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Simple Summary: Poor quality of biological information, such as age and growth parameters, could
be a source of variability with a significant impact on stock assessment results. Concerning the ageing
process, variability is frequently linked to differences in the interpretation of calcified structures. The
evaluation of precision and accuracy therefore represents a keystone in the ageing procedure.

Abstract: The intercalibration of age readings represents a crucial step in the ageing procedure;
the use of different sampling methods, structures, preparation techniques, and ageing criteria can
significantly affect age and growth data. This study evaluated the precision and accuracy of ageing
for the most important North Atlantic (NA) and Mediterranean (M) ray species, Raja clavata, Raja
brachyura, Torpedo marmorata, and Dipturus oxyrinchus, through exchange exercises carried out by
readers from different laboratories. In addition, growth parameters were estimated from the obtained
data. A total of 663 individual batoids were analysed. R. clavata and R. brachyura samples were
obtained from both the NA and the M, while vertebral centra of T. marmorata and D. oxyrinchus were
only available for the M. High reading variability was observed for all four evaluated species in
terms of CV, APE, and PA. D. oxyrinchus and T. marmorata showed relatively slow growth and the von
Bertalanffy model with fixed t0 and Gompertz’s model were, respectively, the most precise models for
each of these species. In R. brachyura, females had a faster growth rate compared to combined sexes.
The vbt0p proved the most precise model for describing growth in this species, and no statistical
differences were found between the NO and the M. For R. clavata, the best-fitting model was the
vbt0p for females and males in the NO and for females from the M, while the best-fitting model
for males from the M and sexes combined for both areas was log.p. Distinct growth patterns were
observed between the two study areas.
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1. Introduction

Elasmobranchs are globally indicated as one of the most highly threatened vertebrate
groups [1], due to their life history traits, which are typical of k-selected life strategy
species [2]. These traits make these fish highly susceptible to anthropogenic impacts and
in particular to fishing pressure [1,3]. Several shark and skate species are commercially
valuable for their fins, meat, liver oil, gill rakers, or leather and are an important food
resource [4]. Sharks and rays were once considered a lower-value bycatch of more profitable
fisheries stocks, such as tuna, cod, and shrimps [5]. The rising demand for marine products,
coupled with the decline of valuable target stocks has, however, resulted in rising catches
and retention of these taxa [6]. Sharks and skates are found as bycatch species in fisheries
worldwide, and the Mediterranean and Atlantic Ocean are areas with a high level of bycatch
for both sharks and rays at a global scale [7]. Fishing pressure thus puts cartilaginous fish
at a higher risk, which emphasises the need for effective conservation and management
measures. Shark and ray fisheries have only recently been subject to management strategies,
and attention to their need for conservation has grown [8]. The International Union for the
Conservation of Nature’s (IUCN) Red List of Threatened Species estimates that about a
quarter of elasmobranch species are threatened with extinction (i.e., assessed or estimated
to be Vulnerable, Endangered, or Critically Endangered), and overfishing is the principal
threat behind elasmobranch population declines [1]. Despite the advances in shark and
ray fisheries management, there are concerns that elasmobranch fisheries are following
the pattern of unregulated fisheries, resulting in wild population decline and collapse
of stocks [9]. Indeed, shark and ray landings increased from 1950 (the first year of data
collection) to the peak year at the beginning of the 2000′s, then subsequently declined in
the following years [10].

Conservation and fisheries management measures require a solid assessment of popu-
lation status, which must be based on reliable information regarding species life history
traits. Age and growth data are essential to obtain mortality data and productivity esti-
mations, which are crucial in stock assessments [11]. Describing growth parameters has
been historically more difficult in cartilaginous fish than bony fish [12]. Ageing in bony fish
involves the use of calcified structures, such as otoliths, which are absent in elasmobranch
species. Cartilaginous structures in elasmobranchs, such as vertebrae, have low calcification
levels and often require additional enhancements of growth band visibility with the use of
staining techniques. These characteristics make ageing of elasmobranchs a rather complex
process [13].

