Dual nomenclature in organic-walled dinoflagellate cysts II: Spiniferites elongatus and S. membranaceus, and their equivalent non-fossil species Gonyaulax ovum comb. nov. and G. lewisiae sp. nov.

Head Martin J. ^{1, *}, Mertens Kenneth ², Fensome Robert A. ³

¹ Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada

² Ifremer, LITTORAL, F-29900 Concarneau, France

³ Natural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

* Corresponding author : Martin J. Head, email address : mihead@brocku.ca

Abstract :

The cyst-defined extant Spiniferites elongatus Reid 1974 and Spiniferites membranaceus (Rossignol 1964) Sarjeant 1970 are environmentally significant fossil-species of the Quaternary, the former often dominating polar and subpolar assemblages. Following cyst incubation experiments and the establishment of cultures, these species were emended to incorporate information on their motile stages, and transferred to the non-fossil genus Gonyaulax Diesing 1866, as Gonyaulax elongata (Reid 1974) Ellegaard et al. 2003 and Gonyaulax membranacea (Rossignol 1964) Ellegaard et al. 2003. This unified approach to dinoflagellate nomenclature severs an important link with the fossil-genus Spiniferites Mantell 1850. We have applied dual nomenclature, as sanctioned by the International Code of Nomenclature for algae, fungi and plants, in returning these species to their previous assignments as Spiniferites elongatus and Spiniferites membranaceus, and we propose Gonyaulax ovum (Gaarder 1954) comb. nov., emend. and Gonyaulax lewisiae sp. nov., respectively, as their equivalent non-fossil species. A distinctive morphotype initially described as Rottnestia amphicavata var. amphicavata Dobell and Norris in Harland et al. 1980 is proposed as Spiniferites elongatus forma amphicavata stat. nov.

Keywords : Dinocyst, taxonomy, dual nomenclature, Gonyaulax ovum, Gonyaulax lewisiae, Spiniferites elongatus, Spiniferites membranaceus

1. Introduction

- 44 Researchers in the 1960s realized that a species defined by a fossil dinoflagellate cyst
 - 45 might represent part of the life cycle of a previously described non-fossil (usually motile-
- 46 stage-defined) species, allowing it potentially to have two names -i.e. that dual

URL: http://mc.manuscriptcentral.com/tpal

Page 3 of 47

1

Palynology

2	
3	
4	
5	
6	
7	
, 0	
0	
9	
1()
11	
12	2
13	3
14	1
15	5
16	5
17	7
10	, ,
10) \
19	1
20)
21	
22	2
23	3
24	1
25	5
26	5
27	,
21	, ,
28	5
29	,
30)
31	
32	2
33	3
34	1
34	5
36	5
27	,
21	,
30	5
39)
40)
41	I
42	2
43	3
44	1
45	5
Δ6	5
1	,
41 10	, ,
48	5
49	1
5(J
51	I
52	2
53	3
54	1
55	5
54	5
5-	,
51 51	, ,
5د -	5
50	1

60

47	nomenclature applied. While a single species ideally should bear just one name
48	(Ellegaard et al. 2018), the difficulties of adhering to this principle for the dinoflagellate
49	cyst record has long been anticipated (Evitt and Davidson 1964, p. 10-11; Evitt 1970, p.
50	38) and the benefits of maintaining dual nomenclature persuasively set out (Reid 1974).
51	The application of dual nomenclature largely derives from the fact that living and
52	fossil dinoflagellates (nearly always the cyst) are classified according to different species
53	concepts (Head et al., submitted). Its use provides a practical solution to the difficulties
54	of integrating extinct cyst-defined species within non-fossil genera. It allows, for
55	example, the fossil-genera Spiniferites Mantell 1850 and Impagidinium Stover and Evitt
56	1978 to coexist with the non-fossil genus Gonyaulax Diesing 1866, even though species
57	of Gonyaulax produce cysts morphologically assignable to Spiniferites or Impagidinium,
58	among others. The International Code of Nomenclature for algae, fungi and plants (ICN,
59	Turland et al. 2018), which governs the naming of dinoflagellate taxa, permits fossil- and
60	non-fossil taxa to bear separate names even when they are subsequently shown to be
61	assignable within the life-cycle of a single species (Head et al. 2016). Many species
62	names have been linked in this way.

However, not all modern cyst morphotypes have been integrated into a fossil cyst
classification scheme, and so lack fossil names. Others have hybridized names, such as
when a fossil-species is assigned to a non-fossil genus, or vice versa. These names give
rise to conceptual and practical difficulties, solutions for which have been proposed in
Head et al. (submitted).

Two such hybridized names are *Gonyaulax elongata* (Reid 1974) Ellegaard et al.
2003 and *Gonyaulax membranacea* (Rossignol 1964) Ellegaard et al. 2003, both

1 2		
2 3 4	70	representing fossil-species assigned to a non-fossil genus. We return both species to their
5 6	71	previous assignments as Spiniferites elongatus Reid 1974 and Spiniferites membranaceus
7 8	72	(Rossignol 1964) Sarjeant 1970 and clarify their taxonomic and nomenclatural histories
9 10 11	73	and biological affinities. We then propose Gonyaulax ovum (Gaarder 1954) n. comb.,
12 13	74	emend. and Gonyaulax lewisiae n. sp., respectively, as the equivalent non-fossil species
14 15	75	in accordance with the practice of dual nomenclature.
16 17 19	76	Gonyaulax ovum (as Pterosperma ovum) was initially treated by Gaarder (1954)
19 20	77	as a prasinophycean species. Her drawings nonetheless show a dinoflagellate cyst with a
21 22	78	morphology assignable to Spiniferites elongatus. This species, based on non-fossil
23 24	79	specimens collected from the water column, therefore has a complex nomenclatural
25 26 27	80	history which is described in detail below.
28 29	81	
30 31	82	
32 33	83	2. Gonyaulax ovum (Gaarder 1954) n. comb., emend. and Spiniferites elongatus Reid
34 35 36	84	1974
37 38	85	
39 40	86	In 1954, Karen Gaarder published the names of eight new species of phytoplankton
41 42 43	87	based on preserved net haul and pump samples collected during the 1910 "Michael Sars"
44 45	88	expedition (Gaarder, 1954). One of these new species, Pterosperma ovum Gaarder 1954
46 47	89	(Figure 1), was recorded from Stations 1 (49° 27' N; 8° 36' W, south of Ireland), 3 (49°
48 49 50	90	32' N; 10° 49' W, also south of Ireland) and 12 (43° 11' N; 9° 26' W, off Cape
50 51 52	91	Finisterre, Spain), being very common in all samples from Station 3, the type locality.
53 54		
55 56		
57 58 59		
60		URL: http://mc.manuscriptcentral.com/tpal 4

Page 5 of 47

Palynology

3 4	92	Gaarder assigned Pterosperma ovum to the genus Pterosperma Pouchet 1893 -
5 6	93	presumably a phycoma, on account of its oval central body and septa covering the
7 8	94	surface – within the family Pterospermataceae Lohmann 1904. Pterosperma is now
9 10 11	95	placed within the prasinophyte order Pyramimonadales Chadefaud 1950 (Adl et al.
12 13	96	2019). The original description of <i>Pterosperma ovum</i> is not particularly informative but
14 15	97	Gaarder presciently noted that the species most closely resembles Hystrichosphaera
16 17	98	ramosa (Ehrenberg 1837) Deflandre 1937, now Spiniferites ramosus (Ehrenberg 1837)
19 20	99	Mantell 1854. Her line drawings, however, are much more revealing as they show the
21 22	100	unmistakable morphology of the dinoflagellate cyst now known as Spiniferites
23 24	101	elongatus. The specimen in Gaarder's fig. 9b (Figure 1b) shows a thick endospore and
25 26 27	102	cell contents as well as the characteristic outline of Spiniferites elongatus with trifurcate
28 29	103	processes extended at both poles, where they are connected by high septa. Unlike
30 31	104	Spiniferites elongatus, which was described as a fossil, Pterosperma ovum was collected
32 33 34	105	from the water column, is illustrated with cell contents, and is indisputably not a fossil.
35 36	106	Spiniferites elongatus Reid 1974 (Plate 1) was described from modern sediments
37 38	107	around the UK and placed within a cyst-based classification. P.C. Reid (1974) was in
39 40	108	fact an important early advocate of dual nomenclature. Spiniferites elongatus is a
41 42 43	109	distinctive species, restricted presently to the Northern Hemisphere (Zonneveld et al.
44 45	110	2013) where it is an important indicator of cold water conditions in polar and subpolar
46 47	111	settings (de Vernal et al. 2020). It has elevated abundances today off southern Ireland (as
48 49 50	112	independently reported by Gaarder 1954 for her Pterosperma ovum) and the north-
51 52	113	central North Atlantic (Zonneveld et al. 2013). Wall and Dale (1968) illustrated a cyst
53 54 55 56 57 58	114	from marine sediments at Woods Hole, Massachusetts which they referred to as

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
29
30
21
21
5Z
33
34
35
36
37
38
39
40
41
42
43
13
44 15
45
40
4/
48
49
50
51
52
53
54
55
56
57
50
20
29
60

131

132

133

134

135

1

115	"Hystrichosphaera n. sp." (Wall and Dale 1968, pl. 1, fig. 16). This specimen had been
116	germinated to produce a motile cell referable to Gonyaulax sp. Wall and Dale (1968, p.
117	271) remarked upon the similarity between their "Hystrichosphaera n. sp." and
118	Pterosperma ovum. Reid (1974) synonymised Wall and Dale's Hystrichosphaera n. sp.
119	with his Spiniferites elongatus but considered Pterosperma ovum to be synonymous with
120	his new species Spiniferites belerius, rather than Spiniferites elongatus, in having
121	processes of the same length covering the central body, an ovoid rather than elongate
122	central body, and in being smaller than Spiniferites elongatus. Given the range of
123	morphological variability now known for Spiniferites elongatus (e.g. central body length
124	of 40–59 μm in Reid 1974; 35–62 μm in Ellegaard et al. 2003; 42–64 μm in Van
125	Nieuwenhove et al. 2018), we accept that Pterosperma ovum and Spiniferites elongatus
126	are equivalent.
127	We make the following observations. Firstly, Spiniferites elongatus has a reported
128	central body length of 35–64 μ m, compared with Gaarder's two specimens with central
129	body lengths of 38 μm (her fig. 19a) and 46 μm (her fig. 19b). The smaller of her two
130	specimens might have been oriented at an oblique angle, but the larger one shows an

136 given for *Spiniferites elongatus* sensu lato by Van Nieuwenhove et al. (2018, table 1).

