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ABSTRACT

To estimate displacements of physical fields, a general framework is proposed. Considering that
for each state variable, a tensor field can be associated, ways these displacements act on differ-
ent state variables will differ according to the tensor field definitions. This perspective provides a
differential-geometry-based reformulation of the generalized optical flow (OF) algorithm. Using
the proposed framework, optimisation procedures can explicitly ensure the conservation of certain
physical quantities (total mass, total vorticity, total kinetic energy, etc.). Existence and uniqueness of
the solutions to the local optimisation problem are demonstrated, leading to a new nudging strategy
using all-available observations to infer displacements of both observed and unobserved state vari-
ables. Using the proposed nudging method before EnKF, numerical results show that ensemble data
assimilation better preserves the intrinsic structure of underline physical processes if the ensemble
members are aligned with the observations.

1 Introduction

Since chaotic divergence is an intrinsic property of turbulent geophysical systems, data assimilation is often necessary
to improve model trajectories of state variables. Numerous strategies have then been proposed, including nudging
methods, 3-Dimensional variational method [17], Kalman filter based methods [13][14][19][15], 4-Dimensional vari-
ational methods [6], and particle filters [7].

If xb(t) denotes the state vector at time t estimated by the model, and yo(t) the observed state variables at the same
time t, a first step is to quantify differences between xb(t) and yo(t). Different interpretations of this space of errors
result in different data assimilation algorithms. For illustration, consider xb and yo, Fig. 1. The difference simply
relates to shifted positions of two bright spots. Numerically yo − xb can possibly result in two different nudging
strategies :

Strategy 1 (nonlinear): xb(x)←− xb(x− ϵv(x));

Strategy 2 (linear): xb(x)←− (1− ϵ)xb(x) + ϵyo(x),

where v(x) is a vector field determined by yo and xb, encoding the displacement of each point in the domain. The
linear strategy is the most commonly used nudging strategy. However, a nonlinear nudging strategy seems more
natural. It can preserve the main physical feature of the physical field, e.g. bright spots for this example, during the
whole nudging process. In general, a position error can be represented by an invertible smooth map T : Ω −→ Ω to
represent the displacement of each point in the domain Ω.
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Figure 1: Suppose that the difference between the model estimate xb and observed state yo only differ by the position,
then apparently a nudging strategy that gradually moves xb rightward is more reasonable than the linear nudging
strategy.

A numerical evaluation of T for two physical fields S1 and S2, can then target the minimization of a cost function of
the following form:  T = argmin

T∈C∞
inv (Ω,Ω)

∥S1 − T#S2∥2 + a∥T∥2

Proper boundary conditions
(1)

in which C∞
inv(Ω,Ω) refers to the set of smooth 1-1 and onto maps from Ω to itself. T#S2 represents how S2 transforms

under the map T . ∥T∥, a chosen norm for the map T , serves as a regularization term. a > 0 is a pre-chosen positive
constant that weights this regularization term. Directly solving the optimisation problem (1) may technically be too
difficult. Instead, it might be easier to iteratively solve an "infinitesimal" version : vi = argmin

v:Ω→Rn

∂∥S1 − (Id+ sv)#S2∥2

∂s

∣∣
s=0

+ a∥v∥2

Proper boundary condition for vi,
(2)

where vi is the vector field at the i−th iterative step, Id the identity map on Ω. For each i, vi is the "optimal" vector
field along which S2 the most fast transforms towards S1. At each iterative step, S2 is replaced with (Id + ϵvi)

#S2

for some pre-chosen small ϵ. Iteratively solving (2) results in a displacement flow Φ:

∂Φ(s, x)

∂s

∣∣∣
s=kϵ

= vk(Φ(kϵ, x)). (3)

And the displacement map T (x) = Φ(Nϵ, x) ≈ (Id+ϵvN )◦· · ·◦(Id+ϵv1) is our candidate solution for (1). However,
not every smooth 1-1 and onto map T can be approximated by a sequential composition of small displacements.
Therefore the optimisation problems (1) and (2) can be fundamentally different. Our present motivation is on a
reformulation and solution of (2).

A key is to design a method to include the definition of T# and the choice of norms for the two terms in Eq.(2).
The definition of T# is essential and some relevant algorithms are reviewed or briefly discussed in section 2 and
section 3, including the optical flow (OF) algorithms [1, 29, 16], the large deformation diffeomorphisms [26, 23, 3, 4],
the metamorphoses strategy [25, 24], and some other algorithms [20, 2]. Although some of these algorithms have
been widely applied to geophysical observations, T# are commonly used without considering the dynamics of the
geophysical fields. The displacement map T may then cause severe structural errors when applied to unobserved
state variables. Fig.2 illustrates an example of directly applying T by composition. The original physical field S
is a rotational vector field, rotating counter-clockwise. Suppose that a displacement map T is to be estimated from
observations of other state variables. T is assumed to be a clockwise rotation by 90◦. A direct application of T then
transforms S to a displacement field S ◦ T−1 displaying completely different features.

To circumvent such undesirable results, [30] considered a differential geometry framework and the use of tensor
fields to formulate T# in Eq.(1) and (2). In this new perspective, the choice of tensor fields can then be explicitly
dictated by the dynamical equations of the underline physical fields. T# will follow dynamical principles, and certain
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Figure 2: Suppose that the original field S is a rotating wind field and the given displacement map T is clockwise
rotation by 90◦. Then the direct composition of S and T results in a wind field of completely different feature.

physical quantities are naturally conserved during the morphing process. A similar argument has been given for small
displacement cases [28]. This further leads to a new alignment strategy in which the displacement flow calculated
from the observed state variables can also be applied to partially correct the displacement of the physical fields of
unobserved state variables. Such a new alignment strategy can naturally be incorporated with the classical ensemble
Kalman filter to reduce inherent difficulties arising from linear algorithms.

The constrained formulation of T#, based on the concept of tensor fields is given in section 2. This leads to a new
version of the optimisation problem in the form of (2). Existence and uniqueness of the resulting solution are pro-
vided. A physical interpretation of the new optimisation problem is discussed, with a brief review of some classical
OF algorithms [1, 29, 16]. These OF algorithms are then compared with the proposed algorithm. The large defor-
mation diffeomorphism strategy [3, 4, 26, 23] and the metamorphoses strategy [24, 25] are also discussed in section
2. The new nudging strategy and its associated data assimilation strategy are presented in section 3. Differences
between the proposed data assimilation strategy and some existing methods [20, 2] are also discussed. Using the
thermal shallow water dynamical framework, numerical results are serving to support the proposed developments.
Conclusion is given in Section 4. The complete code to reproduce the numerical results in this paper is available at
10.5281/zenodo.10252176.