Inaccurate population assessments resulting in stock collapse have been caused in
some cases by poor-quality ageing data [14]. A growing body of research has therefore been
conducted to increase the accuracy of age data, particularly within the European Union
Data Collection Framework [15]. Variations in age data between institutes may occur due
to sampling methods (e.g., commercial fishing or scientific surveys) [16], the use of different
structures (vertebral centra, spines, scales, etc.), preparation techniques [17], and the ageing
criteria used [11,18]. Variable levels of fishing pressure [19,20] and spatial variations related
to environmental conditions or genetic factors [21,22] could be the basis of variation in
growth patterns in fish stocks, including contiguous populations. The fitting of growth
models to age data could also be a source of variability with significant impact on stock
assessment results. Finally, the level of reader experience can be a very important additional
source of variability [23]. All these factors can compromise both precision and accuracy of
age data and consequently the analysis of the level of population exploitation. Unreliable
scientific advice can result from using incorrect growth parameters or age-at-length keys to
translate size distribution into age structure. If the age of a population is overestimated, the
stock assessment will incorrectly predict that fishing mortality will be lower because the
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population will be composed of older specimens. Conversely, if the age is underestimated,
fishing mortality will be overestimated, and the population will appear to be composed
of younger specimens [24]. Additionally, age and growth have an impact on how data on
natural mortality and maturity at age are estimated. As a result, these measures also impact
how recruitment strength and biomass of spawning stock are estimated. Ultimately, the
most significant impact is related to short-term stock status forecasts and the corresponding
management actions [18].

In this context, an age calibration exercise was initiated on the most important North
Atlantic and Mediterranean ray species from commercial (Raja clavata; Raja
brachyura) [10,25] and conservation (Torpedo marmorata; Dipturus oxyrinchus) [26,27] per-
spectives. The exercise aimed to assess the precision of age and growth data for these
species. The present study, resulting from the exercise, aims to provide reliable age and
growth data for R. clavata, R. brachyura, T. marmorata and D. oxyrinchus in European waters
(North Atlantic Ocean and Mediterranean Sea). These data will then contribute to more
effective management plans. As some recent papers stated that alternative growth models
could offer a better fit for cartilaginous fish age-at-length data, in particular for batoids
(e.g., [28,29]), we applied a number of alternative growth models to age-at-length data in
addition to the frequently used von Bertalanffy function.

2. Materials and Methods
2.1. Sampling

Individuals were sampled in two areas in the North Atlantic Ocean (North Sea, ICES
area 27.4; Eastern Channel, ICES area 27.7.d) and in two areas in the Mediterranean Sea
(Ligurian and North Tyrrhenian Seas, GSA 9; western part of Sardinia, GSA 11.1) between
2010 and 2020 from commercial sampling and during scientific surveys. All individuals
were taken to the laboratory for accurate measurements. Each individual was measured to
the nearest mm for total length (TL) and to the nearest g for total weight (WT). Finally, the
sex of each specimen was recorded.

2.2. Ageing Procedures

Vertebrae were excised from the spine during dissection and subsequently used to
estimate age data. The preparation methods used varied between institutions, where verte-
brae sampled from the North Atlantic Ocean were stained using varying concentrations of
crystal violet and read as whole structures, while vertebral samples from the Mediterranean
Sea were sagittally sectioned and left unstained (Figure 1). A number of vertebrae were
collected for each individual. One vertebra per individual was photographed using a
binocular microscope under transmitted light.

Alternating translucent and opaque bands were visible in the vertebra of these elas-
mobranchs. It was assumed that each annual growth ring consisted of one opaque and one
translucent band, as is standard in temperate fish sclerochronological analyses. The age was
therefore expressed in consistent age groups, e.g., a fish in age group 0 lived between 1 day
and 364 days (i.e., between hatching and before 1 year), as recommended by international
expert groups [30–32].
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Figure 1. Summary of the preparation methods used for the analysed species in the Atlantic Ocean
and Mediterranean Sea. Dots and lines represent the structure interpretation by different readers.

2.3. Ageing Data Precision

To limit interpretation error and reading bias, each individual was analysed by eleven
European readers from Italy, Greece, Belgium, the Netherlands, and France during the
European exchange in 2022 to evaluate precision. Precision is defined as the reproducibil-
ity of repeated measurements on a given scale, whether or not measurements are accu-
rate [30]. Precision was measured from the average percent error (APE), the percentage
agreement (PA), and the coefficient of variation (CV). The formula presented by Beamish
and Fournier [33] was used to calculate APE:

APEj(%) = 100
1
R

R

∑
i=1

|Xij + Xj|
Xj

(1)

where Xij is the ith age determination of the jth fish, Xj is the average age calculated for
the jth fish, and R is the number of times each fish was aged. CV and PA within one year
(+/−1 yr) were proposed by [24]:

PA =
∑
∣∣∣ndi f f ≤ 1

∣∣∣
n

CVj(%) = 100·

√
∑R

i=1
(Xij−Xj)

2

R−1

xj

where R is the number of times each fish is aged, Xij the i(th) age determination of the
j(th) fish, Xj is the mean age calculated for the j(th) fish, and ndiff is the difference in age
determination between the readings of two readers.

