 2). We distinguish two different lam-
prophyre types: amphibole-bearing spessartite and biotite-
bearing minette. Thin sills of spessartite are located in the 
La Chaume sea cliff, west of the harbour of Les Sables-
d’Olonne. Dykes of minette are located at two mains sites 
of the seashore: Croix-de-Vie, west of the harbour of Saint-
Gilles-Croix-de-Vie, and Payré, west of the Payré rocky fore-
land and south-east of Les Sables-d’Olonne. Some dykes 
were pointed out on land, but are badly preserved.

La Chaume spessartite

Along the southern sea cliff of La Chaume, numerous lam-
prophyre sills are intruded in between orthogneiss layers 
(Figs. 3 and 4). The gneisses are dated to Early Cambrian 
and belong to the Complex of Les Sables-d’Olonne (Fig. 2) 
(Pouclet et al. 2017). The lamprophyres are not metamor-
phosed but are set in conformity with the metamorphic 
foliation trending W-E with a N 110° stretch lineation and 
a 30° dip to the north. Unless than twelve thin intrusions 
are distributed in a limited section of the cliff, about 160 m 
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from west to east and 20 m high. All these sills are similar 
and determined as spessartite. Their thickness ranges from 
10 to 100 cm and their length from 30 to 80 m. They are 
located above a thick cupola of pegmatite inserted within 
the gneiss unit. The upper sill is the most extended to the 

west side where it gains the highest thickness of one metre. 
Some sills are bordered by layers of pegmatite, suggest-
ing a sub-contemporary setting. The sill margins display a 
2 cm-thick layer of biotite that can be explained by a vapour 
pressure effect of the gas-rich lamprophyric magma with 
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mica neo-crystallization. Some margins are also enriched 
in large and oriented crystals of microcline, muscovite and 
quartz from neighbouring pegmatite veins. The margins are 
stretched in W-E average trend but the inner part of the sills 
shows no textural orientation and is made of fine isometric 
grains. These features attest for the intrusion of the lampro-
phyre magma at the time of a pegmatitic event. This event 
can be related to the pneumatolytic stage of the underlying 
granite pluton of Les Sables-d’Olonne that outcrops north-
west and east of La Chaume and is dated around 320 Ma 
(Turillot et al. 2011). Afterwards, the lamprophyre margins 
together with gneisses and pegmatites have registered the 
W-E regional tectonic shearing dated to the late early Car-
boniferous (Pouclet et al. 2017). Moreover, all the forma-
tions are crosscut by dykes of aplite, a few centimetres to 
100 cm thick, associated with left-lateral vertical shear faults 
trending N 10°. There is clear evidence that the lamprophyre 
magma emplaced in the gneissic roof of the pluton at the 
time of the granite solidification.

Croix‑de‑Vie and Payré minettes

Dykes of lamprophyres intruded the cliff and the fore-
shore of Croix-de-Vie, west of the Saint-Gilles-Croix-de-
Vie (Fig. 2). This area consists of low-grade metamorphic 
shales and sandstones of the Saint-Gilles Unit dated to 
Ordovician, trending WNW-ESE and dipping 20° to the 
north (Pouclet et al. 2017). We distinguish three intru-
sions in the cliff and three others in the shore (Fig. 5). (1) 
The first dyke crosscuts the cliff in trending N 30°, with 
vertical margins, and 2.9 m in width. The rock consists of 
a fine grained biotite-rich lamprophyre of regular size in 

the whole body. It is determined as a minette. (2) Close 
to the west side of this great dyke, a metre-thick intrusion 
of the same rock crosscuts the metasedimentary layers in 
one part and is inserted in the hinge line of the folds in 
another part like a chonolite body. (3) In a western buttress 
of the cliff, a third 10 to 20 cm thick intrusion extended to 
about 4 m from the base to the top of the cliff. This thin 
dyke was laterally supplied with the same fined grained 
minette. (4) To the west side of the sandy beach, a 4 to 5 m 
wide and N 45° trending vertical dyke crosscuts the rocky 
upper foreshore along 40 m. It approximately continues 
the great dyke of the cliff below the sandy beach but with 
a possible left-lateral shift, taking into account the location 
of a shear tectonic line at the foot of the cliff. This fourth 
dyke is sharply cut by a NW–SE left-lateral shear fault 
across the rocky shore. (5) This dyke is continued with a 
fifth dyke after a 65 m left-lateral motion along the shear 
fault. This new dyke is dipped to the north and bended to 
the southwest along a 40 m course. (6) A sixth dyke is a 
NE-SW-tending en echelon relay. This last dyke extends 
to the seaward and disappears in deep water after about 
70 m of length.

In the Payré area, two lamprophyre dykes are en echelon 
relayed across the shore until to the cliff, with a N 80° aver-
age trend (Fig. 6). They crosscut the low grade metamorphic 
sandstones of the lower formation of La Roche-sur-Yon Unit 
that is N 125° trending and 65° dipping to the north-east, 
and dated to the early Ordovician. The dyke # 1 extends 
from the cliff to the foreshore and is 140 m of length with an 
average thickness of 1.8 m. The dyke # 2 extends from the 
middle shore to the seaward after a visible course of 80 m. 
Its average thickness is 80 cm. Both dykes are vertical to 60° 
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dipping to the north. They have the composition of minette 
with fine grain texture and biotite amount similar to that of 
the Croix-de-Vie minette.

Analytical procedures

Mineral analyses

The minerals were analysed with a CAMECA SX 100 elec-
tron probe microanalyser (EPMA) The reference materials 
were diopside for Si, Ca and Mg, Fe2O3 for Fe, MnTiO3 for 
Ti and Mn, Cr2O3 for Cr, albite for Na, orthoclase for K and 
Al. The Kα X-ray was used for all the elements. The operat-
ing conditions were: accelerating voltage of 15 kV and beam 
current of 10 nA. Counting times were 20 s for the peak and 
10 s for the background. Data corrections were made using 
the PAP method according to Pouchou and Pichoir (1991). 

Analyses were obtained during six EPMA sessions from 
June 2016 to June 2018.

Age dating

The minette of Croix-de-Vie has been dated by K–Ar method 
on the whole rock. The sample was crushed and sieved to 

a

Fig. 4   a View of the sills of spessartite (K1 to K5) in the La Chaume 
cliff and foreshore from West to East. Sills are intruded in the folia-
tion of the orthogneiss (OG). b Sills of spessartite in the La Chaume 
cliff. Slices of pegmatite from the underlying pluton of granite are 
also intruded in the orthogneiss. Dykes of pegmatite and aplite from 
the same pluton of granite crosscut all the metamorphic formations. 
c Sills of spessartite in the La Chaume cliff. Orthogneiss and aplite 
dyke
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Fig. 5   a Sketch map of the Croix-de-Vie sea shore (Google Earth 
image). Location of the dykes of minette. The two systems of dykes 
1, 2, 3 and 4 and of dykes 5 and 6 are 65 m offset by a right-lateral 
shear zone. Map data Google Earth Image ©2020 Maxar Technolo-
gies. Online  available at: http://​www.​google.​com/​earth/​index.​html. b 
View of the dyke 1 of minette of Croix-de-Vie, vertically intruded the 
metasedimentary formations of the cliff. c View of the dykes 5 and 6 
of minette of Croix-de-Vie. The en echelon dykes cross the foreshore

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

http://www.google.com/earth/index.html


UNCORRECTED PROOF

Journal : Large 710 Article No : 786 Pages : 25 MS Code : 786 Dispatch : 1-7-2022

	 A. Pouclet et al.

1 3

grains of the whole rock (0.3 to 0.18 mm in size), then 
cleaned with distilled water. One aliquot of grains was pow-
dered in an agate grinder for its chemical attack of around 
0.1 g of powder by 4 cc of hydrofluoric acid, before its anal-
ysis of K content by AAS (Atomic Absorption Spectrom-
etry). A second aliquot of grains, 0.8 to 1 g, was reserved 
for argon analysis. Grains were heated and fused under 
vacuum in a molybdenum crucible, using a high frequency 
generator. Released gases during this step of the process 
were cleaned successively on three quartz traps containing 
titanium sponge during their decreasing temperature, in half 
a quarter of hour, from 800 °C to the ambient one, and at the 
final step the remaining gas fraction was ultra-purified with 
an Al-Zr SAES getter. Isotopic compositions of argon and 
concentrations of 40Ar* were measured in a stainless steel 
mass spectrometer with a180° geometry. Isotopic dilution 
was realized during the fusion step, using for this process 
precise concentrations of 38Ar buried as ions in Al targets, 
each target being added to the sample before its introduction 
in the vacuum system for the extraction of gases. Details 
of the analytical procedure are given in Bellon and Rangin 
(1991). Constants are from Steiger and Jäger (1977). Uncer-
tainties are calculated following Cox and Dalrymple (1967).

Rock analyses

The spessartite LC has been analysed for major elements 
by ICP-OES (inductively coupled plasma-optical emission 
spectrometry) and for minor elements by ICP-MS (induc-
tively coupled plasma-mass spectrometry). The minettes 

MIT, PMI, and the kersantite KER have been analysed by 
ICP-OES for major and minor elements. The analytical pro-
cedure for the ICP-OES analysis is described in Cotten et al. 
(1995). For each sample, about 300 mg of powder was fused 
with LiBO2 and dissolved in HNO3. Five international geo-
standards were used: basalt BR, diorite DRN, serpentinite 
UBN, anorthosite ANG and granite GH. Geostandard refer-
ences and analytical errors and uncertainties are available in 
Carignan et al. (2001).

Results: petrography and mineralogy 
of the West Vendean and West Armorican 
lamprophyres

Generalities

All the sills of spessartite of La Chaume and the dykes of 
minette of Croix-de-Vie and of Payré described in Figs. 3, 
4, 5 and 6 have been sampled. After elimination of some 
higher altered rocks, samples were cut for microscope thin 
sections, and some were selected and polished for electron 
probe microanalyser (EPMA) analyses. In addition, samples 
of kersantite have been selected at l’Hôpital-Camfrout from 
the western Armorican lamprophyre swarm, to support the 
examination of the various Armorican Domain lamprophyre 
types. The EPMA provided analyses of magmatic phases: 
mica, amphibole, feldspar, magnetite, ilmenite, titanite, cal-
cite, and ankerite, and of secondary minerals: chlorite and 
epidote. Representative chemical analyses are given in the 
Tables 1, 2, 3, 4, 5 and 6.