URL: http://mc.manuscriptcentral.com/tpal

equatorial view and is well within the size range for Spiniferites elongatus. Secondly, the

illustrated specimens of Pterosperma ovum (Figure 1), and particularly the larger of the

two (her fig. 19b; Figure 1b), show shorter processes at the cingulum than at the poles.

Thirdly, the ratio of length vs. equatorial diameter for Gaarder's illustrated specimens

(that for fig. 19a is 1.45 and that for fig. 19b is 1.37) falls within the range of variation

Page 7 of 47

1

Palynology

2		
3 4	137	Fourthly, both Pterosperma ovum and Spiniferites elongatus have elevated abundances
5 6	138	off southern Ireland, as discussed above.
7 8	139	Ellegaard et al. (2003) incubated cysts of Spiniferites elongatus and discovered
9 10 11	140	that the emergent motile stage (Figure 2) had not been described previously. Rather than
12 13	141	erect a new species defined by the motile stage, they chose to transfer Spiniferites
14 15	142	elongatus to the motile-defined genus Gonyaulax, as Gonyaulax elongata. In doing so,
16 17	143	they emended Gonyaulax elongata to include details of the motile stage along with the
18 19 20	144	existing attributes of the cyst. Unified dinoflagellate nomenclature is permitted under the
21 22	145	Code, although contrary to their claims, Ellegaard et al. (2003) were not obliged to
23 24	146	follow this approach because the names of fossil taxa at the rank of genus and below do
25 26 27	147	not complete for priority with names of non-fossil taxa unless they are explicity
27 28 29	148	considered as synonyms (Head et al. 2016; ICN Art. 11.7, 11.8). As with any name based
30 31	149	on a non-fossil, Gonyaulax elongata applies to all parts of the life cycle, and its cyst
32 33	150	would be referred to as the cyst of Gonyaulax elongata.
34 35 36	151	
37 38	152	2.1 Nomenclatural status of <i>Pterosperma ovum</i> Gaarder 1954
39 40	153	
41 42	154	Gaarder (1954) made clear that she was using botanical nomenclature because all the
43 44 45	155	family names she cited have botanical suffixes, e.g. Pterospermataceae. Gaarder
46 47	156	provided both a description for her new species and two illustrations (fig. 19a, b; Figure
48 49	157	1), each a line drawing of a separate specimen. Both specimens are from the same
50 51 52	158	location, Station 3 south of Ireland, where this species was found to be very common in
52 53 54	159	all samples. It is not known whether these two individuals are from the same sample and
55 56		· · · · · · · · · · · · · · · · · · ·
57 58		

59

60

URL: http://mc.manuscriptcentral.com/tpal

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
יי ר<	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
J∠ 22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
77 45	
45	
40 47	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

1

160 represent a single gathering (and hence may constitute a single specimer; ICN Art. 8.2 161 and footnote), as several samples were collected from Station 3 (Gaarder 1954, p. 16). 162 However, we accept that both specimens represent the same species. 163 Although Gaarder's specimens are clearly cysts, and today might be curated and 164 used as type specimens, the illustrations themselves were presumably intended to serve 165 as the holotype, as was, and is, customary for unicellular non-fossil algal plankton that 166 are difficult to preserve (ICN Art. 8.1). Because two illustrations of separate individuals 167 are represented in her fig. 19 and may not be from a single gathering, we assume that the 168 holotype was not indicated. However, prior to 1 January, 1958, the holotype did not need 169 to be indicated under the ICN (Art. 40.1). 170 Gaarder's description was given exclusively in English. Although she provided 171 neither a Latin description nor diagnosis, this was not necessary prior to 1 January 1958 172 (ICN Art. 44.1). The specific epithet of *Pterosperma ovum* coincides with a Latin 173 technical term used in morphology at the time of publication. This condition is 174 acceptable for a specific epithet even though it would invalidate a generic name (ICN 175 Art. 20.2). 176 Accordingly, we accept that *Pterosperma ovum* is a name fulfilling all 177 requirements for valid publication at the time it was published. 178 179 2.2 Pterosperma ovatum Pouchet 1894 180 181 In 1894, M. Pouchet published two new species of his new genus Pterosperma collected 182 from the plankton off Svalbard and Jan Mayen: these were *Pterosperma rotondum* and

Palynology

Pterosperma ovatum (Pouchet 1894, fig. 18a and fig. 18b respectively; reproduced here as Fig. 3). *Pterosperma ovatum* has a markedly elongate central body, granular cell contents, and membranous septa that are notably higher at the poles than the equator. No discrete processes or branching of process terminations are evident from either Pouchet's brief description or his simple line figure. Nonetheless, allowing for the standards of documentation at that time, the single illustrated specimen bears at least a superficial resemblance to Spiniferites elongatus and was collected from a region where this species is known to be present (de Vernal et al. 2020). Lemmermann (1903) transferred Pterosperma ovatum to the oocystacean (chlorophyte) genus Trochiscia Kützing 1834 as Trochiscia ovata (Pouchet 1894) Lemmermann (1903). Parke et al. (1978) selected Pouchet's illustration of *Pterosperma*

rotondum as the type for the genus *Pterosperma* (which Pouchet had not been obliged to
do at the time he proposed the genus), but they considered *Pterosperma ovatum* to
"represent either a *Pterosperma* under coverslip pressure ... or a dinophycean cyst"
(Parke et al. 1978, p. 241).

As with *Pterosperma ovum* Gaarder 1954, we accept that *Trochiscia ovata* is a non-fossil name fulfilling all requirements for valid publication. While we acknowledge that Trochiscia ovata may also be equivalent to Spiniferites elongatus, and would have priority over *Pterosperma ovum*, the probability of this being the case is much less than for *Pterosperma ovum*. Given the uncertainty as to what Pouchet was actually recording, including its size, we recommend that the name *Trochiscia ovata* be restricted to the illustration by Pouchet (1894, fig. 18a). Should this recommendation not be followed, we note that *Trochiscia ovata* cannot be transferred to the genus *Gonyaulax* under its current

- 3 4	206	name because the epithet is already occupied by Gonyaulax ovata Matzenauer 1933; a
5 6	207	new name would be required, which would then be a junior homotypic synonym of
7 8	208	Pterosperma ovum (ICN Art. 11.4).
9 10 11	209	
12 13	210	2.3 Gonyaulax ovum and Spiniferites elongatus under dual nomenclature
14 15	211	
16 17	212	While there are advantages in a unified nomenclature, the name Gonyaulax elongata
18 19 20	213	fails to maintain the connection with the important fossil-defined genus Spiniferites
21 22	214	(Ellegaard et al. 2018). However, simply rejecting this name in favour of Spiniferites
23 24	215	elongatus leaves no name available for the motile stage in the life cycle.
25 26 27	216	Pterosperma ovum presents a solution. This species corresponds to Spiniferites
27 28 29	217	elongatus but is a non-fossil species, having been described from the plankton. By
30 31	218	transferring Pterosperma ovum to the genus Gonyaulax, as Gonyaulax ovum, and
32 33	219	emending this species to provide both cyst and motile stage characters, as we have done
34 35 36	220	below (Systematics section), a name is created that fulfills the role of Gonyaulax
37 38	221	elongata while liberating the name Spiniferites elongatus for its application exclusively
39 40	222	with cysts. A dual nomenclature is thereby created for this overlap of species concepts.
41 42 43	223	Gonyaulax elongata and Gonyaulax ovum do not compete for priority because
44 45	224	Gonyaulax elongata remains a fossil-species (its type is that of Spiniferites elongatus)
46 47	225	despite having been transferred to Gonyaulax. As a non-fossil, Gonyaulax ovum
48 49 50	226	appropriately belongs in the non-fossil genus Gonyaulax even though its type is a cyst.
50 51 52	227	The name Gonyaulax elongata has not been widely adopted, and its loss will not threaten
53 54	228	nomenclatural stability.
55 56 57		