2.4. Growth Model Estimation

Non-linear growth models were fitted to length-at-age data. Mean body growth
patterns of the commercial ray species sampled were described using four different growth
models including the following:

the unconstrained von Bertalanffy model [34] (vbp):
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TLt = TL∞·
(

1− e−K(t−t0)
)

the von Bertalanffy model with forced t0 = 0 (vbt0p):

TLt = TL∞ −
(

TL∞ e−Kt
)

the Gompertz model [35] (vbL1p):

TLt = TL∞·elnln (
TL1
TL∞ ) e−K(t−1)

the logistic model [36] (log.p):

TLt =
TL∞

1 +
((

TL∞
TL1

)
− 1
)
∗ e−Kt

where TL1, TLt, andTL∞ are, respectively, the length at age 1, at age t and the asymptotic
length, and K is the rate at which the asymptote is reached, also called the growth coefficient.

2.5. Data Analysis

For each individual, the total length and the age group were estimated according to
the sex and/or geographical sampling area. With these all-individual data, all growth
models were tested and the best growth model was identified as the one that minimised
the small sample bias-corrected form of the Akaike Information Criterion (AICc) [37,38].
The AICc balances the trade off between the quality of fit and the number of parameters
used [39] while accounting for small sample bias, and is defined as follows:

AICc = 2k− 2ln (TL) +
2k(k + 1)
n− k− 1

where n is the sample size, k is the total number of parameters of the model, and TL is
its likelihood.

Fish growth was estimated using the growth performance index (ϕ) [40]:

ϕ = log K + 2 log (TL∞) (2)

Growth performance index was more appropriate for growth comparison versus
comparison of TL∞ and K individually, as these two parameters are highly correlated [41].

The lifespan (tmax) was estimated from the empirical relationship with growth rate
k [42] as follows:

tmax = − ln (1− 0.95)
k

The Chen test [43] was used to look for potential differences in growth between areas.

3. Results
3.1. Sample Composition

A total of 663 individual batoids were analysed in the present study. Table 1 reports
the specific data of the sample composition. R. clavata and R. brachyura samples were
obtained both from the Atlantic Ocean and the Mediterranean Sea, while vertebral centra
of T. marmorata and D. oxyrinchus were only available for the Mediterranean basin. R.
clavata was the most sampled species, with 224 females (131–955 mm TL) and 204 males
(209–900 mm TL) (Table 1), followed by R. brachyura for which a total of 115 samples were
collected (54 females 175–990 mm TL; 61 males 70–955 mm TL). A total of 60 specimens
of T. marmorata and 61 specimens of D. oxyrinchus were analysed from the Mediterranean
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basin. TLs of these species ranged between 127 and 557 mm and between 220 and 1120
mm, respectively, for sexes combined (Table 1).

Table 1. Sample composition per species with number of specimens (N), mean TL with standard
error (SE), size range (in mm), mean age (in years) with SE, and age range for females (F), males (M),
and sex combined (F + M).

Species Sex N
TL (mm) Age (Year)