Fig. 6   a Sketch map of the 
Payré Head (Google Earth 
image). Location of the dykes of 
minette. b Enlarged view of the 
Payré sea shore (Google Earth 
image). The echelon dykes 1 
and 2 are trending N 80°. c 
View of the dyke #1 of minette 
on the foreshore and in the cliff 
of the Payré Head. d View of 
the dyke #1 of minette on the 
foreshore of the Payré Head. 
Map data used in subfigures a 
and b are Google Earth images 
©2020 Maxar Technologies, 
online  available at http://​www.​
google.​com/​earth/​index.​html
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Spessartite of La Chaume

All the sills of La Chaume exhibit the same micrograined 
and lamprophyric texture with abundant amphibole and bio-
tite. The other phases consist of plagioclase, alkaline feld-
spars, and accessory ilmenite, apatite, and titanite (Fig. 7a). 
The modal analysis gives 31% amphibole, 16% biotite, 29% 
plagioclase, 22% alkaline feldspar, and 2% accessory min-
erals. According to the IUGS nomenclature of Le Maitre 
et al. (2005), this lamprophyre is a spessartite in having more 
amphibole than biotite, more plagioclase than alkaline feld-
spar, and the lack of feldspathoid. No pyroxene and olivine 
have been recognized. Secondary alteration gave chlorite, 
epidote and albite recrystallization of feldspar and amphi-
bole. Biotite is partly changed to muscovite. Many sills are 
contaminated by xenocrysts of quartz and garnets that are 
abundant in the gneiss country rocks.

The set of EPMA mineral analyses mainly concerns 
amphiboles, micas, feldspars and chlorites (Tables  1, 
2, 3 and 6). A few data were obtained for oxides and 
titanite (Table  4). The amphibole compositions range 

from tschermakitic pargasite to Mg-hornblende with 
6.10 < Siapfu < 6.80 and 0.54 < Mg/Mg + Fe2+  < 0.68 
(Table 1), according to the nomenclature of Hawthorne et al. 
(2012). The amphibole chemistry geobarometer of Ridolfi 
and Renzulli (2012) applied to the core composition of the 
more aluminous amphibole gives the value of 712 ± 69 MPa 
for the pressure of crystallization, by taking the average val-
ues of the Eqs. 1b and 1c as suggested by Erdmann et al. 
(2014). It is the highest value for the amphibole dataset. This 
pressure would be indicative of a reservoir depth around 
26 km for a crustal density of 2.8. The Al-in-hornblende 
barometer of Ridolfi et al. (2010) gives 668 MPa (Mega-
pascals), which is compatible with the amphibole chemis-
try barometer. The crystallization temperature is estimated 
at 840 °C after Ridolfi and Renzulli (2012). According to 
Molina et al. (2015), the amphibole-liquid Mg partitioning 
gives 1019 °C and the liquid only gives 1044 °C. The equa-
tion of Putirka (2016) for the amphibole-liquid only gives 
also 1018 °C. These last values seem to be more consistent 
for a lamprophyric magma at deep crustal setting. The log 
fO2 is calculated at -13.3 after Ridolfi and Renzulli (2012). 

Table 1   Results of representative chemical analyses of amphiboles of the spessartite of La Chaume

* calculated based on 23 O atoms per formula unit

Tschermakite Mg-Hornblende

Major oxides (wt%)
SiO2 41.40 42.14 43.23 44.31 43.82 43.07 43.90 44.84 44.66 46.03 45.74 46.41
TiO2 0.65 0.99 0.98 1.17 1.13 1.08 0.90 0.92 0.93 0.75 0.84 0.80
Al2O3 19.76 16.32 14.75 13.37 13.76 12.95 12.64 11.74 11.97 10.67 10.17 9.57
Cr2O3 0.08 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.04 0.00 0.00 0.04
FeO 14.96 16.52 16.81 16.07 17.07 17.61 17.53 17.24 17.01 16.25 17.12 16.61
MnO 0.28 0.24 0.23 0.25 0.22 0.22 0.25 0.24 0.27 0.31 0.24 0.28
MgO 9.62 9.18 9.18 9.83 9.03 8.99 9.76 10.02 9.64 10.89 10.46 10.90
CaO 10.12 10.73 11.04 10.86 11.34 11.07 11.25 11.21 11.13 11.25 11.14 11.46
Na2O 0.87 1.30 1.34 1.19 1.56 1.47 1.44 1.26 1.34 1.04 1.29 1.09
K2O 0.32 0.48 0.57 0.35 0.65 0.65 0.54 0.41 0.44 0.26 0.39 0.34
Total 98.06 97.90 98.15 97.40 98.58 97.10 98.20 97.93 97.42 97.44 97.38 97.51
Calculated mineral formulae (apfu)*
Si 5.830 6.099 6.294 6.455 6.414 6.403 6.420 6.552 6.573 6.705 6.721 6.802
AlIV 2.170 1.901 1.706 1.545 1.586 1.597 1.580 1.448 1.427 1.295 1.279 1.198
AlVI 1.109 0.883 0.825 0.749 0.789 0.672 0.599 0.574 0.651 0.536 0.482 0.455
Ti 0.069 0.107 0.108 0.128 0.124 0.120 0.099 0.101 0.103 0.082 0.093 0.088
Cr 0.009 0.000 0.000 0.000 0.001 0.000 0.000 0.005 0.004 0.000 0.000 0.005
Mn 0.033 0.029 0.029 0.031 0.027 0.027 0.031 0.030 0.034 0.038 0.030 0.035
Fe 3+ 1.514 0.998 0.723 0.737 0.423 0.604 0.735 0.710 0.583 0.730 0.655 0.584
Fe 2+ 0.247 1.003 1.324 1.221 1.666 1.586 1.410 1.397 1.511 1.249 1.449 1.453
Mg 2.019 1.980 1.991 2.133 1.970 1.991 2.127 2.183 2.115 2.365 2.292 2.381
Na 0.238 0.366 0.379 0.336 0.444 0.424 0.408 0.357 0.382 0.293 0.367 0.309
K 0.058 0.090 0.106 0.065 0.120 0.123 0.100 0.076 0.083 0.048 0.073 0.064
Ca 1.526 1.664 1.723 1.695 1.778 1.763 1.764 1.756 1.755 1.756 1.753 1.799
Total 14.822 15.119 15.208 15.096 15.343 15.309 15.273 15.190 15.220 15.097 15.194 15.172
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Table 2   Results of 
representative chemical analyses 
of micas

* calculated based on 11 O atoms per formula unit

Sample Spessartite 
LCS-3

Minette MIT Minette 
MIT-2

Major oxides (wt%)
SiO2 32.97 35.22 36.12 35.48 35.33 37.59 39.88 38.58 39.13 38.95 39.74 35.15
TiO2 2.56 2.98 3.20 3.40 3.92 3.94 2.32 3.58 2.17 2.05 2.72 4.80
Al2O3 25.15 24.52 24.10 13.97 14.85 14.78 13.64 14.58 14.49 14.86 14.37 15.84
FeO 16.06 15.40 15.66 12.91 14.32 9.03 5.46 10.99 5.00 4.58 5.66 19.00
MnO 0.07 0.08 0.09 0.10 0.17 0.08 0.00 0.03 0.00 0.02 0.05 0.04
MgO 9.43 8.55 8.44 16.21 14.49 18.95 22.58 17.38 22.34 22.25 22.39 11.45
CaO 0.50 0.19 0.20 1.61 0.03 0.00 0.00 0.09 0.00 0.00 0.01 0.06
Na2O 0.11 0.36 0.22 0.46 0.46 0.44 0.20 0.55 0.20 0.24 0.16 0.39
K2O 8.27 7.20 7.02 8.00 8.06 8.90 9.56 8.15 8.89 9.08 8.87 6.64
BaO 0.07 0.06 0.04 1.55 2.12 1.71 0.76 1.36 0.72 0.77 0.80 2.48
Total 95.18 94.56 95.09 93.69 93.74 95.42 94.38 95.30 92.95 92.79 94.78 95.84
Calculated mineral formulae (apfu)*
Si 2.455 2.598 2.643 2.727 2.734 2.771 2.877 2.841 2.824 2.804 2.849 2.700
AlIV 1.545 1.402 1.357 1.266 1.266 1.229 1.123 1.159 1.176 1.196 1.151 1.300
AlVI 0.662 0.730 0.721 0.000 0.088 0.055 0.036 0.106 0.057 0.064 0.064 0.134
Ti 0.144 0.165 0.176 0.197 0.228 0.218 0.126 0.198 0.118 0.111 0.147 0.277
Fe 1.000 0.950 0.958 0.830 0.927 0.557 0.330 0.677 0.302 0.276 0.339 1.220
Mn 0.004 0.005 0.006 0.007 0.011 0.005 0.000 0.002 0.000 0.001 0.003 0.003
Mg 1.047 0.940 0.921 1.857 1.671 2.083 2.428 1.908 2.404 2.387 2.393 1.311
K 0.787 0.679 0.657 0.786 0.797 0.838 0.881 0.767 0.820 0.836 0.813 0.652
Na 0.015 0.051 0.031 0.068 0.069 0.063 0.027 0.079 0.028 0.033 0.023 0.058
Ba 0.002 0.002 0.001 0.047 0.064 0.049 0.021 0.039 0.020 0.022 0.023 0.075
Major oxides (wt%)
SiO2 38.21 38.68 37.92 37.59 38.48 36.80 38.40 36.84 36.50 35.63 35.92 33.90
TiO2 4.65 4.19 4.59 4.72 4.68 4.87 4.27 2.54 2.93 2.13 2.38 3.26
Al2O3 14.22 13.87 14.30 14.28 14.19 14.42 14.36 15.88 15.82 17.57 16.19 18.85
FeO 6.96 6.61 6.83 9.43 6.92 14.40 6.62 12.30 18.15 16.48 13.20 11.83
MnO 0.12 0.01 0.01 0.08 0.01 0.26 0.06 0.00 0.00 0.09 0.16 0.07
MgO 20.12 20.30 19.98 18.03 20.10 14.90 20.36 19.55 13.55 13.86 18.69 19.52
Na2O 0.50 0.45 0.48 0.44 0.46 0.52 0.46 0.74 0.71 0.59 0.68 0.83
K2O 9.35 9.37 9.29 9.38 9.36 8.96 9.41 8.00 7.80 8.66 7.90 8.13
BaO 0.64 0.45 0.41 0.64 0.57 0.70 0.57 0.00 0.00 0.00 0.00 0.00
Total 94.76 93.92 93.80 94.59 94.76 95.83 94.50 95.85 95.46 95.01 95.12 96.39
Calculated mineral formulae (apfu)*
Si 2.782 2.819 2.779 2.770 2.789 2.744 2.789 2.687 2.742 2.682 2.656 2.468
AlIV 1.218 1.181 1.221 1.230 1.211 1.256 1.211 1.313 1.258 1.318 1.344 1.532
AlVI 0.003 0.011 0.014 0.011 0.001 0.012 0.018 0.052 0.143 0.240 0.066 0.086
Ti 0.255 0.230 0.253 0.262 0.255 0.273 0.233 0.139 0.166 0.121 0.132 0.179
Fe 0.424 0.403 0.418 0.581 0.419 0.898 0.402 0.750 1.140 1.037 0.816 0.720
Mn 0.007 0.000 0.001 0.005 0.000 0.017 0.003 0.000 0.000 0.006 0.010 0.004
Mg 2.183 2.206 2.183 1.980 2.172 1.656 2.203 2.125 1.517 1.555 2.060 2.119
K 0.870 0.873 0.870 0.884 0.867 0.855 0.874 0.746 0.749 0.833 0.747 0.757
Na 0.071 0.064 0.068 0.062 0.065 0.075 0.065 0.105 0.103 0.086 0.097 0.117
Ba 0.018 0.013 0.012 0.018 0.016 0.020 0.016 0.000 0.000 0.000 0.000 0.000
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However, these estimated crystallization conditions have 
to be taken with caution, as noted by Molina et al. (2021). 
Only few analyses were available for biotite, because of 
the secondary substitution in muscovite of the magmatic 

