Dual nomenclature in organic-walled dinoflagellate cysts I: concepts, methods and applications

Head Martin J. ^{1, *}, Mertens Kenneth ², Fensome Robert A. ³

¹ Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada

² Ifremer, LITTORAL, F-29900 Concarneau, France

³ Natural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

* Corresponding author : Martin J. Head, email address : mjhead@brocku.ca

Abstract :

Dual nomenclature in dinoflagellates is supported under the current nomenclatural code for algae, fungi and plants and allows a fossil-defined (usually cyst) species to bear a name other than that of its equivalent non-fossil species, as established for example by incubation experiments. Two names can then apply to the same cyst morphotype, reflecting the separate concepts and criteria used for fossil- and non-fossil taxa. Fossil-species are normally and logically assigned to fossil-genera and non-fossil species to non-fossil genera, a practice that facilitates dual nomenclature. Inconsistencies and ambiguities arise when binomials combine the names of fossil- with non-fossil taxa. Examples of this hybridized nomenclature and its consequences are examined, with problems identified and potential solutions discussed. Accordingly, a new non-fossil genus Lingulaulax is proposed with Lingulaulax polyedra (von Stein 1883) comb. nov. as its type and equivalent to the fossil-species Lingulodinium machaerophorum (Deflandre and Cookson 1955) Wall 1967, along with the new combination Lingulaulax milneri (Murray and Whitting 1899); the genus Lingulodinium Wall 1967 is retained in its exclusively fossil status. The non-fossil name Gonyaulax ellegaardiae Mertens et al. 2015 is validly published herein

Keywords : Dinocyst, taxonomy, dual nomenclature, hybridized names, Lingulodinium, Lingulaulax

1. Introduction

- 43 Separate taxonomic and nomenclatural traditions have arisen independently among
- 44 paleontologists studying fossils and biologists examining the entire life cycle. A fossil-
- 45 species has a holotype that is a fossil, and a non-fossil species has a holotype that is not a
- 46 fossil (Gravendyck et al. 2021). When a named fossil-species is linked, usually by

Page 3 of 108

1

Palynology

2			
3			
4			
5			
6			
7			
, α			
0 0			
9	~		
1	0		
1	1		
1	2		
1	3		
1	4		
1	5		
1	6		
1	7		
1	8		
1	ģ		
י כ	0 0		
∠ ว	1		
2 7	ו ר		
2	2		
2	3		
2	4		
2	5		
2	6		
2	7		
2	8		
2	9		
3	0		
3	1		
3	ว		
2 2	<u>ר</u>		
כ כ	ך ע		
כ ר	4 7		
3	2		
3	6		
3	/		
3	8		
3	9		
4	0		
4	1		
4	2		
4	3		
4	4		
4	5		
4	6		
۲ ۵	7		
т Л	, Q		
+ 1	0 0		
4 5	2		
5 -	0		
5	1		
5	2		
5	3		
5	4		
5	5		
5	6		
5	7		
5	8		
5	a		
2	9		

60

47 germination studies, to a named species defined using non-fossil (living) material, then 48 two names are available for the same cyst morphotype; no formal rules determine which 49 of these name is used. This is dual nomenclature. The International Code of 50 Nomenclature for algae, fungi and plants (ICN, Turland et al. 2018), which governs the 51 naming of dinoflagellate taxa, allows fossil- and non-fossil taxa to have separate names 52 even when they are subsequently demonstrated to be linked (see Section 3 below). The 53 ICN therefore sanctions the use of dual nomenclature. 54 The confirmed fossil record of dinoflagellates (division Dinophyta) extends back 55 to the Middle or Late Triassic (e.g. Mangerud et al. 2019) and has been studied 56 extensively (e.g. Stover et al. 1996). This record is based almost exclusively on the cyst 57 stage of the life cycle, as the motile stage rarely preserves (Head 1996). For most species 58 with a fossil record, the cysts are organic-walled and appear in palynological 59 preparations. This article primarily addresses formally named dinoflagellate taxa that 60 produce organic-walled cysts, although many aspects will be relevant also to 61 dinoflagellate cysts with calcareous walls. 62 Downie et al. (1961) proposed that all dinoflagellates should be treated under the 63 botanical code (now the ICN) rather than the International Code of Zoological 64 Nomenclature (ICZN, Ride et al. 2020) to promote stability and consistency, but also 65 because the botanical code, unlike the ICZN, provides for the use distinct fossil taxa (the 66 successor to "form-genera" as referenced by Downie et al. 1961; see Subsection 3.1

- below) which allows the use of dual nomenclature. Presently, all fossil dinoflagellate cyst
- 68 researchers and nearly all biologists treat dinoflagellates under this code. Nonetheless,
- 69 because dinoflagellates as a group include heterotrophs, mixotrophs, symbionts and

70	parasites as well as phototrophs (e.g. Schnepf and Elbrächter, 1992), some biologists (e.g.
71	Balech 1944 et seq., see Head 1996, p. 1227; Coats et al. 2012, p. 4; Choi et al. 2021)
72	have treated dinoflagellates as protozoans and hence named them under the ICZN. Names
73	"available" (validly published) under the ICZN are automatically accepted as validly
74	published when treated under the ICN (Art. 45), where dual nomenclature then applies.
75	The ICZN recognizes only those names treated as "as animals for the purpose of
76	nomenclature" (ICZN Art. 1.1.1). Notably, the ICN requires that the code used by the
77	author be "determined through internal evidence, irrespective of any claim by the author
78	as to the group of organisms to which the taxon is assigned" (Art. 45.1). Evidence of
79	using the ICZN would include the suffixes chosen for suprageneric names (e.g. "-ida" or
80	"-idae" for familial names in the ICZN, rather than "-aceae" under the ICN) and the
81	application of stem augmentation for specific and subspecific epithets (e.g. the specific
82	epithet tregouboffi, rather than tregouboffii under the ICN). We propose in the interests of
83	nomenclatural stability (see Head, 1996, p. 1227 for further discussion) that such internal
84	evidence extend to the absence of a Latin diagnosis as this has never been required under
85	the ICZN. For example, on this basis we accept that Halim (1960) described the
86	important non-fossil genus Alexandrium and its holotype species Alexandrium minutum
87	under the ICZN, contrary to the views of Woelkerling and Moestrup (2022, but see also
88	McNeill 2023), and is therefore validly published under the ICN. The nomenclatural
89	status of <i>Alexandrium</i> is discussed in Table 1.
90	Fossil-defined names are typically used by those who work primarily with the
91	cyst stage, for example in biostratigraphic age determinations, in documenting the
92	geographic distributions of modern cysts, or in helping to interpret past environmental

Page 5 of 108

60

Palynology

1 2		
2 3 4	93	conditions, including climate. Non-fossil-defined names are used mainly by biologists,
5 6	94	who may have access to all stages of the life cycle and who have in the past mostly
/ 8 9	95	focused on the motile stage(s). There is an understandable desire to integrate these two
) 10 11	96	taxonomic and nomenclatural systems, allowing information to flow more freely between
12 13	97	biological and geological realms (Ellegaard et al. 2018). However, the inevitable
14 15 16	98	problems with unifying this nomenclature (at least at generic and lower rank; Fensome et
10 17 18	99	al. 1993) have been long anticipated (e.g. Downie et al. 1961; Evitt and Davidson 1964,
19 20	100	p. 10-11; Evitt 1970, p. 38; Reid 1974; Dale 1983), and attempts to effect unification
21 22	101	(e.g. Harland 1982) have not been widely adopted.
23 24 25	102	In this article we evaluate the provisions of the ICN that support dual
26 27	103	nomenclature and investigate the origins of this duality. We then assess the practical
28 29	104	difficulties of unification and explore inconsistencies in nomenclature when binomials
30 31 22	105	are created that combine the names of fossil- with non-fossil taxa (Table 2).
32 33 34	106	Recommendations using dual nomenclature are offered to resolve ambiguities introduced
35 36	107	by these hybridized names, and a solution is provided regarding the fossil-genus
37 38	108	Lingulodinium Wall 1967 emend. Wall and Dale in Wall et al. 1973, which presently
39 40 41	109	contains both non-fossil and fossil-species. Full authorial attributions of taxonomic
42 43	110	names cited in the text are listed in Table 1. The ICN (Turland et al. 2018) includes a
44 45	111	glossary of nomenclatural terms, and Turland (2019) also contains helpful definitions.
46 47 48	112	For definitions of morphological terms, the reader is directed to Williams et al. (2000).
49 50	113	The abbreviation "Art." refers to an article of the current ICN (Turland et al. 2018) unless
51 52	114	otherwise stated.
53 54	115	
55 56 57		
58 59		5

2 3 4	116	
5 6	117	2. The origins of dual nomenclature in dinoflagellates
7 8 0	118	
9 10 11	119	Living dinoflagellate resting cysts were first documented in the 19th century (noted in von
12 13	120	Stein 1878; illustrated e.g. in von Stein 1883; Penard 1891; Schilling 1891; Delage and
14 15	121	Herouard 1896). Biologists subsequently studied them from culture (Braarud 1945) and
16 17 18	122	in the plankton (e.g. Nordli 1951), and they were identified from sediment by the paleo-
19 20	123	and actuopalynologist Erdtman (1954). These early contributions by Nordli, Erdtman and
21 22	124	especially Braarud led the paleontologist Evitt (1961) to his breakthrough realization that
23 24 25	125	dinoflagellate cysts have a long and comprehensive geological record (Dale 2021). Evitt
25 26 27	126	(1961) recognized that many post-Paleozoic chorate organic-walled microfossils with
28 29	127	spines or processes, including the important genera Hystrichosphaera (now considered a
30 31	128	heterotypic synonym of Spiniferites), Hystrichosphaeridium and Cannosphaeropsis, were
32 33 34	129	in fact the chorate cysts of dinoflagellates (although he also considered many proximate
35 36	130	cysts to be fossilized motile stages – an error corrected in Evitt 1963, and Evitt and
37 38	131	Davidson 1964). Evitt and Davidson (1964) extended this knowledge with observations
39 40	132	of modern dinoflagellate cysts, and they discussed the potential complications arising
41 42 43	133	from the separate nomenclatures developing independently for both fossil cysts and
44 45	134	motile stages, as first recognized by Downie et al. (1961) and subsequently addressed by
46 47	135	Deflandre (1962).
48 49 50	136	By incubating a living cyst and identifying the emergent motile cell, Wall (1965)
50 51 52	137	directly linked the fossil cyst species Spiniferites bentorii (as Hystrichosphaera bentorii),
53 54 55 56 57	138	described from the Quaternary of the coastal plain of Israel (Rossignol 1964), to its

Page 7 of 108

Palynology

1 2		
2 3 4	139	motile-defined equivalent, Gonyaulax digitale. Subsequent incubation studies by Wall
5 6	140	and Dale (1966) linked the fossil cyst species Spiniferites bulloideus (as
7 8 0	141	Hystrichosphaera bulloidea) from the Middle Miocene of Balcombe Bay, Australia
9 10 11	142	(Deflandre and Cookson 1955), to the motile-defined Gonyaulax scrippsae. They also
12 13	143	identified the prospective equivalencies of Operculodinium centrocarpum (as
14 15 16	144	Baltisphaeridium centrocarpum) and Lingulodinium machaerophorum (as
10 17 18	145	Baltisphaeridium machaerophorum), both from the Middle Miocene of Balcombe Bay,
19 20	146	Australia (Deflandre and Cookson 1955), with the motile-defined Protoceratium
21 22	147	reticulatum and Lingulodinium polyedra (as Gonyaulax polyedra), respectively.
23 24 25	148	Although some of the proposed equivalencies can now be challenged or revised (e.g. Gu
26 27	149	et al. 2021; Table 2), these and others studied later revealed that numerous dinoflagellates
28 29	150	described as fossils are represented by already-named living organisms (the "living
30 31	151	fossils" of Wall and Dale 1966): thus fossil and non-fossil taxonomies and their
33 34	152	corresponding nomenclatures were overlapping.
35 36	153	
37 38	154	
39 40 41	155	3. ICN and fossil-taxa versus non-fossil taxa
42 43	156	
44 45	157	Dual nomenclature essentially requires only that separate names for fossil and non-fossil
46 47 48	158	taxa be allowed, as has long been the case, provided that equivalence (Head et al. 2016)
49 50	159	and not synonymy (a taxonomic decision influenced by conceptual considerations as
51 52	160	discussed in Subsection 3.2 below) is invoked. Dual nomenclature for algae, excepting
53 54	161	diatoms, is admissible under the current ICN, being supported by Arts. 1.2, 11.1, 11.7,
56 57		
58 59		7
60		URL: http://mc.manuscriptcentral.com/tpal

162 11.8, with Arts. 13.3 and 52.1 also relevant (Head et al. 2016; Head et al. 2024). The ICN 163 fundamentally distinguishes between non-fossil taxa and fossil-taxa (Art. 1.2), each of 164 which will have its own particular circumscription. Art. 11.1 states that "The use of 165 separate names is allowed for fossil-taxa that represent different parts, life-history stages, 166 or preservational states of what may have been a single organismal taxon or even a single 167 individual." Key developments applicable to fossil and non-fossil dinoflagellate 168 nomenclature are discussed below and summarized in Table 3.

As an aside, the inadmissibility of dual nomenclature for diatoms under the ICN may seem at odds with its availability for dinoflagellates when both algal groups have a resting stage and a vegetative stage. The difference, however, is that the vegetative stage in diatoms is geologically preservable, and this stage is most commonly studied in the fossil record. Because the taxonomy of living diatoms is also based on the vegetative stage, so extinct fossil-species based on the vegetative stage can be assigned to non-fossil genera using morphological criteria alone. Fossil spores have long been neglected in diatom studies (Suto 2004; Suto and Tanaki 2017) but, in parallel with dinoflagellates, fossil-species based on spores cannot easily be integrated into the generic scheme for non-fossil diatoms.

3.1. Historical development of plant fossil and algal nomenclature

181 The naming of plant fossils long predates what was effectively the first botanical 182 code as adopted by the International Biological Congress in Paris in 1867 (the Paris 183 "Lois" or laws or rules; de Candolle 1867). The nomenclature of organs and fossils was 184 subsequently discussed, and a revised edition of the "Lois" (de Candolle 1883) explicitly

Page 9 of 108

1

Palynology

2	
_ ז	
1	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
/1	
40	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
28	
59	

60

185 accepted that the rules also applied to plant fossils, although the Vienna Rules of 1906 186 (Briquet et al. 1906) were the first to acknowledge the special needs of fossils; these were 187 addressed in the Brussels Rules of 1912 (Briquet 1912). With the establishment of the 188 International Association of Plant Taxonomy (IAPT) at the 7th International Botanical 189 Congress in Stockholm in 1950 (Cowan and Stafleu 1982), each successive iteration of 190 the "Rules" was thereafter known as the "International Code of Botanical Nomenclature" 191 (ICBN). This was to change only in 2012, with the Melbourne Code (McNeill et al. 2012) 192 adopting the new title "International Code of Nomenclature for algae, fungi, and plants" 193 (ICN) in acknowledgement that the fungi in particular are not considered plants. 194 Of crucial significance was a growing awareness that the fragmentary nature of 195 plant fossils required taxonomic approaches that were different from living plants, and 196 separate nomenclatural rules have therefore evolved to meet these particular needs (Table 197 3). The Stockholm Code of 1952 (Lanjouw et al. 1952) introduced an Appendix on 198 fossils, which included the concepts of "organ-genera" to reflect the different preserved 199 parts of the plant and their modes of preservation, and "form-genera" as a small subset of 200 organ-genera containing species grouped superficially and not generically related in the 201 ordinary taxonomic sense (Cleal and Thomas 2010). The Montreal Code of 1961 202 (Lanjouw et al. 1961) defined the organ-genus as a genus assignable to a family, and a 203 form-genus as unassignable to a family and hence "artificial in varying degree". The 204 concept of organ-genus was discontinued in the Leningrad Code of 1978 (Stafleu et al. 205 1978), and the "morphotaxon" was introduced in the St Louis Code of 2000 (Greuter et 206 al. 2000) as "a fossil taxon which, for nomenclatural purposes, comprises only the parts, 207 life-history stages, or preservational states represented by the corresponding

2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
∠⊃ >≁	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
25	
33	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
-10 ⊿7	
4/ 10	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 50	
20	
29	
60	

1

208	nomenclatural type" (Art. 1.2). This definition was restricted in the Vienna Code of 2006
209	(McNeill et al. 2006) to apply to a single part, life-history stage, or preservational state
210	(Art. 1.2, and its note 1). The morphotaxon concept was, however, considered too
211	restrictive and was discontinued in the Melbourne Code of 2012 in favour of the simpler
212	and more flexible concept of "fossil-taxon". The term "fossil taxon" had first appeared in
213	the St Louis Code of 2000 for a name based on a fossil type (Art. 13.3), and more
214	prominently featured in the Vienna Code of 2006, in both cases without hyphenation.
215	The Melbourne Code introduced the hyphen, as "fossil-taxon". Fossil-taxa can therefore
216	be regarded conceptually, with qualification, as the successor of organ-genera and form-
217	genera (Cleal and Thomas 2010), although it might be noted that all these concepts
218	effectively allowed fossils representing different life-history stages to bear separate
219	names, with clear relevance to fossil dinoflagellate nomenclature.
220	The Edinburgh Code of 1966 introduced the requirement of "stratigraphic
221	relations" at the site of original occurrence for fossil taxa, thus distinguishing them from
222	"Recent material" (Art. 13 note 3 in Lanjouw et al. 1966). "Recent" for the first time was
223	capitalized throughout, implying reference to the Holocene Epoch, as these terms were
224	being used interchangeably at that time. The Sydney Code of 1983 clarified the

relationship between "fossil" and "recent" (now lowercased) plants by referring to the
latter as "non-fossil" plants (Voss et al. 1983), and the Melbourne Code of 2012 saw the
elimination of "subfossil" which was introduced in the Stockholm Code of 1952 and had
never been defined. This unambiguously allowed cysts recovered from modern naturally
deposited sediments to be treated as fossils (Head 2003; Head et al. 2024; and Subsection
3.2 below).