2 A differential geometry formulation of the optimisation problem

Let (Ω, g) be a compact oriented Riemannian manifold of dimension n with or without boundary, in which g is the
Riemannian metric. For any smooth vector field u, θu is the differential 1-form such that θu(v) = g(u, v) = ⟨u, v⟩
for any smooth vector field v. Let TΩ be the tangent bundle of Ω and T ∗Ω the cotangent bundle. For any smooth map
ϕ : Ω −→ Ω, ϕ∗ refers to the push-forward map of TΩ induced by ϕ, and ϕ∗ to the pull-back map of T ∗Ω induced by
ϕ. We further assume that ϕ is invertible, and

ϕ# : TΩ ∪ T ∗Ω −→ TΩ ∪ T ∗Ω (4)
u −→ ϕ∗u (5)

ω −→ (ϕ−1)∗ω, (6)

for any u ∈ TΩ and ω ∈ T ∗Ω. It further induces an isomorphism of tensor fields of any specific type:

ϕ# : V1 ⊗ V2 ⊗ · · · ⊗ Vl −→ V1 ⊗ V2 ⊗ · · · ⊗ Vl (7)

α1 ⊗ α2 ⊗ · · · ⊗ αl −→ (ϕ#α1)⊗ · · · ⊗ (ϕ#αl) (8)

in which Vi can either be a copy of TΩ or a copy of T ∗Ω.
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For the smooth vector field u such that u
∣∣
∂Ω
∈ i∗(T∂Ω), where i : ∂Ω −→ Ω is the natural embedding map of the

boundary, Φu : [0, ϵ]× Ω −→ Ω denotes the flow that satisfies

∂Φu(s, x)

∂s
= u(Φu(s, x)). (9)

The Lie derivative of any tensor field θ with respect to u is:

Luθ = lim
s→0

Φu(s)
#θ − θ

s
, (10)

which is also a tensor field, of the same type as θ. To first order, a Taylor expansion gives:

Φu(s)
#θ = θ + sLuθ + o(s). (11)

The Riemannian metric g provides the inner product for the tangent space TxΩ for any x ∈ Ω. This inner product could
be generalized to the space of tensor fields of any specific type. For θ1, θ2 ∈ V1 ⊗ · · · ⊗ Vk, the inner product induced
by g at x ∈ Ω is written as ⟨θ1, θ2⟩x. The corresponding norm writes |θ2|2x = ⟨θ2, θ2⟩x. The Riemannian metric further
induces several operators. Let ∗ be the Hodge star operator, d the exterior derivative, and δ = (−1)n(k−1)+1 ∗ d∗ the
codifferential. These operators act on differential forms. The Laplacian operator is defined as ∆ = dδ + δd. Let dV
be the volume form on Ω.

Recall that θu is a differential 1-form determined by vector field u and the Riemannian metric tensor g. With the above
notations, we can generalize the OF method for tensor fields on a Riemannian manifold:

Definition 2.0.1. Let θ1 and θ2 be two tensor fields on Ω of the same type. When Ω is a compact oriented Riemannian
manifold without boundary, solve for

u = argmin
u∈TΩ

∫
Ω

[
∂|θ1 − Φu(s)

#θ2|2x
∂s

∣∣∣
s=0

+ a1|dθu|2x + a1|δθu|2x + a0|θu|2x
]
dV. (12)

When Ω is a compact oriented Riemannian manifold with boundary, solve for u = argmin
u∈TΩ

∫
Ω

[
∂|θ1 − Φu(s)

#θ2|2x
∂s

∣∣∣
s=0

+ a1|dθu|2x + a1|δθu|2x
]
dV

u
∣∣
∂Ω

= i∗v,

(13)

where v ∈ T∂Ω is the given boundary condition and i is the natural embedding of ∂Ω.

Using the Taylor expansion of Φ#
u θ2, see Eq.(11), Eq.(12) is equivalent to

u = argmin
u∈TΩ

∫
Ω

[
− 2⟨θ1 − θ2,Luθ2⟩x + a1|dθu|2x + a1|δθu|2x + a0|θu|2x

]
dV, (14)

and Eq.(13) equivalent to u = argmin
u∈TΩ

∫
Ω

[
− 2⟨θ1 − θ2,Luθ2⟩x + a1|dθu|2x + a1|δθu|2x

]
dV

u
∣∣
∂Ω

= i∗v.
(15)

Theorem 2.1. For θ1, θ2, and v with finite H1 norm, i.e.
∫
Ω
|θi|2x + |dθi|2x + |δθi|2x < ∞ for i = 1, 2, and similar

for v, the optimisation problems (14) and (15) are always uniquely solvable in the space H1(TΩ). And the solution is
twice differentiable.

Theorem 2.1 is a direct consequence of some proven mathematical results in [9] (or [22]). A complete demonstration
is provided in the appendix. The formulation of (12) and (13), together with theorem (2.1) provide an option for
the theory of defining and computing the displacement flow of two tensor fields. Due to Poincare lemma, both the
regularization terms in (12) and (13) are equivalent to the H1 norm. Still, the regularization term does not have to
be the H1 norm. For instance, |dδθu|2x + |δdθu|2x is considered in [5]. However, the vector field u calculated from
Eq.(12) or (13) should not necessarily be the same as the true velocity field, largely depending on the regularization
terms. True physical laws may not always be well represented by such regularization terms.
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2.1 A detailed formulation of T# for physical fields

We can now write down a more explicit expression for (2). Given two physical fields S1(x) and S2(x) that represent
the same quantity S, we first associate a tensor to this state variable S. Thus S1 and S2 corresponds to two tensor
fields, θ1 and θ2, of the same type. The displacement vector field u is then calculated based on (12) or (13) for θ1 and
θ2. It is required that the correspondence between S and the tensor is 1-1 and onto, i.e. an unique S can be inferred
from a given value of the tensor. Thus, for a given displacement map T : Ω −→ Ω, T#S2 is defined in three steps:

1), construct tensor field θ2 based on S2;

2), θnew
2 ← T#θ2;

3), T#S2 is then inferred from θnew
2 .

Under T#, certain physical quantities will naturally be conserved as long as T is an diffeomorphism of Ω which
preserves the orientation. Iteratively solving (2), a displacement flow Φ(s, x) can then be constructed. Φ(0, x) = x,
Φ(tN ) will also be a diffeomorphism that preserves the orientation. We demonstrate the conservative nature of T#

using the following examples.