Mean ± SE Range Mean ± SE Range

Dipturus oxyrinchus
F + M 61 697.2 ± 33.5 220–1120 5 ± 1.28 0–13

F 41 714.6 ± 44.8 220–1120 5 ± 1.71 0–13
M 20 661.5 ± 43.4 245–963 4 ± 1.34 0–9

Raja brachyura
F + M 115 585.2 ± 22.6 70–990 3 ± 0.46 0–10

F 54 574.9 ± 21.8 175–990 3 ± 0.68 0–8
M 61 594.3 ± 28.7 70–955 3 ± 0.64 0–10

R. clavata
F + M 428 574.6 ± 7.18 131–955 4 ± 0.14 0–11

F 224 587.0 ± 10.7 131–955 4 ± 0.27 0–11
M 204 561.0 ± 9.29 209–900 4 ± 0.21 0–9

Torpedo marmorata
F + M 60 321.7 ± 14.9 127–557 4 ± 0.90 0–10

F 29 368.8 ± 23.8 138–557 5 ± 1.67 0–10
M 31 277.7 ± 14.5 127–432 2 ± 0.54 0–6

3.2. Ageing Precision

The ageing precision evaluation returned relatively high reading variability for all four
evaluated species. CV and APE values ranged between 47 and 49% and between 33 and
37%, respectively, for R. brachyura and T. marmorata. For D. oxyrinchus and R. clavata, slightly
more precise results were observed (CV 30–34%; APE 21–26%) (Table 2). Nonetheless, the
PA was similar for all evaluated species (44–52%) (Table 2). Figure 2 shows the CV and PA
values, specifically for each modal age of the four examined species against the standard
deviation. In general, PA is observed to be higher in younger age classes, showing values
close to 75% (Figure 2D, D. oxyrinchus) or higher (Figure 2C, T. marmorata), while in the
two species belonging to the genus Raja this value seems more stable around the 50% in all
modal ages, with an inflection observed for specimens older than 5–6 years (Figure 2A,B).
CV values also show this trend where lower reader variation is observed for younger modal
ages and this variation increases with modal age (Figure 2). Logically, the reading standard
deviation seemed to follow the opposite tendency, with higher values for older modal ages
(Figure 2).

Table 2. Summary of the ageing precision results, with vertebral centra preparation method, for each
elasmobranch investigated species.

Species N Vertebrae
Preparation Method

N Readers
Ageing Precision Results

Whole Sectioned CV PA APE

Raja brachyura 115 45 70 11 49% 44% 37%
R. clavata 428 215 213 11 30% 52% 21%

Dipturus oxyrinchus 61 - 61 9 34% 45% 26%
Torpedo marmorata 60 - 60 9 47% 49% 33%
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3.3. Growth Parameters

Due to the relatively small sample number of D. oxyrinchus and T. marmorata, it was
only possible to estimate growth for the sexes combined. The AICc indicated that the most
precise models were the von Bertalanffy model with fixed t0 and Gompertz’s model in
fitting the observed data for D. oxyrinchus and T. marmorata, respectively (Table 3). Both
species appeared to grow relatively slowly (D. oxyrinchus k = 0.101; T. marmorata k = 0.175)
and to be capable of a long lifespan, with estimations of up to 30 years for D. oxyrinchus
and up to 17 for T. marmorata (Table 3).

The age-at-length data were also insufficient to model the growth of male R. brachyura,
thus the species growth pattern was estimated only for females and combined sexes both in
the Mediterranean Sea and the Atlantic Ocean (Table 3). In both study areas, the vbt0p was
the most precise model in describing the species growth for sexes combined according to
the AICc, while for females this was the vbp model (Table 3). When considering combined
sexes, R. brachyura appears to be a relatively slow growing species, however females
showed a faster growth rate (k = 0.397 in Atlantic Ocean, k = 0.429 in Mediterranean Sea).
The observed ages ranged between 0 and 8 years in the Atlantic Ocean and between 0
and 10 years in the Mediterranean Sea. This resulted in a higher estimated lifespan for
this species in the Mediterranean Sea (18 years) compared to in Atlantic waters (12 years)
(Table 3). The Chen test comparison of the obtained vbp growth curve did not show a
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statistical difference between the areas (Fobs < Fcrit), thus this species follows a similar
growth pattern in both the Atlantic and Mediterranean regions (Figure 3; Table 3).

Table 3. Summary of the growth modelling results obtained for each species for females (F), males
(M), and sexes combined (F + M) in the different geographical areas investigated. N is the number
of analysed specimens, with information on size composition (TL max and TL min, in mm) and
observed age range (age max and age min, in years). Growth model indicates the best-fitting model
to the observed age-at-length data according to the AICc (vbp = unconstrained von Bertalanffy
growth model, vbt0p = von Bertalanffy model with forced t0 = 0, vbL1p = Gompertz’ growth model,
log.p = logistic growth model); TL∞ is the asymptotic length (mm); k is the growth coefficient; TL1
and t0 are, respectively, the length at age 1 and the theoretical length at time 0. The estimation of the
lifespan and the growth performance index (φ) are also reported.