Page 11 of 108

Palynology

3 4	231	Several starting dates of relevance for the valid publication of fossil-taxa and non-
5 6	232	fossil algal taxa introduced over successive editions of the Code are incorporated into the
7 8	233	present (Shenzhen) Code of 2018 (Turland et al. 2018): the article numbers that follow
9 10 11	234	are from this Code. The name of a new taxon of non-fossil algae published between 1
12 13	235	January 1958 and 31 December 2011, inclusive, must be accompanied by a Latin
14 15	236	description or diagnosis or by reference to such (Art. 44.1, introduced in the Paris Code
16 17 19	237	of 1956 [Lanjouw et al. 1956] and Melbourne Code of 2012). The name of a new fossil-
19 20	238	taxon published on or after 1 January 1996 must be accompanied by a Latin or English
21 22	239	description or diagnosis or by reference to such (Art. 43.1, introduced in the Tokyo Code
23 24	240	of 1994; Greuter et al. 1994); and the same is true for a new non-fossil taxon published
25 26 27	241	from 1 January 2012 (Art. 39.2, introduced in the Melbourne Code of 2012). Latin
27 28 29 30 31	242	therefore ceased to become a requirement for the diagnoses or descriptions of non-fossil
	243	taxa from 1 January 2012 (this had been the case for fossil-taxa from 1 January 1996), a
32 33 34	244	decision met with spontaneous applause at the Nomenclature Section of the 18th
35 36	245	International Botanical Congress in Melbourne in 2011.
37 38	246	A name of a new species or infraspecific taxon of non-fossil algae, from 1 January
39 40 41	247	1958, must be accompanied by an illustration or figure showing the distinctive
41 42 43	248	morphological features of this taxon, or by a reference to such an illustration or figure
44 45	249	(Art. 44.2; introduced in the Paris Code of 1956). The valid publication of a name of a
46 47	250	new fossil-species or infraspecific fossil-taxon from 1 January 2001 requires the type
48 49 50	251	specimen to be identified among the validating illustrations (Art. 43.3; introduced in the
51 52	252	St Louis Code of 2000). The type of a name of a new non-fossil taxon at the rank of
53 54	253	species or below published before 2007 may be an illustration; but from 1 January 2007,
55 56 57		

URL: http://mc.manuscriptcentral.com/tpal

254	the type must be a specimen except where, in the case of a non-fossil microscopic
255	organism, preservation is technically difficult (Art. 40.4 and 40.5; introduced in the
256	Vienna Code of 2006). A type specimen of an algal taxon may be a culture preserved in a
257	metabolically inactive state (Art. 8.4; introduced in the St Louis Code of 2000); but from
258	1 January 2019, if a new name has such a type, this must be specified within the
259	protologue (Art. 40.8; introduced in the Shenzhen Code of 2018).
260	The first example of dual nomenclature in dinoflagellates appeared in the St.
261	Louis Code of 2000 (under Art. 11.7; the fossil-genus Tuberculodinium vs. the non-fossil
262	Pyrophacus), and the current Shenzhen Code contains a total of three such examples (in
263	Arts. 11.7 and 11.8; but see Head et al. 2024). Texts of the Laws, Rules and Codes noted
264	above are available online, showing successive changes to each version (van Rijckevorsel
265	2014–2020).
266	
267	3.2. Theoretical considerations
268	The name of a fossil-taxon does not compete for priority with that of an
269	equivalent non-fossil taxon where it is not considered a synonym of that non-fossil taxon
270	(Art. 11.8) (Head et al. 2024). For example, Reid (1977) proposed the name Votadinium
271	spinosum for a fossil cyst he considered equivalent to the cyst of Peridinium claudicans
272	(now Protoperidinium claudicans) as illustrated by Wall and Dale (1968), who had
273	
2,0	incubated this cyst type and identified the emergent theca (see Matsuoka and Head 2013,
274	incubated this cyst type and identified the emergent theca (see Matsuoka and Head 2013, for further discussion). Reid (1977) did not treat <i>Protoperidinium claudicans</i> as a
274 275	incubated this cyst type and identified the emergent theca (see Matsuoka and Head 2013, for further discussion). Reid (1977) did not treat <i>Protoperidinium claudicans</i> as a synonym and did not cite its holotype in the synonymy, which would have made the
274 275 276	incubated this cyst type and identified the emergent theca (see Matsuoka and Head 2013, for further discussion). Reid (1977) did not treat <i>Protoperidinium claudicans</i> as a synonym and did not cite its holotype in the synonymy, which would have made the name <i>Votadinium spinosum</i> superfluous and hence illegitimate (Art. 52.1). Nor did he

Page 13 of 108

Palynology

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>4</u> 0	
12	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

URL: http://mc.manuscriptcentral.com/tpal

277	include motile-stage characteristics in his circumscription. Equivalence refers to "a noted
278	morphological similarity or identicality between a fossil-taxon and a part or life-history
279	stage of a non-fossil taxon at the same rank where the names of these two taxa are not
280	considered synonyms" (Head et al. 2024). A synonym is "one of two or more names that
281	apply to the same taxon" (ICN glossary). The difference between equivalence and
282	synonymy rests upon that between paleontological and biological species concepts. A
283	fossil-species may closely resemble, or appear identical with, the morphology of a resting
284	cyst belonging to a named non-fossil species, thus allowing it to be considered
285	"equivalent" although not taxonomically identical (as required of synonyms). The latter
286	would require assumptions that all parts of the life cycle are the same and have remained
287	so perhaps over tens of millions of years. This issue is common to all plankton groups but
288	is exacerbated in dinoflagellates by the fact that non-fossil nomenclature is traditionally
289	based on the motile cell, which rarely fossilizes (see Section 3, above). According to
290	Principle 4 of the ICN, "Each taxonomic group with a particular circumscription,
291	position, and rank can bear only one correct name, the earliest that is in accordance with
292	the rules, except in specified cases." But this does not apply to a non-fossil species and its
293	equivalent fossil-species as the circumscriptions are different even when the non-fossil
294	species is circumscribed to include a description of the cyst. Accordingly, Votadinium
295	spinosum as a fossil-defined species can be used as the correct name for the cyst.
296	However, should Votadinium spinosum and Protoperidinium claudicans be considered
297	conspecific and therefore synonymous, then Protoperidinium claudicans would be the
298	correct name because it is defined by a non-fossil type and so has priority over that of a
299	fossil-species (Art. 11.8). It should be emphasized that equivalence expresses a

relationship between fossil-defined and non-fossil defined taxa, with the fossil (usuallycyst) morphology operating as the intermediary.

Dual and unified nomenclature are equally available under the ICN allowing the practitioner to exercise choice, which reflects separate taxonomic approaches. The purpose of the ICN is not to restrict such approaches but rather to facilitate their nomenclatural expression (Head et al. 2024). The suggestion by Ellegaard et al. (2018 p. 229) that dual nomenclature can be removed from formal nomenclature is not an option while practitioners wish to use it; the decision to use a dual or unified approach is thus a taxonomic rather than a nomenclatural one. Nonetheless, Elbrächter et al. (2023) proposed changes to the ICN that would diminish its support for dual nomenclature. Their proposals have been critiqued by Head et al. (2024). This raises the question of how a fossil- and a non-fossil taxon are distinguished. A fossil-taxon (diatoms excepted) is defined by a fossil nomenclatural type (Art. 1.2), which must be an actual specimen (Art. 8.5). For a fossil dinoflagellate taxon, this is assumed to be a resting cyst in all but a few cases. The ICN distinguishes fossil- from non-fossil material "by stratigraphic relations at the site of original occurrence". Importantly, "in cases of doubtful stratigraphic relations ... provisions for non-fossil taxa apply" (Art. 13.3). Effectively, the principle of superposition should apply, which is indeed the case for most naturally occurring marine sediments. Bioturbation, which is common in most marine sediments, may blur stratigraphic relations but on a broad scale does not completely destroy them. There is a long tradition of treating cysts from surface sediments as fossils, whether these sediments are from nearshore grab samples or from the tops of deep-sea cores. For example, taxa described from surface sediments around

1	
2	
2	
1	
-+ 5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17 20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
27	
54 25	
22	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
ک ∠	
54	
55	
56	
57	
58	
59	

60

323	the coast of the British Isles by Reid (1974, 1977) are widely accepted as fossil-taxa.
324	They include the genera Ataxiodinium, Dubridinium, Trinovantedinium, Votadinium and
325	Xandarodinium, and the species Ataxiodinium choane, Brigantedinium auranteum,
326	Brigantedinium majusculum (but see below for the genus Brigantedinium), Dubridinium
327	caperatum, Dubridinium cassiculum, Dubridinium cavatum, Dubridinium ulsterum,
328	Spiniferites delicatus, Spiniferites elongatus, Spiniferites lazus, Votadinium calvum,
329	Votadinium spinosum, and Xandarodinium xanthum (Mertens et al. 2020; Van
330	Nieuwenhove et al. 2020).
331	In reality, such surface sediment samples may contain living as well as dead/fossil
332	cysts, and viable cysts have been found in sediments as old as 100 years (Ellegaard and
333	Ribeiro 2018). The definition of a fossil under Art. 13.3 is also discussed by Head et al.
334	(2024). The type specimen of a non-fossil taxon may have been alive when collected,
335	even though it cannot be living when serving as type material (except under specific
336	circumstances; Art. 8.4). In contrast, it is reasonable to require of a specimen treated
337	nomenclaturally as a fossil that it was not demonstrably living at the time of collection.
338	This question does not arise if the specimen is an empty germinated cyst but becomes
339	theoretically pertinent if it has cell contents. In practice, the usual chemical processing of
340	surface marine sediment using HCl and HF will kill any living cysts, so it will not be
341	known whether the cyst was dead when collected. It is therefore simply assumed for
342	nomenclatural purposes that cysts having undergone palynological processing were dead
343	at the time of collection. For example, Spiniferites elongatus and Echinidinium karaense
344	have holotypes containing degraded cell contents yet are treated as fossil-taxa. It would
345	serve no good purpose to treat them otherwise. In the case of a thin-walled cyst, it may

indeed be desirable for the holotype to have cell contents because these (especially the cellulosic endospore) keep the cyst wall inflated, allowing its morphological details to be studied more easily. The holotypes of Echinidinium karaense and Islandinium brevispinosum provide examples of this, and a specimen of Islandinium minutum with cell contents (pl. 1, figs. d–i of Head et al. 2001) was used to elucidate the unusual archeopyle style in this common arctic species. Dinoflagellate cysts with preserved endospores are known from Middle Pleistocene deposits as old as 767 ka (fig. 7b, g in Balota et al. 2021).

A non-fossil species is defined by a non-fossil nomenclatural type. The type can be either a specimen or an illustration (Art. 8.1), although for algae from 1 January 2007 an illustration cannot be used (Art. 40.4) unless "there are technical difficulties of specimen preservation or if it is impossible to preserve a specimen that would show the features attributed to the taxon by the author of the name" (Art. 40.5). In the case of a specimen, the organism is not usually living (Art. 8.4), as noted above. Traditionally, non-fossil dinoflagellate species have been typified using an illustration of the motile stage. However, Ellegaard et al. (2002) typified the name Gonyaulax baltica using a cyst from culture rather than a motile stage. It is not clear whether the holotype is the cyst itself (a curated dead specimen on a scanning electron microscope [SEM] stub) or the SEM illustration of it (fig. 3A in Ellegaard et al. 2002), but either is acceptable under the ICN because publication predates 1 January 2007. The observations were from a living unialgal culture (one grown from a single wild resting cyst), and this appropriately allowed the protologue (everything associated with a name at its valid publication) to include information on both the cyst and motile stage. In typifying *Gymnodinium nolleri*,

1

Palynology

2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17 10	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
15	
43	
46	
47	
48	
49	
50	
51	
57	
5Z	
53	
54	
55	
56	
57	
58	
50	
17	

60

Ellegaard and Moestrup (1999) used a fixed (dead) and embedded sample of unialgal
culture which presumably included cysts as well as motile cells, an acceptable holotype
under the ICN (Art. 8.2). Their figure 1 illustrates both cyst and motile stages of *Gymnodinium nolleri* from this unialgal culture which, now preserved, serves as the
holotype.

375 3.3. Problematic cases

374

376 In defining the non-fossil Gonyaulax ellegaardiae from Izmir Bay, Turkey, 377 Mertens et al. (2015) attempted to establish a dual nomenclatural relationship between it 378 and the fossil-species *Spiniferites pachydermus*, the latter having been described from the 379 subsurface Pleistocene or Holocene of the coastal plain of Israel (as Hystrichosphaera 380 furcata var. pachyderma in Rossignol et al. 1964). Mertens et al. (2015) selected two 381 illustrations (their figs. 2 and 5a-i) as the holotype. Their fig. 5a-i illustrates an incubated 382 cyst from which a thecate cell (their fig. 2) emerged. While it is sound biological practice 383 to illustrate both stages of the life cycle, only one illustration can be used as a holotype; 384 moreover, from 1 January 2007 only a specimen can be designated unless there are 385 technical difficulties with specimen preservation (Art. 40.5). The specimens illustrated as 386 types were not preserved (Mertens et al. 2015, p. 564) owing to such difficulties. Here 387 we designate fig. 2 of Mertens et al. (2015) as the holotype of Gonyaulax ellegaardiae 388 Mertens, Aydin, Takano, Yamaguchi and Matsuoka in Mertens et al. (2015), completing 389 requirements for valid publication. This illustration is of a specimen of the motile stage. 390 Although Mertens et al. (2015) considered Gonyaulax ellegaardiae to be equivalent to 391 Spiniferites pachydermus, this relationship appears to be incorrect and a new fossil-

species will be formally proposed (MJH and KNM in prep.). A dual nomenclatural
approach allows both species, each typified by its own holotype, to remain as useful
individual concepts despite their problematic relationship.

Reid (1974, 1977) established numerous fossil-species that were typified using cyst specimens recovered mostly from intertidal surface sediments around the British Isles, as noted in Subsection 3.2 above. The status of these holotypes as fossils is widely accepted on the basis that they were obtained from naturally deposited sediment where the principle of superposition broadly applies. In contrast, the genus Echinidinium and its holotype species *Echinidinium granulatum* were typified by a cyst recovered from a sediment trap (Zonneveld 1997) where stratigraphic relations could not be reasonably inferred (Head 2003). The genus and its holotype species were therefore to be treated as non-fossil taxa (Head 2003). The genus and selected species were validated only when Head et al. (2001) provided Latin diagnoses, as then required for non-fossil taxa. Other species were validated by Mertens et al. (2020).

A similar example involves the genus Brigantedinium and its holotype species Brigantedinium simplex. The type specimen, known then as Chytroeisphaeridia *simplicia*, was recovered from a settling tray at the bottom of the aquarium at Woods Hole Oceanographic Institution (Wall 1965). This specimen cannot be treated as a fossil because sediments accumulated in such settling trays are prone to disturbance and the trays themselves are periodically emptied. Stratigraphic relations are therefore doubtful at best, and where doubt exists provisions for non-fossil taxa apply (Art. 13.3). However, because these taxa had been proposed as fossil-taxa, no Latin diagnoses were provided.

Palynology

1 2		
3 4	414	The names were only validly published when Lentin and Williams (1993, p. 67) supplied
5 6	415	Latin diagnoses, as discussed in Subsection 6.2 below.
/ 8 9	416	
10 11	417	
12 13	418	4. Obstacles to a unified nomenclature
14 15 16	419	
16 17 18	420	Wall and Dale (1968) showed that cysts corresponding to three fossil-genera, now known
19 20	421	as Nematosphaeropsis, Spiniferites, and Tectatodinium, all give rise to motile stages
21 22	422	assignable to a single theca-defined non-fossil species complex that includes Gonyaulax
23 24 25	423	spinifera. It is now accepted that at least six such genera, Ataxiodinium, Bitectatodinium,
25 26 27	424	Impagidinium, Nematosphaeropsis, Spiniferites and Tectatodinium, are produced by the
28 29	425	non-fossil species Gonyaulax spinifera and its allies (Head 1996) including a species
30 31	426	closely related to Gonyaulax polygramma in the case of Ataxiodinium choane (Mertens et
32 33 34	427	al. 2017a). Subsuming these six fossil-genera and their contained species into a single
35 36	428	non-fossil genus would result in an unacceptable loss of detail within the fossil-defined
37 38	429	classification. Considerable progress in expanding and refining cyst-theca relationships
39 40 41	430	within the genus Gonyaulax has been made since the pioneering work of Wall and Dale
42 43	431	(Gu et al. 2021, 2022, 2023, and references therein). Recent molecular phylogenetic
44 45	432	studies confirm the attribution of these fossil-genera to the non-fossil genus Gonyaulax,
46 47	433	but the studies demonstrate that the fossils are polyphyletic, with species of
48 49 50	434	Tectatodinium, Bitectatodinium, Ataxiodinium and Impagidinium intermingling with
50 51 52	435	those of Spiniferites in phylogenetic trees (Gu et al. 2021; Fig. 1). These results make any
53 54 55	436	efforts to integrate the fossil-genera with the genus Gonyaulax or indeed with its four
56 57		
58 59		10

URL: http://mc.manuscriptcentral.com/tpal

Page 20 of 108

subgenera proposed by Kofoid (1911; Gonvaulax, Fusigonvaulax, Steiniella, Acanthogonyaulax) very complicated. In general, the motile stage of Gonyaulax has a more conserved morphology than that of its cyst counterparts, although small differences in motile stage morphology that might allow placement in other genera have been noted in some species, including Gonvaulax polygramma and Gonvaulax geomunensis (Kim et al. 2023) and Gonyaulax hyalina (Escalera et al. 2018; but see Carbonell-Moore and Mertens 2019). A similar number of fossil-defined genera has been assigned to the large non-fossil genus Protoperidinium. Harland (1982) attempted to integrate these fossil-genera by reassigning them as sections of the genus *Protoperidinium*. However, the resulting four-element name (genus, subgenus, section, species) while informative was an unwieldy solution not adopted by the community (see Ellegaard et al. 2018 for further discussion). This community includes a large and active group of palynologists/actuopalynologists working on fossil dinoflagellate cysts as well as many working on relationships with motile forms and utilising genetic techniques on cysts and motile forms. The various sections of *Protoperidinium* conform to a certain extent with

453 the molecular phylogenies for this genus, although some are polyphyletic (Mertens et al.

454 2017b). More data are certainly needed before a thorough revision of the genus

Protoperidinium is possible.

Another difficulty emerges when a fossil-genus contains both extant and extinct
species. For example, the fossil-genus *Bitectatodinium* is typified by the holotype, a
fossil, of the extant *Bitectatodinium tepikiense*. This species had been linked by
incubation studies (Lewis et al. 2001) to the non-fossil *Gonyaulax digitale*. This

Page 21 of 108

Palynology

2		
3 4	460	relationship is now known to be in error, although cysts assignable to Bitectatodinium
5 6	461	tepikiense are possibly produced by a thecal morphotype from the Faeroe Islands that was
7 8	462	misidentified by Kofoid (1911) as Gonyaulax digitale (Gu et al. 2021). The link to
9 10 11	463	Gonyaulax is nonetheless not questioned, but Bitectatodinium cannot be subsumed or
12 13	464	synonymized with Gonyaulax because Bitectatodinium also contains several extinct
14 15	465	species for which the motile stage will likely never be known. Also, a molecular
16 17	466	phylogeny shows Bitectatodinium tepikiense embedded in the genus
18 19 20	467	Gonyaulax/Spiniferites (Gu et al. 2021; Fig. 1). The genus Bitectatodinium is therefore
20 21 22	468	retained primarily for practical reasons and, as presently circumscribed, it does not
23 24	469	represent an evolutionary entity distinct from the large fossil-genus <i>Spiniferites</i> .
25 26	470	The demonstration that dinoflagellate cyst distributions in modern marine
27 28 20	471	sediments are strongly influenced by climate (Williams 1965, 1971) has led to the
30 31	472	systematic mapping of cysts throughout the world's oceans (e.g. Wall et al. 1977; Rochon
32 33	473	et al 1999. Zonneveld et al 2013. de Vernal et al 2001 2020) and an increasing use of
34 35	474	dinoflagellate cysts for quantitative as well as qualitative paleoclimatic reconstructions
36 37	475	especially in mid- and high latitudes. This has led to a large and expanding literature on
38 39 40	475	Ousternary dinoflagellate cysts (Van Nieuwenhove et al. 2020a, and references therein)
41 42	477	The feedly defined nomes used in the releaser incomental literature are new deemly.
43 44	4//	The fossil-defined names used in the paleoenvironmental interature are now deeply
45 46	478	entrenched, imparting a natural resistance to nomenclatural unification even when the
47 48	479	motile stage eventually becomes known. A similar argument may be made regarding the
49 50	480	use of fossil-defined names in the literature dealing with the older fossil record. The
51 52	481	taxonomy and nomenclature of organic-walled dinoflagellate cysts throughout their
53 54 55	482	Triassic to Quaternary fossil record (Riding et al. 2023) is deeply integrated, and has a
56 57		

long history extending into the 19th century (e.g. Ehrenberg 1837; Mantell 1850, p.191).
Although most fossil dinoflagellate cyst genera are now extinct, a few extend back tens,
or even hundreds of millions of years. An example is *Spiniferites*, which, through its
perhaps 120-million-year history, has accommodated more than 100 species (Fensome et
al. 2019): it is unknowable whether the motile equivalent of most of these species would
be assignable to *Gonyaulax*.