Example 2.1.1. Suppose S denotes the density of a flow. We can associate S to a differential n−form: θS = SdV ,
where dV is the volume form on Ω. Then for any 1-1 and onto map T that preserves the orientation of Ω,

(T#θS)(x) = ((T−1)∗θS)(x) = S(T−1(x))(T−1)∗(dV ) = S(T−1(x))α(x)dV, (16)

in which α is some positive function. Thus (T#S)(x) = S(T−1(x))α(x). We also have:∫
Ω

SdV =

∫
Ω

(T−1)∗(SdV ) =

∫
Ω

T#SdV. (17)

This means that the total mass is conserved.

Example 2.1.2. Suppose that S = u = (u1, u2) is the velocity field on a 2 dimensional domain in R2. We associate
to S a differential 1−form θS = u1dx1 +u2dx2. Then for any 1-1 and onto map T which preserves the orientation of
Ω, we have

(T#θS)(x) = ((T−1)∗θS)(x)

=
[
u1(T−1(x))

∂(T−1)1

∂x1
+ u2(T−1(x))

∂(T−1)2

∂x1

]
dx1 +

[
u1(T−1(x))

∂(T−1)1

∂x2
+ u2(T−1(x))

∂(T−1)2

∂x2

]
dx2

(18)

This shows that

T#(u1, u2) =

(
u1(T−1(x))

∂(T−1)1

∂x1
+ u2(T−1(x))

∂(T−1)2

∂x1
, u1(T−1(x))

∂(T−1)1

∂x2
+ u2(T−1(x))

∂(T−1)2

∂x2

)
(19)

Since d(T−1)∗ = (T−1)∗d, we have∫
Ω

dθS =

∫
Ω

(T−1)∗(dθS) =

∫
Ω

d((T−1)∗θS) =

∫
Ω

d(T#θS) (20)

Note that dθS = (∂u
2

∂x1 − ∂u1

∂x2 )dx
1 ∧ dx2. Therefore∫

Ω

(
∂u2

∂x1
− ∂u1

∂x2
)dx1 ∧ dx2 =

∫
Ω

(
∂[T#(u1, u2)]2

∂x1
− ∂[T#(u1, u2)]1

∂x2
)dx1 ∧ dx2, (21)

in which [T#(u1, u2)]i denotes the i−th component of [T#(u1, u2)]. Hence the total vorticity is conserved.

2.2 A physical interpretation of the tensor field definitions

Described above for 2.1.1 and 2.1.2, the conservative nature of T# largely depends on the choice of tensor fields.
The question now translates on how to choose the adequate tensor fields. Since Eq.(11) describes how the tensor field
changes along the vector field u, the Lie derivative in (11) shall closely relate to the transport equation of physical
fields.

5
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Example 2.2.1. Consider Ω ⊂ R2 is a two dimensional domain, and the original dynamical equation for S

dS

dt
:= St + v · ∇S = 0, (22)

in which v(t, x) is the true velocity field in the system. Define the flow Φ(t, x):{
∂Φ
∂t (t, x) = v(t,Φ(t, x))

Φ(0, x) = x
(23)

Then Eq.(22) means that S(t,Φ(t, x)) = S(0, x) for any t > 0, i.e. S is conserved along the trajectory of each point.
In this case, Φ(t) : Ω −→ Ω plays the role of a “true" displacement map. Recall that the goal is to find a displacement
map T for given snapshots S1 and S2. Choose the tensor θS = S, which is simply a function (or differential 0-
form as a tensor field), the relation S(t,Φ(t, x)) = S(0, x) writes θS(t) = Φ(t)#θS(0). Correspondingly, we have
Luθ2 = u · ∇S2.

If the original dynamical equation for the physical field S is modified

dS

dt
:= St + v · ∇S = (forcing terms) (24)

S(0, x) ̸= S(t,Φ(t, x)). However, we can still choose θS = S. The minimization problem (2) shall search for the
vector field u transporting S2 towards S1 the fastest along the virtual flow Φu. It is also equivalent to look for a virtual
vector field u so that if S2 is transported along u by the virtual system{

∂S̃
∂s + u · ∇S̃ = 0

S̃(0, x) = S2

(25)

in a virtual time interval [0, ϵ], then S2 transforms the most rapidly towards S1.

Example 2.2.2. Now, consider Ω ⊂ Rn an n−dimensional domain with the original dynamical equation

St +∇ · (Sv) = 0, (26)

with v(t, x) the true velocity field. Similar to the previous example, define the flow Φ(t, x):{
∂Φ
∂t (t, x) = v(t,Φ(t, x))

Φ(0, x) = x
(27)

and the differential n−form θ(t, x) = S(t, x)dx1 ∧ dx2 ∧ · · · ∧ dxn. Distinct from example 2.2.1, Eq.(26) implies
that Φ(t)∗θ(t, x) = θ(0, x), or equivalently, θ(t, x) = (Φ(t)−1)∗θ(0, x) = Φ(t)#θ(0, x). Indeed, direct calculation
yields:

Φ(t+∆t)∗θ(t+∆t, x)− Φ(t)∗θ(t, x) (28)
=Φ(t)∗Φ∗

t→t+∆tθ(t+∆t)− Φ(t)∗θ(t) (29)

=Φ(t)∗
[
(Φ∗

t→t+∆t − Id)θ(t+∆t) + θ(t+∆t)− θ(t)
]

(30)

=Φ(t)∗
[
(Φ∗

t→t+∆t − Id)θ(t) + θ(t+∆t)− θ(t)
]
+ o(∆t) (31)

=∆tΦ(t)∗
[
Lv(t)θ(t) + θt(t)

]
+ o(∆t) (32)

=∆tΦ(t)∗
[(

St(t, x) +∇ · (S(t, x)v(t))
)
dx1 ∧ · · · ∧ dxn

]
+ o(∆t) (33)

=o(∆t) (34)

It shows that Φ(t)∗θ(t, x) does not change with time.

In both examples, the choice of tensor θ is determined by the original transport equation (22) or (26). This choice then
implies T#, and the minimization problem (2) will search for a vector field u that most rapidly transports S2 towards
S1 by a virtual flow Φu. For geophysical fields, T# is thus essential for the application of this method, and further
discussed in section 3.