biotite (Table 2). They comply with an alumina-rich biotite 
of eastonite close to siderophyllite composition with the Mg/
Mg + Fe2+ ratio averaging 51 according to the nomenclature 
of Rieder et al. (1998). Partition of titanium between melt 

Table 3   Results of 
representative chemical analyses 
of feldspars

* calculated based on 8 O atoms per formula unit

Sample Spessartite 
LCS

Minette MIT Minette PMI Kersantite 
KER

Major oxides (wt%)
SiO2 59.63 59.35 59.29 60.07 60.72 65.55 65.23 59.10 59.90 60.56 54.42 57.84
Al2O3 25.85 25.58 25.47 25.56 25.13 18.54 18.78 24.99 25.02 24.10 27.95 24.77
Fe2O3 0.25 0.13 0.09 0.02 0.03 0.35 0.37 0.36 0.28 0.46 0.94 0.21
CaO 7.06 6.99 6.94 6.76 6.29 0.16 0.29 6.75 6.55 6.56 12.21 10.98
Na2O 7.64 7.63 7.66 7.89 8.18 2.44 2.55 7.04 7.33 7.12 4.41 5.24
K2O 0.07 0.13 0.13 0.12 0.08 12.86 12.92 1.02 0.52 1.33 0.11 0.04
Total 100.50 99.81 99.59 100.42 100.44 99.90 100.14 99.26 99.60 100.13 100.04 99.08
Calculated mineral formulae (apfu)*
Si 2.646 2.652 2.655 2.665 2.689 2.996 2.980 2.664 2.680 2.706 2.463 2.620
Al 1.352 1.347 1.344 1.336 1.312 0.999 1.011 1.328 1.319 1.269 1.491 1.323
Fe3+ 0.008 0.004 0.003 0.001 0.001 0.012 0.013 0.012 0.009 0.015 0.032 0.007
Ca 0.336 0.335 0.333 0.321 0.299 0.008 0.014 0.326 0.314 0.314 0.592 0.533
Na 0.657 0.661 0.665 0.679 0.703 0.216 0.226 0.615 0.636 0.617 0.387 0.460
K 0.004 0.007 0.007 0.007 0.005 0.752 0.755 0.059 0.030 0.076 0.006 0.002
Calculated end-member fractions (mol%)
Ab 65.93 65.89 66.15 67.42 69.86 22.17 22.71 61.52 64.91 61.26 39.27 46.24
An 33.65 33.36 33.11 31.92 29.69 0.79 1.42 32.60 32.05 31.19 60.08 53.54
Or 0.41 0.74 0.74 0.66 0.46 77.04 75.87 5.88 3.04 7.55 0.65 0.22

Table 4   Results of 
representative chemical analyses 
of titanites

* calculated based on 20 O atoms per formula unit

Sample Spessartite LCS3 Kersantite KER 1

Major oxides (wt%)
SiO2 29.80 30.12 31.04 30.55 30.73 29.47 29.75
TiO2 36.24 34.22 28.36 29.33 28.65 33.72 32.01
Al2O3 4.28 4.28 8.62 8.04 7.94 3.99 6.27
Cr2O3 0.02 0.03 0.16 0.01 0.10 0.06 0.04
FeO 1.10 0.88 0.37 0.32 0.44 0.81 1.07
MnO 0.00 0.00 0.00 0.00 0.04 0.00 0.06
MgO 0.00 0.00 0.00 0.02 0.01 0.09 1.33
CaO 27.51 28.66 28.76 28.80 28.80 27.40 25.79
Total 98.95 98.19 97.31 97.08 96.71 95.54 96.31
Calculated mineral formulae (apfu)*
Si 3.919 3.996 4.104 4.057 4.098 4.011 3.985
Al 0.663 0.669 1.343 1.259 1.249 0.640 0.989
Ti 3.584 3.414 2.819 2.929 2.873 3.451 3.224
Fe2+ 0.121 0.098 0.041 0.035 0.049 0.092 0.120
Mg 0.000 0.000 0.000 0.004 0.002 0.017 0.265
Mn 0.000 0.000 0.000 0.000 0.004 0.000 0.006
Cr 0.002 0.003 0.016 0.001 0.011 0.007 0.004
Ca 3.877 4.074 4.074 4.098 4.114 3.996 3.701

272

273

274

275

276

277

278

279



UNCORRECTED PROOF

Journal : Large 710 Article No : 786 Pages : 25 MS Code : 786 Dispatch : 1-7-2022

	 A. Pouclet et al.

1 3

and magnesium biotite is temperature dependent. Using the 
geothermometer of Righter and Carmichael (1996) with the 
revised constants of Roach and Rutherford (2003), the bio-
tite was equilibrated at 1140 °C, which can be compared 
with the 1018 °C-1044°C values of the amphibole crystal-
lization. Plagioclase is in the labradorite range (An66-72) 
(Table 3). The alkaline feldspar composition averages Ab 
65% and Or 35%. Titanite contains 36% TiO2 and 28% CaO 
(Table 4). Chlorite ranges from ripidolite to pycnochlorite 
(5.2 < Siapfu < 5.7; 0.52 < Fe/Fe + Mg < 0.54) (Table 6) in the 
nomenclature of Hey (1954) reviewed by Bayliss (1975). 
According to the Zang and Fyfe’s (1995) thermometer, the 
chlorite crystallized around 250 °C. This high temperature 
indicates a local thermal effect from hot country rocks.

Minettes of Croix‑de‑Vie and Payré

Lamprophyres of Croix-de-Vie and Payré dykes display 
the same textural and mineral compositions. They show a 
microporphyritic micrograined texture rich in mica and 

alkaline feldspars in a fine grained felsic groundmass (Fig. 7b 
and c). In some parts, aggregated flakes of biotite mimic a 
lamprophyric texture. There are no significant grain size vari-
ations from core to margin of the intrusive bodies. The feld-
spar microphenocrysts and microcrysts consist of microcline-
orthoclase with pericline and albite twins. The groundmass is 
made of microcrysts of biotite, microcline, quartz, magnetite, 
scarce amphibole and rare zircon, plus needles of apatite and 
few aggregates of ankerite-calcite. Apatite and zircons can 
be included in mica. We did not observe any pyroxene or 
olivine crystals.

The average modal composition of the Croix-de-Vie rock 
is: 44% feldspar, 34% biotite, 21% quartz, and 1% accessory 
minerals of magnetite, apatite and zircon. For the Payré rock, 
the composition is: 48% feldspar, 34% biotite, 17% quartz, 
and 1% accessory minerals. It is slightly richer in feldspar 
and less siliceous than the Croix-de-Vie rock. These com-
positions that are rich in biotite and alkaline feldspar clearly 
fit with a minette lamprophyre (Rock 1987, 1991; Le Maitre 
et al. 2005).

EPMA analyses were done for amphibole, biotite, feld-
spar, carbonate and chlorite. Rare amphiboles are deter-
mined as cummingtonite. The biotite is Al- and Mg-rich 
and plots close do the eastonite end-member in the Mg-Fe-
Al diagram (Table 2) (0.53 < Mg/Mg + Fe2+  < 0.88). It is 
moderately titaniferous and has low Ba contents (2.3 < TiO2 
wt% < 5.6; 0.5 < BaO < 2.1). The large crystals are zoned 
with Ti, Fe and Ba enrichments from core to the margin. 
This zonation is explained by decreasing temperature dur-
ing crystallization (Righter and Carmichael 1996). Using 
the TiO2 geothermometer of Righter and Carmichael 
(1996) with the revised constants of Roach and Rutherford 
(2003), biotite of the Croix-de-Vie minette is equilibrated 
between 948 and 1009 °C, and biotite of Payré between 
969 and 984 °C. The feldspar compositions range from Or 
91 to 80 for phenocrysts and from Or 80 to 68 for micro-
crysts. This variation witnesses the increasing Na con-
tent in the crystallization course. The anorthite content is 
low, 0.8 – 3.4%. BaO is less than 0.8%. Microphenocrysts 
and microcrysts of magnetite are moderately Ti-enriched 
(5.1 < TiO2 wt% < 5.3) with the end member contents of 
78 < Magnetite % < 80, 15 < Ulvospinel % < 16, and 5 < Her-
cynite % < 6. An ankeritic carbonate was analysed in the 
matrix of both Croix-de-Vie and Payré minettes (19 < calcite 
% < 28; 57 < dolomite % < 68; 11 < siderite % < 13). During 
alteration processes, feldspars gained albitized margins and 
biotites were partly changed to muscovite. Secondary min-
erals in the groundmass consist of quartz, albite, calcite, 
epidote, chlorite, hydromuscovite, and hematite. Chlorites 
are in the picnochlorite to diabantite range (5.7 < Siapfu < 6.7; 
0.28 < Fe/Fe + Mg < 0.46). These chlorites may have crystal-
lized around 200 °C according to the Zang and Fyfe’s (1995) 
thermometer.