There may also be uncertainty in cyst-motile equivalencies, as with Gonyaulax digitale, which has been linked both to Spiniferites bentorii by Wall (1965), Wall and Dale (1967, p. 352) and Dodge (1989, p. 283) and to *Bitectatodinium tepikiense* by Lewis et al. (2001); it is now known to be linked to neither (Gu et al. 2021; Table 2). While such ambiguities are usually the result of uncertainty in the identification of the non-fossil species, they are avoided by continuing to use fossil-defined names for the cysts. However, the obstacle of uncertain cyst-motile equivalence is diminishing. Molecular genetics now provides an excellent and increasingly affordable tool for identifying species with greater certainty than by relying exclusively on morphological characters. Molecular approaches can be used to link the motile stage definitively with the cyst. Establishing correct equivalencies in combination with ribotyping is important as these approaches are intrinsic to DNA databases used in metabarcoding such as PR² (Guillou et al. 2013) and SILVA (Quast et al. 2013). Cultures of Gonyaulax, for instance, display enormous variations and aberrations that make unambiguous identification of species often difficult without such genetic characterization. Fossil-defined taxonomies therefore should adapt where practicable to incorporate these new advances. In some cases, however, neither cyst nor thecal morphology adequately reflect the diversity revealed in

Page 23 of 108

1

59

60

Palynology

2		
3 4	506	molecular genetics. For example, Protoceratium reticulatum produces cysts that are
5 6	507	commonly reported in Quaternary sediments globally as Operculodinium centrocarpum
7 8	508	sensu Wall and Dale (1966). Small differences in the internal transcribed spacer
9 10	509	ribosomal DNA (ITS rDNA) sequences in Protoceratium reticulatum have revealed what
11 12 13	510	appears to be cryptic speciation, with ribotypes not being distinguishable by either cyst or
14 15	511	thecal morphology (Wang et al. 2019). Genetic drift over geological time, which may not
16 17	512	be expressed in the cyst morphology, adds further complexity in understanding the
18 19	513	relationships between fossil and modern taxa. A final caveat is that any molecular
20 21 22	514	approach assumes that the motile stage was correctly identified at the outset, but if it is
22 23 24	515	not then the genetic sequence will be linked to the wrong species. The same is true of a
25 26	510	
27	516	cyst, but such errors in identification are more contained when using dual nomenclature.
28 29	517	
30 31 22	518	5. Conceptual underpinning of dual nomenclature
32 33 34	519	
35 36	520	Conceptual as well as practical issues underlie the difficulties in uniting fossil
37 38	521	with non-fossil cyst nomenclatures. Non-fossil names are traditionally based on
39 40	522	classifications centred on the morphology of the motile cell, but increasingly incorporate
41 42 42	523	all elements of the life cycle including the cyst and may include molecular (genetic)
43 44	504	
45 46	524	information, striving for integrative taxonomy (Dayrat 2005). Indeed, such approaches
47 48	525	can reveal weaknesses in exclusively morphology-based taxonomies. For example, five
49 50	526	non-fossil species of the important Alexandrium tamarense species complex $-A$.
51 52	527	australiense, A. catenella, A. mediterraneum, A. pacificum, and A. tamarense – could not
53 54 55 56 57 58	528	be reliably distinguished using morphological criteria alone, although collectively they

529	partitioned into five cryptic species based on phylogenies using multiple regions in the
530	rDNA operon (John et al. 2014). In order to stabilize the nomenclature, John et al. (2014)
531	provided emended and new species circumscriptions that combine morphological and
532	molecular information with details of toxicity (see also Litaker et al. 2018).
533	Extinct species on the other hand are based exclusively on morphological
534	attributes of the cyst, except for rare cases (e.g. the motile and other stages of
535	Succiniperidinium inopinatum preserved in mid-Cretaceous amber; Masure et al. 2013).
536	The relative importance of each attribute should nonetheless be influenced by any known
537	biological affinity to produce as "natural" a classification as possible. One potential
538	example is the fossil-genus Selenopemphix, its holotype species Selenopemphix
539	nephroides having been described from the Oligocene of Germany (Benedek 1972). This
540	cyst-defined species occurs in modern sediments and seems to be produced by the non-
541	fossil Protoperidinium subinerme (Rochon et al. 1999). The fossil-genus Multispinula
542	was considered synonymous with and junior to Selenopemphix by Matsuoka (1985c) and
543	Head (1993). Its holotype species Multispinula quanta (now Selenopemphix quanta) was
544	described from modern sediments of the Persian Gulf (Bradford 1975), and it seems to be
545	equivalent to the non-fossil species Protoperidinium conicum (although more research on
546	this relationship is needed; Matsuoka and Head 2013). Molecular phylogenetic analysis
547	of Selenopemphix nephroides and its equivalent Protoperidinium subinerme has not yet
548	been undertaken, but that of the morphologically similar Selenopemphix undulata
549	described from late Quaternary sediments of the Pacific Ocean (Verleye et al. 2011)
550	places it in a different clade from that of Protoperidinium conicum (putatively equivalent
551	to Selenopemphix quanta) (fig. 3 of Mertens et al. 2017b; Fig. 2). Selenopemphix as

Page 25 of 108

Palynology

presently circumscribed might therefore be polyphyletic, raising the question of whether *Multispinula* and *Selenopemphix* should be treated as separate fossil-genera (Mertens et al. 2017b). If such separation were justified, attention could focus on the offset of the archeopyle (epicystal asymmetry) and details of ornamentation. Molecular phylogeny therefore allows new questions to be asked with respect to morphology-based cyst taxonomy. The cyst-defined non-fossil genus *Brigantedinium* is certainly polyphyletic, and potential solutions are discussed below.

Nonetheless, an extinct fossil-species, with rare exception, can only be defined by
the morphological features of a single stage in the life cycle. There is no certainty that an
extant fossil-species in the geological past produced a motile stage identical to its modern
counterpart. This is especially true of extant fossil-species with long stratigraphic ranges,
such as *Tectatodinium pellitum* and *Lingulodinium machaerophorum*, both of which
evolved in the Paleocene (Head and Nøhr-Hansen 1999, and Heilmann-Clausen 1985,
respectively).

Dapsilidinium pastielsii was described from the Lower Eocene of southeastern England (Davey and Williams 1966) and had its inception in the Early Paleocene or before. Living cysts equated with this fossil-species have been incubated to yield a motile stage belonging to an as-yet-unnamed non-fossil species and genus (Mertens et al. 2014). Following the practice of dual nomenclature, and pending further study, this non-fossil species will be formally described as new, based on all aspects of its life cycle and molecular characterization, and typified by a motile cell or its illustration. It will bear a new name and be assigned to a non-fossil genus. *Dapsilidinium pastielsii* will then be considered equivalent to, but not conspecific with, this new non-fossil species.

2 3 4	575	Applying a non-fossil name to a Paleocene specimen would assume that because
5 6	576	the cyst morphology has not changed significantly over ~60 million years, its motile
7 8	577	stage has not changed either, when instead it might be a different biological species
9 10 11	578	retaining conservative cyst morphological features. This of course is true of any living
12 13	579	group with a fossil record, but in dinoflagellates the geologically preservable cyst
14 15	580	(usually assumed to be a hypnozygotic resting stage) is only one part of the life cycle, and
16 17 18	581	the part used historically in non-fossil taxonomy and nomenclature is the motile stage.
19 20	582	The cyst itself provides the overlap and point of connection between these different but
21 22	583	complementary biological (entire life cycle) and paleontological concepts (Fig. 3).
23 24 25	584	Because dual nomenclature reflects actual differences in taxonomic criteria
26 27	585	between fossils and non-fossils (cyst alone vs. motile stage and potentially cyst) it is
28 29	586	possible to determine equivalencies at the species level but not between genera.
30 31 32	587	Nonetheless, at the suprageneric level, which relies primarily on tabulation, as reflected
32 33 34	588	both in fossils (to varying degrees) and non-fossils, the two taxonomic systems can be
35 36	589	successfully aligned (e.g., Fensome et al. 1993).
37 38	590	In summary, dual nomenclature (and its underlying dual classification) is
39 40 41	591	considered a practical and conceptually sound approach in handling organic-walled cyst-
42 43	592	producing dinoflagellates. However, as with any other approach, consistency in
44 45	593	application is desirable, and dual nomenclature is a work in progress. Many modern cyst
46 47 48	594	morphotypes are not yet integrated into a fossil cyst classification scheme at generic or
49 50	595	lower rank and have only a non-fossil name. Some have fossil names but are not yet
51 52	596	linked to a non-fossil species. Others have hybridized names, such as when a fossil name
53 54 55	597	is attributed or transferred to a non-fossil genus. These variants all introduce practical and
56 57		

Palynology

- 3 4	598	conceptual difficulties that require clarifying and resolving. Examples, with potential
5 6	599	solutions where available, are discussed below.
7 8	600	
9 10 11	601	
12 13	602	6. Nomenclatural hybrids in dual nomenclature
14 15	603	
16 17 18	604	6.1. A non-fossil cyst-typified species assigned to a fossil-genus
19 20	605	
21 22	606	Nematosphaeropsis labyrinthus was initially described from the plankton off the Faeroe
23 24 25	607	Islands by Ostenfeld (1903). Ostenfeld assigned his new species to the green algal
26 27	608	prasinophyte genus Pterosperma, although his line drawings and certainly later
28 29	609	observations by, for example, Reid (1974), support the contention that the species is a
30 31 22	610	trabeculate dinoflagellate cyst. Reid (1974) transferred this species to the fossil-genus
32 33 34	611	Nematosphaeropsis. Although a common cyst in modern North Atlantic sediment, its
35 36	612	thecal equivalence has not yet been determined with certainty. If the motile stage, when
37 38	613	known, can be attributed to a species named before that of Ostenfeld's species (1903), the
39 40 41	614	epithet <i>labyrinthus</i> will become a junior heterotypic synonym and therefore unavailable.
42 43	615	If the motile stage has not been named or was named after Ostenfeld's species, it will
44 45	616	take the epithet labyrinthus although the species would then be transferred to the
46 47	617	appropriate non-fossil genus, presumably Gonyaulax. Either way, the name
48 49 50	618	Nematosphaeropsis labyrinthus will be rendered unavailable for this important cyst
51 52	619	species.
53 54		
55 56		

620	An additional question is whether Nematosphaeropsis labyrinthus is equivalent to
621	Nematosphaeropsis lemniscata, described from the Upper Miocene of the Bering Sea
622	(Bujak 1984), as discussed in Head and Wrenn (1992) and by Rochon et al. (1999).
623	Modern cysts attributed to Nematosphaeropsis labyrinthus have been reported with
624	exclusively gonal processes (Reid et al. 1974; Van Nieuwenhove et al. 2020b) whereas
625	intergonal processes, identified by bifurcate process terminations, may also be present in
626	Nematosphaeropsis lemniscata (Bujak 1984). Bujak (1984) used relatively harsh
627	chemical processing treatments, and his microscope slides were prepared using a
628	synthetic mountant in a procedure that flattens delicate specimens. The original type
629	material may not therefore be helpful, and new material from the type stratum should be
630	examined. If Nematosphaeropsis labyrinthus and Nematosphaeropsis lemniscata indeed
631	prove morphologically equivalent, then Nematosphaeropsis lemniscata would become
632	the fossil-defined equivalent name for the non-fossil species we now call
633	Nematosphaeropsis labyrinthus. This would potentially allow dual nomenclature to
634	operate but again ultimately with the loss of the name Nematosphaeropsis labyrinthus.
635	Names normally unavailable due to strict application of the rules can be
636	conserved (retained) if such an action would best serve nomenclatural stability (Arts. 14.1
637	and 14.2). If the name Nematosphaeropsis labyrinthus is to continue being used into the
638	future following a tradition initiated by Reid in 1974, it will require conservation to that
639	of a fossil-species by the selection of a new (fossil) type (Art. 14.9). The equivalent non-
640	fossil stage when subsequently identified, if unassignable to an existing species, would be
641	described as a new species and placed in a non-fossil genus. Nematosphaeropsis

Palynology

2 3 4	642	lemniscata, upon reexamination of topotype material, would be a junior heterotypic
5 6	643	synonym or a distinct species depending on the outcome.
7 8 0	644	Conservation of the name Nematosphaeropsis labyrinthus with a new (fossil) type
9 10 11	645	would initially require submission of a formal proposal to the journal Taxon whereupon
12 13	646	the International Association for Plant Taxonomy (IAPT) Permanent Nomenclature
14 15	647	Committee for Fossils would be called upon to provide a recommendation. The proposal
16 17 18	648	would ultimately require approval by the IAPT General Committee and final ratification
19 20	649	by the Nomenclature Section of an International Botanical Congress (e.g. McNeill et al.
21 22	650	2018; Carbonell-Moore 2018; Wilson 2023; and see Turland 2019, p. 86, 87).
23 24	651	
25 26 27	652	
28 29	653	6.2. A non-fossil genus treated as if a fossil-genus
30 31	654	
32 33 34	655	The genus Brigantedinium was established by Reid (1977) with its nomenclatural type
35 36	656	the holotype of Brigantedinium simplex. This species was initially proposed under the
37 38	657	name Chytroeisphaeridia simplicia by Wall (1965), and its holotype was recovered from
39 40 41	658	a settling tray at the bottom of the aquarium at Woods Hole Oceanographic Institution
42 43	659	(Wall 1965). This specimen therefore cannot be treated as a fossil as it lacks stratigraphic
44 45	660	relations (Art. 13.3), even though it is an empty cyst and was not demonstrably living at
46 47	661	the time of collection (see Subsection 3.1, above). (The genus name Chytroeisphaeridia
40 49 50	662	is based on a [Jurassic] gonyaulacacean cyst and hence is not appropriate for a
51 52 53 54 55	663	protoperidiniacean species.)
56		

2	
3	
л Л	
-	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
25	
22	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
55	
56	
57	
58	
59	
60	

1

664	As a non-fossil, this species at the time of publication was required to have a
665	Latin diagnosis, and because it was not provided by Wall (1965) the name was not
666	validly published. In addition, Reid (1977) did not provide a Latin diagnosis for his
667	Brigantedinium although this was required for a non-fossil genus. In fact, Brigantedinium
668	and Brigantedinium simplex were not validly published until Lentin and Williams (1993,
669	p. 67) provided Latin diagnoses and complete citations for them (Fensome et al. 2019). It
670	remains that both the name of the genus Brigantedinium and that of its holotype species,
671	Brigantedinium simplex, are defined by a non-fossil type specimen. Seven fossil-species
672	have since been assigned to Brigantedinium (Fensome et al. 2019), representing another
673	category of hybridized names (see Subsection 6.4).
674	Brigantedinium simplex has been identified by excystment studies as the cyst of
675	the non-fossil species Protoperidinium conicoides (Wall and Dale 1968; Head 1996).
676	Because both names are defined by non-fossil types, they compete for priority and
677	Protoperidinium conicoides becomes the senior heterotypic synonym. The genus
678	Brigantedinium then becomes a junior heterotypic synonym of Protoperidinium. The
679	complication is that Brigantedinium is an ecologically important Quaternary cyst genus
680	(de Vernal et al. 2020) represented by eight species including Brigantedinium simplex
681	(Mertens et al. 2020). Of these, seven are typified by specimens from ocean-floor
682	sediment and are treated as fossils. Hence a situation emerges where fossil-defined

683 species are assigned to a non-fossil defined genus that is now a junior heterotypic

684 synonym and therefore unavailable.

685 The least disruptive solution *prima facie* would be for the generic name
686 *Brigantedinium* and that of its holotype species, *Brigantedinium simplex*, to be conserved

Page 31 of 108

Palynology

2		
3 4	687	with a new (fossil) type (Art. 14.9) and instated as fossil-taxa along with the remaining
5 6	688	seven fossil-species, given that all eight species have always been treated as such.
7 8	689	However, molecular phylogenetic studies show that Protoperidinium conicoides, which
9 10 11	690	includes the holotype species Brigantedinium simplex, is basal to the Pyriforma clade of
12 13	691	Protoperidinium (Fig. 2) and is separated from other non-fossil species related to
14 15	692	Brigantedinium (Protoperidinium abei, P. avellana, P. denticulatum, P. pentagonum, and
16 17	693	P. punctulatum) (fig. 75 in Gu et al. 2015; fig. 1 in Gurdebeke et al. 2020; Fig. 4).
18 19 20	694	Accordingly, the genus Brigantedinium is polyphyletic. Moreover, Brigantedinium
21 22	695	simplex has two ventral depressions representing flagellar scars and may have slightly
23 24	696	raised cingular margins (Rochon et al. 1999) whereas all other species of the genus lack
25 26 27	697	expressions of tabulation other than the archeopyle. Brigantedinium simplex is
27 28 29	698	accordingly a morphological as well as phylogenetic outlier.
30 31	699	Conserving Brigantedinium in a manner allowing it to accommodate the eight
32 33	700	species presently assigned to it would compare with the fossil-genus Spiniferites which,
34 35 36	701	probably along with Selenopemphix (see above), is also known to be polyphyletic.
37 38	702	Alternatively, Brigantedinium could be conserved against Protoperidinium with a new
39 40	703	(fossil) type, and restricted to the holotype species Brigantedinium simplex, with other
41 42	704	species transferred to one or more newly created fossil-defined genera. Instead, we
43 44 45	705	recommend that <i>Brigantedinium simplex</i> be redefined with a fossil type and transferred to
46 47	706	a new fossil-genus, with the name <i>Brigantedinium</i> conserved using, as a new (fossil)
48 49	707	type, a holotype of one of the other species of <i>Brigantedinium</i> , such as <i>Brigantedinium</i>
50 51 52	708	<i>cariacoense</i> . This would allow <i>Brigantedinium</i> and all its fossil-species to continue being
53 54	709	used as they are presently, except for <i>Brigantedinium simplex</i> which, as a morphological
55 56 57		

and phylogenetic outlier, would appropriately be transferred to a new fossil-genus. In practical terms, most Brigantedinium species are distinguished from one another primarily by the archeopyle shape, which is often obscured in palynological preparations; except for Brigantedinium simplex which can be identified also by additional traces of tabulation. The useful term *Brigantedinium* spp. would therefore be sustained. Meanwhile, as a practical solution for routine counting, where critical details of the archeopyle are often not discernible, we recommend use of the informal collective term "round brown cysts" as this will include all species presently assignable to the genus Brigantedinium. The cyst-defined genus *Echinidinium* and its holotype species *Echinidinium* granulatum were not validly published by Zonneveld (1997) because Latin diagnoses had not been provided. This was necessary at the time because the holotype of *Echinidinium* granulatum had been recovered from a sediment trap suspended in the water column and,

with doubtful stratigraphic relations (Art. 13.3), could not therefore be considered a fossil

(Head 2003). Head et al. (2001) validated both the genus *Echinidinium* and its holotype

species, *E. granulatum*, by providing Latin diagnoses. Eight validly published cyst-

defined species have been assigned to the genus *Echinidinium*, of which seven are

727 typified by specimens from ocean floor sediment and are therefore treated as fossils.

Hence, as with *Brigantedinium*, the genus *Echinidinium* is a widely reported non-fossil

729 cyst genus, proposed with the intention of being a fossil-genus, and to which fossil-

730 species have been assigned. Cysts of *Echinidinium granulatum* have been incubated and

and close to *Protoperidinium monovelum* (KNM unpublished data). If *Echinidinium*

URL: http://mc.manuscriptcentral.com/tpal

genetic sequencing performed, allowing attribution to a species not previously described

Palynology

3 4	733	granulatum were transferred to Protoperidinium, the genus Echinidinium would become
5 6	734	unavailable. The preferred solution would be for the names <i>Echinidinium</i> and
7 8	735	Echinidinium granulatum to be conserved with a new (fossil) type, protecting them from
9 10 11	736	competition for priority against Protoperidinium and any of its species. This approach
12 13	737	would cause minimal disruption because Echinidinium and Echinidinium granulatum
14 15	738	have always been treated as fossil-taxa and all other species assigned to Echinidinium are
16 17	739	already fossil-species.
18 19 20	740	
21 22	741	
23 24	742	6.3. A fossil-genus emended to incorporate non-fossil species
25 26 27	743	
28 29	744	The fossil-genus Islandinium is typified by the holotype of Islandinium minutum
30 31	745	(basionym: Multispinula? minuta Harland and Reid in Harland et al. 1980), a cyst
32 33 34	746	obtained from modern sediments of the Beaufort Sea (Harland et al. 1980) and which can
35 36	747	therefore be treated as a fossil. A significant characteristic of this protoperidinioidean
37 38	748	genus is the presence of a saphopylic Type A3 apical archeopyle (i.e. the full release of
39 40 41	749	three opercular plates).
41 42 43	750	Living cysts were subsequently germinated by Potvin et al. (2013), who then
44 45	751	characterized the motile stage both with respect to its morphology and SSU and LSU
46 47	752	rDNA-based molecular phylogeny. They accordingly emended the genus Islandinium and
48 49 50	753	its holotype species Islandinium minutum to include details of the tabulation and
51 52	754	morphology of the motile stage as well as some aspects of the cytology, and they
53 54	755	incorporated new details of the cyst morphology. They also transferred the motile-defined
55 56 57		
57 58 59		33

non-fossil species *Protoperidinium tricingulatum*, which had been diagnosed using both
thecal and cyst characteristics (Kawami et al. 2009), to the genus *Islandinium*. This
decision was supported at the time by molecular phylogeny showing *Protoperidinium tricingulatum* closely related to *Islandinium minutum* (Potvin et al. 2013). In doing so,
Potvin et al. (2013) emended the genus *Islandinium* to include cysts with apical
archeopyles that can be theropylic, as in *Protoperidinium tricingulatum*, as well as
saphopylic.

There are presently no extinct species assigned to *Islandinium*, but were this to happen, such species would not fully satisfy the circumscription of this genus as emended by Potvin et al. (2013) because information on the motile stage would not be known, or indeed, be knowable. It is a matter of taxonomic choice whether to accept the emendation of Potvin et al. (2013), although in maintaining dual nomenclature we advocate the retention of *Islandinium* in its status as a fossil-genus. A proposal to erect an equivalent non-fossil genus is in preparation.

A further issue exists. Islandinium minutum subsp. barbatum was established by Potvin et al. (2018) to accommodate cysts that have pronounced barbs on the processes; *Islandinium minutum* subsp. *minutum* (autonym) by default represents morphotypes with smooth to minutely ornamented process surfaces. *Islandinium pacificum* was similarly erected by Gurdebeke et al. (2019) for cysts with pronounced barbs on their processes, differing only from Islandinium minutum subsp. barbatum in having a smooth rather than faintly granulate central body surface. Both *Islandinium minutum* subsp. barbatum and Islandinium pacificum are typified by holotypes that are empty cysts from ocean

Page 35 of 108

Palynology

1	
2 3 4	-
5 6	-
7 8	-
9 10 11	-
12 13	-
14 15	-
16 17	-
18 19 20	-
20 21 22	-
23 24	-
25 26	-
27 28 29	-
30 31	-
32 33	-
34 35	-
36 37 38	-
39 40	-
41 42	
43 44	-
45 46 47	
47 48 49	
50 51	
52 53	
54 55	8
56 57	
58 59	

60

sediments and so can be treated as fossils. Both are diagnosed exclusively on cystmorphology.