6
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2.3 Comparison with OF algorithms

Given a time series of snapshots (i.e. brightness fields in Ω ⊂ R2) {..., S(t − ∆t), S(t), S(t + ∆t), ...}, the [1]
OF algorithm aims at recovering the true velocity field u(t, x) by minimizing the following functional (with proper
boundary conditions):

u(t) = argmin
u
∥St + ⟨∇S, u⟩∥2 + a1∥∇u∥2 = argmin

u

∫
Ω

[St + ⟨∇S, u⟩]2 + a1|∇u|2dnx. (35)

We remark that the first term implies that the hidden T# in (35) is simply T#S = S ◦ T−1 for the brightness field S.
Or equivalently, T#S is inferred from T#θS , where θS = S is a differential 0−form. Indeed, for any vector field u,
let Φu(s, x) : [0,∆t]× Ω −→ Ω be the following flow of the points in the domain:{

∂Φu(s,x)
∂s = u(Φu(s, x))

Φu(0, x) = x.
(36)

The first term in (35) represents the material derivative of S(t+s,Φu(s, x)) with respect to s at s = 0. The optimisation
problem (35) searches for vector field u so that S(t, x) ≈ S(t + ∆t,Φu(∆t, x)). Let S2(x) = S(t, x), S1(x) =
S(t + ∆t, x), and T (x) = Φu(∆t, x). Hence the first term in (35) searches for the vector field u so that S1(x) ≈
S2(T

−1(x)). Clearly, this implies that T#S2 = S2 ◦T−1. [16] generalizes this original OF method to the Riemannian
manifold context. Still, the formulation of the problem in [16] implies that T#S2 = S2 ◦ T−1.

In [29], an other variant is proposed, to minimize

u(t) = argmin
u

∥St +∇ · (Su)∥2 + a1∥∇u∥2 = argmin
u

∫
Ω

[St +∇ · (Su)]2 + a1|∇u|2dnx. (37)

Let S1(x) = S(t + ∆t, x) and S2(x) = S(t, x). Following the analysis in example 2.2.2, Eq.(37) aims at finding
the vector field u so that Φ#

u S2 ≈ S1, in which Φ#
u S is inferred from Φ#

u θS for θS = Sdx1 ∧ · · · ∧ dxn. Thus, it
can be concluded that the method of [29] implies that T# should be defined as if the physical fields are associated
to differential n−forms. This is explicitly stated in [28] and corresponds to physically-constrained choices of tensor
fields in the present framework. The proper choices of tensor fields shall indeed enable to also transport unobserved
state variables, consistent with the underlying dynamics. OF algorithms can thus be reformulated for snapshots corre-
sponding to snapshots of tensor fields. For a time series {· · · , θ(t−∆t), θ(t), θ(t+∆t), · · · } of snapshots of tensor
fields, the generalized OF method is to find the vector field u:

u(t) = argmin
u

∫
Ω

|θt + Luθ|2x + a1|∇u|2xdV, (38)

in which u satisfies proper boundary conditions. Here we provide a theorem for the existence of the OF solution for
Dirichlet boundary condition. Note that in [1], u is only required to have zero normal component at the boundary.
Theorem 2.2. For fixed t, assume that both tensor fields θ and θt have finite H2 norm and the given vector field
v on ∂Ω also has finite H1 norm. Further assume that |dθ|x, |δθ|x are bounded in Ω. Then for compact oriented
Riemannian manifold Ω without boundary, the following minimisation problem has a unique solution which has a
finite H1 norm:

u(t) = argmin
u∈H1(TΩ)

∫
Ω

|θt + Luθ|2x + a0|θu|2x + a1|dθu|2x + a1|δθu|2xdV. (39)

For a compact oriented Riemannian manifold with boundary, the following minimisation problem has a unique solution
which has a finite H1 norm: u(t) = argmin

u∈H1(TΩ)

∫
Ω

|θt + Luθ|2x + a1|dθu|2x + a1|δθu|2xdV

u(t)
∣∣
∂Ω

= v.

(40)

The existence, uniqueness, and smoothness of order 1 of the solution is a direct consequence of Riesz representation
(or Lax-Milgram) theorem. A mathematical proof is provided in the appendix.

While the proposed algorithm can be applied whenever two snapshots are provided, the OF algorithms require that
the time between two consecutive images to be small, to best approximate θt. To overcome such a constrain, the
standard Horn and Schunck algorithm can be incorporated within a multi-scale strategy [18], and wavelets [8]. Note,
an infinitesimal formulation of the Horn and Schunck algorithm in the Euclidean space is proposed in [8].

7
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2.4 Comparison with other methods

[25] proposes a variational method to find the optimal way to transport a point S2 ∈M to another point S1 ∈M at a
minimal cost. HereM is a Riemannian manifold. For geophysical applications, this manifoldM can be interpreted
as the configuration space. Hence each point Si ∈ M represents a state vector. It can be interpreted in a way that, to
transport S2 to S1, [25] does not only use vector fields, but also an external forcing to influence the state at each time
step. The solution of the variational problem then consists of a time sequence of vector fields and a time sequence
of "external forcing". Considering an "external forcing", the eventual state T#S2 can exactly match the target state
S1. This method follows from rigorous mathematical developments [24], but turns out to be very computationally
demanding.

Some efforts about large deformation diffeomorphic metric matching (LDDMM) [3, 4] are examples of directly solv-
ing (1) to obtain a diffeomorphism T belonging to the same connected component as the identity map in the group
of diffeomorphisms D(Ω). Since an external forcing is not considered, these methods can be stated to be simplified
versions of that proposed by [25]. The regularization term in (1) is chosen to be

∥T∥2 =

∫ 1

0

∥v(t)∥2V dt (41)

for some prescribed norm V . And T (x) ≈ (Id + 1/NvN−1
N

) ◦ · · · ◦ (Id + 1/Nv0) as described in the introduction.
Note that the optimisation problem in [3, 4] is a specific case of Eq.(6) in [26] and Eq.(1) in [23]. Despite the fact that
T# in [3, 4, 26, 23, 25] is not particularly designed for geophysical fields and sometimes the boundary condition is
ignored, the framework proposed in this manuscript can be stated to be a simplified version of LDDMM.

2.5 About the boundary condition of (13)

Boundary condition is necessary in the optimisation problem (13). In fact, the boundary condition can be obtained by
solving for (12) or (13) based on the data on ∂Ω. The process can be illustrated using the following idealistic example.

Suppose that Ω is a three dimensional ocean, the boundary of which consists of two parts Ωb and Ωs, in which Ωb

refers to the ocean basin (i.e. the land boundaries), and Ωs the sea surface. To determine the boundary condition of u
on Ωb and Ωs, it is first natural to set u

∣∣
Ωb

= 0. On Ωs, we must first solve for (13) where θ1 and θ2 are tensor fields
on Ωs. Boundaries of Ωs coincide with the coast lines, and natural to set boundary conditions to be 0. The domain Ωs

is a sub-manifold of the sphere. Hence the “Riemannian" context is necessary for this example. The complete process
at each iterative step is illustrated in Algorithm 1.