Page 11 of 47

1

Palynology

2 3	229	Accordingly, we accept that Pterosperma ovum is the non-fossil equivalent of the
4 5 6	230	fossil defined <i>Spiniferites elongatus</i> and, based on the discovery that cysts assignable to
0 7 8	231	Spiniferites elongatus produce a motile cell referrable to the genus Gonvaulax (Ellegaard
9 10	232	et al. 2003), we propose the new combination <i>Gonvaulax ovum</i> (Systematics section).
11 12	233	This name refers to all stages of the life cycle, whereas <i>Spiniferites elongatus</i> applies
13 14 15	234	only to cysts, whether fossil or modern.
16 17	235	
18 19	236	
20 21 22	237	3. Gonvaulax lewisiae n. sp. and Spiniferites membranaceus Reid 1974
23 24	238	
25 26	239	Spiniferites membranaceus (Rossignol 1964) Sarieant 1970 has a distinctive antapical
27 28	240	granular flange connecting the two slender dorso-antapical processes (Van Nieuwenhove
29 30 31	241	et al 2020: Plate 2) It was initially recorded by Rossignol (1964 as <i>Hystrichosphaera</i>
32 33	2.42	<i>furcata</i> var <i>membranacea</i>) from Pleistocene or Holocene deposits of the Ashkelon
34 35	243	borehole St 39D coastal plain Israel and has since been recorded frequently in modern
36 37 38	244	and other Quaternary sediments (de Vernal et al. 2020)
39 40	245	Lewis et al. (1999) isolated live cysts of <i>Spiniferites membranaceus</i> from surface
41 42	246	sediment off southwest England and from the southwest North Sea, and obtained cultures
43 44	247	from them revealing in detail the equivalent motile stage. The motile stage (Fig. 4)
45 46 47	248	although distinctive was not formally described but was recognised as belonging to the
48 49	249	genus <i>Gonvaular</i> and referred to the <i>Spinifera</i> group of Kofoid (1911)
50 51	250	Ellegaard et al. (2003) isolated a single live cyst of <i>Spiniferites membranaceus</i>
52 53	250	from surface sediment collected near Drogheda. Ireland, which germinated to give a
54 55 56	231	from surface sediment confected hear Drogheda, freiand, which germinated to give a
57 58		
59 60		URL: http://mc.manuscriptcentral.com/tpal 11

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
12	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	

252	culture used to document the motile stage. The culture then produced cysts. This strain
253	(UW398) was also subjected to molecular phylogenetic analysis. Based on this strain,
254	Ellegaard et al. (2003) expanded the description already provided by Lewis et al. (1999)
255	for both the motile stage and the cyst. Incorporating data from Lewis et al. (1999),
256	Ellegaard et al. (2003) noted considerable intraspecific variation when comparing both
257	cyst and motile stage morphologies, even though molecular phylogenetic analysis
258	indicated conspecificity. The motile stage nonetheless unquestionably belonged to the
259	genus Gonyaulax. Rather than propose a new species typified by the motile stage,
260	Ellegaard et al. (2003) chose to transfer Spiniferites membranaceus to the genus
261	Gonyaulax, as Gonyaulax membranaceus, thus uniting both thecal and cyst-based
262	characters under a single species name. While they were at liberty to make this
263	nomenclatural change under the ICN, and there are certainly benefits to this approach,
264	several problems were created. Removing the link to Spiniferites obscured the
265	connection of this cyst morphotype to potentially related species within the fossil record.
266	In addition, if their combination were accepted and used, the action would result in the
267	loss of a name frequently recorded in the Quaternary literature.
268	Our solution is to retain the name Spiniferites membranaceus for fossil cysts
269	while establishing Gonyaulax lewisiae n. sp. as a new name typified by the motile cell
270	(Systematics section). Spiniferites membranaceus (Rossignol 1964) Sarjeant 1970 is
271	therefore considered equivalent to Gonyaulax lewisiae n. sp. using dual nomenclature.
272	
273	
274	4. Systematics

1 2			
2 3 4	275		
5 6	276	Modified Kofoidian plate labelling is used in which homologous plates are indicated	by
7 8	277	an asterisk following Bujak (1980) and Fensome et al. (1993, text fig. 62). Sulcal plat	e
9 10 11	278	labelling follows Evitt (1985). We follow the recommendations of Gravendyck et al.	
12 13	279	(2021) for the synonymies, using the equality symbol (=) for homotypic (nomenclatur	al)
14 15	280	synonyms and an identity symbol (≡) for heterotypic (taxonomic) synonyms.	
16 17 18	281		
19 20	282	Division DINOFLAGELLATA (Bütschli 1885) Fensome et al. 1993 emend. Adl et	al.
21 22	283	2005	
23 24 25	284	Subdivision DINOKARYOTA Fensome et al. 1993	
25 26 27	285	Class DINOPHYCEAE Pascher 1914	
28 29	286	Order GONYAULACALES Taylor 1980	
30 31	287	Suborder GONYAULACINEAE (Autonym)	
32 33 34	288	Family GONYAULACACEAE Lindemann 1928	
35 36	289	Subfamily GONYAULACOIDEAE (Autonym)	
37 38	290	Genus Gonyaulax Diesing 1866 emend. Dodge 1989	
39 40 41	291		
42 43	292	Type. The holotype of the non-fossil species Gonyaulax spinifera (Claparède and	
44 45	293	Lachmann) Diesing 1866	
46 47	294		
48 49 50	295	Nomenclatural status. A non-fossil genus.	
51 52	296		
53 54	297	Comments. Dodge (1989) restricted the genus Gonyaulax to species having the	
55 56			
57 58 59			10
60		URL: http://mc.manuscriptcentral.com/tpal	12

2			
3 4	298	tabulation Po, 3', 2a, 6", 6c, 4-8s, 5", 1p, 1"", and included in his redescription the	
5 6	299	observation that many species form thick-walled cysts. His redescriptions of the species	ies
7 8	300	he assigned to this genus included information about the resting cysts where available	9.
9 10 11	301	As noted above, at least seven fossil-genera, are attributable to Gonyaulax spinifera a	nd
12 13	302	its allies (Head 1996; Head et al. submitted). Of the 71 non-fossil species that belong	to
14 15	303	the genus Gonyaulax (Gómez 2012), only 21 can be assigned to this genus using	
16 17 18	304	Dodge's 1989 generic concept, these being 17 species listed by Dodge, plus four	
19 20	305	additional ones (Mertens and Carbonell-Moore 2018). Much additional research is	
21 22	306	therefore needed to check and, if necessary, reattribute these species. Meanwhile, we	
23 24 25	307	accept Dodge's emended concept of Gonyaulax.	
26 27	308		
28 29	309		
30 31 32	310	Gonyaulax ovum (Gaarder 1954) n. comb., emend.	
33 34	311	Figures 1, 2	
35 36	312		
37 38 20	313	Basionym. Pterosperma ovum Gaarder 1954, p. 16, fig. 19a, b.	
40 41	314		
42 43	315	Previous record.	
44 45	316	2003 Gonyaulax elongata Ellegaard et al., p. 154–156, figs. 1–30.	
46 47 48	317		
49 50	318	Equivalent fossil-species. Spiniferites elongatus Reid 1974 (Ellegaard et al. 2003).	
51 52	319		
53 54			
55 56			
57 58			
59 60		URL: http://mc.manuscriptcentral.com/tpal	1
00			

Palynology

1 2			
3 4	320	Holotype. Gaarder 1954, fig. 19b (designated here). Illustration of cyst collected from	n
5 6	321	the plankton.	
7 8	322		
9 10 11	323	Type locality. Station 3, south of Ireland, 49° 32' N; 10° 49' W (Gaarder 1954).	
12 13	324		
14 15	325	Etymology. Latin ovum, egg; presumably with reference to the elongate shape of the	
16 17 18	326	central body. Noun in apposition.	
19 20	327		
21 22	328	Diagnosis. Motile cell with conical epitheca featuring slight shoulders and short apic	al
23 24 25	329	horn, and conical hypotheca with flat antapex. Often pronounced reticulated plates; for	ew
25 26 27	330	pores, occurring mostly on cingular margins. Plate 6" is an elongated triangle; cingular	ar
28 29	331	displacement of 2–3 cingular widths; overhang up to 2.5 cingular widths. An antapica	al,
30 31	332	triangular flange and 0-8 antapical spines can be present. Elongate resting cyst with	
32 33 34	333	finely granulate outer wall and exclusively gonal processes. Based on Ellegaard et al.	
35 36	334	(2003, p. 161, 163, table 4).	
37 38	335		
39 40 41	336	Description of motile stage. Conical epitheca with slight shoulders and short apical	
42 43	337	horn; hypotheca conical with flat antapex. Cell brown, nearly circular in polar view;	
44 45	338	often diamond-shaped in ventral or dorsal view owing to triangular antapical flange.	
46 47 48	339	Tabulation S-type typical for genus (see Ellegaard et al. 2003, figs. 1–3),	
49 50	340	tabulation formula 3', 2a, 6", 6c, ?s, ps, 1p, 6""*, 1"". Plates show variable but often	
51 52	341	pronounced reticulation that may occur also on cingulum, sulcus and flanges; newly	
53 54			
55 56 57			
58 59			1

2	
2	
3	
Λ	
4	
5	
6	
-	
7	
8	
0	
9	
10	
11	
11	
12	
12	
15	
14	
15	
15	
16	
17	
10	
١ŏ	
19	
20	
20	
21	
22	
~~	
23	
24	
2.	
25	
26	
27	
27	
28	
20	
29	
30	
31	
51	
32	
33	
22	
34	
35	
20	
36	
37	
20	
20	
39	
<u>4</u> 0	
-10	
41	
42	
42	
43	
44	
ΛF	
40	
46	
17	
4/	
48	
49	
-72	
50	
51	
51	
52	
53	
54	
55	
50	
56	
57	
FO	
28	
59	

60

1

divided cells lack ornamentation. Plates and plate boundaries often difficult to discern;
plates have few pores, occurring mostly on cingular margins.
Third apical plate (3') small, often difficult to distinguish from first anterior

345 intercalary (1a). On most specimens, second anterior intercalary (2a) is difficult to 346 separate from plates 1' and 3'. Ventral pore clear only on some specimens. Apical pore 347 complex (APC) surrounded by smooth ridge formed by edges of surrounding plates. 348 Plates 2' and 1a meet mid-dorsally. Third precingular plate (3") broad, overlaps all 349 adjoining plates (keystone plate). Plate 6" is an elongated triangle. 350 Cingulum wide and deep, ends of cingulum form an angle of $16-33^{\circ}$ with main 351 axis of cell; displacement of 2–3 cingular widths; overhang up to 2.5 cingular widths. 352 Flanges (lists) present on cingular margins.