780 Islandinium minutum subsp. barbatum was not successfully germinated, but 781 molecular phylogeny performed on the cysts gave results that were largely 782 indistinguishable from *Islandinium minutum* subsp. *minutum*. This supported the decision 783 to erect *barbatum* as a subspecies rather than a separate species. The theca of *Islandinium* 784 minutum subsp. barbatum would presumably therefore conform with that of Islandinium 785 *minutum* subsp. *minutum* as documented by Potvin et al. (2013), although this has yet to 786 be confirmed. 787 Islandinium pacificum was, in contrast, successfully incubated and the emergent 788 theca identified as *Protoperidinium mutsuense*. The thecal morphology of 789 Protoperidinium mutsuense differs from that of Islandinium minutum subsp. minutum in 790 specific details but according to Gurdebeke et al. (2019) broadly conforms to the thecal 791 morphology attributed to the genus *Islandinium* by Potvin et al. (2013). Both 792 Protoperidinium mutsuense and Islandinium minutum are assignable to the Americanum 793 subclade of the *Monovela* clade of the genus *Protoperidinium* (Gurdebeke et al. 2019). 794 Detailed comparative research is needed to establish whether Islandinium 795 minutum subsp. barbatum and Islandinium pacificum can be distinguished from one 796 another in routine palynological analysis. If they can, then both names stand. If they 797 cannot, but can be routinely separated from *Islandinium minutum* subsp. *minutum*, then 798 the name Islandinium pacificum should be used – even though Islandinium minutum 799 subsp. barbatum (Potvin et al. 2018) was published before Islandinium pacificum 800 (Gurdebeke et al. 2019), "a name has no priority outside the rank at which it is published"

Page 36 of 108

Palynology

5	
4	
5	
6	
7	
, 0	
ð	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
~~ 22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
22	
30	
37	
38	
39	
40	
4 1	
12	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	
59	
60	

1 2

> 801 (Art. 11.2). Either way, this need not affect the application of dual nomenclature, 802 although it is possible that Islandinium pacificum if synonymized with Islandinium 803 *minutum* subsp. *barbatum* will then represent two non-fossil species. 804 The fossil-genus *Lingulodinium* is typified by the holotype of *Lingulodinium* 805 machaerophorum from the Miocene of Balcombe Bay, Australia (Deflandre and Cookson 806 1955). The genus name refers to the "small tongue" (lingula) formed on the epicyst after 807 the release of precingular plates during archeopyle formation. The equivalent theca-808 defined non-fossil species is Gonyaulax polyedra (Wall and Dale 1966, 1967, 1968),

809 described from the Baltic Sea off Kiel, Germany by von Stein (1883) and since restudied

810 from the type locality (Tillman et al. 2021). Dodge (1989) emended *Lingulodinium* to

811 include the cal characteristics and transferred Gonyaulax polyedra to it, as Lingulodinium

812 *polyedra*, along with another non-fossil species *Gonyaulax milneri*, as *Lingulodinium*

813 *milneri. Lingulodinium milneri* is not known to produce a cyst. No other non-fossil

species have been assigned to the genus *Lingulodinium*. Thirteen fossil-species are

815 attributed to this genus including the holotype species (Fensome et al. 2019), collectively

816 extending the genus back to the Late Cretaceous. Since most of the fossil-defined species

817 are extinct, determining whether their motile stages would have conformed to the

818 emended diagnosis given by Dodge (1989) is practically impossible. Nonetheless,

819 *Lingulodinium* is distinct from *Gonyaulax*, the holotype species of which is *Gonyaulax*

820 spinifera, using both morphological (Dodge 1989) and molecular phylogenetic (e.g. Orr

et al. 2012; Mertens et al. 2015, 2017a; Tillmann et al. 2021) criteria. The genus

822 *Lingulodinium* is accordingly now placed in the family Lingulodiniaceae whereas

823 Gonyaulax (as presently understood and including Gonyaulax spinifera) is placed in the

URL: http://mc.manuscriptcentral.com/tpal
Page 37 of 108

Palynology

3 4	824	family Gonyaulacaceae (Zhang et al. 2020; Tillmann et al. 2021). This separation had
5 6	825	been recognized previously, although at subfamilial level, with Lingulodinium assigned
7 8 0	826	to the Cribroperidinioideae and Gonyaulax to the Gonyaulacoideae (Fensome et al.
9 10 11	827	1993). The solution advanced here, following a dual nomenclatural approach, is to accept
12 13	828	the emended diagnosis of Wall and Dale in Wall et al. (1973), which is restricted to cyst
14 15	829	morphology, and to establish a new non-fossil genus, Lingulaulax gen. nov., for
16 17 18	830	Gonyaulax polyedra and Gonyaulax milneri, which then become Lingulaulax polyedra
19 20	831	(von Stein 1883) comb. nov. and Lingulaulax milneri (Murray and Whitting 1899) comb.
21 22	832	nov., respectively (see Systematics section, below).
23 24 25	833	
25 26 27	834	6.4. A fossil-species assigned or transferred to a non-fossil genus
28 29	835	
30 31	836	There is a long history of fossil-species being placed in non-fossil genera, an early
32 33 34	837	example being the Cretaceous Peridinium pyrophorum, a name not validly published by
35 36	838	Ehrenberg (1837) but which was subsequently validated and transferred to a fossil-genus
37 38	839	as Palaeoperidinium pyrophorum (Table 1). Many additional examples are listed in
39 40 41	840	Fensome et al. (2019, appendix B). Two examples are discussed below.
42 43	841	Tuberculodinium vancampoae is a fossil-species described from the subsurface
44 45	842	Pleistocene of Israel (Rossignol 1962). Rossignol (1962) treated this species as a form of
46 47	843	incertae sedis and assigned it questionably to the fossil-genus Pterospermopsis. Wall
48 49 50	844	(1967) erected the fossil-genus Tuberculodinium, with the holotype of Tuberculodinium
51 52	845	vancampoae serving as its type. Cyst incubation experiments subsequently demonstrated
53 54 55 56 57	846	a link with the non-fossil genus <i>Pyrophacus</i> (Wall and Dale 1971). Wall and Dale (1971)
58		

2	
З	
1	
4	
5	
6	
7	
,	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
ו ∡ רר	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
20	
31	
32	
33	
31	
24	
35	
36	
37	
38	
20	
39	
40	
41	
42	
42	
45	
44	
45	
46	
47	
40	
48	
49	
50	
51	
57	
ے د ح	
53	
54	
55	
56	
50	
57	
58	
59	
60	
00	

869

1

847	accordingly emended the genus Pyrophacus to include cyst morphology, and transferred
848	Tuberculodinium vancampoae to Pyrophacus, as Pyrophacus vancampoae, while at the
849	same time emending this species to incorporate the motile stage morphology. Wall and
850	Dale (1971) had considered Pyrophacus vancampoae to be different from the non-fossil
851	species Pyrophacus steinii. However, Balech (1979) treated Pyrophacus vancampoae as
852	a subspecies of Pyrophacus steinii. It is not in fact clear whether differences exist
853	between the morphologies of the cysts of Pyrophacus steinii subsp. steinii and
854	Pyrophacus steinii subsp. vancampoae. Matsuoka et al. (1985a) later showed that
855	Tuberculodinium vancampoae is equivalent to the cyst of Pyrophacus steinii, a
856	judgement now generally accepted (Head 1996). Dual nomenclature offers the choice of
857	using either the name Pyrophacus steinii or Tuberculodinium vancampoae depending on
858	context and preference (Head et al. 2016). In addition, maintaining Tuberculodinium
859	vancampoae allows use of the fossil-defined genus Tuberculodinium which presently
860	contains four fossil-species. Furthermore, the genera Pyrophacus and Tuberculodinium
861	overlap but are not identical. Pyrophacus horologium, the holotype species of
862	Pyrophacus, produces a non-tuberculate cyst that cannot be assigned to Tuberculodinium
863	and may indeed be the motile stage of the fossil-species Desotodinium wrennii from the
864	Pliocene of Belgium (De Schepper et al. 2004). Dual nomenclature keeps these
865	distinctive fossil-genera available.
866	Peridinium ponticum is typified by an empty cyst recovered at a depth of 6–7 cm
867	in sediment core 1451G from the Black Sea (Wall and Dale in Wall et al. 1973). The
868	protologue is restricted to the cyst morphology, no motile stage then being known for this

species. No Latin diagnosis was provided by Wall and Dale but this was not needed for a

Palynology

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
1/
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
25
20
30
3/
38
39
40
41
42
43
13
15
45
40
47
48
49
50
51
52
52
55
54 55
22
56
57
58
59

60

870	fossil algal species (Art. 44.1). The holotype is therefore treated as a fossil. The
871	assignment of this species to the non-fossil genus Peridinium was not directly explained
872	by Wall and Dale but presumably relates to a general similarity with the cysts of
873	Protoperidinium claudicans as discussed by Wall and Dale (in Wall et al. 1973). The
874	combination "Protoperidinium ponticum" by Matsuoka (1985b) was not validly
875	published because the basionym was not fully referenced (Fensome et al. 2019); the name
876	in any case is now occupied by the different species Protoperidinium ponticum. The
877	motile equivalent of <i>Peridinium ponticum</i> has been identified as <i>Protoperidinium</i> cf.
878	divergens by Dale (1983) although no genetic sequences are available to offer further
879	insights. The appropriate dual-nomenclatural solution would be to erect a new fossil-
880	defined genus for this species, although its variable ornamentation and especially an
881	outline that varies between pentagonal and subspherical (Wall et al. 1973; Mudie et al.
882	2017) would need to be considered.

883

6.5. A non-fossil theca-defined species assigned to a fossil-defined genus

885

Protoperidinium stellatum was described, as *Peridinium stellatum*, from the plankton at
Woods Hole, Massachusetts, U.S.A. (Wall in Wall and Dale 1968). A preserved motile
stage was chosen as the holotype (Wall in Wall and Dale 1968, pl. 3, fig. 16), this
specimen having been incubated from a cyst collected from this plankton. The diagnosis
is based on the morphology of both the cyst and the incubated motile stage. Bradford
(1975) subsequently described the fossil-genus *Stelladinium* for species conforming to
the general morphology of the cysts of *Protoperidinium stellatum*. He established

2	
- 3 4	89
5 6	89
7 8	89
9 10	89
11 12 12	89
13 14 15	89
16 17	80
18 19	9(
20 21	00
22 23	90
24 25 26	90
20 27 28	90
29 30	90
31 32	90
33 34	90
35 36	90
37 38	90
39 40 41	90
41 42 43	91
44 45	91
46 47	91
48 49	91
50 51	91
52 53	01
54 55 56	71
57	
58 59 60	

93	Stelladinium reidii as the holotype species, considering it to represent the cyst of
894	Protoperidinium stellatum. Reid (1977) did not accept this equivalence, a judgement
95	since followed by others (Head et al. 2020). He accordingly attempted to transfer
896	Protoperidinium stellatum (as Peridinium stellatum) to the genus Stelladinium, as
897	"Stelladinium stellatum" (Reid 1977), but failed to cite the basionym fully because he
898	excluded the holotype (a motile stage). Had the transfer been validly published, the non-
99	fossil theca-typified species Protoperidinium stellatum would have resided
00	uncomfortably within the fossil-defined genus Stelladinium. Until now, Protoperidinium
01	stellatum has remained without an equivalent fossil-species name. The erection of such a
02	name based on an equivalent cyst is in progress (MJH and KNM in prep.).
03	
04	
05	7. Systematics
06	
07	We use modified Kofoidian plate labelling which includes the identification of plate
80	homologues as indicated by an asterisk (Bujak 1980; Fensome et al. 1993, text fig. 62)
09	and sulcal plate labelling following Evitt (1985).
10	
11	
12	Division DINOFLAGELLATA (Bütschli 1885) Fensome et al. 1993 emend. Adl et al.
13	2005
14	Subdivision DINOKARYOTA Fensome et al. 1993
15	Class DINOPHYCEAE Pascher 1914

59

60

Palynology

2		
3 4	916	Subclass PERIDINIPHYCIDAE Fensome et al. 1993
5 6	917	Order GONYAULACALES Taylor 1980
7 8	918	Suborder GONYAULACINEAE (Autonym)
9 10 11	919	Family LINGULODINIACEAE Sarjeant and Downie 1974 emend. Gu, Mertens, Li and
12 13	920	Shin in Zhang et al. 2020
14 15	921	
16 17	922	Type genus. Lingulodinium Wall 1967 emend. Wall and Dale in Wall et al. 1973
19 20	923	
21 22	924	Remarks. The family Lingulodiniaceae was established by Sarjeant and Downie (1974)
23 24 25	925	based on both cyst and thecal morphology, with a plate formula 3-6', 0-4a, 6", 6C, 6",
23 26 27	926	1p, 1"" where it could be determined, and resting cysts if produced having an archeopyle
28 29	927	formed by loss of one to five precingular plates. Sarjeant and Downie (1974) included
30 31	928	two fossil-genera, Lingulodinium Wall 1967 and Operculodinium Wall 1967, and one
32 33 34	929	non-fossil genus, Protoceratium Bergh 1881. Fensome et al. (1993) considered the family
35 36	930	Lingulodiniaceae to be synonymous with and junior to the family Gonyaulacaceae
37 38	931	Lindemann 1928. Fensome et al. (1993) placed the genus Lingulodinium (and
39 40	932	questionably Protoceratium and by extension Operculodinium) within the
41 42 43	933	Gonyaulacaceae and in their new subfamily Cribroperidinioideae Fensome et al. 1993
44 45	934	which is characterized by an L-type ventral organization and dextral torsion. Zhang et al.
46 47	935	(2020) restricted the family Gonyaulacaceae to genera with an S-type ventral
48 49 50	936	organization, and retained and emended the family Lingulodiniaceae for genera with an
50 51 52	937	L-type ventral organization; a more or less symmetrical antapical outline; six or seven
53 54 55 56 57 58	938	precingular plates; when present, two or more anterior intercalary plates; and when

3 4	939	present a small ventral pore located between 1', 4' (or 5') and 2a (Gu et al. in Zhang et	al.
5 6	940	2020, p. 258). They assigned four genera to the family Lingulodiniaceae: the non-foss	il
7 8	941	genera Amylax Meunier 1910 and Sourniaea Gu et al. in Zhang et al. 2020, and the fos	ssil-
9 10 11	942	genera Lingulodinium and Pyxidinopsis Habib 1976, these assignations being supported	ed
12 13	943	by molecular phylogeny (Zhang et al. 2020; Tillmann et al. 2021; Fig. 1).	
14 15	944		
16 17 18	945		
19 20	946	Genus Lingulaulax gen. nov.	
21 22	947		
23 24 25	948	Type. Pl. IV, fig. 8 of von Stein 1883, designated by Tillmann et al. (2021) as the	
26 27	949	lectotype of the non-fossil species Lingulaulax polyedra (von Stein 1883) comb. nov.	
28 29	950		
30 31 32	951	Status. A non-fossil genus.	
33 34	952		
35 36	953	Accepted species.	
37 38 30	954	Lingulaulax polyedra (von Stein 1883) comb. nov.	
40 41	955	Lingulaulax milneri (Murray and Whitting 1899) comb. nov.	
42 43	956		
44 45	957	Etymology. A contraction of the generic names Lingulodinium and Gonyaulax, with	
46 47 48	958	reference to the nomenclatural history of this genus.	
49 50	959		
51 52	960	Diagnosis. A lingulodiniacean genus in which the motile cell has no pronounced spine	es
53 54 55 56	961	or horns, and the plate formula APC (po, X, cp), 3', 3a, 6", 6c, 7s, 5" (*2"-*6"), 1p,	
57 58			
59 60		URL: http://mc.manuscriptcentral.com/tpal	42

Page 43 of 108

1

Palynology

2	
3	
1	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
∠ I วา	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
24	
35	
36	
37	
38	
39	
40	
-TU // 1	
41	
42	
43	
44	
45	
46	
<u>م</u>	
77 10	
48	
49	
50	
51	
52	
53	
51	
54 57	
55	
56	
57	
58	
59	
60	
~~	

962	1"". The 3' plate is small, and positioned along the right side of the apical pore. The
963	cingulum is offset by up to about two cingular widths, sulcus straight (L-type ventral
964	organization). Thecal plates are thick with circular depressions over the surface of the
965	plates. Cingular and sulcal lists are present. Plate 6" is 5-sided, and plate 3' is small.
966	Torsion is dextral. Resting cysts when present have a precingular archeopyle, and if
967	processes occur, they are non-sutural in distribution. (Adapted in part from Dodge 1989,
968	p. 291).
969	
970	Remarks. The genus Gonyaulax Diesing 1866 emend. Dodge 1989 differs from
971	Lingulaulax gen. nov. in its epicystal tabulation which is characterized by two anterior
972	intercalary plates rather than three (Dodge 1989), and an S-type ventral organization.
973	Gonyaulax also often has a conspicuous ventral pore between 3' and 2a (Mertens &
974	Carbonell-Moore 2018). Amylax Meunier 1910 differs in having a large 3' plate (Dodge
975	1989), and Sourniaea Gu et al. in Zhang et al. 2020 differs in having four apical and two
976	anterior intercalary plates, and smooth resting cysts with an apical archeopyle. Sourniaea
977	may also have pronounced antapical horns, as in the holotype species Sourniaea
978	diacantha (Gu et al. in Zhang et al. 2020).
979	Establishment of the new non-fossil genus Lingulaulax allows the fossil-genus
980	Lingulodinium to be used exclusively for fossil-species.
981	
982	
983	Lingulaulax polyedra (von Stein 1883) comb. nov.
984	Figure 5

2 3	985	
4 5 6	986	Basionym. Gonyaulax polyedra von Stein 1883, p. 13, pl. IV, figs. 7–9.
7 8	987	
9 10	988	Synonymy. Lingulodinium polyedra (von Stein 1883) Dodge 1989, p. 291.
11 12 13	989	
13 14 15	990	Equivalent fossil-species. Lingulodinium machaerophorum (Deflandre and Cookson
16 17	991	1955) Wall 1967.
18 19 20	992	
20 21 22	993	Lectotype. Holotype not designated by von Stein (1883). Lectotype, von Stein 1883, pl.
23 24	994	IV, fig. 8 designated by Tillmann et al. (2021).
25 26 27	995	
28 29	996	Isotype. SEM stub [U. Tillmann K3-G8] s.n. (CEDiT2020E108!), Tillmann et al. (2021).
30 31	997	
32 33 34	998	Description. Motile cell heptagonal in dorsovental outline, with margins nearly straight,
35 36	999	and nearly circular in polar outline. An obtuse angle marks the precingular and apical
37 38 30	1000	plate series contact. A small, raised apical pore complex (APC) is present on the epitheca.
39 40 41	1001	The hypotheca is trapezoidal in outline and has a flat antapex lacking projections. There
42 43	1002	is no dorso-ventral compression. Plate formula, APC (Po, X, cp), 3', 3a, 6", 6c, 6s, 6""*,
44 45 46	1003	1p, 1"". The cingulum is narrow, almost median, fairly deeply incised and with narrow
40 47 48	1004	lists, descending without overlap, and offset by about two cingulum widths. The sulcus is
49 50	1005	vertical, straight, broad at the posterior and narrow towards the anterior where it just
51 52	1006	enters the epitheca, and bordered by sulcal lists. The thecal plates are thick and have
53 54 55	1007	prominent ridges along the sutures on the overlap margins. The surface of mature plates
56 57		
58 59		44