Algorithm 1: How to determine the boundary condition at each iterative step (an example)
Data: tensor fields θ1 and θ2 on Ω; tensor fields α1, α2 on Ωs; small positive number ϵ > 0; the total number of

iterations N ; dVs the volume form on Ωs; dV the volume form on Ω.
Result: vector fields u1, ..., uN

for i = 1, 2, ..., N do

us,i ← argmin
u∈TΩs

∫
Ωs

[
− 2⟨α1 − α2,Luα2⟩x + |dθu|2x + |δθu|2x

]
dVs with boundary condition us,i

∣∣
∂Ωs

= 0;

ui ← argmin
u∈TΩ

∫
Ω

[
− 2⟨θ1 − θ2,Luθ2⟩x + |dθu|2x + |δθu|2x

]
dV with boundary condition ui

∣∣
Ωb

= 0,

ui

∣∣
Ωs

= us,i;
θ2 ← θ2 + ϵLui

θ2;
α2 ← α2 + ϵLus,i

α2

end

2.6 The case for localized observations

In practice, it is a common situation that some state variables are solely observed in a subdomain Ω1 ⊂ Ω, instead of
in the full domain Ω (i.e. over a satellite swath). A weight function W can be constructed and the first terms in Eq.(12)
and (13) replaced by:

∂|θ1 − Φu(s)
#θ2|2x

∂s

∣∣
s=0

W (x), (42)
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in which the pre-chosen W (x) takes value 1 for a majority of points inside Ω1 but decreases to 0 smoothly as x
approaches the boundary of Ω1. Then Eq.(14) changes to

u = argmin
u∈TΩ

∫
Ω

[
− 2⟨θ1 − θ2,Luθ2⟩xW (x) + a1|dθu|2x + a1|δθu|2x + a0|θu|2x

]
dV, (43)

and Eq.(15) changes to u = argmin
u∈TΩ

∫
Ω

[
− 2⟨θ1 − θ2,Luθ2⟩xW (x) + a1|dθu|2x + a1|δθu|2x

]
dV

u
∣∣
∂Ω

= i∗v.
(44)

The theorem of existence and uniqueness of solution still holds for minimisation problems (43) and (44) following
similar arguments given in the appendix.

3 Towards a new nudging strategy and its application in data assimilation

3.1 Methodology

Let S be the full state variable, Y = h(S) some state variable derived from S. Assume that we have the model estimate
Smodel, and that Y is fully observed on the domain. Our target is to

(1), derive a displacement flow Φ so that Φ#Y model ≈ Y obs;

(2), apply Φ to Smodel to correct the displacement of the full state variable S.

From section 2, we need to separately find the tensor fields for Y and S. Consistent definitions should be determined
by the dynamical equation of the system, leading to the determination of T#, hence the explicit formulation of Eq.(14)
(or (15)).

Already indicated in [2] and [20], this nudging strategy can be incorporated with ensemble Kalman filter. The basic
idea is to correct the displacement of each ensemble member before applying EnKF. Methods reported in [2] and
[20] use different cost functions to estimate the displacements. Both methods implicitly assume T#S = S ◦ T or
S ◦ T−1. However, see Fig.2, T# without considering the dynamics could possibly destroy the intrinsic feature of the
unobserved physical fields.

To demonstrate the advantage to consistently constrain T#, the following simple version of morphed EnKF is com-
pared numerically with the plain EnKF algorithm:

(1), choose tensor fields for the observed state variable Y and the full state variable X;

(2), find the displacement flow Φi according to the observation Y obs and the model estimates Y model
i from the

i−th ensemble member;

(3), apply Φi to the full state vector of the i−th ensemble member: Xf
i ← Φ#

i X
f
i ;

(4), apply plain EnKF to the updated ensemble {Xf
i i = 1, ..., Ne}.

A morphed ensemble member based on the plain T#S = S ◦ T−1 is also presented for comparison.

3.2 Numerical results

To illustrate our purpose, a data assimilation experiment is conducted for only one time step, using the thermal shallow
water equation [27]. This model consists of three state variables: h−the water height, v = (v1, v2)−the velocity field,
and Θ−the buoyancy (or density contrast):

∂h

∂t
+∇ · (hv) = 0, (45)

∂Θ

∂t
+ (v · ∇)Θ = −κ(hΘ− h0Θ0), (46)

∂v

∂t
+ (v · ∇)v + fẑ × v = −∇(hΘ) +

1

2
h∇Θ. (47)

9
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Figure 3: Comparison of the target fields (the first row), the original fields (the third row), and the morphed fields (the
second row).

Figure 4: Another example of Fig.3

10
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Figure 5: The target field (first row), the original field (third row), and the field morphed by T#S = S ◦ T−1 for
S = h, ω,Θ, v1, v2 (second row).

Both Θ and h are assumed strictly positive at each point. It is assumed that both the absolute vorticity ω = ∂v2

∂x −
∂v1

∂y

and h are fully observed, while Θ is completely unobserved. The details of the experimental setup can be found in the
appendix. A Python code to completely reproduce the numerical results is provided at 10.5281/zenodo.10252176.

Fig.3 and Fig.4 show two examples of the (interpolated) truth (the target fields), the prior estimate of one member
(the original fields), and the morphed prior estimate (the morphed fields). Expected, the phase of the original vortex
can be adjusted, to some extent, but not perfectly. This is not surprising because the cost function in the optimisation
problem (12) (or (13)) has two parts. The first part is derived from the dynamics of the original system. But the second
part is merely for mathematical reasons. Thus, the virtual displacement flow Φ cannot transform Θ2 to exactly match
Θ1. But the correct choice of tensor fields can maintain the dynamical balance of the three fields during the morphing
process to some extent. Looking at Fig.3 and 4 more closely, it is found that the difference between the morphed h2

field and the target h1 field is much smaller than that between the morphed ω2 and the target ω1. We don’t have a
theoretical explanation of this fact. We suspect that it can be attributed to the positiveness of the h field.