Species Area Sex

Sampling Growth

N TL
Max

TL
Min

Age
Min

Age
Max

Growth
Model TL∞ (mm) k t0 TL1

Lifespan
(tmax) ϕ

Raja
brachyura

Atlantic
Ocean

F + M 45 990 191.25 0 8 vbt0p 1052.196 0.245 −0.664 12 5.433
F 24 910 220 1 7 vbp 911.278 0.397 0.000 8 5.519
M - - - - - - - - - - - -

Mediterranean
Sea

F + M 60 955 301 0 10 vbt0p 1166.318 0.168 −1.331 18 5.360
F 37 955 347 0 10 vbp 885.650 0.429 0.000 7 5.527
M - - - - - - - - - - - -

Dipturus
oxyrinchus

Mediterranean
Sea F + M 61 1120 252.5 0 13 vbt0p 1461.872 0.101 −1.904 30 5.335

R. clavata

Atlantic
Ocean

F + M 214 955 339.444 1 10 log.p 897.251 0.458 229.03 7 5.567
F 126 955 341.25 1 10 vbt0p 1267.266 0.132 −1.127 23 5.325
M 88 900 335.833 1 9 vbt0p 901.265 0.231 −0.701 13 5.273

Mediterranean
Sea

F + M 212 819 239.25 0 11 log.p 713.144 0.490 237.49 6 5.396
F 97 819 188 0 11 vbt0p 858.364 0.196 −1.250 15 5.160
M 115 790 290.5 0 9 log.p 674.832 0.537 244.40 6 5.388

Torpedo
marmorata

Mediterranean
Sea F + M 60 557 142.88 0 10 vbL1p 581.715 0.175 214.56 17 4.772
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Finally, the vbt0p was the best-fitting model to the observed age-at-length data for
R. clavata females and males in the Atlantic Ocean and for females from Mediterranean
Sea. The logistic model (log.p) returned the best-fitting results (AICc) for both males from
Mediterranean Sea and both sexes combined for both the investigated areas (Table 3). R.
clavata seems to be a relatively slow-growing species, with males that appear to be capable
of growing faster yet show a shorter lifespan than females. In contrast to R. brachyura, two
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distinct growth patterns were observed for R. clavata between the Atlantic Ocean and the
Mediterranean Sea (Chen test, Fobs > Fcrit). The Atlantic Ocean population produced
higher growth rates compared to the Mediterranean population (Figure 3).

The age-at-length data for all species are plotted in Figure 4 with the growth model
that provided the best-fitting results for the observations.
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4. Discussion

This paper presents the first attempt at an intercalibration of age readers for elas-
mobranch species at a European level. For the first time, eleven international readers
from five European countries took part in an age reading exercise that involved over
600 calcified structures extracted from four different batoid species. Vertebral preparation
methods varied between institutions, although only vertebral sections were available for T.
marmorata and D. oxyrinchus. Both vertebral sections and whole vertebrae were obtained
for R. brachyura and R. clavata, which were collected in the Mediterranean Sea and the
North-eastern Atlantic Ocean, respectively. Vertebrae were therefore analysed with the
same preparation method for each geographical sampling area.

In consideration of the large number of scientists involved, the results obtained from
the analysis of the ageing precision and reproducibility, although appearing far from the
thresholds usually considered acceptable for elasmobranch ageing studies (sensu [12]), can
be considered encouraging. Indexes such as the CV, the APE, and particularly the PA
can easily be negatively affected by a high number of readers. Additionally, readers from
different countries, while having a good experience level in interpreting hard structures,
were also asked to read structures prepared following different protocols from those to
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which they were accustomed. This difference potentially played a role in the age reading
variability observed in this study.

It is well known that reader experience is the most important factor affecting ageing
precision. This has been confirmed in other age calibration studies, which compared other
potential sources of bias such as the identification of first annulus or the interpretation
of possible false rings [23]. The present study also seems to confirm this assumption as,
despite the application of different structure preparation methods, the best outcomes in
terms of reading precision were obtained for R. clavata. This species is analysed in all
the laboratories involved and ageing was consequently more familiar to the readers. The
intercalibration results obtained should therefore be considered encouraging, and future
reading exercises and workshops must be endorsed.