Page 45 of 108

58 59

60

Palynology

1		
2 3 4	1008	is coarsely areolate and includes ring-shaped ridges around the numerous trichocyst
5 6	1009	pores. Ridges connect adjacent areolae on mature plates. The first apical plate is long and
7 8 0	1010	narrow and has a ventral pore on its right margin. Plate 2' is heptagonal and large. Plate 3'
9 10 11	1011	(on the right side) is small and narrow, curving around the right-hand margin of the apical
12 13	1012	pore complex. The APC contains an elongated oval pore plate bordered by a raised rim.
14 15 16 17	1013	The centre of the pore plate contains a cover plate bearing small, elongate structures.
	1014	There are three pentagonal anterior intercalary plates all of similar size situated on the
19 20	1015	right side of the epitheca. The six cingular plates are all approximately similar in size.
21 22	1016	Apart from the ms plate, sulcal plates are at least partly ornamented and porate. Plate 1""*
23 24 25 26 27	1017	is small, occurs within the sulcus, and may not contact cingulum. Keystone plates are 3",
	1018	c3 and 4 ^{'''*} in the precingular, cingular and postcingular series, respectively. Cell length,
28 29	1019	39–53 µm; cell width, 34–48 µm (Adapted from Dodge 1989; Tillmann et al. 2021; Fig.
30 31	1020	5.)
32 33 34	1021	The resting cyst has a spherical to ovoid central body and a granulate to
35 36	1022	microrugulate surface. The archeopyle is usually precingular representing the individual
37 38	1023	release of one or more precingular plates (up to $1''-5''$) but with the apical plates
39 40 41	1024	remaining attached to the sulcus (Wall 1967); although an epitractal archeopyle may be
42 43	1025	occasionally developed. The archeopyle margin has rounded angles. Processes are
44 45	1026	nontabular, hollow, with circular bases, and tend to flatten distally; distal ends are closed
46 47	1027	and taper to fine points or may occasionally be capitate. Processes may be slightly
49 50	1028	constricted at their base, and have smooth surfaces but may bear fine spinules along their
51 52	1029	distal third. Process length can vary considerably (0–35 μ m). There are no other
53 54		
56 57		

3 4	1030	indications of tabulation. Central body diameter, 35–60 μ m (Adapted from Wall and Dale
5 6	1031	in Wall et al. 1973; Van Nieuwenhove et al. 2020b.)
7 8 9	1032	
10 11	1033	Remarks. Detailed SEM observations of motile cells from the type locality in the Baltic
12 13	1034	Sea off Kiel, Germany are provided by Tillmann et al. (2021). Nehring (1994) illustrated
14 15 16	1035	cysts from modern sediments of the Kiel Bight.
17 18	1036	
19 20 21	1037	
21 22 23	1038	Lingulaulax milneri (von Stein 1883) comb. nov.
24 25	1039	
26 27	1040	Basionym. Goniodoma milneri Murray and Whitting 1899, p. 325, pl. 27, fig. 2a-d.
28 29 30	1041	Synonyms.
31 32	1042	Heterodinium milneri (Murray and Whitting 1899) Kofoid 1906, p. 353.
33 34	1043	Gonyaulax milneri (Murray and Whitting 1899) Kofoid 1911, p. 203.
35 36 27	1044	
37 38 39	1045	Remarks. Kofoid (1911) placed Gonyaulax milneri with Gonyaulax polyedra in his
40 41	1046	Polyedra group. SEM illustrations by Taylor (1976, pl. 44, figs. 517a-c) show a
42 43	1047	polyhedral outline and epithecal tabulation very similar to that of Lingulaulax polyedra,
44 45 46	1048	although the epitheca is considerably shorter than the hypotheca. In proposing this
47 48	1049	species, the authors illustrated different cells (Murray and Whitting 1899, fig. 2a-d) and
49 50	1050	did not designate a holotype (this became a requirement only on 1 January 1958; Art.
51 52 53	1051	40.1). Therefore, no holotype exists for this species.
54 55	1052	
56 57		
58 59 60		URL: http://mc.manuscriptcentral.com/tpal 46

60

Palynology

2		
5 4	1053	
5 6	1054	8. Summary and conclusions
7 8 9	1055	
10 11	1056	Biological nomenclature must be flexible to reflect new phylogenetic information but
12 13	1057	also conservative to promote stability and continuity. The ICN explicitly distinguishes
14 15	1058	between fossil- and non-fossil algal taxa (diatoms excepted), recognising the fundamental
16 17 18	1059	differences in their underlying taxonomic concepts. Living organisms can be
19 20	1060	circumscribed potentially on the basis of their entire life history and genome, whereas
21 22	1061	fossils cannot. These concepts and this distinction form the basis for dual nomenclature.
23 24 25	1062	Therefore, inconsistencies and ambiguities arise when binomials are created that combine
26 27	1063	fossil with non-fossil names. In some cases, these hybridized names result from
28 29	1064	misunderstandings over the fossil or non-fossil status of these names. In examining this
30 31 22	1065	hybridized nomenclature and the problems it may create, solutions and courses of action
32 33 34	1066	have been proposed and are summarized below.
35 36	1067	Nematosphaeropsis labyrinthus is a commonly reported non-fossil species
37 38	1068	assigned to a fossil-genus. When its motile stage has been identified, Nematosphaeropsis
39 40 41	1069	labyrinthus will either require transfer to a non-fossil genus or will become a junior
42 43	1070	heterotypic synonym unless it is conserved with a new (fossil) type, as we recommend,
44 45	1071	allowing it to be used in the manner always intended for this species.
46 47 48	1072	The ecologically important Quaternary genus Brigantedinium is typified by the
49 50	1073	holotype of Brigantedinium simplex which is a non-fossil cyst. Incubation studies have
51 52	1074	linked Brigantedinium simplex to the theca-defined non-fossil species Protoperidinium
53 54 55 56	1075	conicoides which is the senior heterotypic synonym. In turn, Brigantedinium is a junior
57 58 59		47

heterotypic synonym of the large non-fossil genus Protoperidinium. Moreover, the genus Brigantedinium is polyphyletic and Brigantedinium simplex a morphological outlier. Our preferred solution would be to conserve the name *Brigantedinium simplex* with a new (fossil) type and transfer to a new fossil-genus, and the name Brigantedinium conserved using as a new type the holotype of one of the fossil-species of *Brigantedinium*. With the exception of Brigantedinium simplex, this would allow Brigantedinium and all its fossil-species to continue being used as they are presently. The informal term "round brown cysts" would remain a useful collective label for all these cyst morphotypes.

The cyst-defined *Echinidinium* is similarly a non-fossil genus because its type, the holotype of *Echinidinium granulatum*, is a non-fossil specimen. Incubation and genetic sequencing studies have linked *Echinidinium granulatum* to an undescribed species of Protoperidinium. Upon the publication of that new Protoperidinium species, the genus *Echinidinium* and its holotype species *Echinidinium granulatum* will become junior heterotypic synonyms unless these names are conserved with a new (fossil) type, which we recommend as it will then allow *Echinidinium* and all its species to be used as originally intended.

1092Based on incubation studies, the fossil-genus *Islandinium* and its holotype species1093*Islandinium minutum* were emended by Potvin et al. (2013) to include characters of the1094motile cell. If an extinct species should be assigned to *Islandinium* an ambiguity will exist1095because its motile stage would be unknowable. Following the application of dual1096nomenclature, *Islandinium* is here treated as a fossil-genus as had been initially intended,1097and a proposal is being prepared to create an equivalent non-fossil genus.1098The fossil-genus *Lingulodinium* is typified by the holotype of *Lingulodinium*

Page 49 of 108

1099

Palynology

machaerophorum, an extant fossil-species from the Miocene of Australia (Deflandre and

1	
2	
3	
4	
с С	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
32	
24	
34	
35	
36	
37	
38	
39	
40	
Δ1	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49 50	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

1100	Cookson 1955). The theca-defined non-fossil species equivalent to Lingulodinium
1101	machaerophorum is Gonyaulax polyedra. Dodge (1989) emended Lingulodinium to
1102	include thecal characteristics and transferred Gonyaulax polyedra to it, as Lingulodinium
1103	polyedra. However, most fossil-defined species of Lingulodinium are extinct, their motile
1104	stage morphologies hence unknowable. The genus Lingulodinium is therefore returned to
1105	its fossil status and the new non-fossil genus, Lingulaulax gen. nov., is proposed along
1106	with the new combinations Lingulaulax polyedra (von Stein 1883) comb. nov. and
1107	Lingulaulax milneri (Murray and Whitting 1899) comb. nov., for the non-fossil
1108	Gonyaulax polyedra von Stein 1883 and Gonyaulax milneri (Murray and Whitting 1899)
1109	Kofoid 1911, respectively.
1110	Peridinium ponticum, a distinctive fossil-species assigned to a non-fossil genus, is
1111	reported frequently from Paratethyan Quaternary deposits from where it was first
1112	described, but also occurs along the Atlantic margin of Portugal (García-Moreiras et al.
1113	2018, 2023) and France (KNM pers. obs.). Creating a new fossil-defined genus for this
1114	species might be desirable, although the species shows considerable morphological
1115	variability that would require consideration.

1116 Protoperidinium stellatum is a theca-defined non-fossil species with a distinctive 1117 stellate cyst clearly conforming to the fossil-genus Stelladinium. Following dual nomenclature, a new fossil-species will be proposed to serve as the equivalent fossil 1118 name for Protoperidinium stellatum (MJH and KNM in prep.). 1119

1120 Gonyaulax ellegaardiae was not validly published at the time of publication 1121 because it was typified by two illustrations. Requirements for valid publication are

49

2	
3	
4	
5	
7	
, 8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
24	
25	
26	
27	
28	
29	
30	
32	
33	
34	
35	
36 27	
38	
39	
40	
41	
42	
43	
44	
46	
47	
48	
49	
50 ⊑1	
51 52	
53	
54	
55	
56	
57	
58 E0	
59 60	

1

1122 completed herein by designating one of these illustrations (fig. 2 in Mertens et al., 2015) 1123 as the holotype.

1124 In order to improve taxonomic integration between extant fossilizable cyst 1125 morphotypes and those of deeper geological time, we advocate the establishment of 1126 equivalent fossil-defined names for *all* such extant morphotypes where practicable. The 1127 application of such names will benefit from the typification of a cyst as a holotype. This 1128 exercise, illustrated by the case of Protoperidinium stellatum cysts (above), should take 1129 advantage of molecular as well as other phylogenetic evidence when constructing such a 1130 taxonomy. Dual nomenclature in dinoflagellates should be consistently available for 1131 those who wish to use it. 1132 1133 1134 Acknowledgements 1135 1136 Haifeng Gu is thanked for providing the basis for Figure 4. MJH acknowledges support 1137 from a Natural Sciences and Engineering Research Council of Canada Discovery Grant. 1138 KNM was financially supported by the French National Research Agency (ANR) 1139 PhenoMap project, ANR-20-CE02-0025. RAF acknowledges the support of Natural 1140 Resources Canada; this is NRCan contribution number 20230058. We are most grateful 1141 to P.J. Mudie and the four journal reviewers, including V. Pospelova, all of whom provided helpful and positive comments. 1142 1143 1144 URL: http://mc.manuscriptcentral.com/tpal

2		
3 4	1145	Disclosure statement
5 6	1146	
7 8	1147	No potential conflict of interest was reported by the authors.
9 10 11	1148	
12 13	1149	
14 15	1150	Notes on contributors
16 17	1151	
18 19 20	1152	MARTIN J. HEAD is a professor of Earth Sciences at Brock University. His interests are
21 22	1153	in late Cenozoic marine palynology, and particularly the late Neogene–Quaternary record
23 24 25	1154	of dinoflagellate cysts and acritarchs and their application to paleoenvironmental
25 26 27	1155	reconstruction. He is also involved in formal chronostratigraphy including that of the
28 29	1156	Quaternary Period. He is a former president of AASP – The Palynological Society and of
30 31 22	1157	the Canadian Association of Palynologists.
33 34	1158	
35 36	1159	KENNETH NEIL MERTENS is a researcher at Ifremer, LER BO, Concarneau, France.
37 38	1160	He received his Ph.D. in 2009 from Ghent University. His research interests are the
39 40 41	1161	taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the
42 43	1162	palaeoceanographic application of dinoflagellate cysts, particularly in the Quaternary and
44 45	1163	Neogene.
46 47 48	1164	
40 49 50	1165	ROBERT A. FENSOME is a research scientist with the Geological Survey of Canada
51 52	1166	(GSC), part of the federal department of Natural Resources Canada, in their Atlantic
53 54 55	1167	Division at the Bedford Institute of Oceanography, Dartmouth, Nova Scotia. During his
56 57 58		
59 60		URL: http://mc.manuscriptcentral.com/tpal 51

1 2		
3 4	1168	39-year tenure at the GSC, Rob has focussed mainly on Mesozoic and Cenozoic
5 6	1169	dinoflagellate cysts from offshore eastern Canada, but recently ventured into projects
7 8 9	1170	involving assemblages from north-western and Arctic Canada. While his mandate has
10 11	1171	involved primarily biostratigraphical and palaeoenvironmental studies, he also has a
12 13	1172	strong interest in dinoflagellate taxonomy and evolution, miospore taxonomy and
14 15	1173	geological outreach, co-authoring and co-editing two books for a general audience, one
16 17 19	1174	on the geology of Canada and one on the geology of Canada's Maritime Provinces.
19 20	1175	
21 22	1176	
23 24	1177	References
25 26 27	1178	
28 29	1179	Abé TH. 1936. Report of the biological survey of Mutsu Bay. 29. Notes on the protozoan
30 31	1180	fauna of Mutsu Bay. II. Genus Peridinium: Subgenus Archaeperidinium. Science Reports
32 33	1181	of the Tohoku Imperial University, Fourth Series, Biology. 10:639-686.
34 35 36	1182	
37 38	1183	Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta, JR, Bowser
39 40	1184	SS, Brugerolle G, Fensome RA, Fredericq S, et al. 2005. The new higher level
41 42	1185	classification of eukaryotes with emphasis on the taxonomy of protists. Journal of
43 44 45	1186	Eukaryotic Microbiology. 52:399–451.
46 47	1187	
48 49	1188	Andersen RA. 2021, Report of the Nomenclature Committee for Algae: 23, Taxon.
50 51	1189	70(5):1124–1125
52 53 54	1190	
55 56	11/0	
57 58		
59 60		URL: http://mc.manuscriptcentral.com/tpal 52

Page 53 of 108

1

2 3 4	1191	Balech E. 1944. Contribución al conocimiento del plancton de Lennox y Cabo de Hornos.
5 6 7 8	1192	Physis. 19(54):423–446, pl. 1–6.
	1193	
9 10 11	1194	Balech E. 1974. El género "Protoperidinium" Bergh, 1881 ("Peridinium" Ehrenberg,
12 13	1195	1831, partim). Revista del Museo Argentino de ciencias naturales «Bernardino
14 15	1196	Rivadavia», Hidrobiología. 4:1–79.
16 17 18	1197	
19 20	1198	Balech E. 1979. El genero Pyrophacus Stein (Dinoflagellata). Physis (Buenos Aires),
21 22 23 24 25 26 27 28 29 30 31 32 33 34	1199	Sección A. 38(94):27-38.
	1200	
	1201	Balech E. 1985. The genus Alexandrium or Gonyaulax of the tamarensis group. In:
	1202	Anderson DM., White AW, Baden DG, editors. Toxic Dinoflagellates. Third
	1203	International Conference on Toxic Dinoflagellates, St. Andrews, New Brunswick, June,
	1204	1985. New York, Elsevier, p. 33–38.
35 36	1205	
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 52 	1206	Balech E. 1988. Los dinoflagellados del Atlántico sudoccidental. In: Publicaciones
	1207	Especiales del Instituto Español de Oceanografía 1. Spain, Madrid 310 pp.
	1208	
	1209	Balech E. 1994. Contribución a la taxinomia y nomenclatura del género Protoperidinium
	1210	(Dinoflagellata). Revista del Museo Argentino de Ciencias Naturales «Bernardino
	1211	Rivadavia» e Instituto Nacional de Investigación de las Ciencias Naturales,
	1212	Hidrobiología. 7:61–80.
53 54 55	1213	
56 57		
58 59		1 RI + http://mcmapuscriptcontrol.com/tpal
60		one. http://me.manuscriptcentrai.com/tpai

1 2			
3 4	1214	Balota EJ, Head MJ, Okada M, Suganuma Y, Haneda Y. 2021. Paleoceanography and	
5 6	1215	dinoflagellate cyst stratigraphy across the Lower-Middle Pleistocene Subseries	
7 8	1216	(Calabrian–Chibanian Stage) boundary at the Chiba composite section, Japan. 2021.	
) 10 11	1217	Progress in Earth and Planetary Science. 8:1–38.	
12 13	1218		
14 15 16	1219	Benedek PN. 1972. Phytoplanktonten aus dem Mittel- und Oberoligozän von Tönisber	g
16 17 18 19 20 21 22	1220	(Niederrheingebiet). Palaeontographica, Abteilung B. 137:1-71, pl. 1-16.	
	1221		
	1222	Bergh RS. 1881a. Bidrag til cilioflagellaternes naturhistorie. Forelobige meddelelser.	
23 24 25	1223	Dansk Naturhistoriskforening i Kjobenhavn, Videnskabelige Meddelelser, Series 4. 3:	60–
26 27	1224	76.	
28 29	1225		
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	1226	Bergh RS. 1881b. Der organismus der Cilioflagellaten. Eine phylogenetische studie.	
	1227	Morphologisches Jahrbuch. 7:177–288.	
	1228		
	1229	Braarud T. 1945. Morphological observations on marine dinoflagellate cultures	
	1230	(Porella perforata, Goniaulax Tamarensis, Protoceratium reticulatum). Avhandlinger	
	1231	utgitt av Det Norske Videnskaps-Akademi i Oslo. I. Matematisk-Naturvidenskapelig	
	1232	Klasse 1944. 11:1–18.	
	1233		
	1234	Bradford MR. 1975. New dinoflagellate cyst genera from the recent sediments of the	
	1235	Persian Gulf. Canadian Journal of Botany. 53:3064–3074.	
53 54	1236		
55 56 57			
58 59			54
60		URL: http://mc.manuscriptcentral.com/tpal	2.

Page 55 of 108

Palynology

1 2			
2 3 4	1237	Briquet J. 1912. Règles internationales de la Nomenclature botanique adoptées par le	
5 6 7 8	1238	Congrés International de Botanique de Vienne 1905 deuxième édition mise au point	
	1239	d'après les décisions du Congrés International de Botanique de Bruxelles 1910. Gusta	V
10 11	1240	Fischer, Jena, pp. i–viii + 1–110.	
12 13	1241		
14 15	1242	Briquet J, Flahault C, Harms H, Rendle, AB. 1906. International rules of botanical	
16 17 18	1243	nomenclature adopted by the International Botanical Congress of Vienna 1905. p. 165	,)—
19 20	1244	261. In: Briquet J, Ginzberger A, Schiffner V, von Weinzierl T, von Wettstein R,	
21 22	1245	Zahlbruckner A, editors, Verhandlungen des Internationalen Botanischen Knogresses	in
23 24 25	1246	Wien 1905. Gustav Fischer, Jena.	
25 26 27	1247		
28 29 30 31 32	1248	Bujak JP. 1980. V. Dinoflagellate cysts and acritarchs from the Eocene Barton Beds o	f
	1249	southern England. In: Bujak JP, Downie C, Eaton GL, Williams GL. Dinoflagellate cy	ysts
32 33 34	1250	and acritarchs from the Eocene of southern England. Special Papers in Palaeontology.	
35 36	1251	24:36–91.	
37 38	1252		
39 40 41	1253	Bujak JP. 1984. Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and	
41 42 43	1254	northern North Pacific, D.S.D.P. Leg 19. Micropaleontology. 30:180-212.	
44 45	1255		
46 47 48 49 50	1256	Bütschli O. 1885. Dinoflagellata. In: Abtheilung II Mastigophora Bronn HG (editor),	
	1257	Protozoa. Die Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt	in
51 52	1258	Wort und Bild. CF Winter'sche Verlagshandlung, Leipzig. Heidelberg, p. 906–1029.	
53 54	1259		
55 56 57			
58 59			ςı
60		URL: http://mc.manuscriptcentral.com/tpal	0.