To demonstrate the superiority of T#, the nudging process without introducing the concept of tensor fields is also
considered and tested. In this case, T#S = S ◦ T−1, independent of S = h, ω, Θ, or v1, v2. The initial value of
ω2 h2, etc. are taken to be the corresponding fields of one of the ensemble priors. We first run the morphing process
for N = 10000 time steps. It is found that, for this specific member, the mean-squared-error (MSE) of h is always
decreasing, while the MSE for ω decreases till N ≈ 6000 and then starts to increase. The fields at N = 6000 are
plotted in Fig.5. Apparently, the morphed ω2 has lost its intrinsic feature.

Fig. 6 presents the truth, the prior mean of the ensemble, and the prior mean of the morphed ensemble. The direct prior
mean has completely lost the small scale structures inside the vortex, while the prior mean of the morphed ensemble
still maintain the small scale features to some extent. Stated in the introduction, our interpretation is that yo− xb is no
longer a good representation of the error in this case. Instead, the location error, or more generally the displacement
flow, can better represent the error of each ensemble member. Thus the space of ensemble members is not a linear
subspace in the Euclidean space of the state vector, but could be a curved manifold. In this case, it is not surprising
to see that the arithmetic mean lies outside of the manifold. To address this problem, the Fréchet mean instead of the
arithmetic mean should be used to define the ensemble mean.

Fig.7 presents the posterior estimate of one ensemble member using EnKF and morphed EnKF (denoted by mEnKF
for short). Apparently, the plain EnKF results in erroneous estimates, while the mEnKF still produces reasonable

11
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Figure 6: The truth (first row), the prior mean of ensemble (the second row), and the prior mean of the morphed
ensemble (the third row).

Figure 7: The truth (first row), the posterior estimate of one member (the second row), and the posterior estimate of
one morphed member (the third row).

12
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estimates with fine scale features inside the vortex. Again, this is the disadvantage of linear algorithms when the
ensemble members do not lie on a linear subspace of the Euclidean space of state vectors.

4 Conclusion

A complete framework is introduced to estimate the displacement flow between two tensor fields on a compact oriented
Riemannian manifold with or without boundary. It is proved that the solution always exists and is unique. When a
time sequence of snapshots of geophysical fluids is available, a reformulation of the generalized OF algorithm [28]
can also be obtained from this differential geometry perspective.

The novelty of the proposed framework lies in the definition of T#S for a given displacement map T (not necessarily
the displacement generated by the true velocity field) acting on a given state variable S: T#S must be determined by
the original dynamics of S. Technically, each state variable S is associated to a tensor field θS , and T#S is determined
by T#θS . A key advantage is to consistently correct the displacement of some state variable while best maintaining
the intrinsic structure of the underline physical fields.

This new framework can then be used as a nudging process when only part of the state variables are observed. It
can also be used to correct the displacement of each ensemble member before applying the linear EnKF algorithm.
Numerical results with a double-vortex model show that the morphed EnKF algorithm produces more reliable posterior
estimates than the plain EnKF algorithm. The preferable usage of T# is well demonstrated by comparing fields
morphed by algorithms derived or not from the concepts of differential geometry.

It must be pointed out that all physical fields could not always be associated to a tensor field. The use of a tensor field
is only required to define the correct T#. For an arbitrary derived physical field S, T#S should be determined by
the forward operator S = F (X), where X is the full state vector. Thus, for a specific derived variable S, whether a
displacement vector field can be determined by the optimisation procedure (12) or (13) needs to be further studied.
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Appendices
A Proof of theorem 2.1

Recall that d is the exterior derivative operator, ∗ the Hodge star operator on differential forms, and δ = (−1)n(k−1)+1∗
d∗ is the so-called co-differential operator. Let i : ∂Ω → Ω be the natural embedding of ∂Ω. For convenience but
without loss of generality, we set the regularization parameter a0 = a1 = 1.

First, consider the case when Ω is a compact oriented Riemannian manifold with boundary. Assume that u is a solution
of (15). Then for any vector field h ∈ TΩ such that h

∣∣
∂Ω

= 0, we have
∂

∂ϵ

[ ∫
Ω

−2⟨θ1 − θ2,Lu+ϵhθ2⟩x + |dθu+ϵh|2x + |δθu+ϵh|2xdV
]∣∣∣

ϵ=0
= 0 (48)

This implies that for any h ∈ TΩ such that h
∣∣
∂Ω

= 0,∫
Ω

−2⟨θ1 − θ2,Lhθ2⟩x + ⟨dθu, dθh⟩x + ⟨δθu, δθh⟩xdV = 0 (49)

Applying the Green’s formula for differential forms (see for instance Eq.(2.1) in [9]), we have that∫
Ω

⟨dθh, dθu⟩xdV −
∫
Ω

⟨θh, δdθu⟩xdV =

∫
∂Ω

(i∗θh) ∧ ∗(i∗dθu) = 0 (50)

since θh
∣∣
∂Ω

= 0. Similarly,∫
Ω

⟨dδθu, θh⟩xdV −
∫
Ω

⟨δθu, δθh⟩xdV =

∫
∂Ω

(i∗δθu) ∧ ∗(i∗θh) = 0. (51)

Thus ∫
Ω

⟨dθu, dθh⟩x + ⟨δθu, δθh⟩dV =

∫
Ω

⟨θh, (dδ + δd)θu⟩xdV =

∫
Ω

⟨θh,∆θu⟩xdV, (52)

where ∆ = dδ + δd is the Hodge Laplacian operator.

Let α = θ1 − θ2, β = θ2. By partition of unity, ⟨α,Lhβ⟩ can be decomposed into a finite sum:

⟨α,Lhβ⟩ =
∑
i

⟨αi,Lhβi⟩, (53)

in which αi’s and βi’s have the same regularity as α and β, and are all of the form η1 ⊗ · · · ⊗ ηl, with ηj ∈ Vj and
Vj = H1(TΩ) or H1(T ∗Ω). Note that

Lh(η1 ⊗ · · · ⊗ ηl) = Lhη1 ⊗ η2 ⊗ · · · ⊗ ηl + · · ·+ η1 ⊗ · · · ⊗ ηl−1 ⊗ Lhηl, (54)
Thus there exists, finitely, many known numbers mi and known ξi, ηi ∈ TΩ or ξi, ηi ∈ T ∗Ω, so that

⟨α,Lhβ⟩ =
∑
i

mi⟨ξi,Lhηi⟩. (55)

Since for any ξ, η ∈ TΩ, ⟨ξ,Lhη⟩ = −⟨θη,Lhθξ⟩, in which θξ (or θη) refers to the differential 1-form such that
θξ(v) = ⟨ξ, v⟩ (or θη(v) = ⟨η, v⟩ resp. ) for any vector field v ∈ TΩ, without loss of generality we can assume that
all the ξi’s and ηi’s in Eq. (55) are differential 1-forms. With Cartan’s formula Lh = dιh + ιhd and Stokes’ formula,
we have ∫