353 Sulcus deep, widens broadly towards antapex, sulcal depression ending near 354 upper cingular margin. Anterior part of sulcus narrow, with hook-shaped anterior sulcal 355 plate (as). Boundaries of sulcal plates obscured at anterior end, clear in antapical part of 356 sulcus. Posterior sulcal plate (ps) broad, relatively short. Boundary between left (ls) and 357 right (rs) sulcal plates originates from middle of anterior boundary of ps plate. First postcingular homolog (1""*) is rectangular and small and lies within the sulcus; 2""* is an 358 359 elongated triangle. Anterior intercalary plate (1p) barely touches antapical plate (1""). Flanges present on plates 1s, 6"* and 1""; 0-8 small spines on plate 1"". All 360 361 flanges and spines variably developed, sometimes absent. Triangular flange on plate 1"" 362 characteristic but often small, not always visible under light microscopy. 363 Plate overlap pattern as described for G. digitalis (Lewis et al. 2001). Based on 364 Ellegaard et al. (2003, p. 154, 156).

Page 17 of 47

365

Palynology

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
22	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
Δ <u>Δ</u>	
77 15	
45 46	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

366	Description of cyst. Central body rounded, elongate in lateral view; circular in polar
367	view; no apical protuberance. Outer wall layer of central body thin, finely granulate;
368	inner wall layer smooth, about 0.3 μm thick. Low sutural ridges with a width of ~0.3 μm
369	occur on the cyst surface and reveal fine details of tabulation. They are faintly visible
370	under light microscopy and best seen under SEM (pls. 7–10 in Van Nieuwenhove et al.
371	2020). Processes gonal, variable in length, from an average of 2 to 8 μ m (n = 5, 4–8
372	processes measured per cyst). Antapical processes typically the longest (6–12 μ m, n =
373	11), cingular processes are shortest (0–7 μ m, n = 11), except for cysts with reduced
374	processes, where all are approximately equal in length. Fully developed processes are
375	distally trifurcate with bifid terminations; reduced processes may taper to a point, end
376	bluntly, or end with slight fork. Septa follow sutures, vary from low to high, usually rise
377	towards processes, and best developed at antapex, but may cover entire central body.
378	Cavation may occur under processes especially at apex, extreme at antapex along the
379	1p/1"", 3""*/1"" and 5""*/1"" sutures. Extension of septa onto intraplate areas often
380	makes the latter appear rounded.

381 SEM studies record the APC and ventral pore, as well as the apical plate series
382 and two anterior intercalary plates (1a, 2a) which are as for the motile cell, except that
383 the small 3' plate while assumed present is not clearly observed (pls. 7 in Van
384 Nieuwenhove et al. 2020). The sulcal tabulation can be clearly expressed under SEM
385 with the anterior, right accessory, right, left, and posterior sulcal plates (as, ras, rs, ls, ps)
386 and their boundaries being observed. Plate 1'''* is small and narrow and inside the sulcus

387	which is represented by a shallow depression in the cyst (pl. 8 in Van Nieuwenhove et al.
388	2020). Cingulum displaced by about two cingular widths, with no overlap.
389	Tabulation formula APC, 3', 2a, 6", 6c, s, 1p, 6"*, 1"". Archeopyle formed by
390	loss of third precingular plate (3"). Based on Gaarder (1954, fig. 19a, b), Ellegaard et al.
391	(2003, p. 156, figs. 20–26), Van Nieuwenhove et al. (2018).
392	
393	Dimensions of motile cell . Length 32–41 μ m, width 28–34 μ m, 25 specimens measured;
394	cingular width 2.5–3.5 µm (Ellegaard et al. 2003).
395	
396	Dimensions of cyst. Holotype length 46 µm (Gaarder 1954, fig. 19b); range: length 35–
397	$62 \mu m$, width 20–32 μm , 19 specimens measured (Ellegaard et al. 2003).
398	
399	Gene sequences. NCBI GenBank accession number is AY154964 for strain UW388
400	(table 3 in Ellegaard et al. 2003). Individual cysts from the Beaufort Sea identified as
401	Spiniferites elongatus s.l. cyst 1, 2, 6, 8, and 9 have the following accession numbers:
402	KU358942, KU358943, KU358947, KU358949, and KU358950 (fig. 7 in Van
403	Nieuwenhove et al. 2018).
404	
405	Modern distribution. The motile stage is presently known only from the germination of
406	cysts collected from Nova Scotia, Orkney, and the English North Sea coast (Ellegaard et
407	al. 2003). The cyst, under the name Spiniferites elongatus, is a common species of polar
408	and subpolar environments (de Vernal et al. 2020).
409	
	18
	UKL: http://mc.manuscriptcentral.com/tpal

1		
2 3	110	
4	410	
5 6	411	Gonyaulax lewisiae n. sp.
/ 8 9	412	Figure 4
) 10 11	413	
12 13	414	Previous records.
14 15 16	415	1999 Spiniferites membranaceus (Rossignol 1964) Sarjeant 1970; Lewis et al., p. 115-
17 18	416	117, figs. 1–20.
19 20	417	
21 22 22	418	2003 Gonyaulax membranacea (Rossignol 1964) Ellegaard et al., p. 157, 163, figs. 31-
23 24 25	419	45, 47, 51.
26 27	420	
28 29	421	Equivalent fossil-species. Spiniferites membranaceus (Rossignol 1964) Sarjeant 1970
30 31 32	422	(Lewis et al. 1999; Ellegaard et al. 2003; Mertens et al. 2018).
33 34	423	
35 36	424	Holotype. Lewis et al. 1999, fig. 18. Illustration of motile cell grown from culture
37 38 39	425	originating from a single wild cyst identified as Spiniferites membranaceus.
40 41	426	
42 43	427	Type locality. Offshore UK (Cornwall and southwest North Sea, unspecified; Lewis et
44 45 46	428	al. 1999).
47 48	429	
49 50	430	Etymology. Named for British biologist Jane Lewis.
51 52 53	431	
53 54 55 56 57	432	Diagnosis . Motile cell prolate, ovoidal, slightly longer than wide, with little dorsoventral
58 59		19
60		UKL: http://mc.manuscriptcentral.com/tpal

Page 20 of 47

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
1/	
15	
16	
10	
1/	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
55	
54	
55	
50	
5/	
20	
29	
60	

1

433	flattening; apical horn inconspicuous, shoulders weakly angular. Plates usually well
434	formed with smooth margins, reticulate, except in sutural area where there is reduced or
435	no reticulation. Cingulum displaced by 2.5–4.0 cingular widths, overhang of 2–4 widths.
436	6" approximately triangular. Posterior sulcal plate narrow. Between two and four
437	antapical spines where one is more prominent, may be finned. Resting cyst with a
438	broadly ovoid central body; outer surface microgranulate to microrugulate. Processes
439	exclusively gonal. Sutural septa mostly low except at antapex. Cingulum inclined, offset
440	by one or two times its width. Based on Ellegaard et al. (2003, p. 157, 158, table 4).
441	
442	Description of motile stage. Cell prolate, ovoidal, slightly longer than wide, with little
443	dorsoventral flattening; apical horn inconspicuous, shoulders weakly angular. Plates well
444	formed, strongly reticulate, except in sutural area where there is reduced or no
445	reticulation. Cingular plates reticulate, with pronounced rows of pores on margins; ridges
446	perpendicular to cingulum extend between pores on opposite margins.
447	Tabulation S-type gonyaulacacean: APC, 3', 2a, 6", 6c, s, 6""*, 1p, 1"". Apical
448	pore complex (APC) smooth, sometimes with low central ridge, its margin marked by
449	low ridge surrounded by low flange created by apical plates. First apical plate (1') narrow
450	bearing single row of pores; second apical plate (2') large, curves around dorsal surface
451	of apical horn to contact the first apical intercalary (1a); and third apical plate (3') small
452	and narrow and may be difficult to discern but usually separable by dissection or visible
453	under SEM. Plate 1a large, adjoins 3' and second anterior intercalary (2a), the latter
454	extending alongside 1' and marked at adapical boundary by ventral pore.

Page 21 of 47

Palynology

2		
3 4	455	Six precingular plates, 2" being widest, 6" approximately triangular.
5 6	456	Cingulum has six plates, is excavated, overhangs by 2 to 4 cingular widths, angle
7 8	457	of cingulum (angle made by intersection of line joining ends of cingulum with long axis
9 10 11	458	of cell) 20–29°, has a displacement of 2.5 to 4.0 cingular widths.
12 13	459	Sulcus excavated, extends to antapex, bears narrow sulcal lists; total number of
14 15	460	sulcal plates not fully determined owing to overlap and overhang of cingulum, but at
16 17 18	461	least five based on dissection of region. Posterior sulcal plate smooth with single row of
19 20	462	large pores around lateral and anterior margins. Anterior sulcal plate (as) elongate,
21 22	463	extends onto epitheca. Anterior sulcal region slightly widened.
23 24 25	464	Six postcingular homologs of which 1 ^{'''*} is narrow, may be ridged, consistently
26 27	465	has single row of pores. Posterior intercalary plate (ps) lies below 1""*, next to sulcus.
28 29	466	Single antapical plate (1""); antapical spines variably developed along suture between
30 31 32	467	1"* and ps. Cells may have two spines, or three to four small spines, one spine often
33 34	468	more prominent than the others; spines may be narrowly conical or may bear fins. Based
35 36	469	on Lewis et al. (1999; Fig. 4).
37 38	470	
39 40 41	471	Description of cyst . Spiniferate, the central body rounded to broadly ovoid with a <1.0
42 43	472	μ m two-layered wall, the inner layer thicker than the outer. No apical protuberance.
44 45	473	Outer surface of cyst microgranulate to microrugulate. Tabulation S-type sexiform
46 47 48	474	gonyalacoid with the formula APC, 4', 6", 6c, s, ps, 1p, 6""*, 1"", as indicated by sutural
49 50	475	septa and exclusively gonal processes; details of the apical plates and their contact (or
51 52	476	not) with the APC are not recorded. Sutural septa are often perforate, have smooth distal
53 54 55 56	477	crests, and are variable in height although mostly low except at the antapex. The