Table 5   Results of representative chemical analyses of ankerite of the 
minettes

* average of calculated values; **calculated based on 6 O atoms per 
formula unit

Sample MIT PMI

Major oxides (wt%)
SiO2 0.17 0.22 1.39 0.04
TiO2 0.01 0.00 0.00 0.00
Al2O3 0.02 1.71 0.52 0.05
FeO 6.43 4.50 6.90 5.67
MnO 0.67 0.81 0.45 0.57
MgO 15.38 16.19 14.74 17.98
CaO 28.54 29.82 29.28 29.10
Na2O 0.00 0.00 0.00 0.03
K2O 0.04 0.08 0.33 0.02
Total 51.27 53.34 53.62 53.47
CO2* 46.00 46.00 46.00 46.00
Calculated mineral formulae (apfu)**
Si 0.006 0.007 0.046 0.001
Ti 0.000 0.000 0.000 0.000
Al 0.001 0.065 0.020 0.002
Fe 0.179 0.121 0.189 0.155
Mn 0.019 0.022 0.013 0.016
Mg 0.764 0.776 0.719 0.876
Ca 1.019 1.027 1.026 1.019
Calculated end-member fractions (mol%)
Calcite 12.88 12.91 15.80 6.93
Dolomite 77.12 79.74 73.86 84.80
Siderite 9.04 6.22 9.70 7.50
Rhodonite 0.95 1.13 0.64 0.76
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A few centimetre-sized xenoliths from the host rocks 
(shales and sandstones) are common in dyke margins. In 
the middle parts of the intrusions, xenocrysts from the host-
rocks are limited to rounded quartz and to rare grains of 
cordierite (Fe/Fe + Mg X% = 26.9) in the Payré dyke.

Kersantite of l’Hôpital‑Camfrout

The thick lode of l’Hôpital-Camfout is representative of 
the intrusive swarm of kersantite of the Daoulas district of 
the “Rade de Brest” area, to the western end of Brittany. 
About one hundred of sills and dykes are intruded in the 
Upper Devonian sedimentary formations with a thickness 
of 1 to 20 m and trending N 50° to N 100° (Caroff et al. 
2021, Fig. 2). The country rocks were folded and low-grade 
metamorphosed in the late Devonian to Early Carbonifer-
ous. But the lamprophyres did not undergo any metamor-
phism. The calcic composition of abundant plagioclase phe-
nocrysts allows for distinguishing kersantite and minette in 
between the mica-rich lamprophyres. The kersantite term 

has been given from the referring site of Kersanton close to 
l’Hôpital-Camfrout.

The studied selected sample displays a microporphyritic, 
micrograined to grained and lamprophyric texture caused by 
abundant flakes of biotites and platy crystals of amphiboles 
with feldspars and rare pyroxenes (Fig. 7 d). Biotite is alumi-
nous and magnesian but too much altered for giving accurate 
analyses. Fortunately, separated biotite flakes from this lode 
and from neighbouring sills and dykes of the same swarm 
have been analysed by Velde (1969, 1971) and by Caroff et al. 
(2021). The biotites of kersantite have compositions close to 
those of the Vendean minette thought slightly more ferrous, 
with the exception of higher titanium contents. Amphiboles 
range from magnesio-hastingsite to tschermakite (Caroff 
et al., 2021). Pyroxene is lacking in the studied sample, but 
occurs in neighbouring lodes and have been analysed by 
Caroff et al. (2021) as augite/diopside. Feldspar phenocrysts 
have a labradorite composition (An 60–67) (Table 3). Feldspar 
microcrysts are more sodic plagioclases and are associated 
with potassic alkaline feldspars. The magmatic paragenesis 
is completed with microcrysts of titanite (28.4 < TiO2 < 32.0; 

Table 6   Results of representative chemical analyses of chlorites

Chlorite names: rip ripidolite, pyc pycnochlorite, dia diabantite
* calculated based on 28 O atoms per formula unit

Sample Spessartite K1LC Minette MIT-2 Minette PMI Kersantite KER-1

rip rip pyc pyc pyc dia dia pyc dia pyc pyc pyc dia dia

Major oxides (wt%)
SiO2 25.25 26.93 24.84 29.19 28.53 31.76 31.74 28.13 33.10 26.39 27.81 27.63 29.20 32.04
TiO2 0.06 0.20 0.02 0.20 0.12 0.04 0.03 0.00 0.12 0.29 0.35 0.07 0.00 0.01
Al2O3 26.35 25.01 19.97 28.87 16.59 17.67 18.08 22.21 21.57 15.49 19.35 16.30 17.22 17.33
Cr2O3 0.10 0.00 0.03 0.05 0.04 0.02 0.03 0.06 0.15 0.14 0.07 0.04 0.13 0.12
FeO 23.68 23.63 24.35 18.35 18.54 15.60 18.90 21.39 13.54 17.57 18.93 19.58 18.06 15.95
MnO 0.13 0.11 0.19 0.07 0.02 0.02 0.07 0.08 0.04 0.22 0.27 0.18 0.20 0.18
MgO 11.40 12.42 11.46 11.96 20.72 22.35 19.62 15.03 14.76 22.50 18.80 20.48 21.23 21.6
CaO 1.25 0.35 0.38 0.35 0.43 0.20 0.35 0.37 0.50 0.41 0.21 0.10 0.20 0.21
Na2O 0.01 0.01 0.04 0.04 0.02 0.04 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.03
K2O 0.05 0.02 0.15 0.29 0.01 0.03 0.02 0.03 0.18 0.10 0.20 0.01 0.00 1.03
Total 88.28 88.69 81.43 89.37 85.02 87.73 88.84 87.31 83.97 83.11 85.98 84.40 86.23 88.50
Calculated mineral formulae (apfu)*
Si 5.215 5.498 5.645 5.691 5.982 6.284 6.302 5.775 6.681 5.698 5.773 5.887 6.006 6.340
Ti 0.009 0.030 0.003 0.030 0.018 0.006 0.004 0.000 0.018 0.046 0.055 0.011 0.000 0.002
Al 6.415 6.018 5.350 6.635 4.102 4.122 4.231 5.375 5.131 3.942 4.734 4.093 4.175 4.042
Fe 4.090 4.035 4.629 2.992 3.252 2.581 3.139 3.673 2.286 3.172 3.287 3.489 3.106 2.641
Mn 0.023 0.019 0.037 0.011 0.003 0.004 0.012 0.013 0.006 0.040 0.047 0.032 0.034 0.030
Mg 3.510 3.781 3.883 3.476 6.476 6.593 5.808 4.600 4.442 7.243 5.817 6.504 6.509 6.373
Ca 0.277 0.077 0.092 0.073 0.097 0.041 0.075 0.082 0.109 0.096 0.047 0.024 0.045 0.044
Na 0.003 0.003 0.017 0.014 0.010 0.016 0.000 0.003 0.002 0.000 0.005 0.003 0.000 0.011
K 0.012 0.005 0.044 0.072 0.003 0.008 0.005 0.009 0.046 0.026 0.052 0.004 0.001 0.261
Cr 0.016 0.000 0.005 0.008 0.007 0.003 0.004 0.010 0.025 0.023 0.011 0.007 0.021 0.019
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25.8 < CaO < 28.8), apatite, allanite, and magnetite. The 
secondary mineralogy consists of quartz, albite, epidote 
(clinozoisite 77–83%, pistacite 17–23%), chlorites and cal-
cite. Chlorites are in the picnochlorite to diabantite range 
(5.7 < Siapfu < 6.3; 0.29 < Fe/Fe + Mg < 0.36) (Table 6). They 
may have crystallized between 230 °C and 250 °C according 
to the Zang and Fyfe’s (1995) thermometer.

Age of lamprophyre settings

The spessartite sills of La Chaume are contemporaneous with 
the pegmatites of the granite the age of which is determined 
ca. 320 Ma (Turillot et al. 2011). The pegmatites resulted from 
the pneumatolytic stage that followed the crystallization of 
the pluton. The spessartite intrusions benefited of the fractur-
ing conditions created by the hydraulic pressure of pegmatitic 
fluids.

Minette dykes of Croix-de-Vie and Payré clearly post-dated 
the late Variscan metamorphic and folding events. The Croix-
de-Vie dykes intruded the tectonic nappe of St-Gilles-sur-Vie 
that thrust in the Early Late Carboniferous time, and even the 

post-thrust folds of this nappe, which resulted from a late 
Carboniferous transpressional event (Pouclet et al. 2017). In 
return, the dykes are cross-cut by the great NNW-SSE right-
lateral strike-slip system of transcurrent faults that took place 
during the Permian period.

K–Ar dating of the dyke #1 of Croix-de-Vie has been per-
formed on the whole rock. The result is 286.2 ± 6.6 Ma, an Art-
inskian age in the Early Permian (Table 7). Taking into account 
the high loss on ignition (5.67%) of the chemical analysis, we 
proceeded to a mild acid washing to remove altered products. 
The obtained age is considered to be accurate.