Although the growth modelling of the analysed species was not the principal purpose
of the age reading exchange, the comparison of the obtained growth parameters with those
reported in the extant literature (Table 4) revealed, in most cases, no major differences. The
growth patterns of the two species investigated in both the Atlantic and the Mediterranean
Sea, R. clavata and R. brachyura, appeared similar to previous observations in the two
areas (Table 4). The main differences may be ascribed to the growth model selected,
as only the common von Bertalanffy function was considered in many studies, or to
the age estimation method (e.g., tagging [44]) and the hard structure used (e.g., caudal
thorns [45,46]). The logistic, the vbp, and the vbt0p models provided the best fit to the
length-at-age data following model selection with AIC. This is in accordance with the study
of Thys et al. [29] where the best-fitting models were the logistic and vbp model (vbt0p not
tested). Growth patterns for T. marmorata appeared to be in line with the literature [47,48]
indicating this batoid as a slow-growing and long-lived species. Conversely, the calculated
growth parameters for D. oxyrinchus, while comparable to those in Sardinian [49] and
Tunisian waters [50], appeared rather different from those estimated by Yigin and Ismen [51].
The data from the present study indicated a much faster growth rate and an asymptotic
length of almost half the size previously reported.

It is also interesting to note that the different growth rates determined in the analysed
species seem unlikely to be related to their trophic level. In fact, the two species that
showed the faster growth rates, R. brachyura and R. clavata, are recognized as a specialist
bony fish predator and as a generalist feeder, respectively [52]. Similarly for the two slow-
growing species, T. marmorata specializes in hunting fish [48] and D. oxyrinchus is more
generalist [51]. Nonetheless, it could be interesting to investigate further how interactions
with the environment could affect the growth of these species, and future studies on this
aspect should be endorsed and welcomed.

The present study also observed different growth patterns for R. clavata and R.
brachyura caught in the Atlantic Ocean and the Mediterranean Sea. R. brachyura pro-
duced similar growth patterns for both investigated areas, while R. clavata appeared to be
capable of growing faster and larger in the Atlantic Ocean compared to the Mediterranean
Sea. Although different preparation methods were used between the different areas for
both species, i.e. whole vertebrae from the Atlantic and sectioned vertebrae from the
Mediterranean, differences in growth patterns between areas were only observed for one
species, R. clavata. This therefore suggests that these divergences in growth are not caused
by the preparation method but may be linked to other factors such as different environ-
mental conditions (e.g., water temperature, prey availability, nutrient levels, pollution,
etc.) [21,53], fishing pressures [54], or strong regional genetic differentiation between At-
lantic and Mediterranean populations of R. clavata [55]. This is the first study investigating
growth of these skates and including samples collected from the two different areas, and
represents a first step towards a better understanding of the factors that may influence
growth patterns of these batoids.
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Table 4. Biogeographic comparison of the biological parameters of the investigated elasmobranch species with sampling details (number of samples, observed
maximum TL and Age), and details of the growth model (vbp = unconstrained von Bertalanffy growth model, vbt0p = von Bertalanffy model with forced t0 = 0,
vbL1p = Gompertz’ growth model, log.p = logistic growth model), with the type of data and the parameters of the growth model and growth performance index (φ).

Species Sector Geographical Area

Sampling Growth Model

Lifespan
(Years tmax)

φ Sources
Sex N TL (mm)

Max
Age (Years)

Max

Vertebrae
Preparation/Ageing

Method

Growth
Model TL∞ k t0 TL1

Raja
brachyura

Atlantic Ocean North-east Atlantic F + M 45 990 8 whole vbt0p 1052.19 0.25 −0.72 - 12 5.43 this study

Atlantic Ocean Irish seas
F 910

whole vbp 1443.00 0.19 −0.31 5.60 [56]M 777 1194.00 0.26 −0.31 5.57

Atlantic Ocean Irish seas
F 141 1080

sectioned
1547.00 0.13 −0.84 5.49 [57]M 127 1090 1458.00 0.15 −0.93 5.49

Atlantic Ocean Irish seas
F 1120 tagging vbt

1184.00 0.19 −0.80 5.43 [44]M 1150 1150.00 0.19 −0.18 5.40
Atlantic Ocean Portugal waters F + M 139 1106 caudal thorns vbt 133.50 0.12 0.29 3.33 [45]