2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22 24	
34	
35	
36	
37	
38	
39	
40	
-10 // 1	
41	
42	
43	
44	
45	
46	
47	
48	
⊿0	
77	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

1

478	archeopyle is formed by loss of the third precingular plate $(3'')$, operculum free.
479	Archeopyle slightly reduced with well defined angles. Cingulum inclined and offset by
480	one or two times its width; delineated by crests and gonal processes on both anterior and
481	posterior margins. Sulcus moderately wide. Sulcal tabulation supressed, usually only the
482	posterior plate (ps) well expressed. A prominent suturocavate extension marking the
483	boundary between plates 4""* and 1"" is characteristic. This extension is effectively two
484	antapical processes joined by an equally high septum along the 4""*/1"" boundary. Other
485	processes are usually solid with trifurcate tips bearing Y-shaped to recurved bifurcate
486	terminations. Proximal ends of processes may be perforate or fenestrate, with all
487	processes on a single cyst being of approximately similar length. Reduced septa and
488	processes may occur. Based on Lewis et al. (1999), Ellegaard et al. (2003), Mertens et al.
489	(2018), Van Nieuwenhove et al. (2020).
490	

491 Intraspecific variability. Lewis et al. (1999) reported considerable variation in process
492 length and variability for cysts produced in culture, with some cysts lacking processes
493 and others almost devoid of tabulation. Some of these variations were observed in wild
494 cysts obtained from sediments off Cornwall.

From a cyst identified morphologically as *Spiniferites membranaceus* collected
from surface sediment near Drogheda, Ireland, Ellegaard et al. (2003) established a
culture (strain UW398) that formed cysts. Despite normal initial cyst morphology and
genetic sequences, the resulting motile cells and cysts were found to differ significantly
in morphology from what is now the type material described by Lewis et al. (1999).

Page 23 of 47

1

Palynology

2	500	
4	500	For the motile cells, the thecal plates were difficult to discern and had a reduced
5 6 7	501	reticulate ornament comprising circular depressions, each surrounded by a rim and in
7 8 9	502	some cases with a pore at the centre. The cells usually had two spines on the posterior
10 11	503	sulcal rim, 2–4 μ m long, with one often more prominent. The suppression of a reticulate
12 13	504	ornamentation and the prominent circular depressions were found to be the
14 15 16	505	distinguishing characters of this strain, although Ellegaard et al. (2003) noted a tendency
17 18	506	towards similarly reduced reticulation in the type material (strain UW345) studied by
19 20	507	Lewis et al. (1999).
21 22	508	The cysts produced in culture did not have well developed processes or
23 24 25	509	significant expression of tabulation, and specimens illustrated by Ellegaard et al. (2003,
26 27	510	figs. 33–36) would not be assignable to the genus Spiniferites.
28 29	511	Ellegaard et al. (2003) considered the substantial morphological divergence of
30 31 32	512	strain UW345 to be an example of strong intraspecific variation for this species. While
33 34	513	this undoubtedly the case (see also Lewis et al. 1999), more research would be helpful to
35 36	514	establish the effects of laboratory culturing on the morphological development of both
37 38	515	cyst and motile stage.
39 40 41	516	
42 43	517	Dimensions of motile cell . Holotype: width 35 μ m (measured from Lewis et al. 1999,
44 45	518	fig. 18). Range: length 30–48 μ m, width 23–40 μ m, 40 specimens measured (Lewis et al.
46 47 48	519	1999); length 31–37 μ m, width 25–30 μ m, 40 specimens measured (Ellegaard et al.
49 50	520	2003).
51 52 53 54 55 56 57	521	
58 59 60		URL: http://mc.manuscriptcentral.com/tpal

Page 24 of 47

2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
20	
30	
37	
38	
39	
40	
41	
42	
/3	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52 52	
53	
54	
55	
56	
57	
58	
50	
29	
60	

1

522 Dimensions of cyst. Length 41–54 μm, width 37–50 μm, 24 specimens measured (Lewis
523 et al. 1999); diameter 28–35 μm, 10 specimens measured (Ellegaard et al. 2003).
524
525 Gene sequences. NCBI GenBank accession numbers are as follows: AY154961 for strain

526 UW413 (and UW414), AY154965 for strain UW398 (table 3 in Ellegaard et al. 2003).527

Remarks. The holotype here designated (Lewis et al. 1999, fig. 18) is an illustration of one of numerous motile cells reared from laboratory culturing of individual cysts. These cysts were collected from surface sediments of Cornwall and southwest North Sea. It is not known whether the illustrated specimens (Lewis et al. 1999, figs. 13–19) are from the same culture or several cultures raised from different cysts. Accordingly, a single illustration is selected as the holotype.

The intraspecific variability for both the motile stage and cyst is described by Lewis et al. (1999) and Ellegaard et al. (2003). *Spiniferites membranaceus* is discussed by Mertens et al. (2018), Gurdebeke et al. (2018), and Van Nieuwenhove et al. (2020).

537 538

539 cysts collected off southwestern England and southwestern North Sea (Lewis et al. 1999)

Modern distribution. The motile stage is presently known only from the germination of

and from near Drogheda, Ireland (Ellegaard et al. 2003). The cyst, under the name

541 *Spiniferites membranaceus*, is a common Quaternary species distributed mostly in low to

542 middle latitudes (de Vernal et al. 2020).

543

544

1 2		
3 4	545	Genus Spiniferites Mantell 1850, emend. Sarjeant 1970
5 6	546	
7 8 0	547	Type. The lectotype of the fossil species Spiniferites ramosus (Ehrenberg 1837) Mantell
9 10 11	548	1854. Holotype not designated by Ehrenberg. Lectotype designated by Davey and
12 13	549	Williams (1966) as Ehrenberg, 1837, pl. 1, fig. 15. Upper Cretaceous.
14 15	550	
16 17 18	551	Nomenclatural status. A fossil-genus.
19 20	552	
21 22	553	Comments. A large genus presently containing at least 112 species (Fensome et al.
23 24 25	554	2019) of which only ~16 are presently considered extant.
25 26 27	555	
28 29	556	
30 31	557	Spiniferites elongatus Reid 1974, emend. Van Nieuwenhove et al. 2018
32 33 34	558	Plate 1
35 36	559	
37 38	560	Basionym. Spiniferites elongatus Reid 1974 in Nova Hedwigia 25, 602–603, pl. 3, figs.
39 40 41	561	23-24; emend. Van Nieuwenhove et al. 2018 in Palynology: 42(S1), 126-128.
42 43	562	
44 45	563	Synonymy.
46 47	564	= Spiniferites ellipsoideus Matsuoka 1983 in Palaeontographica, Abteilung B 187: 132-
48 49 50	565	133, pl. 13, figs. 6a-b, 7a-b; according to Gurdebeke et al. (2018, p. 98), Mertens et
51 52 53 54 55	566	al. (2018, p. 21), and Van Nieuwenhove et al. (2018, p. 126).
56 57 58 59 60		URL: http://mc.manuscriptcentral.com/tpal

2		
3 4	567	= Spiniferites frigidus Harland and Reid in Harland et al. 1980 in Grana 19: 213–216,
5 6	568	figs. 2A–J, text-fig. 3; according to Mertens et al. (2018, p. 21) and Van Nieuwenhove
7 8	569	et al. (2018, p. 126, 132).
9 10 11	570	= Rottnestia amphicavata Dobell and Norris in Harland et al. 1980 in Grana 19: 218–220,
12 13	571	text-figs. 4A–N, 5–7; according to Mertens et al. (2018, p. 21) and Van Nieuwenhove
14 15	572	et al. (2018, p. 126, 132).
16 17 18	573	
19 20	574	Equivalent non-fossil species. Gonyaulax ovum (Gaarder 1954) n. comb., emend.
21 22	575	
23 24 25	576	Holotype. Reid (1974, p. 602–603, pl. 3, figs. 23–24). From modern sediment.
25 26 27	577	
28 29	578	Type locality. Estuary of the River Ythan, northeastern Scotland (Reid 1974).
30 31	579	
32 33 34	580	
35 36	581	Spiniferites elongatus Reid 1974, emend. Van Nieuwenhove et al. 2018, forma frigidus
37 38	582	(Harland and Reid in Harland et al. 1980) n. stat.
39 40 41	583	
42 43	584	Basionym. Spiniferites frigidus Harland and Reid in Harland et al. 1980 in Grana 19:
44 45	585	213–216, figs. 2A–J, text-fig. 3.
46 47 48	586	
48 49 50	587	Synonymy.
51 52		
53 54		
55		
56		
57 58		
59		26
60		URL: http://mc.manuscriptcentral.com/tpal