Kersantite of l’Hôpital-Camfrout postdates the Late Devonian 
metamorphism and folding. A neighbouring and similar lode 
has been dated by K–Ar at 282 ± 4 Ma (Leutwein et al. 1969). 
However, another dyke (Bellec Cape) is dated at 254 ± 10 Ma 
by the same method (Leutwein et al. 1972). According to the 
authors of the dating, the younger ages may be biased by high 
alteration of the analysed sample. Taking into account the ages 
of the tectonic events and the ages of neighbouring magmatic 
activities, Caroff et al (2021) dated the genesis of the western 
Armorica kersantites between 330 and 310 Ma. This age coin-
cides with that of the La Chaume spessartite.

Fig. 7   Photographs of thin 
section under plane-polarized 
transmitted-light (PPL). a Spes-
sartite LC3. b Minette MIT2. c 
Minette PMI. d Kersantite KER. 
Amp, ampbibole; Bt, biotite; 
Fsp, feldspar; Ms, muscovite
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Table 7   K/Ar dating result for 
the minette of Croix-de-Vie

Sample Mass of sample K2O 40Ar* 40Ar*/40ArT
36Ar Age  ±  error

fused (g) (wt. %) 10–5 cm3/g (%) 10−9cm3 (Ma) (± 1 s)

B7599-2 0.3021 6.48 6.479 96.4 2.46 286.2  ±  6.6
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Geochemical compositions

The analytical data comprises the sill #1 of La Chaume, the 
dyke #1 of Croix-de-Vie, the dyke #1 of Payré, and the sill 
of l’Hôpital-Camfrout (Tables 8 and 9).

A set of analytical data has been collected for lampro-
phyres of the whole Variscan Belt. Attention has been paid 
for spessartite-vogesite, minette and kersantite, the common 
calc-alkaline lamprophyres, with the addition of camptonite, 
an alkaline lamprophyre distributed in the Spanish Variscan 
area. In some papers, vogesites are not distinguished from 
spessartites. Then, they were gathered in our work. Analyses 
are plotted in the Na2O + K2O versus SiO2 or TAS diagram, 
the K2O versus SiO2, and the K2O versus Na2O diagrams 
(Fig. 8), in order to show the compositional areas of the lam-
prophyre types. Calc-alkaline lamprophyres plot in the basalt 
to trachy-andesite fields. Alkaline lamprophyres plot in the 
basanites field. Spessartites-vogesites are distinguished from 
other lamprophyres by a fairly more sodic composition. Ker-
santites show intermediate sodic and potassic compositions. 
Minettes are potassic to perpotassic with a K2O/Na2O ratio 
higher than 2.4.

The spessartite of La Chaume (LC) is a basic rock 
(47 wt% SiO2) plotting in the basalt field (Fig. 8a). It is 
slightly titaniferous and magnesian (2.7 wt% TiO2; 5.7 
wt% MgO) but rich in iron (11.6 wt% FeOt). For this last 
reason, the Mg number is low in spite of the mafic com-
position (molar 100 Mg/Mg + Fe2+ or Mg number = 49.6). 
Alkali contents are moderate with a major sodic con-
tent (3.4 wt% Na2O; 1.3 wt% K2O) (Fig. 8c). The norm 

composition is saturated with 15.3 Ol and the lack of Qtz 
and Ne. The loss on ignition (LOI) is low (1.7) precluding 
any alteration effect. Compatible minor element contents 
are low (186 ppm; V; 20.3 Cr; 37.5 Co; 65.8 Ni; 46.4 Cu; 

Table 8   Results of major element chemical analyses of the lampro-
phyres

Location La Chaume Croix-de-Vie Payré L'Hopital-
Camfrout

Sample LC MIT PMI KER
Setting sill #1 dyke #1 dyke #1 sill
Petrography Spessartite Minette Minette Kersantite
Oxides (wt%)
SiO2 47.06 57.00 52.60 56.30
TiO2 2.71 0.77 1.17 1.00
Al2O3 15.84 13.30 13.80 15.30
Fe2O3 12.92 4.70 4.70 6.20
MnO 0.19 0.12 0.10 0.08
MgO 5.65 5.03 5.72 6.36
CaO 7.66 3.86 4.99 3.91
Na2O 3.40 2.98 1.46 3.16
K2O 1.33 4.62 6.48 3.17
P2O5 0.34 0.80 0.56 0.33
LOI 1.69 5.67 7.97 4.91
Total 98.77 98.85 99.55 100.72

Table 9   Results of minor element chemical analyses of the lampro-
phyres

All values are quoted in ppm

Sample LC MIT PMI KER

Be 1.01
Sc 21.3
V 186 93 123 137
Cr 20.3 258 252 318
Co 37.5 21.4 19.9 14.0
Ni 65.8 133.1 153.3 68.6
Cu 46.4
Zn 121
Ga 22.2
Ge 1.32
As 6.77
Rb 44.3 171 265 106
Sr 398 1675 452 476
Y 27.2 27.9 28.3 20.6
Zr 188 510 636 256
Nb 18.4 24.4 29.9 13.7
Mo 0.69
Cd 0.19
Sn 3.72
Sb 0.46
Cs 1.40
Ba 858 3735 1404 2240
Hf 4.81
Ta 1.45
Pb 3.57
Bi 0.12
Th 1.48 36.7 19.0 24.9
U 0.60
La 10.50 69.2 71.1 46.5
Ce 29.10 145.0 145.6 92.8
Pr 4.12
Nd 20.30 71.3 65.7 44.5
Sm 5.83 13.5 11.5 8.0
Eu 2.17 3.28 2.88 2.13
Gd 5.93 9.3 8.4 5.4
Tb 0.95
Dy 5.74 5.4 5.4 3.9
Ho 1.08
Er 2.71 2.0 2.1 2.0
Tm 0.36
Yb 2.22 1.92 1.85 1.76
Lu 0.32
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121 Zn; 3.2 Sn; 3.6 Pb), indicating that this lamprophyre 
is not a primary mantle melt but underwent fractionation, 
as also shown by the high iron content. Lithophile and 
high field strength elements are low (1 ppm Be; 398 Sr; 
1.4 Cs; 1.5 Th; 0.6 U; 27.2 Y; 188 Zr; 4.8 Hf; 18.4 Nb, 
1.5 Ta) except Rb and Ba (44.3 Rb; 858 Ba). Rare earth 
elements (REE) are also low and fairly fractionated in the 
chondrite-normalized diagram (Fig. 9a), with a flat light 
REE pattern and the lack of Eu anomaly (10.5 La; 2.2 
Yb; chondrite-normalized La/Yb = 3.2). In the incompat-
ible element-normalized diagram to the primitive mantle 
(PM), the pattern is gently sloped with K, Nb, and Ta 
weak enrichments, high Rb and Ba enrichments, and the 
lack of Ti anomaly (Fig. 9b). Geochemical features agree 

with a magma source of a continental tholeiite, but with 
the addition of K, Ba and Rb mobile lithophile elements. 
The weakly fractionated pattern with moderate contents 
of the most incompatible elements resulted from high 
degree of melting. However, the source was enriched in 
the more mobile lithophile elements by crustal fluids. The 
fluid addition lowers the solidus temperature and that may 
explain the high degree of melting.

The minettes of Croix-de-Vie and Payré (MIT and PMI) 
are intermediate rocks (52.6–57.0 wt% SiO2; 5.0–5.7 wt% 
MgO) with a high Mg number of 70.6 to 73.2. They plot 
in the basaltic trachy-andesite and trachy-andesite fields 
(Fig. 8a). Titanium is low (0.8–1.2 wt% TiO2). Alkali con-
tents are high and dominated by K (1.5–3.0 wt% Na2O; 

Fig. 8   a Na2O + K2O versus SiO2 or TAS diagram (total alkali-silica). 
The compositional areas of spessartites-vogesites (squares), minettes 
(diamonds), kersantites (circles), and camptonites (triangles) are drawn 
after an analytical set of Variscan lamprophyres with data from Turpin 
et  al. (1988), Wagner et  al. (1992), Chauris and Hallégouët (1994), 
Durand-Delga et al. (1997), Hegner et al. (1998), von Seckendorff et al. 
(2004), Awdankiewicz (2007), Orejana et  al. (2008), Seifert (2008), 
Scarrow et al. (2011), Abdelfadil (2013), Štemprok et al. (2014), Caroff 
et  al. (2015), Soder and Romer (2018). The terrane location of lam-

prophyres is shown by the colours of symbols. Studied samples are 
highlighted by larger symbols. We use raw data without recalculation 
to 100% free of H2O and CO2. Comparison with fields of the nomen-
clature is thus a rough estimate. b K2O versus SiO2 diagram. Minettes 
are well discriminated by their high potassic content. Kersantites are 
moderately potassic. Camptonites are also moderately potassic and 
distinguished by their low silica content. c K2O versus Na2O diagram. 
Spessartites-vogesites are fairly more sodic than kersantites
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4.6–6.5 wt% K2O), the Payré minette being the more potassic 
(Fig. 8c). The norm composition is oversaturated. The high 
loss on ignition is partly due to the groundmass alteration, but 
also to the occurrence of primary carbonates. The compat-
ible minor element contents are moderate (93–123 ppm V; 
253–258 Cr; 20–21 Co; 133–153 Ni), and indicate that these 
rocks underwent a mild fractionation. Lithophile and the high 
field strength elements are high (171–265 Rb; 452–1675 
Sr; 1404–3735 Ba; 19.0–36.7 Th; 27.9–28.3 Y; 510–636 
Zr; 24.2–29.9 Nb). In the chondrite-normalized diagram 
(Fig. 9a), rare earth elements are fractionated with light rare 
earth enrichment and the lack of Eu-anomalies (69.2–71.1 

La; 1.9 Yb; chondrite-normalized La/Yb = 24.5–26.1). In the 
incompatible element-normalized diagram to primitive man-
tle PM (Fig. 9b), patterns are steeply sloped with enrichments 
of the most incompatible and large ion lithophile element 
(LILE), but with important Nb- and Ti-negative anomalies.