Ω

−2⟨θ1 − θ2,Lhθ2⟩xdV =

∫
Ω

−2⟨α,Lhβ⟩xdV = −2
∫
Ω

∑
i

mi⟨ξi,Lhηi⟩xdV

=− 2

∫
Ω

∑
i

miLhηi ∧ ∗ξi = −2
∑
i

∫
Ω

[(dιh + ιhd)ηi] ∧ ∗(miξi)

=− 2
∑
i

∫
Ω

d[ιhηi ∧ ∗(miξi)]− ιhηi ∧ d ∗ (miξi) + ιhdηi ∧ ∗(miξi)

=− 2
{∑

i

∫
∂Ω

ιhηi ∧ ∗(miξi) +

∫
Ω

−ιhηi ∧ d ∗ (miξi) + ιhdηi ∧ ∗(miξi)
}

=2
∑
i

∫
Ω

ιhηi ∧ d ∗ (miξi) + ιhdηi ∧ ∗(miξi) (56)
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For any differential 1-form θ, denote by Xθ ∈ TΩ the vector field such that ⟨η, θ⟩ = η(Xθ) for any η ∈ T ∗Ω. Then

ιhdηi ∧ ∗(miξi) = ⟨ιhdηi,miξi⟩xdV
=(ιhdηi)(Xmiξi)dV = dηi(h,Xmiξi)dV = −dηi(Xmiξi , h)dV

=− (ιXmiξi
dηi)(h)dV = −⟨ιXmiξi

dηi, θh⟩xdV, (57)

and

ιhηi ∧ d ∗ (miξi) = ⟨ιhηi, ∗d ∗miξi⟩xdV = ⟨θh(Xηi), ∗d ∗ (miξi)⟩xdV
=θh(Xηi

) ∗ d ∗ (miξi)dV = ⟨θh, [∗d ∗ (miξi)]ηi⟩dV (58)

It thus exists a differential 1-form µ ∈ L2(T ∗Ω), which is determined by ηi,mi, ξi, so that∫
Ω

2⟨θ1 − θ2,Lhθ2⟩xdV =

∫
Ω

⟨θh, µ⟩xdV. (59)

Combining Eq.(52) and (59), Eq.(49) is equivalent to∫
Ω

−⟨θh, µ⟩x + ⟨θh,∆θu⟩xdV = 0. (60)

Thus the optimisation problem (13) is equivalent to solving the following equation for θu:{
∆θu = µ

θu
∣∣
∂Ω

= θĩ∗v
∣∣
∂Ω

,
(61)

in which ĩ∗v is a smooth extension of v from ∂Ω to Ω. Then the existence, uniqueness, and smoothness of the solution
to (61) is then guaranteed by theorem (3.4.10) of [22].

For the case, Ω a compact and oriented Riemannian manifold without boundary, the optimisation problem (12) is
equivalent to solving the following equation for differential 1-forms:

(1−∆)θu = µ, (62)

where µ is a differential 1-form that can be derived from the given data. The spectral theory of Laplacian operator on
a Riemannian manifold (see for instance theorem (1.30) and (1.31) in [21]) states that the space of square integrable

differential k−forms W 0,2(
∧k

T ∗Ω) has an orthonormal basis {ϕi : ∆ϕi = λiϕi,

∫
Ω

⟨ϕi, ϕi⟩xdV = 1, 0 ≤ i <

∞}, and that all eigen-forms ϕi are smooth on Ω. Note that λi ≤ 0 ∀i. Thus we can assume the decomposition:
µ =

∑
i≥0 aiϕi. Then θu =

∑
i

ai
1− λi

ϕi is a solution to Eq.(62). The identity can be verified directly. But in

addition we need to show that θu ∈ W 2,2 = {θ :

∫
Ω

⟨dδθ, dδθ⟩x + ⟨δdθ, δdθ⟩xdV < ∞}. First we show that

θu ∈W 1,2 = {θ :

∫
Ω

⟨dθ, dθ⟩x + ⟨δθ, δθ⟩xdV <∞}. This can be verified directly:

∫
Ω

⟨dθu, dθu⟩x + ⟨δθu, δθu⟩xdV = lim
N→∞

N∑
i=0

a2i
1− λi

∫
Ω

⟨dϕi, dϕi⟩x + ⟨δϕi, δϕi⟩xdV

= lim
N→∞

∑
i

a2i
1− λi

∫
Ω

⟨δdϕi, ϕi⟩x + ⟨dδϕi, ϕi⟩xdV = lim
N→∞

∑
i

λia
2
i

1− λi
≤

∑
i

|ai|2 (63)

This shows that θu ∈ W 1,2. Next, direct calculation yields that
∫
Ω

⟨∆θ,∆θ⟩xdV =

∫
Ω

⟨dδθ, dδθ⟩x + ⟨δdθ, δdθ⟩xdV
for any θ. Hence∫

Ω

⟨dδθu, dδθu⟩x + ⟨δdθu, δdθu⟩xdV =

∫
Ω

⟨∆θu,∆θu⟩xdV =
∑
i

λ2
i

(1− λi)2
a2i ≤

∑
i

|ai|2. (64)

This shows that (1−∆)−1µ is a well-defined twice-differentiable 1−form.
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B Proof of theorem 2.2

First assume that the manifold has C1−boundary. Then the boundary condition v can be extended to u0 ∈ H1(Ω)
such that u0

∣∣
∂Ω

= v. Thus the optimisation problem (40) is equivalent to u(t) = argmin
u∈H1(TΩ)

∫
Ω

|θt + Lu0
θ + Luθ|2x + |dθu + dθu0

|2x + |δθu + δθu0
|2x

u(t)
∣∣
∂Ω

= 0.