Palynology

2		
3 4	588	<i>≡ Rottnestia amphicavata</i> Dobell and Norris in Harland et al. 1980 in Grana 19: 218–220,
5 6	589	text-figs. 4A–N, 5–7; according to Mertens et al. (2018, p. 21) and Van Nieuwenhove
7 8	590	et al. (2018, p. 126, 132).
9 10 11	591	
12 13	592	Holotype. Harland et al. 1980, figs. 2G–J, text-fig. 3. From modern sediment.
14 15	593	
16 17	594	Type locality. Southern Beaufort Sea, Mackenzie Delta offshore region of northern
18 19 20	595	Canada.
21 22	596	
23 24	597	Comments on nomenclature. In synonymising Spiniferites frigidus (and Rottnestia
25 26 27	598	amphicavata) with Spiniferites elongatus, Van Nieuwenhove et al. (2018) noted that
27 28 29	599	Spiniferites frigidus represents an end member in which the hypocyst is exceptionally
30 31	600	suturocavate (Plate 1, fig. 9–12). These authors recommended that specimens assignable
32 33	601	to Spiniferites frigidus be referred to as the "Beaufort" morphotype of Spiniferites
34 35 36	602	elongatus. We here use a formal approach, and name it as Spiniferites elongatus forma
37 38	603	frigidus n. stat. to distiguish from other morphotypes including that represented by the
39 40	604	holotype, now Spiniferites elongatus forma elongatus (autonym).
41 42 43	605	Although genetic sequencing shows no significant differences between
43 44 45	606	morphotypes (Van Nieuwenhove et al. 2018), it is not presently known whether all
46 47	607	morphotypes now attributed to Spiniferites elongatus have the same stratigraphic ranges.
48 49	608	In the Bering Sea, Spiniferites elongatus forma frigidus has a lowest recorded occurrence
50 51 52	609	in the Upper Miocene (as Spiniferites frigidus in Matsuoka and Bujak 1988) whereas the
52 53 54	610	morphotype formerly assigned to <i>Spiniferites ellipsoideus</i> possibly ranges into the Lower
55 56		
57 58		

Miocene (Van Nieuwenhove et al. 2018 and references therein). This leaves open the

question of whether the earliest records of Spiniferites elongatus s.l. are genetically the

same as modern populations, which are characterised by a high degree of morphological

Spiniferites membranaceus (Rossignol 1974) Sarjeant 1970

Plate 2

Basionym. Hystrichosphaera furcata var. membranacea Rossignol 1974 in Revue de

= Hystrichosphaera ramosa var. membranacea (Rossignol 1964) Davey and Williams

= *Hystrichosphaera membranacea* (Rossignol 1964) Wall 1967, p. 102.

= Spiniferites membranaceus (Rossignol 1964) Sarjeant 1970, p. 76.

Equivalent non-fossil species. Gonyaulax lewisiae n. sp.

micropaléontologie 7, 86, pl. 1, figs. 4, 9-10; pl. 3, figs. 7, 12.

2	
3	
4	
5	
6	
7	
8	
Q	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
3/	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
18	
40	
49 E0	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

60

variability.

Synonymy.

1966b, p. 37.

(Rossignol 1964).

Holotype. Rossignol 1964, pl. 1, figs. 4, 9–10. Pleistocene or Holocene sediments

Palynology

2 3 4	634	Type locality. Ashkelon borehole St. 39D, coastal plain, Israel.
5 6	635	
7 8	636	
9 10 11	637	5. Summary
12 13	638	
14 15	639	We have considered in detail the cyst-defined extant fossil-species Spiniferites elongatus
16 17	640	and Spiniferites membranaceus, reported frequently from late Cenozoic deposits, using a
18 19 20	641	dual nomenclatural approach.
21 22	642	Ellegaard et al. (2003) incubated cysts that they had assigned to Spiniferites
23 24	643	elongatus and discovered that the emergent motile stage had not been described
25 26 27	644	previously. They emended this species to incorporate features of the motile stage and
28 29	645	transferred it to the non-fossil genus Gonyaulax, as Gonyaulax elongata. Our approach
30 31	646	retains the name Spiniferites elongatus so that it may be applied exclusively to the cysts
32 33	647	and their fossil record, as originally intended. Meanwhile, the name Pterosperma ovum
34 35 36	648	refers to an organism now recognised as the cyst of Spiniferites elongatus but was
37 38	649	collected from the plankton and is clearly a non-fossil. We transfer the species
39 40	650	Pterosperma ovum to the genus Gonyaulax, as Gonyaulax ovum, and emend this species
41 42 43	651	to incorporate the description of Ellegaard et al. (2003) for the motile stage of their
44 45	652	Gonyaulax elongata. This provides an equivalent non-fossil name for Spiniferites
46 47	653	elongatus in accordance with the practice of dual nomenclature, even though both
48 49 50	654	species are typified by a cyst.
50 51 52	655	Van Nieuwenhove et al. (2018) broadened the circumscription of Spiniferites
53 54 55 56 57	656	elongatus to include a wide range of morphotypes including that initially described as

2		
3 4	657	Spiniferites frigidus and which these authors named the "Beaufort morphotype". We
5 6	658	propose the formal name Spiniferites elongatus forma frigidus n. stat. for this distinctive
7 8	659	morphotype with extreme suturocavation on the hypocyst.
9 10 11	660	Lewis et al. (1999) incubated and obtained cultures from cysts assignable to
12 13	661	Spiniferites membranaceus and recorded a distinctive motile stage. Further incubation
14 15	662	and culturing studies by Ellegaard et al. (2003) allowed details of the morphology to be
16 17 19	663	added, along with molecular phylogenetic analysis. Rather than describe this as a new
18 19 20	664	non-fossil species, Ellegaard et al. (2003) chose to emend Spiniferites membranaceus to
21 22	665	include characteristics of the motile stage and transfer the species to Gonyaulax, as
23 24	666	Gonyaulax membranacea. The approach taken here is to sustain the combination
25 26 27	667	Spiniferites membranaceus for the fossil cysts and to establish Gonyaulax lewisiae n. sp.
27 28 29	668	as the equivalent non-fossil species.
30 31	669	
32 33	670	
34 35	(71	
36	6/1	Acknowledgements
37 38	672	
39 40	(7)	
40 41	6/3	We are most grateful to N. Van Nieuwenhove for providing photos of <i>Spiniferites</i>
42 43	674	elongatus (Plate 1, figs. 1-4). MJH acknowledges support from a Natural Sciences and
44 45	675	Engineering Research Council of Canada Discovery Grant. This is NRCan contribution
46 47	676	number xxxxxxx. KNM acknowledges support from the PHENOMAP project, funded by
48 49 50	677	French National Research Agency (ANR) under grant ANR-20-CE02-0025.
51	678	
52 53	0/0	
54	679	
55		
56 57		
58		
59		30

60

1

URL: http://mc.manuscriptcentral.com/tpal

1		
2 3	680	
4 5	000	
6 7	681	
7 8 9	682	Disclosure statement
10 11	683	
12 13	684	No potential conflict of interest was reported by the authors.
14 15 16	685	
17 18	686	
19 20	687	Notes on contributors
21 22 23	688	
24 25	689	MARTIN J. HEAD is a professor of Earth Sciences at Brock University. His interests are
26 27	690	in late Cenozoic marine palynology, and particularly the late Neogene-Quaternary
28 29 30	691	record of dinoflagellate cysts and acritarchs and their application to paleoenvironmental
31 32	692	reconstruction. He is also interested in formal chronostratigraphy including that of the
33 34	693	Quaternary Period, and is currently involved in efforts to formalize the Anthropocene.
35 36 27	694	He is a former president of AASP – The Palynological Society and of the Canadian
37 38 39	695	Association of Palynologists.
40 41	696	
42 43	697	KENNETH NEIL MERTENS is a researcher at Ifremer, LER BO, Concarneau, France.
44 45 46	698	He received his Ph.D. in 2009 from Ghent University. His research interests are the
47 48	699	taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the
49 50	700	palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary
51 52 53	701	and Neogene.
55 54 55 56 57	702	
58 59 60		URL: http://mc.manuscriptcentral.com/tpal
00		there are a set of the

2	
R	
2	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
11	
12	
13	
14	
15	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
25	
35	
36	
37	
38	
20	
39	
40	
41	
42	
/2 /2	
45	
44	
45	
46	
10	
4/	
48	
49	
50	
£1	
10	
52	
53	
54	
54	
55	
56	
57	
58	
50	
59	
60	

1

703	ROBERT A. FENSOME is a research scientist with the Geological Survey of Canada
704	(GSC), part of the federal department of Natural Resources Canada, in their Atlantic
705	Division at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia. During his
706	39-year tenure at the GSC, Rob has focussed mainly on Mesozoic and Cenozoic
707	dinoflagellate cysts from offshore eastern Canada, but recently ventured into projects
708	involving assemblages from north-western and Arctic Canada. While his mandate has
709	involved primarily biostratigraphical and palaeoenvironmental studies, he also has a
710	strong interest in dinoflagellate taxonomy and evolution, miospore taxonomy and
711	geological outreach, co-authoring and co-editing two books for a general audience, one
712	on the geology of Canada and one on the geology of Canada's Maritime Provinces.
713	
714	
715	References
716	
717	Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta, JR, Bowser
718	SS, Brugerolle G, Fensome RA, Fredericq S, et al. 2005. The new higher level
719	classification of eukaryotes with emphasis on the taxonomy of protists. Journal of
720	Eukaryotic Microbiology. 52:399–451.
721	
722	Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown
723	MW, Burki F, et al. 2019. Revisions to the classification, nomenclature, and diversity of
724	eukaryotes. Journal of Eukaryotic Microbiology. 66:4-119.
725	