The kersantite of l’Hôpital-Camfrout (KER) is an inter-
mediate and magnesian rock (56.3 wt% SiO2; 6.4 wt% MgO; 
Mg number = 69.8). It plots in the basaltic trachy-andesite 
to trachy-andesite fields (Fig. 8a). Titanium is low (1.0 wt% 
TiO2). Alkali contents are moderate with similar Na and K 
values (3.2 wt% Na2O; 3.2 wt% K2O) (Fig. 8c). The norm 
composition is oversaturated. The loss on ignition is high 

Fig. 9   a Trace element normal-
ized patterns of the studied 
lamprophyres: C1 chondrite-
normalized rare earth element 
diagram, normalization after 
McDonough and Sun (1995) 
E-MORB (enriched mid-
dle ocean ridge basalt), CT 
(continental tholeiite), and OIB 
(ocean island basalt) profiles 
are after Sun and McDonough 
(1989). b Trace element nor-
malized patterns of the studied 
lamprophyres: Primitive mantle-
normalized diagram, normaliza-
tion after Sun and McDonough 
(1989). The spessartite displays 
patterns close to those of conti-
nental tholeiite (CT) except for 
enrichments of K, Ba and Rb. 
Minettes and the kersantite are 
highly fractionated in the litho-
phile and the more incompatible 
elements. They have important 
Nb- and Ti-negative anomalies. 
Kersantite is slightly depleted in 
the heavy rare earth elements. 
There are no Eu anomalies
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(4.9) due to the whole rock alteration. Compatible minor ele-
ment contents are low to moderate (137 ppm V; 318 Cr; 14 
Co; 68.6 Ni). Lithophile and the high field strength elements 
are moderate to high (106 Rb; 476 Sr; 2240 Ba; 24.9 Th; 
20.6 Y; 256 Zr; 13.7 Nb). Rare earth elements are high and 
fractionated in the chondrite normalized diagram (Fig. 9a) 
with the lack of Eu-anomaly (46.5 La; 1.8 Yb; chondrite nor-
malized La/Yb = 18). In the incompatible element diagram 
normalized to PM (Fig. 9b), the pattern is steeply sloped 
with LILE enrichment and Nb- and Ti-negative anomalies.

Discussion: late‑to post‑Variscan 
lamprophyres in Western Europe

Generalities

To perform the magmatic characteristics of the studied 
lamprophyres, as well as their geotectonic significance, we 
develop a comparison with a large set of Variscan lampro-
phyres dated from the Late Carboniferous to the Permian 
times. These intrusions were contemporaneous with syn- to 
post-collisional and late- to post-orogenic granites and asso-
ciated magmatic formations. Lamprophyres are distributed 
in all the tectonic zones of the European Variscides from 
the western Armorican Massif to the easternmost Bohemian 
Massif and also in the Iberian Massif (Fig. 1). We do not 
consider the lamprophyres that have taken place outside the 
Variscan realm, such as the great swarms of Scotland and 
Scania.

French Armorican Massif

Lamprophyric dykes and sills are present in the whole 
Armorican Massif but were mainly investigated along the 
sea shores of the South-Armorican and North-Armorican 
zones.

The South-Armorican Zone is located at the south-west 
side of the suture of the South-Armorican and Centralian 
Variscan Ocean (Pouclet et al. 2017). In the Vendean area, 
sills of spessartite and dykes of minette are investigated in 
this study. At the westernmost end of the South-Armorican 
Zone (Cape Sizun of the Pointe du Raz, Finistère), a dyke 
of minette crosscuts the Late Carboniferous granite, but is 
yet undated (Cogné 1962).

In the Middle and Northern Armorican zones, lampro-
phyres are distributed in four areas. (1) In the Middle West-
ern country of Daoulas, from the bay of Douarnenez to the 
Rade de Brest, the folded Devonian sedimentary strata are 
crosscut by a swarm of dykes and sills of kersantite. The 
studied kersantite of l’Hôpital-Camfrout (KER) was sampled 

in this area. As indicated above, these lodes are dated from 
Carboniferous to Early Permian (Caroff et al. 2021). (2) In 
the middle Brittany inland, around Châteaulin, Carhaix and 
Rostrenen, numerous small intrusions of minette, kersantite 
and rare spessartite are known but yet undated, because often 
highly altered. (3) In the northwestern Atlantic coast, near 
Plouarzel, a suite of dykes of minette are trending NNW-SSE 
and intrude the Aber Ildut granite dated at 303.8 ± 0.9 Ma by 
U–Pb method (Caroff et al. 2015). The minettes are dated at 
272.5 ± 13.7 Ma by K–Ar method (Bellon et al. 1988). (4) In 
the north coast of Brittany, some dykes of minette are hosted 
by the Late Carboniferous granite of Ploumanac’h. Lastly, the 
northern seashore of Cotentin in Normandy and the coast of 
the Channel Islands of Jersey and Guernsey exhibit numer-
ous dykes and sills of minette and kersantite cross-cutting 
granite massifs and Devono-Carboniferous metasediments 
(Le Gall et al. 1989). A dyke of Guernsey has been dated at 
295 ± 8 Ma by K–Ar method (Adams 1976). The lampro-
phyres coexisted with a volcanic activity of K-rich olivine 
basalts.

Chemical analyses of major and minor elements of 
lamprophyres of the Armorican Massif are available from 
Turpin et  al. (1988), Bellon et  al. (1988), Chauris and 
Hallégouët (1994), and Caroff et al. (2015, 2021).

English Cornwall

In the Cornwall region, SW England peninsula, lampro-
phyre dykes intruded Devonian to Carboniferous volcano-
sedimentary formations of the Avalonian terrane. They 
consist mainly of minettes with subordinate kersantites. On 
the basis of Ar–Ar geochronological data, dykes are dated 
between 293.6 and 285.4 Ma in the Early Permian (Dupuis 
et al. 2015). Their emplacement was coeval with the post-
collisional Cornubian granite batholith. Previous data also 
indicated contemporary basaltic lava activities with the lam-
prophyre intrusions around 291 ± 6 Ma (recalculated K–Ar 
analyses from Thorpe et al. 1986).

French Massif Central

In the French Massif Central, all the granite plutons are 
crosscut by numerous late-magmatic dykes and veins of 
micrograined rocks with a wide range of acidic to mafic 
compositions. Mica-rich rocks displaying lamprophyric 
textures are often described as vaugnerites, though some of 
them have be termed minettes. True vaugnerites are biotite 
enriched monzodiorites embedded in granite plutons, mig-
matites or schists. Vaugnerites are dated between 336 and 
299 Ma (Laurent et al. 2017). Conversely, numerous dykes 
of post-orogenic Variscan lamprophyres, mainly minettes 
and kersantites, are pointed out in regional studies. However, 
very few have been analysed and dated.
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Minette dykes trending NNE-SSW intruded the Late 
Carboniferous leucogranite of St-Sylvestre in the Limousin 
western part of the Massif Central (Chalier and Sabourdy 
1987). One sample was dated at 295 ± 10 Ma by Rb–Sr 
method (Leroy and Sonet 1976). It was analysed by Turpin 
et al. (1988). In a neighbouring area, the St-Yriex gold dis-
trict, minette dykes crosscut the Lower Allochthon Gneiss 
and one sample is dated at 290 ± 5 Ma by Rb–Sr method 
(Chalier et al. 1994). At the westernmost side of Massif 
Central, in the Charroux-Civray pluton Complex, dykes of 
lamprophyres have been crossed in two drill holes (Cuney 
et al. 2001) but not studied.

At the middle-eastern side of the Massif Central, lampro-
phyre dykes crosscut the granite of Monts du Forez. They 
consist mainly of kersantites and secondary of spessartites 
(Jeambrun et al. 1976). One kersantite has been dated at 
316 ± 20 Ma by Rb–Sr method (Cantagrel et al. 1970). To 
the northeast, numerous dykes of kersantite and minette are 
located in the Morvan Massif. They intruded the granite, but 
also the Visean and Stephanian volcano-sedimentary for-
mations (Carrat et al. 1986; Delfour et al. 1997). One ker-
santite has been dated at 301 Ma by Rb–Sr method (Cuney 
and Sonet, unpublished). One minette has been analysed by 
Turpin et al. (1988).

To the southeast of Massif Central, dykes of lampro-
phyres trending N-S intruded the schist of the Cévennes 
Massif of Lozère (Brouder et al. 1977; Faure et al. 2009). 
Most of these rocks have mineral composition of kersantite, 
though some biotite-rich thin dykes can be termed minette. 
Their genetic relationships with the Late Carboniferous 
granites of Aigoual and Mont Lozère are unknown. One 
dyke has been dated at 286 ± 3 Ma by zircon U–Pb method 
(Faure et al. 2009).

South of the Massif Central, a dyke of minette crosscuts 
Devonian limestones of the Mouthoumet Massif. It has been 
analysed and dated at 319 ± 5 Ma by Ar–Ar (Durand-Delga 
et al. 1997).

Moreover, to the south of the Parisian Basin, at Couy, 
a borehole has been drilled in the crystalline basement in 
the continuation of the Massif Central formations below 
the basin. Several lodes of lamprophyres have been crossed 
(Wagner et al. 1992). A sample of minette has been ana-
lysed and dated at 301.5 ± 6.2 Ma by Ar–Ar method with 
biotite (Costa 1990). Another minette has been dated around 
292 Ma by K–Ar method (Hottin and Calvez 1988). Above 
the gneiss basement, the bottom of the sedimentary pile con-
sists of Stephanian sediments and interbedded mafic lavas 
of high K trachy-andesite composition similar to the minette 
composition (Hottin et al. 1992). Ar–Ar analysis on biotite 
yields a plateau age of 301.6 ± 6.3 Ma (Costa and Maluski 
1988). It is concluded that the volcanic activity took place 
at the Stephano-Autunian time (Gzhelian) and that dykes of 
minettes have fed the lava flows.

French South Vosges and German Schwarzwald 
(Black Forest)

The Vosges Massif is divided in two parts, South Vosges 
and North-Vosges, by the Lalaye-Lubine/Baden Baden shear 
zone, an ophiolitic suture between the Moldanubian Zone to 
the south and the Saxo-Thuringian Zone to the north. The 
Schwarzwald matches with the South-Vosges in the same 
tectonic zone, in being separated by the Cenozoic rift or 
the Upper Rhine Graben. Both regions betray similar late to 
post-orogenic potassic and ultrapotassic magmatism with, 
first, intrusive bodies of vaugnerites or durbachites dated 
around 340–335 Ma (Guillot et al. 2020), similar to vaugn-
erites of the Massif Central, and second, dyke swarms of 
lamprophyres mainly consisting of minettes and kersantites.