Atlantic Ocean North-east Atlantic
F 31 911

whole
log 1020 0.24 - [29]M 25 876 vbp 857 0.18

Mediterranean Sea Sardinian seas F + M 60 955 10 sectioned vbt0p 1166.32 0.17 −1.33 - 18 5.36 this study
Mediterranean Sea Sardinian seas F + M 168 955 16 sectioned vbt 1113.4 0.1 −1.19 - 5.09 [58]

R. clavata

Atlantic Ocean North-east Atlantic F + M 214 955 10 whole log.p 897.25 0.46 - 229.03 23 5.57 this study

Atlantic Ocean Irish seas
F 93

sectioned vbt
1395.00 0.09 −1.74 5.26 [57]M 165 1065.00 0.14 −1.74 5.19

Atlantic Ocean Welsh seas
F 135

whole vbt
1176.00 0.16 −0.71 5.34 [59]M 54 1009.00 0.18 −0.95 5.26

Atlantic Ocean Portuguese waters F + M 251 913 10 caudal thorns vbt 1280.00 0.12 −0.61 5.28 [46]

Atlantic Ocean North-East Atlantic
F 45 906

whole
log 831 0.354 - [29]M 42 785 vbp 807 0.17

Mediterranean Sea Central-western
Mediterranean F + M 212 819 11 sectioned log.p 713.14 0.49 - 237.48 15 5.40 this study

Mediterranean Sea South Adriatic Sea F + M 291 890 12 sectioned vbt 986 0.18 −0.95 5.24 [60]

Mediterranean Sea Northern
Tyrrhenian Sea F + M 262 800

sectioned

log.p 709.2 0.55 190 5.44

[61]Mediterranean Sea Central Tyrrhenian
Sea F + M 118 864 vbt 929.6 0.21 −0.73 5.26

Mediterranean Sea Sardinian seas F + M 235 824 vbt 876.1 0.14 −1.79 5.03
Mediterranean Sea Western Ionian Sea F + M 105 826 vbt 870.50 0.19 −0.88 5.16

Mediterranean Sea Tunisian seas
F 160 1040 15

sectioned vbt
1146.00 0.11 −1.23 5.16 [62]M 125 850 12 1008.00 0.14 −1.13 5.15

Mediterranean Sea Strait of Sicily F 224
sectioned vbt

1265.00 0.10 −0.51 5.20 [63]M 200 1162.00 0.11 −0.41 5.16

Dipturus
oxyrinchus

Mediterranean Sea Sardinian seas F + M 61 1120 13 sectioned vbt0p 1461.87 0.10 −1.90 30 5.33 this study
Mediterranean Sea Sardinian seas F + M 130 1155 17 sectioned vbL1p 1275.5 0.14 5.36 [49]
Mediterranean Sea Turkish seas F + M 169 885 9 sectioned vbt 2564.6 0.04 −1.17 5.42 [51]

Mediterranean Sea Tunisian seas
F 175 1050 25

sectioned vbt
1239 0.08 −1.26 38 5.09 [50]M 110 950 26 1021 0.12 −1.18 26 5.10

Torpedo
marmorata

Mediterranean Sea Sardinian seas F + M 60 557 10 sectioned vbL1p 581.72 0.18 - 214.56 17 4.78 this study

Mediterranean Sea Sardinian seas
F 65 560 17

sectioned
vbL1p 622.44 0.16 23 4.78 [48]M 77 432 10 vbt 485.01 0.14 15 4.52

Mediterranean Sea Turkish Sea F + M 117 560 6 sectioned vbt 573.17 0.19 −0.39 4.79 [47]
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5. Conclusions

This study was the result of an international exchange with eleven readers representing
five European countries. Age and growth parameters were successfully evaluated for four
batoid species, R. clavata, R. brachyura, T. marmorata, and D. oxyrinchus, sampled in European
waters, namely the Atlantic Ocean and the Mediterranean Sea. Although the precision of
the age readings in this study is relatively low, the results are still encouraging considering
the large number of age readers. Precision was higher at lower ages and decreased with
age for all species. Alternative growth models were used to describe the age-at-length
data where different models performed better than others, depending on the species, sex,
and location.

The outcomes of this research, while preliminary, emphasise the need for intercalibra-
tion events involving large numbers of different laboratories and scientists from different
countries. In this way, it is possible to increase ageing data quality for these ecologically
important species, while providing solid inputs for their stock evaluation and management.
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