Page 33 of 47

Palynology

1 ว		
2 3 4	726	Bujak JP. 1980. V. Dinoflagellate cysts and acritarchs from the Eocene Barton Beds of
5 6	727	southern England. In: Bujak JP, Downie C, Eaton GL, Williams GL. Dinoflagellate cysts
7 8 9	728	and acritarchs from the Eocene of southern England. Special Papers in Palaeontology.
10 11	729	24:36–91.
12 13	730	
14 15 16	731	Bütschli O. 1885. Dinoflagellata. In: Abtheilung II Mastigophora Bronn HG (editor),
17 18	732	Protozoa. Die Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in
19 20 21	733	Wort und Bild. CF Winter'sche Verlagshandlung, Leipzig. Heidelberg, p. 906–1029.
21 22 23	734	
24 25	735	Chadefaud, M. 1950. Les cellules nageuses des algues dans l'embranchement des
26 27	736	Chromophycées. Comptes rendus hebdomadaires des séances de l'Académie des
28 29 20	737	Sciences. 231:788–790.
30 31 32	738	
33 34	739	Claparède E, Lachmann, J. 1859. Études sur les infusoires et les rhizopodes. Institut
35 36 27	740	national génevois, Mémoires 6 (Mémoire 1):261–482. (Cover date 1858, issue date 1859,
37 38 39	741	according to Loeblich Jr. and Loeblich III, 1966.)
40 41	742	
42 43	743	Davey RJ, Williams GL. 1966. IV. The genera Hystrichosphaera and Achomosphaera.
44 45 46	744	In: Davey RJ, Downie C, Sarjeant WAS, Williams GL, Studies on Mesozoic and
47 48	745	Cainozoic dinoflagellate cysts. British Museum (Natural History) Geology, Bulletin,
49 50	746	Supplement. 3:28–52.
51 52 53	747	
55 54 55		
56 57		
58 59		URL: http://mc.manuscriptcentral.com/tpal
00		

1 ว		
2 3 4	748	Deflandre G. 1937. Microfossiles des silex crétacés. Deuxième partie. Flagellés incertae
5 6	749	sedis. Hystrichosphaeridés. Sarcodinés. Organismes divers. Annales de paléontologie.
/ 8 9	750	26:51–103 (al. 3–55), pl. 11–18 (al. pl. 8–15).
10 11	751	
12 13	752	de Vernal A, Radi T, Zaragosi S, Van Nieuwenhove N, Rochon A, Allan E, De Schepper
14 15 16	753	S, Eynaud F, Head MJ, Limoges A, Londeix L, Marret F, Matthiessen J, Penaud A,
17 18	754	Pospelova V, Price A, Richerol T. 2020. Distribution of common modern dinoflagellate
19 20	755	cyst taxa in surface sediments of the Northern Hemisphere in relation to environmental
21 22 23	756	parameters: The new n=1968 database. Marine Micropaleontology. 159:101796, 1-23.
24 25	757	
26 27	758	Diesing KM. 1866. Revision der Prothelminthen. Abtheilung: Mastigophoren.
28 29 30	759	Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-
31 32	760	naturwissenschaftliche Classe. Abt. I. 52:287-401.
33 34	761	
35 36 27	762	Dodge JD. 1989. Some revisions of the family Gonyaulacaceae (Dinophyceae) based on
37 38 39	763	a scanning electron microscope study. Botanica Marina. 32:275–298.
40 41	764	
42 43	765	Ehrenberg CG. 1837. Über das Massenverhältniss der jetzt lebenden Kiesel-Infusorien
44 45 46	766	und über ein neues Infusorien-Conglomerat als Polirschiefer von Jastraba in Ungarn.
47 48	767	Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, aus dem Jahre
49 50	768	1836, Physikalische Klasse, p. 109–135, pl. 1–2. [Published in the journal in 1838, but as
51 52 53	769	a separate in December 1837].
55 54 55	770	
56 57		
58 59		34

60

Page 35 of 47

Palynology

2				
3 4	771	Ellegaard M, Daugbjerg N, Rochon A, Lewis J, Harding I. 2003. Morphological and		
5 6	772	LSU rDNA sequence variation within the Gonyaulax spinifera-Spiniferites group		
/ 8	773	(Dinophyceae) and proposal of G. elongata comb. nov. and G. membranacea comb. nov	′.	
9 10 11	774	Phycologia. 42(2):151–164.		
12 13	775			
14 15	776	Ellegaard ME, Head MJ, Versteegh GJM. 2018. Linking biological and geological data		
16 17 19	777	on dinoflagellates using the genus Spiniferites as an example: the implications of species	3	
19 20	778	concepts, taxonomy and dual nomenclature. Palynology. 42(supplement 1):221-230.		
21 22	779			
23 24	780	Evitt WR. 1985. Sporopollenin dinoflagellate cysts: their morphology and interpretation	•	
25 26 27	781	American Association of Stratigraphic Palynologists, Monograph Series. 1, 333 p.		
28 29	782			
30 31	783	Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL. 1993. A		
32 33 34	784	classification of living and fossil dinoflagellates. Micropaleontology Special Publication	l.	
35 36	785	7:1–351.		
37 38	786			
39 40	787	Fensome RA, Williams GL, MacRae RA. 2019. The Lentin and Williams index of fossi	1	
41 42 43	788	dinoflagellates 2019 edition. AASP Contributions Series. 50:1-1173.		
44 45	789			
46 47	790	Gaarder KR. 1954. Coccolithineae, Silicoflagellatae, Pterospermaceae and other forms		
48 49 50	791	from the Michael Sars North Atlantic Deep-Sea Expedition 1910. Report on the		
50 51 52	792	Scientific Results of the "Michael Sars" North Atlantic Deep-Sea Expedition 1910,		
53 54	793	University of Bergen, John Grieg, Bergen 2(4):1–20 + Tabl. 1–5.		
55 56 57				
57 58 59			_	
60		URL: http://mc.manuscriptcentral.com/tpal 3	5	

2 3	794	
4 5 6	795	Gómez F. 2012. A checklist and classification of living dinoflagellates (Dinoflagellata,
7 8	796	Alveolata). CICIMAR Oceánides. 27(1):65–140.
9 10 11	797	
12 13	798	Gravendyck J, Fensome RA, Head MJ, Herendeen PS, Riding JB, Bachelier JB, Turland
14 15	799	NJ. 2021. Taxonomy and nomenclature in palaeopalynology: basic principles, current
16 17 18	800	challenges and future perspectives. Palynology. 45(4):717-743.
19 20	801	
21 22	802	Gurdebeke PR, Mertens KN, Bogus K, Marret F, Chomérat N, Vrielinck H, Louwye S.
23 24 25	803	2018. Taxonomic re-investigation and geochemical characterization of Reid's (1974)
26 27	804	species of Spiniferites from holotype and topotype material. Palynology. 42, supplement
28 29	805	1:93–110.
30 31 32	806	
33 34	807	Harland R, Reid PC, Dobell P, Norris G. 1980. Recent and sub-Recent dinoflagellate
35 36	808	cysts from the Beaufort Sea, Canadian Arctic. Grana. 19:211-225.
37 38 39	809	
40 41	810	Head MJ. 1996. Modern dinoflagellate cysts and their biological affinities. In: Jansonius
42 43	811	J, McGregor DC, editors. Palynology: principles and applications. American Association
44 45 46	812	of Stratigraphic Palynologists Foundation, Dallas, Texas, vol. 3, p. 1197–1248.
47 48	813	
49 50	814	Head MJ, Fensome RA, Herendeen PS, Skog JE. 2016. (315–319) Proposals to amend
51 52 53	815	Article 11.8 and its Examples to remove ambiguity in the sanctioning of dual
55 54 55		
56 57		
58 59 60		URL: http://mc.manuscriptcentral.com/tpal 36

1 2		
- 3 4	816	nomenclature for dinoflagellates, and an emendation of Article 11.7, Example 29. Taxon.
5 6	817	65:902–903.
7 8 9	818	
9 10 11	819	Head MJ, Mertens KN, Fensome RA, submitted. Dual nomenclature in organic-walled
12 13	820	dinoflagellate cysts I: concepts, methods and applications. Palynology.
14 15	821	
17 18	822	Kofoid CA. 1911. Dinoflagellata of the San Diego region, IV. The genus Gonyaulax,
19 20	823	with notes on its skeletal morphology and a discussion of its generic and specific
21 22	824	characters. University of California Publications in Zoology. 8:187-286.
23 24 25	825	
26 27	826	Lemmerman E. 1903. Das Phytoplankton des Meeres. II. Beitrag. Abhandlungen
28 29	827	herausgegeben vom Naturwissenschaftlichen Verein zu Bremen. 17, 341-418.
30 31	828	
32 33 34	829	Lewis J, Rochon A, Harding I. 1999. Preliminary observations of cyst-theca relationships
35 36	830	in Spiniferites ramosus and Spiniferites membranaceus (Dinophyceae). Grana. 38:113-
37 38	831	124.
39 40 41	832	
42 43	833	Lewis J, Rochon A, Ellegaard M, Mudie P, Harding I. 2001. The cyst-theca relationship
44 45	834	of Bitectatodinium tepikiense (Dinophyceae). European Journal of Phycology. 36:137-
46 47 48	835	146.
49 50	836	
51 52	837	Lindemann E. 1928. Abteilung Peridineae (Dinoflagellatae). In: Engler, A, editor. Die
53 54 55 56	838	natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere
57 58 59 60		URL: http://mc.manuscriptcentral.com/tpal
~~		

2		
3	839	den Nutzpflanzen. Zweite stark vermehrte verbesserte Auflage Band. 2. Verlag Wilhelm
5 6 7	840	Engelmann, Leipzig, p. 3–104.
7 8 9	841	
10 11	842	Lohmann H. 1904. Eier und sogenannte Cysten der Plankton-Expedition. Anhang:
12 13	843	Cyphonautes. In: Ergebnisse der Plankton-Expedition der Humboldt-Stiftung. Band 4 N.
14 15	844	Lipsius and Tischer, Kiel and Leipzig.
16 17 18	845	
19 20	846	Mantell GA. 1854. The Medals of Creation; or, First Lessons in Geology and the Study
21 22	847	of Organic Remains; Second Edition. 930 p., 6 pl. (in two volumes); Henry G. Bohn,
23 24 25	848	London, U.K.
25 26 27	849	
28 29	850	Matsuoka K. 1983. Late Cenozoic dinoflagellates and acritarchs in the Niigata district,
30 31	851	central Japan. Palaeontographica, Abteilung B. 187:89–154, pl. 1–15.
32 33 34	852	
35 36	853	Matsuoka K, Bujak JP. 1988. Cenozoic dinoflagellate cysts from the Navarin Basin,
37 38	854	Norton Sound and St. George Basin, Bering Sea. Bulletin of the Faculty of Liberal Arts,
39 40 41	855	Nagasaki University, Natural Science. 29 (1):1-147.
42 43	856	
44 45	857	Matzenauer L. 1933. Die Dinoflagellaten des Indischen Ozeans. Botanisches Archiv.
46 47 48	858	35(4):437–510.
49 50	859	
51 52	860	Mertens KN, Carbonell-Moore C. 2018. Introduction to Spiniferites Mantell 1850 special
53 54	861	issue. Palynology. 42(S1):1-9.
56 57		
58 59		20