Lamprophyres have intruded low-grade sedimentary 
and volcanic formations of Early Palaeozoic, medium- to 
high-grade gneiss complexes and granitoids dated at the 
Early Carboniferous, and post-collisional (after 340 Ma) 
granites dated at Late Visean. In Schwarzwald, four dykes 
have been dated between 332 and 314 Ma by Ar–Ar method 
(Bashkirian) (Hegner et al. 1998). Plateau ages give 332 ± 2, 
330 ± 2, 325 ± 2, and 314 ± 2 Ma. However, many other 
dykes may be younger (Soder and Romer 2018). The oldest 
lamprophyre dykes were contemporaneous with rhyodac-
ite dykes related to coeval undeformed granitoids, and thus 
with melting of the crust. According to Hegner et al. (1998) 
“They have witnessed the post-collisional development of 
the orogeny because they post-date peak metamorphism and 
were emplaced during transtensional tectonics”.

Chemical analyses are done by Turpin et al. (1988), Hegner 
et al. (1998) and Soder (2017). Soder (2017) has analysed 
more than one hundred of lamprophyre dyke rocks from 
Vosges, Schwarzwald, Odernwald and Spessart. We retain 
the analyses selected by Soder and Romer (2018).

French North Vosges, German Odenwald 
and Spessart

North Vosges, Odenwald and Spessart locate in the Saxo-
Thuringian Zone and its basement wedge, the Mid-German 
Crystalline Zone. Lamprophyres intruded metasedimentary 
and volcano-sedimentary formations in North-Vosges, and 
high-grade metamorphic rocks and Carboniferous granites 
in North Vosges, Odenwald and Spessart. The lamprophyre 
types consist of minettes, kersantites and spessartites-
vogesites, the latter being more common in Spessart. In 
Vosges, spessartites are not discriminated to vogesites in 
the lack of feldspar distinction. Some minettes display peral-
kaline compositions close to lamproites (high K2O and light 
rare earth element contents).

Spessartites from Odenwald and Spessart have been 
dated by Ar–Ar method from late Visean to Serpukhovian 

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712



UNCORRECTED PROOF

Journal : Large 710 Article No : 786 Pages : 25 MS Code : 786 Dispatch : 1-7-2022

	 A. Pouclet et al.

1 3

(334 ± 4; 329 ± 2; 324 ± 1 Ma) (von Seckendorff et al. 2004). 
Chemical analyses are done by Turpin et al. (1988), von 
Seckendorff et al. (2004), Soder (2017), and Soder and 
Romer (2018).

Bohemian Massif

The Bohemian Massif is divided in three parts by the Teplá 
Fault, a NE-SW trending suture, and by the Elbe lineament, 
a major NW–SE fault parallel to the Erzegebirge fault sys-
tem: 1) the Teplá-Barrandian and Moldanubian units of the 
Moldanubian tectonic Zone at the middle and southeastern 
part, 2) the Erzgebirge part the Saxo-Turingian Zone to the 
north, and 3) the Sudetes part to the east with the central 
Sudetes, the west Sudetes and Lusatian region, both attrib-
uted to the Saxo-Turingian Zone, and the south-easternmost 
Sudetes that is the Moravo-Silesian terrane assigned to the 
Rheno-Hercynian Zone. Syn- to post-orogenic ultra-potassic 
bodies have intruded the whole massif (Krmíček 2010).

In the Moldanubian Zone, intrusions are related to two 
diachronous pulses: a late syn-tectonic durbachite series 
around 342–339 Ma and a post-tectonic suite of syenitoids 
and lamprophyres around 336–335 Ma with a long tem-
poral range of lamprophyric magmatic activity from 334 
to 274 Ma (Janoušek et al. 2010; Krmíček 2010; Krmíček 
et al. 2020a). Lamprophyres display various compositions 
of spessartites, minettes and kersantites. They are associated 
with minor lamproites (Krmíček 2010). In the Prague Basin, 
minettes and kersantites crosscut the sedimentary sequences 
of the Teplá-Barrandian Unit. In the middle Moldanubian 
Zone, dyke swarms of minettes and kersantites intruded the 
Variscan granitoids of the Iron Mountains between Prague 
and Brno (Krmíček et al. 2014). In the southern region, 
dykes of kersantites and spessartites intruded the South 
Bohemian Batholith. They are dated from 334 to 318 Ma by 
Rb–Sr method (Neubauer et al. 2003; Zeitlhofer et al. 2016). 
Representative chemical analyses are given by Krmíček 
et al. (2014) and by Zeitlhofer et al. (2016).

The Erzgebirge is the main part of the northwestern part 
of the Bohemian Massif in the Saxo-Thuringian Zone at the 
Germany-Czech Republic boundary. This region is an impor-
tant ore deposit province with a long-standing mining history. 
Numerous dyke swarms of lamprophyres intruded the core 
complex gneisses, late-collisional granites and low-grade 
meta-sediments according to fault systems trending NW–SE 
and SW-NE. They are coeval with ultrapotassic mafic vol-
canics. Numerous ages performed by K–Ar, Ar–Ar, and zir-
con U–Pb methods are available from Kurze et al. (1998),  
Werner and Lippolt (1998), von Seckendorff et al. (2004) and 
Seifert (2008). A thorough study of metallogeny and petro-
genesis of lamprophyres is available from Seifert (2008). 
This author divided the Erzgebirge lamprophyres in three 
main groups (LD1, 2 and 3) using criteria of petrography and 

geochemistry, and relatively age relationships to late-Variscan 
volcano-plutonic activity and mineralization phases. The LD1 
late-collisional group includes kersantites and spessartites that 
predate all the epigenetic mineralization events. It is dated 
between 335 and 325 Ma. The LD2 post-collisional group is 
dominated by minettes and kersantites that are related to poly-
metallic mineralization events but predated the Sn- and Ag-
base metal ore bodies. It is dated between 325 and 290 Ma. 
The LD3 post-collisional group mainly consists of feldspar-
phyric kersantites post-dating the Sn-polymetallic mineraliza-
tion but predating the Ag-base metal ores. It is dated between 
315 and 290 Ma and is contemporaneous with rhyolitic intru-
sions. Abundant analytical data are done by von Seckendorff 
et al. (2004), Seifert (2008), and Štemprok et al. (2014).

Sudetes and Lusatia areas are located in the Elbe Zone 
at the north-eastern margin of the Bohemian Massif. This 
zone is separated from the Central Bohemian Massif by 
the NW–SE Elbe lineament. The whole Sudetes region 
is intruded by dyke swarms of lamprophyres with about 
150 veins of spessartites-vogesites, minettes and kersant-
ites (Awdankiewicz 2007). There are also some dykes of 
lamproites (Krmíček et al. 2020b). These intrusions have 
occurred during a wide age range of 330–296  Ma. For 
example, a spessartite has been dated at 333.1 ± 3.1 Ma 
and a minette at 312 ± 4 by U–Pb method; a kersantite has 
been dated at 324 ± 3 Ma and a minette at 314 ± 6 by Ar–Ar 
method (von Seckendorff et al. 2004; Awdankiewicz 2007; 
Mikulski and Williams 2010a and b). At Lusatia, lampro-
phyre dykes mainly consist of spessartites (Abdelfadil 2013). 
They have been dated between 335 and 325 Ma and can be 
correlated with the LD1 late-collisional lamprophyre group 
of the Erzgebirge. Trace element chemical analyses are 
available from von Seckendorff et al. (2004), Awdankiewicz 
(2007), and Abdelfadil (2013).

Variscan Alp

Lamprophyres are found in metamorphic formations of 
Alpine domains in the Variscan basement of the External 
Crystalline Massifs and of the Western Alps.

At the Gothard Massif, dismembered lamprophyre dykes 
have been discovered in blocks of gneiss embedded in a 
calcschist formation. They are spessartites and kersantites 
dated from 291 to 285 Ma by U–Pb method (Bussien et al. 
2008). At the Austroalpine Dent Blanche nappe, dykes of 
camptonites crosscut a Permian layered mafic complex. A 
sample has been dated at 260.2 ± 0.7 Ma by Ar–Ar method 
(Monjoie et al. 2007). At the Argentera Massif, swarms of 
spessartites have intruded into Variscan migmatites and 
early Permian granitoids (Filippi et al. 2019). It is not pos-
sible to decipher for the initial tectonic zone setting of these 
intrusions in the Variscan realm. However, age dating allows 
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for assigning these rocks to the late- to post-Variscan mag-
matic activities.

Iberian Massif

At the Central Iberian Zone of the Iberian Massif, unless 
than nine dyke swarms of mafic alkaline lamprophyres have 
intruded the Variscan Spanish Central System of synoro-
genic to late orogenic granitoids. The dyke rocks consist 
of camptonites with a few evolved bostonites. They have 
been dated between 283 and 264 Ma and are thus related 
to the late- and post-orogenic geodynamic evolution (Bea 
et al. 1999; Orejana et al. 2008; Scarrow et al. 2006, 2011). 
At the Southern Iberian Massif, dykes of kersantite crosscut 
a monzogranite pluton dated ca. 314–304 Ma (Errandonea-
Martin et al. 2018). The pluton enclosed dioritoid bodies of 
vaugnerite having a composition similar to that of the calc-
alkaline lamprophyres with mixing/mingling textures giv-
ing evidence of syn-plutonic embedding of the vaugneritic 
bodies. It is expected that the lamprophyres emplaced just 
after the pluton setting. Representative analyses are given by 
Orejana et al. (2008), Scarrow et al. (2011) and Errandonea-
Martin et al. (2018).

