FN Archimer Export Format PT J TI Metastable liquid immiscibility in the 2018–2021 Fani Maoré lavas as a mechanism for volcanic nanolite formation BT AF Thivet, Simon Pereira, Luiz Menguy, Nicolas Médard, Étienne Verdurme, Pauline Berthod, Carole Troadec, David Hess, Kai-Uwe Dingwell, Donald B. Komorowski, Jean-Christophe AS 1:1,2;2:1;3:3;4:4;5:4;6:5,6;7:7;8:1;9:1;10:6; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:;10:; C1 Ludwig-Maximilians-Universität, Department of Earth and Environmental Sciences, 80333, Munich, Germany Department of Earth Sciences, University of Geneva, Geneva, Switzerland Sorbonne Université, Muséum National d’Histoire Naturelle, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 75005, Paris, France Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, 63178, Aubière, France Observatoire Volcanologique et Sismologique de la Guadeloupe, Institut de physique du globe de Paris, 97113, Gourbeyre, France Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France Institut d’Electronique de Microélectronique et de Nanotechnologies, Université de Lille, 59655, Villeneuve d’Ascq, Lille, France C2 UNIV MUNICH, GERMANY UNIV GENEVA, SWITZERLAND MNHN, FRANCE UNIV CLERMONT AUVERGNE, FRANCE OBSERV VOLCANOLOG SISMOL, FRANCE UNIV PARIS CITE, FRANCE UNIV LILLE, FRANCE IF 7.9 TC 1 UR https://archimer.ifremer.fr/doc/00868/97997/107224.pdf https://archimer.ifremer.fr/doc/00868/97997/107225.pdf https://archimer.ifremer.fr/doc/00868/97997/107226.pdf https://archimer.ifremer.fr/doc/00868/97997/107227.docx https://archimer.ifremer.fr/doc/00868/97997/107228.xlsx https://archimer.ifremer.fr/doc/00868/97997/107229.xlsx https://archimer.ifremer.fr/doc/00868/97997/107231.xlsx https://archimer.ifremer.fr/doc/00868/97997/107232.zip LA English DT Article CR MAYOBS MAYOBS1 MAYOBS2 MD 228 / MAYOBS15 BO Marion Dufresne AB Nanoscale liquid immiscibility is observed in the 2018–2021 Fani Maoré submarine lavas (Comoros archipelago). Heat transfer calculations, Raman spectroscopy, scanning and transmission electron microscopy reveal that in contrast to thin (500 µm) outer rims of homogeneous glassy lava (rapidly quenched upon eruption, >1000 °C s−1), widespread liquid immiscibility is observed in thick (1 cm) inner lava rims (moderately quenched, 1–1000 °C s−1), which exhibit a nanoscale coexistence of Si- and Al-rich vs. Ca-, Fe-, and Ti-rich melt phases. In this zone, rapid nanolite crystallization contrasts with the classical crystallization process inferred for the slower cooled ( < 1 °C s−1) lava interiors. The occurrence of such metastable liquid immiscibility at eruptive conditions controls physicochemical characteristics of nanolites and residual melt compositions. This mechanism represents a common yet frequently unobserved feature in volcanic products, with the potential for major impacts on syn-eruptive magma degassing and rheology, and thus on eruptive dynamics. PY 2023 PD DEC SO Communications Earth & Environment SN 2662-4435 PU Springer Science and Business Media LLC VL 4 IS 1 UT 001125635200002 DI 10.1038/s43247-023-01158-w ID 97997 ER EF