(65)

The first term in the above functional can be rewritten as
⟨Luθ,Luθ⟩x + 2⟨Luθ, θt + Lu0

θ⟩x + |θt + Lu0
θ|2x (66)

Since θ ∈ H1, u0 ∈ H1, Lu0
θ ∈ L2. Note that for the space of vector fields vanishing on ∂Ω, the L2 norm of u is

bounded by |dθu|2 + |δθu|2 up to a constant depending on the domain only. For u,w of finite H1 norm and vanishing
on the boundary, let

B(u,w) =

∫
Ω

⟨Luθ,Lwθ⟩x + ⟨dθu, dθw⟩x + ⟨δθu, δθw⟩xdV (67)

a(u) =

∫
Ω

⟨Luθ, θt + Lu0θ⟩xdV (68)

Obviously B is symmetric and coercive due to Poincare lemma. We will show that B is bounded and a is continuous
with respect to the H1 norm. Then B gives an equivalent norm as the common H1 norm, denoted by ∥ · ∥B . Then by
Riesz representation theorem, there exists f ∈ H1(TΩ) which vanishes on ∂Ω, such that a(u) = ⟨u, f⟩B . Then

B(u, u) + a(u) = ⟨u, u⟩B + 2⟨u, f⟩B ≥ ⟨u+ f, u+ f⟩B − ∥f∥2B , (69)
implying that −f is the unique solution. Next we show that B and a are continuous forms.

For the continuity of a, following a similar argument as those in appendix A, there exists finitely many ηi ∈ H1(T ∗Ω)
with bounded |dηi|x and ξi ∈ L2(T ∗Ω) depending only on the given data, such that

a(u) =
∑
i

∫
Ω

⟨Luηi, ξi⟩xdV (70)

We can further assume that ηi, ξi are compactly supported inside a local coordinate (Ωi, x). Since |dηi|x is bounded,
∥Luηi∥L2 = ∥dιuηi + ιudηi∥L2 = ∥d(ηi(u)) + ιudηi∥L2 ≲ ∥u∥H1 . (71)

Thus
|a(u)| ≲

∑
i

∥Luηi∥L2∥ξi∥L2 ≲ ∥u∥H1 . (72)

In order to show that B is bounded, following the same argument in appendix A, there exists finitely many differential
1-forms ηi in H1 with bounded |dηi|x, and bounded functions mi, such that

⟨Luθ,Luθ⟩x =
∑
i

mi⟨Luηi,Luηi⟩x. (73)

Therefore ∥Luθ∥2L2 ≲ ∥u∥2H1 , meaning that B is bounded. The proof for the case when Ω is a compact oriented
Riemannian manifold without boundary is similar, thus omitted.

C Details of the numerical experiments

C.1 Model and domain

The data assimilation experiment is conducted using the thermal shallow water equation [27]. This model consists of
three state variables: h−the water height, v = (v1, v2)−the velocity field, and Θ−the buoyancy (or density contrast):

∂h

∂t
+∇ · (hv) = 0, (74)

∂Θ

∂t
+ (v · ∇)Θ = −κ(hΘ− h0Θ0), (75)

∂v

∂t
+ (v · ∇)v + fẑ × v = −∇(hΘ) +

1

2
h∇Θ. (76)
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Both Θ and h are assumed strictly positive at each point.

The quantity h follows a dynamics similar to the state variable S in example 2.2.2, and transportation terms for Θ
follow those in example 2.2.1. A natural choice is then θh = hdx1 ∧ dx2, a differential 2-form, and θΘ = Θ a
differential 0-form. The test case is a double-vortex case. Hence θv = v1dx1 + v2dx2 is chosen to ensure vorticity
conservation during the morphing process. These choices of differential forms differ from those presented in [30].
Less constrained by the underlying dynamics, [30] discussed the derivation of a perturbation scheme able to conserve
particular quantities. Here, the choice for the tensor fields should obey to the prescribed dynamics of the system to
maximally maintain the dynamical balance during the morphing process.

The data assimilation process is solely conducted for one time step. It is assumed that both the vorticity field ω =
∂v2

∂x1 − ∂v1

∂x2 and the h field are fully observed. Since θv = v1dx1 + v2dx2, naturally ω is associated to a differential
2-form θω = ωdx1 ∧ dx2 = dθv .

The domain is 2-dimensional doubly periodic: Ω = [0, 5000km]per × [0, 5000km]per, which is a compact Riemannian
manifold without boundary. In this case, a numerical solution of (14), or equivalently the numerical solution of Eq.(62),
with a = 1, can be derived in the Fourier space. In fact, the vector field u is separately calculated for h observations
and for ω observations. From the two observables, the explicit expressions of u are:

uω = (u1
ω, u

2
ω) = 2(I −∆)−1

[
ω2∇(ω1 − ω2)

]
, (77)

uh = (u1
h, u

2
h) = 2(I −∆)−1

[
h2∇(h1 − h2)

]
. (78)

The final u for each iterative step is then chosen to be 1
2 (

uω

∥uω∥1
+ uh

∥uh∥1
), in which

∥u∥21 =

∫
Ω

⟨θu, θu⟩x + ⟨dθu, dθu⟩x + ⟨δθu, δθu⟩xdV =

∫
Ω

|u|2 + |∇u1|2 + |∇u2|2dx1dx2. (79)

C.2 Numerical methods and experimental parameters

The units in the code are set to be km and 100s. The initial condition and model parameters are taken from the
numerical experiment in subsection (5.3) of [10]. The 3-step Adams-Bashforth method (see for instance chap-
ter 3.1 of [11] ) is used in model integration. Additionally, the one dimensional Hou-Li spectral filter [12]
exp{−36[(kx/kmax)

a + (ky/kmax)
a]}, with a = 12, is applied to the Fourier modes of the state vector at the end of

each model integration step. The truth is generated by running the model forward for 2750 time units. To generate the
ensemble members, the center of the initial vortex, (ox, oy), is perturbed:

ox ∼ N (0.1, 0.01), oy ∼ N (0.1, 0.01). (80)

The ensemble members are then generated by running the model forward starting from perturbed initial condition
for 2000 time units. For the explicit meaning of ox and oy, please refer to section 5.3 of [10]. The ensemble size
Ne = 20. Both the ensemble members and the truth are generated using a 256 × 256 grid. But before starting the
morphing process or data assimilation, the ensemble members and the observations are both projected to a coarse-grid
(64 × 64) and then interpolated back to the original grid (256× 256).

The morphing process is implemented with the 5-step Adams-Bashforth method and the spectral Hou-Li filter with
a = 36. For clarity, the pseudo-code of the complete morphing process is shown in Algorithm 2. We choose ϵ =
0.000033 and N = 10000.

The observation is exactly the same as the interpolated value of the truth. There is no error in the observation. However,
the matrix R in ensemble Kalman filter is set to be a diagonal matrix with diagonal elements equal to

Rω =
0.01

642

642∑
i=1

(ωobs
i )2, or Rh =

0.01

642

642∑
i=1

(hobs
i )2, (81)

where ωobs
i and hobs

i refer to the ω value and h value at the i−th grid-point in the 64 × 64 grid. Data assimilation is
conducted on the 64×64 grid.
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