Geochemical features of the Variscan lamprophyres

Covariation diagrams display a broad spectrum of chemical 
compositions of lamprophyres in terms of high field strength 
and large ion lithophile elements (HFSE and LILE). It is 

shown first with the La/Yb versus La diagram (Fig. 10). 
The La/Yb ratio ranges from 5 to 95 with increasing values 
from spessartites to kersantites and minettes. The ratio val-
ues depend either on the La or the Yb enrichments. There 
are poor correlations of La with Yb, Th, Ba, Nb, Zr, Sr, 
Rb, and Ti, representative HFS and LIL elements, which 
display large range of contents (Fig. 11). These features 
are the result of variable degree of melting from different 
sources and contaminations by crust melts and fluids. The La 
Chaume spessartite shares similar composition with the La-
poor spessartites of Lusatia, except for its high Ba content. 
The Vendean minettes and the Brittany kersantite display 
average compositions of the calc-alkaline Variscan lampro-
phyres. A distinct magmatic source matches the alkaline 
lamprophyres namely the camptonites of the Central Iberian 
Zone that plot in areas rich in Nb and Ti, but poor in Th. A 
singular geochemical composition is also shown by the lam-
prophyres group LD3 of Soder (2008) from Erzgebirge with 
higher Yb and Ti, and lower Th and Sr contents compared 
with the averaged calc-alkaline lamprophyres.

Mantle sources and subduction-related signals may be 
indicated in the Th/Yb versus Nb/Yb diagram after Pearce 
(2008) in Fig. 12a. This diagram suggests that most of the 
lamprophyres were generated by melting of metasomatically 
enriched mantle including assimilation and fractional crys-
tallization (AFC) processes. The original mantle sources can 
be search in the MORB-OIB array. The Spanish camptonites 
plot in the mantle source array close to OIB. Unlike to the 
calc-alkaline lamprophyres, these alkaline lamprophyres 

Fig. 10   La/Yb versus La 
diagram (ppm values). Same 
symbols as for Fig. 8. The La/
Yb ratio ranges from 5 to 95 
with increasing values from 
spessartites to kersantites and 
minettes
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did not generate in a contaminated mantle but in an asthe-
nospheric enriched mantle (Bea et al. 1999). Similarly, the 
source of the post-orogenic LD3 lamprophyres of Erzgebirge 
was involved in a post-orogenic asthenospheric upwelling.

Mantle metasomatism may take place during different 
events such as subduction and continental collision, which 
have occurred during the Variscan orogeny. These events 
commonly caused crustal contamination of the mantle by 
ocean sediments or continental formations with the addition 
of crustal melts and fluids. The addition of fluids mainly 
occurs during subduction of altered ocean crust and sedi-
ments with flux-melting of the mantle wedge. In return, 
continental subduction more likely implies dehydrated lith-
ologies. However, the breakdown of high pressure hydrous 
phases created during metasomatic processes may initiate 
melting during late orogenic regional extension with decom-
pression and heating (Foley 1992). Contributions from the 
continental crust, altered oceanic crust and sediments are 

Fig. 11   a–h Bivariate diagrams of selected trace elements, Yb, Ba, 
Th, Nb, Rb, Zr, Sr, and TiO2 versus La (ppm values except wt% for 
TiO2). Analytical set of Fig.  8. The spreading of the element con-
tents provides evidence of the involvement of a number of sources of 
magma, which have underwent different contaminations, degrees of 
melting and differentiation process. Distinct sources are displayed for 
the Spanish camptonites (Camp) and post-orogenic lamprophyres of 
Erzgebirge (LD3). Crustal contributions are shown by Th, Ba, and Rb 
enrichments. Poor positive correlation trends can be related to assimi-
lation and fractional crystallisation (AFC) processes
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Erzgebirge (Seifert 2008). Camp, camptonites of the Central Iberian 
Zone (Orejana et al. 2008; Scarrow et al. 2011; Errandonea-Martin 
et  al. 2018). The calc-alkaline lamprophyre magma  source could 
be the fairly enriched lithospheric mantle contaminated during sub-
duction and collision events and evolved by AFC processes. b Ba/
La versus Th/Yb versus Ba/Ia diagram after Woodhead et al. (2001) 

(ppm values). Contamination of the mantle sources may result from 
two distinct and possibly associated processes: addition of flu-
ids from subducted slabs with main enrichment in Ba and addition 
of hydrous melts from oceanic and/or continental rocks with main 
enrichment in Th. c 10Th/La versus Eu/Eu* diagram after Soder and 
Romer (2018) (Th and La, ppm values; Eu and Eu* = √Sm x √Gd, 
chondrite-normalized values after McDonough and Sun 1995). 
Group 1, lamprophyres of North Vosges, Odenwald and Spessart of 
the Saxo-Thuringian Zone. Group 2, lamprophyres of South Vosges 
and Schwarzwald of the Moldanubian Zone. The Armorican lampro-
phyres belong to Group 1
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indicated by enrichments of the lithophile elements and 
peculiarly the more mobile ones by the addition of fluids. 
Contamination processes by crustal melt or fluids can be 
discriminated according to variable increasing contents of 
Th, Ba or Rb. The moderately mobile light rare earth ele-
ments are variably modified. Th enrichment is provided by 
crust melt while Ba is transported by fluids. Consequently, 
the Th/Yb versus Ba/La diagram of Woodhead et al. (2001) 
is used to discriminate the contributions of hydrous melts 
and fluids. In this diagram, Fig. 12b, the calc-alkaline lam-
prophyres display mixed processes of mantle contamination 
with either assimilation of sediments melts or of fluids in 
varied proportions. The Vendean minettes and Brittany ker-
santite sources were mainly enriched in fluids with moderate 
contributions of sediment melts. In return, the La Chaume 
spessartite source is only concerned by the addition of fluids.

Distinct metasomatized magmatic sources from differ-
ent processes of mantle enrichment have been advocated 
for Variscan lamprophyres. In SW Germany and eastern-
most France, Soder (2017) and Soder and Romer (2018) 
have distinguished two groups of lamprophyres. Group 1 
locates in North Vosges, Odenwald and Spessart. Lam-
prophyres belong to the Mid-German Crystalline and 
Saxo-Thuringian zones and comprise abundant amphibole 
lamprophyres. Their sources are mainly concerned by the 
addition of sediments melts due to continental subduc-
tion and collision. Group 2 locates in South Vosges and 
Schwarzwald. Lamprophyres belong to the Moldanubian 
Zone and predominantly consist of mica lamprophyres. 
Their source implies mixed hydrous melt and fluid contri-
butions from altered oceanic crust and sediments related 
to ocean subduction. Incompatible element ratios and 
Sr–Nd-Pb isotopic compositions have revealed two distinct 
crust-derived metasomatic signatures, which are indicative 
for mantle enrichment during different stages of subduc-
tion of ocean and/or continental materials. Geochemical 
differences concern a flattener LILE pattern of Group 
2 with clear negative Eu-anomalies. Fractionated LILE 
resulted in high Th/La ratios. Hence, the group distinction 
is shown in the Th/La versus Eu/Eu* diagram of Soder 
(2017). In Fig. 12c, we plot the analyses of Groups 1 and 
2 selected by Soder and Romer (2018) with analyses from 
a dataset of Variscan lamprophyres. The two groups are 
broadly discriminated by the Eu/Eu* value of 0.8. Lam-
prophyres of Group 1 are recognized in many parts of the 
Saxo-Thuringian Zone where a wide range of rocks have 
subducted and collided during the closure of the Rheic 
Ocean. In the high-grade gneiss, relict granulite, eclogite 
and garnet-peridotite indicate that continental crust was 
subducted to mantle depths during the Variscan collision 
between the Moldanubian and Saxo-Thuringian zones 
(Schaltegger et al. 1996; Skrzypek et al. 2012; Tabaud 
et al. 2014). Lamprophyres of Group 2 are recognized in 

the Moldanubian Zone of the Bohemian Massif, which 
underwent a HP metamorphism with mantle metasoma-
tism around 340 Ma (Schaltegger et al. 1996). Their nega-
tive Eu-anomalies attest for the input of evolved crustal 
formations in metasomatized sources.

The South Armorican lamprophyres share geochemi-
cal features with Group 1 lamprophyres of the Saxo-
Thuringian Zone. Their sources were metasomatized 
during a convergent event of subduction and continental 
collision, which involved the South Armorican Ocean. 
However, the contamination components of the sources 
are dominated by addition of fluids with secondary con-
tribution of crustal melts (Fig. 12b). These characteristics 
imply a geotectonic context of ocean subduction with 
limited involvement of continental collision.

Conclusions

Investigations of some new sites of lamprophyres in the 
South Armorican Zone are the matter to document late to 
post-orogenic magmatic activities of the Variscan belt. 
In the Vendean area, spessartite sill intrusion was coeval 
with the setting of a Carboniferous late-orogenic granite 
dated around 320 Ma. Dykes of minette are correlated 
with the post-orogenic Early Permian tectonic activ-
ity, one dyke being dated at 286.2 ± 6.6 Ma. The West 
Brittany kersantite swarm intruded the Late Devonian 
folded sedimentary sequences. It is dated to the Middle 
Carboniferous.

Geochemical features of the Variscan lamprophyres are 
commonly used to trace the nature of the deeply subducted 
materials, which contaminated the mantle sources. The calc-
alkaline lamprophyres of the tectonic zones of the Variscan 
Belt display different compositions in term of minor or 
major involvements of subduction materials from subducted 
oceanic or continental crusts and from collided and deeply 
buried continental margins. Though limited in number, the 
analyses of the Armorican lamprophyres allow the determi-
nation of their magma genesis. Spessartite originated from 
high degree of melting of a lithospheric mantle enriched in 
mobile lithophile elements possibly by subducted slab fluids. 
Intrusion of the spessartite sills has occurred during the mid-
dle to late Carboniferous anatectic event linked to the crustal 
thickening. Minettes and kersantites originated from melting 
of a lithospheric mantle metasomatized by fluids and melts 
derived from subducted oceanic crust with minor contribu-
tion of continental crust. The fluid addition was more impor-
tant for the minettes. Their dykes were emplaced during the 
Early Permian post-collisional extension. It is suspected that 
their magma sources were contaminated as a result of the 
closure of the South Armorican Ocean by subduction and 
continental margin collision. AQ3
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