3 4	1260	Carbonell-Moore MC. 2018. (2608) Proposal to conserve the name Peridinium splendor-
5 6	1261	maris (Blepharocysta splendor-maris) (Dinophyceae) with a conserved type. Taxon.
7 8	1262	67(3):633–635.
9 10 11	1263	
12 13	1264	Carbonell-Moore C, Mertens KN. 2019. Should Gonyaulax hyalina and Gonyaulax
14 15 16	1265	fragilis (Dinophyceae) remain two different taxa? Phycologia 58:1-5.
10 17 18	1266	
19 20	1267	Choi JM, Jung JH, Kim KH, Coats DW, Kim YO. 2021. A novel parasitic, syndinean
21 22	1268	dinoflagellate Euduboscquella triangula infecting the tintinnid Helicostomella longa.
23 24 25	1269	Frontiers in Marine Science. 8:720424. doi: 10.3389/fmars.2021.720424
25 26 27	1270	
28 29	1271	Claparède E, Lachmann, J. 1859. Études sur les infusoires et les rhizopodes. Institut
30 31	1272	national génevois, Mémoires 6 (Mémoire 1):261-482. (Cover date 1858, issue date 1859,
32 33	1273	according to Loeblich Jr. and Loeblich III, 1966.)
34 35 36	1274	
37 38	1275	Cleal CJ, Thomas BA. 2010. Botanical nomenclature and plant fossils. Taxon. 59 (1):
39 40	1276	261–268.
41 42 43	1277	
44 45	1278	Coats DW, Bachvaroff TR, Delwiche CF. 2012. Revision of the family Duboscquellidae
46 47	1279	with description of Euduboscquella crenulata n. gen., n. sp. (Dinoflagellata, Syndinea),
48 49 50	1280	an intracellular parasite of the ciliate Favella panamensis Kofoid & Campbell, 1929.
50 51 52	1281	Journal of Eukaryotic Microbiology. 59(1):1–11.
53 54	1282	
55 56		
57 58		
59 60		URL: http://mc.manuscriptcentral.com/tpal 56

2	1000	
4	1283	Cowan RS, Stafleu FA. 1982. The origins and early history of I.A.P.1. Taxon 31(3): 415–
5 6 7	1284	420.
, 8 9	1285	
10 11	1286	Dale B. 1983. Dinoflagellate resting cysts: 'benthic plankton'. In: Fryxell GA, editor.
12 13	1287	Survival strategies of the algae. New York: Cambridge University Press; p. 69–136.
14 15 16	1288	
17 18	1289	Dale B. 2021. From hystrichospheres to dinoflagellate cysts: Scandinavian contributions
19 20	1290	to Evitt's pivotal recognition of fossil dinoflagellate cysts. Palynology. 45:165–170.
21 22	1291	
23 24 25	1292	Davey RJ, Williams GL. 1966. The genus Hystrichosphaeridium and its allies. In: Davey
26 27	1293	RJ, Downie C, Sarjeant WAS, Williams GL, Studies on Mesozoic and Cainozoic
28 29	1294	dinoflagellate cysts. British Museum (Natural History) Bulletin, Geology, supplement 3,
30 31 32	1295	p. 53–106.
33 34	1296	
35 36	1297	Dayrat B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean
37 38 30	1298	Society. 85:407–415.
39 40 41	1299	
42 43	1300	de Candolle A. 1867. Lois de la Nomenclature botanique, pp. 209–225. In: Fournier E.
44 45	1301	(ed.), Actes du Congrés International de Botanique tenu a Paris en Août 1867. Germer
46 47 48	1302	Baillière, Paris, France.
49 50	1303	
51 52		
53 54		
55 56 57		
58 59		
60		URL: http://mc.manuscriptcentral.com/tpal 57

2	
3	1304
4 5 6	1305
7 8	1306
9 10	1307
11 12	1308
13 14	1200
15 16	1309
17 18	1310
19 20	1311
21 22	1312
23 24 25	1313
25 26 27	1314
28 29	1315
30 31	1316
32 33	1317
34 35 26	1318
36 37 38	1319
39 40	1220
40	1520
42	1321
44 45 46	1322
40 47 49	1323
48 49 50	1324
50 51 52	1325
52 53 54	1326
55	2020
57	
58 50	
72	

60

1

de Candolle A. 1883. Nouvelles remarques sur la nomenclature botanique. Supplément 05 au commentaire du même auteur qui accompagnait le texte des lois. H. Georg, Genève; 06 79 pages. 07 80 Deflandre G. 1962. Fichier micropaléontologique général – Série 11, Dinoflagellés III – 09 Peridinida à tabulation conservée. Arch. origin. Centre Docum. C.N.R.S., Paris, no. 383, 10 cards I–V and 1751–1947. 11 12 Deflandre G, Cookson IC. 1955. Fossil microplankton from Australian Late Mesozoic 13 and Tertiary sediments. Australian Journal of Marine and Freshwater Research. 6:242-14 313. 15 16 Delage Y, Hérouard E. 1896. Traité de zoologie concrète. Tome 1. La cellule et les 17 Protozoaires; C. Reinwald, Paris, p. i-xxx + 1-584. 18 19 De Schepper S, Head MJ, Louwye S. 2004. New dinoflagellate cyst and incertae sedis 20 taxa from the Pliocene of northern Belgium, southern North Sea Basin. Journal of 21 Paleontology. 78:625-644. 22 23 de Vernal A, Henry M, Matthiessen J, Mudie PJ, Rochon A, Boessenkool KP, Eynaud F, 24 Grøsfjeld K, Guiot J, Hamel D, Harland R, Head MJ, Kunz-Pirrung M, Levac E, 25 Loucheur V, Peyron O, Pospelova V, Radi T, Turon J-L, Voronina E. 2001. 26 Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North

1			
2 3 4	1327	Atlantic, Arctic and sub-Arctic seas: the new 'n = 677 ' data base and its application for	
5 6	1328	quantitative palaeoceanographic reconstruction. Journal of Quaternary Science.	
/ 8 9	1329	16(7):681–698.	
10 11	1330		
12 13	1331	de Vernal A, Radi T, Zaragosi S, Van Nieuwenhove N, Rochon A, Allan E, De Scheppe	er
14 15 16	1332	S, Eynaud F, Head MJ, Limoges A, Londeix L, Marret F, Matthiessen J, Penaud A,	
17 18	1333	Pospelova V, Price A, Richerol T. 2020. Distribution of common modern dinoflagellate	;
19 20	1334	cyst taxa in surface sediments of the Northern Hemisphere in relation to environmental	
21 22 23	1335	parameters: The new n=1968 database. Marine Micropaleontology. 159:101796, 1–23.	
23 24 25	1336		
26 27	1337	Diesing KM. 1866. Revision der Prothelminthen. Abtheilung: Mastigophoren.	
28 29	1338	Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-	
30 31 32	1339	naturwissenschaftliche Classe. Abt. I. 52:287-401.	
33 34	1340		
35 36	1341	Dodge JD. 1989. Some revisions of the family Gonyaulacaceae (Dinophyceae) based or	1
37 38 39	1342	a scanning electron microscope study. Botanica Marina. 32:275–298.	
40 41	1343		
42 43	1344	Downie C, Sarjeant WAS. 1965. Bibliography and index of fossil dinoflagellates and	
44 45 46	1345	acritarchs. Geological Society of America, Memoir. 94:1-180. [Cover date December,	
40 47 48	1346	1964, issue date January, 1965].	
49 50	1347		
51 52	1348	Downie C, Williams GL, Sarjeant WAS. 1961. Classification of fossil microplankton.	
53 54 55 56 57	1349	Nature 192 (4801):471.	
58 59		URI · http://mc.manuscriptcentral.com/tpal	59
00		one nep/mentarbenpteentarbeni/.pu	

1

2 3 4	1350	
5 6	1351	Ehrenberg CG. 1837. Über das Massenverhältniss der jetzt lebenden Kiesel-Infusorien
7 8 0	1352	und über ein neues Infusorien-Conglomerat als Polirschiefer von Jastraba in Ungarn.
9 10 11	1353	Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, aus dem Jahre
12 13	1354	1836, Physikalische Klasse, p. 109–135, pl. 1–2. [Published in the journal in 1838, but as
14 15 16	1355	a separate in December 1837].
16 17 18	1356	
19 20	1357	Elbrächter M, Hoppenrath M, Jahn R, Kusber W-H. 2018. Stability of the generic names
21 22	1358	Alexandrium Halim and Gessnerium Halim at risk because of Peridinium splendor-maris
23 24 25	1359	Ehrenberg, the first documented bloom of Alexandrium (Dinophyceae). Notulae algarum
26 27	1360	60:1–6.
28 29	1361	
30 31 32	1362	Elbrächter M, Gottschling M, Hoppenrath M, Jahn R, Montresor M, Tillmann U, Kusber
33 34	1363	W-H. 2019. (2686) Proposal to conserve the name Alexandrium against Blepharocysta
35 36	1364	(Dinophyceae). Taxon. 68(3):589–590.
37 38 39	1365	
40 41	1366	Elbrächter M, Gottschling M, Hoppenrath M, Keupp H, Kusber W-H, Streng M,
42 43	1367	Tillmann U, Versteegh GJM, Zonneveld KAF. 2023. (258-260) Proposals to eliminate
44 45	1368	contradiction between Articles 11.7 and 11.8 and to equate non-fossil with fossil names
46 47 48	1369	of dinophytes for purposes of priority. Taxon 72 (3):684-686.
49 50	1370	
51 52	1371	Ellegaard M, Moestrup Ø. 1999. Fine structure of the flagellar apparatus and
53 54 55 56 57	1372	morphological details of Gymnodinium nolleri sp. nov. (Dinophyceae), an unarmoured
58 59		URL: http://mc.manuscriptcentral.com/tpal
00		

2 3 4	1373	dinoflagellate producing a microreticulate cyst. Phycologia. 38:289–300.	
5 6	1374		
7 8	1375	Ellegaard M, Lewis J, Harding I. 2002. Cyst-theca relationship, life cycle, and effects	of
9 10 11	1376	temperature and salinity on the cyst morphology of Gonyaulax baltica sp. nov.	
12 13	1377	(Dinophyceae) from the Baltic Sea area. Journal of Phycology. 38:775–789.	
14 15	1378		
16 17 18	1379	Ellegaard ME, Head MJ, Versteegh GJM. 2018. Linking biological and geological data	à
19 20	1380	on dinoflagellates using the genus Spiniferites as an example: the implications of speci-	es
21 22	1381	concepts, taxonomy and dual nomenclature. Palynology. 42(supplement 1):221-230.	
23 24 25	1382		
26 27	1383	Ellegaard M, Ribero S. 2018. The long-term persistence of phytoplankton resting stage	s
28 29	1384	in aquatic 'seed banks'. Biological Reviews 93:166-183.	
30 31 32	1385		
32 33 34	1386	Escalera L, Italiano A, Pistocchi R, Montresor M, Zingone A. 2018. Gonyaulax hyalina	а
35 36	1387	and Gonyaulax fragilis (Dinoflagellata), two names associated with 'mare sporco',	
37 38	1388	indicate the same species. Phycologia. 57:453-464.	
39 40 41	1389		
42 43	1390	Evitt WR. 1961. Observations on the morphology of fossil dinoflagellates.	
44 45	1391	Micropaleontology. 7:385-420.	
46 47 48	1392		
49 50	1393	Evitt WR. 1963. A discussion and proposals concerning fossil dinoflagellates,	
51 52	1394	hystrichospheres and acritarchs. Proceedings of the National Academy of Sciences.	
53 54	1395	49:158–164, 289–302, 4 text figs.	
55 56 57			
58 59			6
60		URL: http://mc.manuscriptcentral.com/tpal	5

1 ว			
2 3 4	1396		
5 6	1397	Evitt WR. 1985. Sporopollenin dinoflagellate cysts: their morphology and interpretation	n.
7 8 0	1398	American Association of Stratigraphic Palynologists, Monograph Series. 1, 333 p.	
9 10 11	1399		
12 13	1400	Evitt WR, Davidson SE. 1964. Dinoflagellate studies, I. Dinoflagellate cysts and thecae	e.
14 15 16	1401	Stanford University Publications, Geological Sciences. 10(1):1–12.	
17 18	1402		
19 20	1403	Evitt WR. 1970. Dinoflagellates – a selective review. Geoscience and Man. 1:29–45.	
21 22	1404		
23 24 25	1405	Erdtman G. 1954. On pollen grains and dinoflagellate cysts in the Firth of Gullmarn,	
26 27	1406	S.W. Sweden. Botaniska Notiser. 2:103–111.	
28 29	1407		
30 31 32	1408	Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL. 1993.	A
33 34	1409	classification of living and fossil dinoflagellates. Micropaleontology Special Publication)n.
35 36	1410	7:1–351.	
37 38 30	1411		
40 41	1412	Fensome RA, Williams GL, McRae RA. 2019. The Lentin and Williams index of fossi	.1
42 43	1413	dinoflagellates 2019 edition. American Association of Stratigraphic Palynologists,	
44 45	1414	Contributions Series. 50:1–1173.	
40 47 48	1415		
49 50	1416	García-Moreiras I, Pospelova V, García-Gil S, Muñoz Sobrino C. 2018. Climatic and	
51 52	1417	anthropogenic impacts on the Ría de Vigo (NW Iberia) over the last two centuries: a	
53 54 55			
56 57			
58 59			62
60		UKL: http://mc.manuscriptcentral.com/tpal	

Palynology

1 2		
3 4	1418	high-resolution dinoflagellate cyst sedimentary record. Palaeogeography
5 6	1419	Palaeoclimatology Palaeoecology. 504: 201–218.
7 8	1420	
9 10 11	1421	García-Moreiras I, Costas SV, García-Gil S, Muñoz Sobrino C. 2023. Organic-walled
12 13	1422	dinoflagellate cyst assemblages in surface sediments of the Ría de Vigo (Atlantic margin
14 15	1423	of NW Iberia) in relation to environmental gradients. Marine Micropaleontology. 180:
16 17 19	1424	102217.
10 19 20	1425	
21 22	1426	Gravendyck J, Fensome RA, Head MJ, Herendeen PS, Riding JB, Bachelier JB, Turland
23 24 25	1427	NJ. 2021. Taxonomy and nomenclature in palaeopalynology: basic principles, current
25 26 27	1428	challenges and future perspectives. Palynology. 45:717–743.
28 29	1429	
30 31	1430	Greuter W, Barrie FR, Burdet HM, Chaloner WG, Demoulin V, Hawksworth DL,
32 33 34	1431	Jørgensen PM, Nicolson DH, Silva PC, Trehane P, McNeill J, editors. 1994. International
35 36	1432	Code of Botanical Nomenclature (Tokyo Code): Adopted by the Fifteenth International
37 38	1433	Botanical Congress, Yokohama, August-September 1993. Regnum Vegetabile 131.
39 40	1434	Königstein: Koeltz Scientific Books; pages i–xviii + 1–389.
41 42 43	1435	
44 45	1436	Greuter W, McNeill J, Barrie FR, Burdet HM, Demoulin V, Filgueiras TS, Nicolson DH,
46 47	1437	Silva PC, Skog JE, Trehane P, Turland NJ, Hawksworth DL, editors. 2000. International
48 49 50	1438	Code of Botanical Nomenclature (Saint Louis Code): Adopted by the Sixteenth
50 51 52	1439	International Botanical Congress St Louis, Missouri, July- August 1999. Regnum
53 54	1440	Vegetabile 138. Königstein: Koeltz Scientific Books; pages i-xviii + 1-474.
55 56		
57 58 59		

URL: http://mc.manuscriptcentral.com/tpal

1 2		
3 4	1441	
5 6	1442	Gu H, Liu T, Mertens KN. 2015. Cyst-theca relationship and phylogenetic positions of
7 8 9	1443	Protoperidinium (Peridiniales, Dinophyceae) species of the sections Conica and
10 11	1444	Tabulata, with description of Protoperidinium shanghaiense sp. nov. Phycologia. 54:49-
12 13	1445	66.
14 15 16	1446	
17 18	1447	Gu H, Huo K, Krock B, Bilien G, Pospelova V, Li Z, Carbonell-Moore C, Morquecho L,
19 20	1448	Ninčević Ž, Mertens KN. 2021. Cyst-theca relationships of Spiniferites bentorii, S.
21 22 23	1449	hyperacanthus, S. ramosus, S. scabratus and molecular phylogenetics of Spiniferites and
23 24 25	1450	Tectatodinium (Gonyaulacales, Dinophyceae). Phycologia. 60:332-353.
26 27	1451	
28 29 20	1452	Gu H, Mertens KN, Derrien A, Bilien G, Li Z, Hess P, Séchet V, Krock B, Amorim A, Li
30 31 32	1453	Z, Pospelova V, Smith KF, MacKenzie L, Yoon JY, Kim HJ, Hyeon Ho Shin HH. 2022.
33 34	1454	Unraveling the Gonyaulax baltica Species Complex: Cyst-theca Relationship of
35 36	1455	Impagidinium variaseptum, Spiniferites pseudodelicatus sp. nov. and S. ristingensis
37 38 39	1456	(Gonyaulacaceae, Dinophyceae), with descriptions of Gonyaulax bohaiensis sp. nov., G.
40 41	1457	amoyensis sp. nov. and G. portimonensis sp. nov. Journal of Phycology. 58:465-486.
42 43	1458	
44 45 46	1459	Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de
40 47 48	1460	Vargas C, Decelle J, del Campo J, Dolan, JR, Dunthorn M, Edvardsen B, Holzmann M,
49 50	1461	Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahé F, Massana R, Montresor M,
51 52	1462	Morard R, Not F, Pawlowski J, Probert I, Sauvadet A-L, Siano R, Stoeck T, Vaulot D,
53 54 55 56 57	1463	Zimmermann P, Christen R. 2013. The Protist Ribosomal Reference database (PR ²): a
58 59		64

URL: http://mc.manuscriptcentral.com/tpal

Page 65 of 108

1

2 3	1464	catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy.
4 5	1465	Nucleic Acids Research 41:D507 D604
6 7	1405	Nucleic Acids Research. 41.D397–D004.
8 9	1466	
10 11	1467	Gurdebeke PR, Mertens KN, Pospelova V, Van Nieuwenhove N, Louwye S. 2019.
12 13	1468	Islandinium pacificum sp. nov., a new dinoflagellate cyst from the upper Quaternary of
14 15	1469	the northeast Pacific. Palynology. 44(1):80-93. [Published in-issue 2020].
16 17	1470	
19 20	1471	Gurdebeke PR, Mertens KN, Pospelova V, Matsuoka K, Li Z, Gribble KE, Gu H, Bogus
21 22	1472	K, Vrielinck H, Louwye S. 2020. Taxonomic revision, phylogeny, and cyst wall
23 24 25	1473	composition of the dinoflagellate cyst genus Votadinium Reid (Dinophyceae,
26 27	1474	Peridiniales, Protoperidiniaceae). Palynology. 44(2):310-335.
28 29	1475	
30 31 22	1476	Habib D. 1976. Neocomian dinoflagellate zonation in the western North Atlantic.
32 33 34	1477	Micropaleontology. 21:373–392. [Imprinted 1975]
35 36	1478	
37 38 39	1479	Halim Y. 1960. Alexandrium minutum nov. g. nov. sp. dinoflagellé provocant des "eaux
40 41	1480	rouges". Vie et Milieu. Série A. Biologie marine. 11:102–105.
42 43	1481	
44 45	1482	Hansen G, Larsen J. 1992. Dinoflagellater I danske farvande. In: Thomsen HA, editor,
46 47 48	1483	Plankton i de indre danske farvande. Havforskning fra Miljøstyrelsen, No. 11, pp. 45-
48 49 50	1484	155.
51 52 53 54 55 56 57	1485	
58 59 60		URL: http://mc.manuscriptcentral.com/tpal 65

1 2		
3 4	1486	Harland R. 1982. A review of Recent and Quaternary organic-walled dinoflagellate cysts
5 6	1487	of the genus Protoperidinium. Palaeontology. 25:369-397.
/ 8 0	1488	
) 10 11	1489	Harland R, Reid PC, Dobell P, Norris G. 1980. Recent and sub-Recent dinoflagellate
12 13	1490	cysts from the Beaufort Sea, Canadian Arctic. Grana. 19:211-225.
14 15	1491	
16 17 18	1492	Head MJ. 1993. Dinoflagellates, sporomorphs and other palynomorphs from the Upper
19 20	1493	Pliocene St. Erth Beds of Cornwall, southwestern England. Journal of Paleontology,
21 22	1494	Memoir. 31:1–62.
23 24 25	1495	
25 26 27	1496	Head MJ. 1994. Morphology and paleoenvironmental significance of the Cenozoic
28 29	1497	dinoflagellate genera Habibacysta and Tectatodinium. Micropaleontology. 40(4):289-
30 31 22	1498	321.
32 33 34	1499	
35 36	1500	Head MJ. 1996. Modern dinoflagellate cysts and their biological affinities. In: Jansonius
37 38	1501	J, McGregor DC, editors. Palynology: principles and applications. American Association
39 40 41	1502	of Stratigraphic Palynologists Foundation, Dallas, Texas, vol. 3, p. 1197–1248.
42 43	1503	
44 45	1504	Head MJ. 2003. Echinidinium zonneveldiae sp. nov., a dinoflagellate cyst from the Late
46 47 48	1505	Pleistocene of the Baltic Sea, northern Europe. Journal of Micropalaeontology. 21:169-
40 49 50	1506	173. [Imprinted, December 2002].
51 52 53 54 55	1507	
50 57 58		
59 60		URL: http://mc.manuscriptcentral.com/tpal 66