Palynology

2 3 4	862	
- 5 6	863	Mertens KN, Van Nieuwenhove N, Gurdebeke PR, Aydin H, Bogus K, Bringué M, Dale
7 8	864	B, De Schepper S, de Vernal A, Ellegaard M, Grothe A, Gu H, Head MJ, Heikkilä M,
9 10 11 12 13 14 15 16 17	865	Limoges A, Londeix L, Louwye S, Marret F, Masure E, Matsuoka K, Mudie PJ, Penaud
	866	A, Pospelova V, Price AM, Ribeiro S, Rochon A, Sangiorgi F, Schreck M, Torres V,
	867	Uzar S, Versteegh GJM, Warny S, Zonneveld K. 2018. The dinoflagellate cyst genera
	868	Achomosphaera Evitt 1963 and Spiniferites Mantell 1850 in Pliocene to modern
18 19 20	869	sediments: a summary of round table discussions. Palynology. 42: supplement 1:10-44.
21 22	870	
23 24	871	Parke M, Boalch GT, Jowett R, Harbour DS. 1978. The genus Pterosperma
25 26 27 28 29	872	(Prasinophyceae): species with a single equatorial ala. Journal of the Marine Biological
	873	Association, U.K. 58:239-276.
30 31	874	
32 33 34 35 36	875	Pascher A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen
	876	Gesellschaft. 32(2):136–160.
37 38	877	
39 40 41	878	Pouchet G. 1894. Histoire naturelle. In: Voyage de "La Manche" a l'Ile Jan Mayen et au
42 43	879	Spitzberg (juillet-août 1892). Nouvelles Archives des Missions Scientifiques et
44 45	880	Littéraires. 5(10):155–217.
46 47 48	881	
48 49 50 51 52	882	Reid PC. 1974. Gonyaulacacean dinoflagellate cysts from the British Isles. Nova
	883	Hedwigia. 25:579–637.
53 54 55	884	
56 57		
58 59 60		URL: http://mc.manuscriptcentral.com/tpal 39
00		a contract of the second se

3 4	885	Rossignol M. 1964. Hystrichosphères du Quaternaire en Méditerranée orientale, dans les			
5 6	886	sédiments Pléistocènes et les boues marines actuelles. Revue de micropaléontologie.			
7 8 0	887	7:83–99.			
9 10 11	888				
12 13	889	Sarjeant WAS. 1970. The genus Spiniferites Mantell, 1850 (Dinophyceae). Grana.			
14 15	890	10:74–78.			
16 17 19	891				
19 20	892	Taylor FJR. 1980. On dinoflagellate evolution. BioSystems. 13:65-108.			
21 22	893				
23 24 25	894	Van Nieuwenhove N, Potvin É, Heikkilä M, Pospelova V, Mertens KN, Masure E,			
25 26 27	895	Kucharska M, Eun Jin Yang, Chomérat N, Zajaczkowski M. 2018. Taxonomic revision			
28 29	896	of Spiniferites elongatus (the resting stage of Gonyaulax elongata) based on			
30 31	897	morphological and molecular analyses. Palynology. 42, S1:111-134.			
32 33 34	898				
35 36	899	Van Nieuwenhove N, Head MJ, Limoges A, Pospelova V, Mertens KN, Matthiessen J,			
37 38	900	De Schepper S, de Vernal A, Eynaud F, Londeix L, Marret F, Peynaud A, Radi T,			
39 40 41	901	Rochon A. 2020. An overview and brief description of common marine organic-walled			
42 43	902	dinoflagellate cyst taxa occurring in surface sediments of the Northern Hemisphere.			
44 45	903	Marine Micropaleontology. 159:101814:1-46.			
46 47	904				
48 49 50	905	Wall D, Dale B. 1968. Modern dinoflagellate cysts and evolution of the Peridiniales.			
51 52	906	Micropaleontology. 14:265-304.			
53 54 55 56 57 58	907				

Palynology

2
2
2
4
5
6
7
/
8
9
10
10
11
12
13
11
14
15
16
17
10
10
19
20
21
21
22
23
24
25
20
20
27
28
20
29
30
31
32
22
22
34
35
36
27
57
38
39
40
лл Л1
41
42
43
44
15
43
46
47
48
10
49
50
51
52
52
53
54
55
56
50
<u>م</u>

58 59

908	Zonneveld KAF, Marret F, Versteegh GJM, Bogus K, Bonnet S, Bouimetarhan I, Crouch
909	E, de Vernal A, Elshanawany R, Edwards L, Esper O, Forke S, Grøsfjeld K, Henry M,
910	Holzwarth U, Kielt J-F, Kim S-Y, Ladouceur S, Ledu D, Chen L, Limoges A, Londeix
911	L, Lu SH, Mahmoud MS, Marino G, Matsouka K [sic], Matthiessen J, Mildenhal DC
912	[sic], Mudie P, Neil HL, Pospelova V, Qi Y, Radi T, Richerol T, Rochon A, Sangiorgi F,
913	Solignac S, Turon J-L, Verleye T, Wang Y, Wang Z, Young M. 2013. Atlas of modern
914	dinoflagellate cyst distribution based on 2405 data points. Review of Palaeobotany and
915	Palynology. 191:1–197.
916	
917	Plate captions
918	

Plate 1. *Spiniferites elongatus* Reid 1974; 1–4 *Spiniferites elongatus* s.l., ventral view at
high to low foci; upper Quaternary of the Iceland Plateau, core DANA12-11/2-GC01;
central body length 48 µm (from plate 13, figs. 1, 3–5 of Van Nieuwenhove et al., 2020;
photos by Nicolas Van Nieuwenhove). 5–8 *Spiniferites elongatus* forma *elongatus*(autonym), dorsal view at high to low foci; Holocene of the continental slope off Nova
Scotia, core MD2033, 395–396 cm, slide 2, H50/2; central body length 59 µm (photos by
MJH). 9–12 *Spiniferites elongatus* forma *frigidus* n. stat., right lateroventral view at high

Palynology

- 927 to low foci; Holocene of the continental slope off Nova Scotia, core MD2033, 215–216
 - 928 cm, slide 5, D45/1; central body length 50 μm (photos by MJH).

Plate 2. *Spiniferites membranaceus* (Rossignol 1964) Sarjeant 1970 from Quaternary
sediments off Portugal. 1–3 dorsal view at high to low focus, central body length 31 μm.

- 4-6 ventral view of a different specimen at high to low focus, central body length $32 \ \mu m$.
- From plate 15, figs. 1–6 of Van Nieuwenhove et al. (2020). Photos by KNM.

- 937 Figure captions

Page 45 of 47

Palynology

Figure 2. Schematic drawing of motile cell of Gonyaulax ovum (Gaarder 1954) n. comb., emend. showing details of tabulation on the motile cell. A, ventral view, B, apical view, and C, antapical view with dashed line indicating the position and maximum extent of antapical flanges (lists). Modified kofoidian plate labeling includes: APC = apical pore complex, vp = ventral pore; and sulcal plates, as = anterior, rs = right, ls = left, ps = posterior. The first postcingular homolog (1'''*) is designated as such because it lies within the sulcus. Plate overlap direction is indicated by green arrowheads. Modified from figs. 1-3 of Ellegaard et al. (2003), as Gonyaulax elongata.

Figure 3. The types of Pterosperma rotondum Pouchet 1894 and Pterosperma ovatum

Pouchet 1894 (now Trochiscia ovata) reproduced from Pouchet 1894, fig. 18a and fig.

18b respectively. Pterosperma ovatum bears superficially resemblance to Spiniferites

2c

2"

1″

1c

В

6‴*

5‴*

B

Fig. 18.

A. Pterosperma rotondum Pouchet.

- B. P. ovatum Pouchet.

elongatus. No scale was given by Pouchet (1894).

3c

APC

2a °

6'

6c

2'

A

963

964

965

966

967

968

969

970

971

А

40

4"

5c

3"

1a

vp

5″

5	9	
6	0	

I IRI • htt	n·//mc mar	huscrintcen	tral.com/tnal
UNL. HU	.p.//mc.mai	iuscriptceri	tial.com/tpai

46

2‴'

3‴*

1p

1‴

4‴*

Figure 4. Gonyaulax lewisiae n. sp. showing details of tabulation on the motile cell. 1,

extent of antapical flanges (lists). Modified kofoidian plate labeling includes: APC =

designated as such because it lies within the sucus. From fig. 20c, 20d of Lewis et al.

apical pore complex, vp = ventral pore. The first postcingular homolog (*1") is

(1999), as Spiniferites membranaceus motile cells.

apical view, and 2, antapical view with dashed line indicating the position and maximum

1	
2 3 4	972
5 6	973
7 8	974
9 10 11	975
12 13	976
14 15	977
16 17 18	978
19 20	
21 22	
23 24 25	
26 27	
28 29	
30 31	
32 33	
34 35 26	
36 37	
38 39	
40 41 42	
42 43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	

59