1 2		
- 3 4	1508	Head MJ, Nøhr-Hansen H. 1999. The extant thermophilic dinoflagellate Tectatodinium
5 6	1509	pellitum (al. Tectatodinium rugulatum) from the Danian of Denmark. Journal of
7 8	1510	Paleontology. 73:577–579.
9 10 11	1511	
12 13	1512	Head MJ, Wrenn JH, editors. 1992. A forum on Neogene–Quaternary dinoflagellate
14 15	1513	cysts: The edited transcript of a round table discussion held at the Second Workshop on
16 17 18	1514	Neogene dinoflagellates. In: Head MJ, Wrenn, JH, editors, 1992, Neogene and
19 20	1515	Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic
21 22	1516	Palynologists Foundation, Dallas, Texas, p. 1–31, 10 pls.
23 24 25	1517	
25 26 27	1518	Head MJ, Harland R, Matthiessen J. 2001. Cold marine indicators of the late Quaternary:
28 29	1519	the new dinoflagellate cyst genus Islandinium and related morphotypes. Journal of
30 31	1520	Quaternary Science. 16(7):621–636, 3 pls.
32 33 34	1521	
35 36	1522	Head MJ, Fensome RA, Mertens KN. 2024. Critique of Proposals 258-260 to eliminate
37 38	1523	contradiction between Articles 11.7 and 11.8 and to equate non-fossil with fossil names
39 40 41	1524	of dinophytes for purposes of priority, by Elbrächter & al. (2023). Taxon.
42 43	1525	
44 45	1526	Head MJ, Fensome RA, Herendeen PS, Skog JE. 2016. (315-319) Proposals to amend
46 47 48	1527	Article 11.8 and its Examples to remove ambiguity in the sanctioning of dual
48 49 50	1528	nomenclature for dinoflagellates, and an emendation of Article 11.7, Example 29. Taxon.
51 52	1529	65:902–903.
53 54	1530	
55 56 57		
58 59		67
60		URL: http://mc.manuscriptcentral.com/tpal

60

2			
3 4	1531	Head MJ, Pospelova V, Radi T, Marret F. 2020. Stelladinium bifurcatum n. sp., a	
5 6	1532	distinctive extant thermophilic heterotrophic dinoflagellate cyst from the late Quatern	ıary
7 8	1533	of the eastern Pacific and east equatorial Atlantic oceans. Marine Micropaleontology.	
9 10 11	1534	159:101754, 1–14.	
12 13	1535		
14 15	1536	Heilmann-Clausen C. 1985. Dinoflagellate cyst stratigraphy of the uppermost Danian	ı to
16 17	1537	Ypresian in the Viborg 1 borehole, central Jylland, Denmark. Danmarks Geologiske	
18 19 20	1538	Undersøgelse, Serie A. 7:1–69.	
20 21 22	1539		
23 24	1540	John U, Litaker RW, Montresor M, Murray S, Brosnahan ML, Anderson DM. 2014.	
25 26	1541	Formal revision of the Alexandrium tamarense species complex (Dinophyceae)	
27 28 29	1542	taxonomy: The introduction of five species with emphasis on molecular-based (rDNA	A)
30 31	1543	classification. Protist. 165:779–804.	
32 33	1544		
34 35 36	1545	Kawami H, van Wezel R, Koeman RPT, Matsuoka K. 2009. Protoperidinium	
37 38	1546	tricingulatum sp. nov. (Dinophyceae), a new motile form of a round, brown, and spin	ıy
39 40	1547	dinoflagellate cyst. Phycological Research. 57:259-67.	
41 42 42	1548		
43 44 45	1549	Kim HJ, Li Z, Gu H, Mertens KN, Youn JY, Kwak KY, Oh S-J, Shin K, Yoo YD, Le	ee
46 47	1550	W, Shin HH. 2023. Gonyaulax geomunensis sp. nov. and two allied species	
48 49	1551	(Gonyaulacales, Dinophyceae) from Korean coastal waters and East China Sea:	
50 51 52	1552	morphology, phylogeny and growth response to changes in temperature and salinity.	
53 54	1553	Phycologia. 62(1):48–67. DOI:10.1080/00318884.2022.2140548	
55 56			
57 58			
27			6

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1554		
	1555	Kofoid CA. 1906. Dinoflagellata of the San Diego region. I. On Heterodinium, a new	
	1556	genus of the Peridinidae. University of California Publications in Zoology. 2:341–368.	
	1557		
	1558	Kofoid CA. 1911. Dinoflagellata of the San Diego region, IV. The genus Gonyaulax,	
	1559	with notes on its skeletal morphology and a discussion of its generic and specific	
	1560	characters. University of California Publications in Zoology. 8:187-286.	
	1561		
	1562	Lanjouw J, Baehni C, Merrill ED, Rickett HW, Robyns W, Sprague TA, Stafleu FA,	
23 24 25	1563	editors. 1952. International Code of Botanical Nomenclature: Adopted by the Seventh	
25 26 27	1564	International Botanical Congress, Stockholm, July 1950. Regnum Vegetabile 3.	
28 29	1565	International Bureau for Plant Taxonomy and Nomenclature of the International	
30 31	1566	Association for Plant Taxonomy. Waltham, Mass.: Chronica Botanica Co.; 288 pages.	
32 33 34	1567		
35 36	1568	Lanjouw J, Baehni C, Robyns W, Ross R, Rousseau J, Schopf JM, Schulze GM, Smith	1
37 38	1569	AC, Vilmorin R de, Stafleu FA, editors. 1961. International Code of Botanical	
39 40 41	1570	Nomenclature: Adopted by the Ninth International Botanical Congress Montreal, Augu	ıst
41 42 43	1571	1959. Regnum Vegetabile 23. Utrecht: International Bureau for Plant Taxonomy and	
44 45	1572	Nomenclature of the International Association for Plant Taxonomy; 372 pages.	
46 47	1573		
48 49 50	1574	Lanjouw J, Mamay SH, McVaugh R, Robyns W, Rollins RC, Ross R, Rousseau J,	
50 51 52	1575	Schulze GM, Vilmorin R de, Stafleu FA, editors. 1966. International Code of Botanica	ı1
53 54 55 56	1576	Nomenclature: Adopted by the Tenth International Botanical Congress Edinburgh,	
57 58 59 60		URL: http://mc.manuscriptcentral.com/tpal	6

2		
3 4	1577	August 1964. Regnum Vegetabile 46. Utrecht: International Bureau for Plant Taxonomy
5 6	1578	and Nomenclature of the International Association for Plant Taxonomy; 402 pages.
7 8	1579	
9 10 11	1580	Lentin JK, Williams GL. 1993. Fossil dinoflagellates: index to genera and species. 1993
12 13	1581	edition. American Association of Stratigraphic Palynologists, Contributions Series. 28:i-
14 15	1582	viii + 856 p.
16 17 18	1583	
19 20	1584	Lewis J, Rochon A, Ellegaard M, Mudie P, Harding I. 2001. The cyst-theca relationship
21 22	1585	of Bitectatodinium tepikiense (Dinophyceae). European Journal of Phycology. 36:137-
23 24 25	1586	146.
25 26 27	1587	
28 29	1588	Lindemann E. 1928. Abteilung Peridineae (Dinoflagellatae). In: Engler, A, editor. Die
30 31 22	1589	natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere
32 33 34	1590	den Nutzpflanzen. Zweite stark vermehrte verbesserte Auflage Band. 2. Verlag Wilhelm
35 36	1591	Engelmann, Leipzig, pp. 3–104.
37 38	1592	
39 40 41	1593	Litaker RW, Fraga S, Montresor M, Brosnahan M, Anderson DM, Hoppenrath M,
41 42 43 44 45	1594	Murray S, Wolny J, John U, Sampedro N, Larsen J, Calado AJ. 2018. A practical guide to
	1595	new nomenclature for species within the "Alexandrium tamarense species complex".
46 47 48	1596	Harmful Algae News. 61:13–15.
49 50	1597	
51 52	1598	Mangerud G, Paterson NW, Riding JB. 2019. The temporal and spatial distribution of
53 54 55 56	1599	Triassic dinoflagellate cysts. Review of Palaeobotany and Palynology. 261:53-66.
57 58 59		70
60		URL: http://mc.manuscriptcentral.com/tpal

1 2			
3 4	1600		
5 6	1601	Mantell GA. 1850. A Pictorial Atlas of Fossil Remains Consisting of Coloured	
7 8 9	1602	Illustrations Selected from Parkinson's "Organic Remains of a Former World", and	
10 11	1603	Artis's "Antediluvian Phytology". xii+207 p., 74 pl.; Henry G. Bohn, London, U.K.	
12 13	1604		
14 15 16	1605	Masure E, Dejax J, De Ploëg G. 2013. Blowin' in the wind 100 Ma old multi-staged	
16 17 18	1606	dinoflagellate with sexual fusion trapped in amber: Marine-freshwater transition.	
19 20	1607	Palaeogeography, Palaeoclimatology, Palaeoecology. 388:128-144.	
21 22	1608		
23 24 25	1609	Matsuoka K. 1985a. Cyst and thecate forms of Pyrophacus steinii (Schiller) Wall et Da	ale,
26 27	1610	1971. Transactions and Proceedings of the Palaeontological Society of Japan, New	
28 29	1611	Series. 140:240–262.	
30 31	1612		
32 33 34	1613	Matsuoka K. 1985b. Distribution of the dinoflagellate cyst in surface sediments of the	
35 36	1614	Tsushima Warm Current. The Quaternary Research. 24:1-12. [In Japanese with Englis	sh
37 38	1615	abstract.]	
39 40 41	1616		
42 43	1617	Matsuoka K. 1985c. Organic-walled dinoflagellate cysts from surface sediments of	
44 45	1618	Nagasaki Bay and Senzaki Bay, west Japan. Faculty of Liberal Arts, Nagasaki	
46 47	1619	University, Natural Science, Bulletin. 25 (2):21-115, pl. 1-17.	
48 49 50	1620		
51 52	1621	Matsuoka K, Head MJ. 2013. Clarifying cyst-motile stage relationships in	
53 54 55 56	1622	dinoflagellates. In: Lewis JM, Marret F, Bradley L, editors. Biological and Geological	l
57 58 59			71
60		URL: http://mc.manuscriptcentral.com/tpal	11

1 2		
2 3 4	1623	Perspectives of Dinoflagellates. The Micropalaeontological Society, Special Publications.
5 6	1624	Geological Society, London, p. 325-350.
7 8	1625	
9 10 11	1626	McNeill J. 2023. (379-382) Proposals to amend the International Code of Nomenclature
12 13	1627	for algae, fungi, and plants to ensure that the names of algae and fungi are not subject to
14 15	1628	uncertainty on the applicability of the rules of any other Code and to further clarify Art.
16 17 18	1629	45.1. Taxon. 72 (5):1171–1172.
19 20	1630	
21 22	1631	McNeill J, Redhead SA, Wiersema JH. 2018. Guidelines for proposals to conserve or
23 24	1632	reject names. Taxon. Available from the IAPT website at:
25 26 27	1633	https://www.iaptglobal.org/_files/ugd/12c57a_93bb6f56e9774cfcaa00140123d11710.pdf
28 29	1634	
30 31	1635	McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson
32 33 34	1636	DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ, editors. 2006. International
35 36	1637	Code of Botanical Nomenclature (Vienna Code): Adopted by the Seventeenth
37 38	1638	International Botanical Congress Vienna, Austria, July 2005. Regnum Vegetabile 146.
39 40	1639	Ruggell, Liechtenstein: A.R.G. Gantner Verlag KG, pages i-xviii + 1-568.
41 42 43	1640	
44 45	1641	McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen
46 47	1642	PS, Knapp S, Marhold K, Prado J, Prud'homme van Reine WF, Smith GF, Wiersema JH,
48 49 50	1643	Turland NJ, editors. 2012. International Code of Nomenclature for algae, fungi, and
50 51 52	1644	plants (Melbourne Code): Adopted by the Eighteenth International Botanical Congress
53 54	1645	Melbourne, Australia, July 2011. Regnum Vegetabile 154. Königstein: Koeltz Scientific
55 56		
57 58 50		
60		URL: http://mc.manuscriptcentral.com/tpal
1 2		
----------------	------	--
3 4	1646	Books; pages $i - xxx + 1 - 208$.
5 6	1647	
7 8 0	1648	Mertens KN, Carbonell-Moore C. 2018. Introduction to Spiniferites Mantell 1850 special
9 10 11	1649	issue. Palynology. 42(S1):1–9.
12 13	1650	
14 15 16	1651	Mertens KN, Takano Y, Head MJ, Matsuoka K. 2014. Living fossils in the Indo-Pacific
16 17 18	1652	warm pool: A refuge for thermophilic dinoflagellates during glaciations. Geology.
19 20	1653	42:531–534.
21 22	1654	
23 24 25	1655	Mertens KN, Aydin H, Uzar S, Takano Y, Yamaguchi A, Matsuoka K. 2015.
26 27	1656	Relationship between the dinoflagellate cyst Spiniferites pachydermus and Gonyaulax
28 29	1657	ellegaardiae sp. nov. from Izmir Bay, Turkey, and molecular characterization. Journal of
30 31 22	1658	Phycology. 51:560–573.
32 33 34	1659	
35 36	1660	Mertens KN, Takano Y, Gu H, Bagheri S, Pospelova V, Piénkowski AJ, Leroy SAG,
37 38	1661	Matsuoka K. 2017a. Cyst-theca relationship and phylogenetic position of Impagidinium
39 40 41	1662	caspienense incubated from Caspian Sea surface sediments: relation to Gonyaulax baltica
42 43	1663	and evidence for heterospory within gonyaulacoid dinoflagellates. Journal of Eukaryotic
44 45	1664	Microbiology. 64:829–842.
46 47 48	1665	
49 50	1666	Mertens KN, Gu H, Takano Y, Price AM, Pospelova V, Bogus K, Versteegh GJM,
51 52	1667	Marret F, Turner RE, Rabalais NN, Matsuoka K. 2017b. The cyst-theca relationship of
53 54	1668	the dinoflagellate cyst Trinovantedinium pallidifulvum, with erection of Protoperidinium
56 57		
58 59		73
60		URL: http://mc.manuscriptcentral.com/tpal

3 4	1669	lousianensis sp. nov. and their phylogenetic position within the Conica group.
5 6	1670	Palynology. 41(2):183–202.
7 8	1671	
9 10	1672	Mertens KN, Gu H, Gurdebeke PR, Takano Y, Clarke D, Aydin H, Li Z, Pospelova V,
11 12		
13	1673	Shin HH, Li Z, Matsuoka K, Head MJ. 2020. A review of rare, poorly known, and
14 15 16	1674	morphologically problematic extant marine organic-walled dinoflagellate cyst taxa of the
16 17 18	1675	orders Gymnodiniales and Peridiniales from the Northern Hemisphere. Marine
19 20	1676	Micropaleontology. 159:101773, p. 1-35.
21 22	1677	
23 24 25	1678	Meunier A. 1910. Microplancton des Mers de Barents et de Kara. Duc d'Orleans
26 27	1679	Campagne Arctique de 1907. pp. 1-355 [Atlas]. Bruxelles: Imprimerie Scientifique
28 29	1680	Charles Bulens, Éditeur.
30 31 32	1681	
33 34	1682	Mudie PJ, Marret F, Mertens KN, Shumilovskikh L, Leroy SAG. 2017. Atlas of modern
35 36	1683	dinoflagellate cyst distributions in the Black Sea Corridor: from Aegean to Aral Seas,
37 38 39	1684	including Marmara, Black, Azov and Caspian Seas. Marine Micropaleontology. 134:1-
40 41	1685	152.
42 43	1686	
44 45	1687	Murray G, Whitting F. 1899. New Peridiniaceae from the Atlantic. Linnean Society of
46 47 48	1688	London, Transactions, Botany, Series 2. 5:321–342.
49 50	1689	
51 52	1690	Nehring S. 1994. Spatial distribution of dinoflagellate resting cysts in recent sediments of
53 54 55 56	1691	Kiel Bight, Germany (Baltic Sea). Ophelia. 39(2):137–158.
57 58 50		
60		URL: http://mc.manuscriptcentral.com/tpal 74

1 2		
3 4	1692	
5 6	1693	Nordli E. 1951. Resting spores in Goniaulax polyedra Stein. Nytt Magasin for
/ 8 9	1694	Naturvidenskapene. 88:207–212.
10 11	1695	
12 13	1696	Orr RJS, Murray SA, Stüken A, Rhodes L, Jakobsen KS. 2012. When naked became
14 15 16	1697	armored: An eight-gene phylogeny reveals monophyletic origin of theca in
10 17 18	1698	dinoflagellates. PLoS ONE 7(11):e50004.
19 20	1699	
21 22	1700	Ostenfeld CH. 1903. Phytoplankton from the sea around the Faeröes. Botany of the
23 24 25	1701	Faeröes Based Upon Danish Investigations, Part II. 558–612; Det Nordiske Forlag,
26 27	1702	Copenhagen, Denmark.
28 29	1703	
30 31 22	1704	Pascher A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen
32 33 34	1705	Gesellschaft. 32(2):136–160.
35 36	1706	
37 38	1707	Paulsen O. 1905. On some Peridiniae and plankton diatoms. Meddelelser fra
39 40 41	1708	Kommissionen for Havundersøgelser, Serie Plankton. 1:1-7.
42 43	1709	
44 45	1710	Paulsen O. 1907. The Peridiniales of the Danish waters. Meddelelser fra Kommissionen
46 47 48	1711	for Havundersøgelser, Serie Plankton. 1:1–26.
49 50	1712	
51 52	1713	Penard E. 1891. Les Péridiniacées du Lac Léman. Société botanique de Genève, Bulletin,
53 54	1714	6: 1–63.
55 56 57		
58 59		75
60		URL: http://mc.manuscriptcentral.com/tpal

1 2		
2 3 4	1715	
5 6	1716	Pospelova V, Head MJ. 2002. Islandinium brevispinosum sp. nov. (Dinoflagellata), a
7 8 9	1717	new organic-walled dinoflagellate cyst from modern estuarine sediments of New England
) 10 11	1718	(USA). Journal of Phycology. 38:593-601.
12 13	1719	
14 15	1720	Potvin E, Rochon A, Lovejoy C. 2013. Cyst-theca relationship of the arctic dinoflagellate
16 17 18	1721	cyst Islandinium minutum (Dinophyceae) and phylogenetic position based on SSU rDNA
19 20	1722	and LSU rDNA. Journal of Phycology. 49:848–866.
21 22	1723	
23 24 25	1724	Potvin É, Kim S-Y, Yang EJ, Head MJ, Kim H-C, Nam S-I, Yim JH, Kang S-H. 2018.
26 27	1725	Islandinium minutum subsp. barbatum subsp. nov. (Dinoflagellata), a new organic-walled
28 29	1726	dinoflagellate cyst from the western Arctic: morphology, phylogenetic position based on
30 31 32	1727	SSU rDNA and LSU rDNA, and distribution. Journal of Eukaryotic Microbiology.
32 33 34	1728	65:750–772.
35 36	1729	
37 38	1730	Pouchet G. 1883. Contribution à l'étude des cilioflagellés. Journal of Anatomy and
39 40 41	1731	Physiology. 19:399–455.
42 43	1732	
44 45	1733	Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glökner FO.
46 47 48	1734	2013. The SILVA ribosomal RNA gene database project: improved data processing and
49 50	1735	web-based tools. Nucleic Acids Research. 41:D590–D596.
51 52	1736	
53 54 55		
56 57		
58 59		76
60		UKL: http://mc.manuscriptcentral.com/tpal

Page 77 of 108

1

sh
sp.
e and
ecent
it seas
I. —
77

3 4	1760	Rossignol M. 1964. Hystrichosphères du Quaternaire en Méditerranée orientale, dans les
5 6 7	1761	sédiments Pléistocènes et les boues marines actuelles. Revue de micropaléontologie.
/ 8 9	1762	7:83–99.
10 11	1763	
12 13	1764	Sarjeant WAS. 1962. Microplankton from the Ampthill Clay of Melton, south Yorkshire.
14 15 16	1765	Palaeontology. 5:478–497.
17 18	1766	
19 20	1767	Sarjeant WAS. 1967. The genus Palaeoperidinium Deflandre (Dinophyceae). Grana
21 22 23	1768	Palynologica. 7:243–258.
24 25	1769	
26 27	1770	Sarjeant WAS. 1970. The genus Spiniferites Mantell, 1850 (Dinophyceae). Grana. 10:74-
28 29 30	1771	78.
30 31 32	1772	
33 34	1773	Sarjeant WA, Downie C. 1974. The classification of dinoflagellate cysts above generic
35 36 27	1774	level: a discussion and revisions. Birbal Sahni Institute of Palaeobotany Special
37 38 39	1775	Publication. 3:9–32.
40 41	1776	
42 43	1777	Schiller J. 1935. Dinoflagellatae (Peridineae) in monographischer Behandlung. 2. Teil,
44 45 46	1778	Lieferung 1. In: Kolkwitz, R., Zehnter Band. Flagellatae. In: Dr. L. Rabenhorst's
47 48	1779	Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, p. 1-160;
49 50	1780	Akademische Verlagsgesellschaft, Leipzig, Germany. [Reprinted, as part of a larger
51 52 53	1781	work, by Strauss and Cramer, Leutershaysen, Germany, 1971 and by Johnson Reprint
53 54 55 56 57 58	1782	Company, New York, U.S.A., date unspecified.]
50		

59 60

1 2

1 2		
- 3 4	1783	
5 6	1784	Schilling AJ. 1891. Die Süsswasser-Peridineen. Flora oder Allgemeine botanische
7 8 9	1785	Zeitung. 74:220–299, pl. 8–10.
10 11	1786	
12 13	1787	Schnepf E, Elbrächter M. 1992. Nutritional strategies in dinoflagellates. A review with
14 15	1788	emphasis on cell biological aspects. European Journal of Protistology. 28:3-24.
16 17 18	1789	
19 20	1790	Stafleu FA, Demoulin V, Greuter W, Hiepko P, Linczevski IA, McVaugh R, Meikle RD,
21 22	1791	Rollins RC, Ross R, Schopf JM, Voss EG, editors. 1978. International Code of Botanical
23 24 25	1792	Nomenclature: Adopted by the Twelfth International Botanical Congress, Leningrad, July
25 26 27 28 29	1793	1975. Regnum Vegetabile 97. Utrecht: Bohn, Scheltema & Holkema; i–xiv + 1–457
	1794	pages.
30 31	1795	
32 33 34	1796	Stover LE, Brinkhuis H, Damassa SP, de Verteuil L, Helby RJ, Monteil E, Partridge AD,
35 36	1797	Powell AJ, Riding JB, Smelror M, Williams GL. 1996. Mesozoic-Tertiary
37 38	1798	dinoflagellates, acritarchs and prasinophytes. In: Jansonius J, McGregor DC, editors.
39 40 41	1799	Palynology: principles and applications, vol. 2, pp. 641–750. Dallas, TX: American
42 43	1800	Association of Stratigraphic Palynologists Foundation.
44 45	1801	
46 47	1802	Suto I. 2004. Taxonomy of the diatom resting spore form genus Liradiscus Greville and
48 49 50	1803	its stratigraphic significance. Micropaleontology. 50(1):59-79.
50 51 52 53 54 55 56	1804	
57 58 59 60		URL: http://mc.manuscriptcentral.com/tpal 79

1 2		
2 3 4	1805	Suto I, Tanaka Y. 2017. Taxonomy and stratigraphic changes of diatom resting spores
5 6	1806	from DSDP Leg 41, offshore northwest African margin, based on nannofossil
7 8 9	1807	biostratigraphy. Paleontological Research. 21(2):138-177.
) 10 11	1808	
12 13	1809	Taylor FJR. 1976. Dinoflagellates from the International Indian Ocean Expedition.
14 15	1810	Biblioteca Botanica. 132:1–234.
16 17 18	1811	
19 20	1812	Taylor FJR. 1980. On dinoflagellate evolution. BioSystems. 13:65-108.
21 22	1813	
23 24 25	1814	Tillmann U, Bantle A, Krock B, Elbrächter M, Gottschling M. 2021. Recommendations
25 26 27	1815	for epitypification of dinophytes exemplified by Lingulodinium polyedra and molecular
28 29	1816	phylogenetics of the Gonyaulacales based on curated rRNA sequence data. Harmful
30 31	1817	Algae. 104:101956.
32 33 34	1818	
35 36	1819	Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS,
37 38	1820	Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J,
39 40 41	1821	Price MJ, Smith GF, editors. 2018. International Code of Nomenclature for algae, fungi,
42 43	1822	and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress
44 45	1823	Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical
46 47	1824	Books; pages i-xxxviii + 1-254. https://doi.org/10.12705/Code.2018
48 49 50	1825	
51 52		
53 54		
55 56 57		
58 59		80
60		URL: http://mc.manuscriptcentral.com/tpal

1 ว		
2 3 4	1826	Turland N. 2019. The Code decoded: A user's guide to the International Code of
5 6 7	1827	Nomenclature for algae, fungi, and plants; Second edition. Pensoft Publishers, Sofia,
/ 8 9	1828	Bulgaria.
10 11	1829	
12 13	1830	Van Nieuwenhove N, Pospelova V, Jordan RW, editors. 2020a. Taxonomy and
14 15 16	1831	distribution of modern organic-walled dinoflagellate cysts in surface sediments from the
17 18	1832	Northern Hemisphere: an update of Rochon et al., 1999. Marine Micropaleontology. 159.
19 20	1833	
21 22 22	1834	Van Nieuwenhove N, Head MJ, Limoges A, Pospelova V, Mertens KN, Matthiessen J,
23 24 25	1835	De Schepper S, de Vernal A, Eynaud F, Londeix L, Marret F, Peynaud A, Radi T,
26 27	1836	Rochon A. 2020b. An overview and brief description of common marine organic-walled
28 29	1837	dinoflagellate cyst taxa occurring in surface sediments of the Northern Hemisphere.
30 31 32	1838	Marine Micropaleontology. 159:101814:1-46.
33 34	1839	
35 36	1840	van Rijckevorsel P. 2014–2020. Past editions of the botanical Code as web-files
37 38 39	1841	hyperlinked horizontally and vertically. Accessible from the IAPT website.
40 41	1842	https://www.iapt-taxon.org/historic/index.htm
42 43	1843	
44 45 46	1844	Verleye TJ, Pospelova V, Mertens KN, Louwye S. 2011. The geographical distribution
40 47 48	1845	and (palaeo)ecology of Selenopemphix undulata sp. nov., a new late Quaternary
49 50	1846	dinoflagellate cyst from the Pacific Ocean. Marine Micropaleontology. 78:65-83.
51 52	1847	
53 54 55		
56 57		
58 59		81
60		URL: http://mc.manuscriptcentral.com/tpal

3 4	1848	Vershinin A, Morton SL. 2005. Protoperidinium ponticum sp. nov. (Dinophyceae) from
5 6	1849	the northeastern Black Sea coast of Russia. Botanica Marina. 48:244-247.
7 8	1850	
9 10 11	1851	von Stein FR. 1878. Der Organismus der Infusionsthiere nach eigenen Forschungen in
12 13	1852	systematischer Reihenfolge bearbeitet. III. Abteilung. Die Naturgeschichte der
14 15	1853	Flagellaten oder Geisselinfusorien. I. Hälfte. Den noch nicht abgeschlossenen
16 17 18	1854	allgemeinen Teil nebst Erklärung der sämmtlichen Abbildungen enthaltend; Wilhelm
19 20	1855	Engelmann, Leipzig, p. i–x, 1–154, 24 pl.
21 22	1856	
23 24 25	1857	von Stein FR. 1883. Der Organismus der Infusionsthiere nach eigenen Forschungen in
26 27	1858	systematischer Reihenfolge bearbeitet. III. Abteilung. II. Hälfte. Die Naturgeschichte der
28 29	1859	arthrodelen Flagellaten; Wilhelm Engelmann, Leipzig, 30 p., 25 pl.
30 31	1860	
32 33 34	1861	Voss EG, Burdet HM, Chaloner WG, Demoulin V, Hiepko P, McNeill J, Meikle RD,
35 36	1862	Nicolson DH, Rollins RC, Silva PC, Greuter W, editors. 1983. International Code of
37 38	1863	Botanical Nomenclature: Adopted by the Thirteenth International Botanical Congress,
39 40 41	1864	Sydney, August 1981. Regnum Vegetabile 111. Utrecht & Antwerp: Bohn, Scheltema &
42 43	1865	Holkema; pages $i-xv + 1-472$.
44 45	1866	
46 47 48	1867	Wall D. 1965. Modern hystrichospheres and dinoflagellate cysts from the Woods Hole
49 50	1868	region. Grana Palynologica. 6:297–314.
51 52	1869	
53 54		
55 56 57		
58 59		Q 2
60		URL: http://mc.manuscriptcentral.com/tpal

Page 83 of 108

1

1870	Wall D. 1967. Fossil microplankton in deep-sea cores from the Caribbean Sea.
1871	Palaeontology. 10:95–123.
1872	
1873	Wall D, Dale B. 1966. "Living fossils" in western Atlantic plankton. Nature.
1874	211(5053):1025–1026.
1875	
1876	Wall D, Dale B. 1967. The resting cysts of modern marine dinoflagellates and their
1877	palaeontological significance. Review of Palaeobotany and Palynology. 2: 349–354, pl. 1.
1878	
1879	Wall D, Dale B. 1968. Modern dinoflagellate cysts and evolution of the Peridiniales.
1880	Micropaleontology. 14:265–304.
1881	
1882	Wall D, Dale B. 1970. Living hystrichosphaerid dinoflagellate spores from Bermuda and
1883	Puerto Rico. Micropaleontology. 16:47-58, pl. 1.
1884	
1885	Wall D, Dale B. 1971. A reconsideration of living and fossil Pyrophacus Stein, 1883
1886	(Dinophyceae). Journal of Phycology. 7:221–235.
1887	
1888	Wall D, Dale B, Harada K. 1973. Descriptions of new fossil dinoflagellates from the Late
1889	Quaternary of the Black Sea. Micropaleontology. 19:18-31.
1890	
	URL: http://mc.manuscriptcentral.com/tpal 83
	1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1885 1886 1887 1888 1889 1890

1891	Wall D, Dale B, Lohmann GP, Smith WK. 1977. The environmental and climatic
1892	distribution of dinoflagellate cysts in modern marine sediments from regions in the North
1893	and South Atlantic Oceans and adjacent areas. Marine Micropaleontology. 2:121-200.
1894	
1895	Wang N, Mertens KN, Krock B, Luo Z, Derrien A, Pospelova V, Liang Y, Bilien G,
1896	Smith KF, De Schepper S, Wietkamp S, Tillmann U, Gu H. 2019. Cryptic speciation in
1897	Protoceratium reticulatum (Dinophyceae): Evidence from morphological, molecular and
1898	ecophysiological data. Harmful Algae. 88:101610.
1899	
1900	Wetzel O. 1933. Die in organischer Substanz erhaltenen Mikrofossilien des baltischen
1901	Kreide-Feuersteins mit einem sediment-petrographischen und stratigraphischen Anhang.
1902	Palaeontographica, Abteilung A. 77:141–186.
1903	
1904	Whedon WF, Kofoid CA. 1936. Dinoflagellata of the San Francisco region. I. On the
1905	skeletal morphology of two species, <i>Gonyaulax catenella</i> and <i>G. acatenella</i> . University
1906	of California Publications in Zoology, 41(4):25–34.
1907	
1908	Williams DB. 1965. The distribution and palaeontology of microplankton in recent
1909	marine sediments. Unpublished PhD thesis, University of Reading, U.K., pp. 1–289.
1910	
1911	Williams DB. 1971. The occurrence of dinoflagellates in marine sediments. In: Funnel
1912	BM, Riedel WR., editors. The Micropalaeontology of the Oceans. Cambridge University
1913	Press, Cambridge, pp. 231–243.
	1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1900 1901 1902 1903 1904 1903 1904 1905 1906 1907 1908 1907 1908 1909 1910 1911

1 2		
2 3 4	1914	
5	1915	Williams GL, Fensome RA, Miller MA, Sarjeant WAS. 2000. A glossary of the
7 8 9	1916	terminology applied to dinoflagellates, acritarchs, and prasinophytes, with emphasis on
10 11	1917	fossils. 3rd Edition. American Association of Stratigraphic Palynologists Foundation,
12 13	1918	Dallas, TX, Contributions Series No. 37, 365 pp.
14 15	1919	
16 17 18	1920	Wilson GJ. 1973. Palynology of the Middle Pleistocene Te Piki bed, Cape Runaway,
19 20	1921	New Zealand. New Zealand Journal of Geology and Geophysics. 16:345–354.
21 22	1922	
23 24 25	1923	Wilson KL. 2023. Report of the General Committee: 25. Taxon. 72(2):422-424.
26 27	1924	
28 29	1925	Woelkerling WJ, Moestrup Ø. 2022. (180–183) Proposals to amend Article 40.1 and
30 31 32	1926	Article 44.1 and to add a new Article 44.3 and a Note to facilitate the valid publication of
32 33 34	1927	names of "dinoflagellates". Taxon. 71(6):1337-1338.
35 36	1928	
37 38	1929	Zhang W, Li Z, Mertens KN, Derrien A, Pospelova V, Carbonell-Moore MC, Bagheri S,
39 40 41	1930	Matsuoka K, Shin HH, Gu H. 2020 Reclassification of Gonyaulax verior (Gonyaulacales,
42 43	1931	Dinophyceae) as Sourniaea diacantha gen. et comb. nov. Phycologia. 59:246-260.
44 45	1932	
46 47 49	1933	Zonneveld KAF. 1997. New species of organic-walled dinoflagellate cysts from modern
40 49 50	1934	sediments of the Arabian Sea (Indian Ocean). Review of Palaeobotany and Palynology.
51 52	1935	97:319–337.
53 54	1936	
55 56 57		
58 59		85
60		URL: http://mc.manuscriptcentral.com/tpal

2			
3 4	1937	Zonneveld KAF, Marret F, Versteegh GJM, Bogus K, Bonnet S, Bouimetarhan I, Crouc	h
5 6	1938	E, de Vernal A, Elshanawany R, Edwards L, Esper O, Forke S, Grøsfjeld K, Henry M,	
7 8 0	1939	Holzwarth U, Kielt J-F, Kim S-Y, Ladouceur S, Ledu D, Chen L, Limoges A, Londeix I	_,
9 10 11	1940	Lu SH, Mahmoud MS, Marino G, Matsouka K [sic], Matthiessen J, Mildenhal DC [sic],	
12 13	1941	Mudie P, Neil HL, Pospelova V, Qi Y, Radi T, Richerol T, Rochon A, Sangiorgi F,	
14 15	1942	Solignac S, Turon J-L, Verleye T, Wang Y, Wang Z, Young M. 2013. Atlas of modern	
16 17 18	1943	dinoflagellate cyst distribution based on 2405 data points. Review of Palaeobotany and	
19 20	1944	Palynology. 191:1–197.	
21 22	1945		
23 24 25	1946		
25 26 27	1947	Table captions	
28 29	1948		
30 31 32	1949	Table 1. All taxonomic names cited in the text, with full authorial attributions. A (\odot)	
33 34	1950	indicates that the type is treated as a fossil for nomenclatural purposes.	
35 36	1951		
37 38 39	1952	Table 2. Nomenclatural status and, where known, motile-cyst equivalence of those	
40 41	1953	fossil-taxa and cyst-producing non-fossil taxa discussed in the text. A fossil-species is	
42 43	1954	one in which the type is a fossil. A name-element in bold face indicates that it is based o	n
44 45 46	1955	a type that is a fossil.	
47 48	1956		
49 50	1957	Table 3. Summary of changes to the nomenclatural Codes that affect those fossil- and	
51 52	1958	non-fossil algal taxa, as explained in the text, with reference to each International	
55 54 55	1959	Botanical Congress (IBC) from 1950 and the published Code resulting from it.	
56 57			
58 59		LIRI · http://mc.manuscriptcentral.com/tpal	36
00		one maps/mentaleopteental.com/ par	

Palynology

1 2		
2 3 4	1960	
5 6	1961	Figure captions
7 8 0	1962	
) 10 11	1963	Figure 1. Phylogeny of the fossil-genera Ataxiodinium, Bitectatodinium, Impagidinium,
12 13	1964	Spiniferites and Tectatodinium inferred from partial large subunit (LSU) rRNA gene
14 15 16	1965	sequences using Bayesian inference. These genera have all been linked by incubation
10 17 18	1966	studies to the non-fossil Gonyaulax spinifera and Gonyaulax polygramma complexes,
19 20	1967	and all are paraphlyetic. These genera nonetheless all include extinct species, and as
21 22	1968	presently circumscribed are needed in fossil cyst nomenclature. Branch lengths drawn to
23 24 25	1969	scale; scale bar indicates number of nucleotide substitutions per site. Numbers on
25 26 27	1970	branches are statistical support values to clusters on their right (left: Bayesian posterior
28 29	1971	probabilities; right: maximum likelihood (ML) bootstrap support values). Only Bayesian
30 31	1972	posterior probabilities above 0.9 and ML bootstrap support values above 50 are shown.
32 33 34	1973	An asterisk (*) indicates maximal support (BI posterior probability = 1.0, ML bootstrap
35 36	1974	support = 100). The scale bar represents inferred evolutionary distance in changes/site.
37 38	1975	From fig. 77 of Gu et al. (2021).
39 40 41	1976	
41 42 43	1977	Figure 2. Phylogeny of the Protoperidinium sensu stricto clade inferred from LSU rRNA
44 45	1978	gene sequences using Bayesian inference, and its taxonomic implications for the fossil-
46 47 48	1979	genera Selenopemphix and Multispinula. Selenopemphix undulata plots within the
40 49 50	1980	Tabulata clade whereas Protoperidinium conicum, to which Selenopemphix (formerly
51 52	1981	Multispinula) quanta has been attributed, groups within the Conica 2 clade, suggesting
53 54	1982	that Selenopemphix and Multispinula might be treated as separate fossil-genera.
55 56 57		
58 59		8

Protoperidinium subinerme (its fossil-defined equivalent being Selenopemphix nephroides) has not yet been sequenced. The maximum likelihood (ML) bootstrap support values (ML) over 50 and Bayesian posterior probabilities (PP) over 0.7 are shown at the nodes (ML/PP), where an asterisk (*) indicates maximal support. Clades within the *Protoperidinium* sensu stricto clade are shown. The scale bar represents inferred evolutionary distance in changes/site. From fig. 3 of Mertens et al. (2017b). Figure 3. Conceptual foundation for dual nomenclature. Biological species concepts potentially incorporate all aspects of the life cycle as well as genetic and other molecular information on the living organism. The species is typified by a non-fossil specimen or illustration, and a single non-fossil species name applies to all parts of the life history and may include information from genome sequencing. The paleontological species concept is, with rare exception, confined to the morphology of the fossilized resting cyst wall, although the significance of morphological attributes may be informed by independent evidence of phylogeny (e.g. molecular) where species are extant. The species is typified by a fossil specimen, and a fossil-species name is applied. Living cysts provide the overlap between these two nomenclatural systems: dual nomenclature allows both names Selenopemphix nephroides and (the cyst of) Protoperidinium subinerme to be used for the illustrated cyst according to context and preference. The SEM illustration of Protoperidinium subinerme is from Hansen and Larson (1992) and the illustration of Selenopemphix nephroides is from modern sediments of the Gulf of Mexico (KNM, unpublished).

1 2	
2 3 4	20
5 6	20
7 8	20
9 10 11	20
12 13	20
14 15	20
16 17 19	20
19 20	20
21 22	20
23 24 25	20
25 26 27	20
28 29	20
30 31	20
32 33 34	20
35 36	20
37 38	20
39 40 41	20
41 42 43	20
44 45	20
46 47	20
40 49 50	20
51 52	20
53 54	20
55 56 57	
58	
59 60	

2006	Figure 4. Phylogeny of the family Protoperidiniaceae based on large subunit (LSU)
2007	rDNA. Names in red boldface type are linked to cysts assignable to the cyst-defined non-
2008	fossil genus Brigantedinium, including the holotype species Brigantedinium simplex
2009	which is linked to Protoperidinium conicoides. Node numbers indicate bootstrap support
2010	values (1000 replicates). An asterisk (*) indicates nodes found in all replicates. From fig.
2011	1 of Gurdebeke et al. (2020).
2012	
2013	Figure 5. Lingulaulax polyedra (von Stein 1883) comb. nov. A, B, D, E, tracings of
2014	different motile stage cells from an SEM stub (strain K3-G8 isolated from the type
2015	locality off Kiel in the Baltic Sea) which serves as the epitype (from figs. 4B, 4G, 4D,
2016	and 4H respectively in Tillmann et al. 2021); ventral, apical, dorsal, and antapical views
2017	respectively. C and F, schematic representation of C, apical pore complex and
2018	surrounding plates (from fig. 6C in Tillmann et al. 2021), and F, mid-ventral area
2019	showing details of sulcus and surrounding plates (from fig. 6D in Tillmann et al. 2021).
2020	Solid green arrows indicate plate overlap, open green arrows indicate uncertain direction
2021	of plate overlap, and the red dashed line indicates line along which plates separate during
2022	cell division (from fig. 6 in Tillmann et al. 2021). Scale bars = $10 \mu m$. Modified
2023	kofoidian plate labeling includes: APC = apical pore complex, vp = ventral pore, cp =
2024	cover plate, po = pore plate, X = X-plate; and the sulcal plates, as = anterior, ras = right
2025	accessory, ms = median, rs = right, ls = left, as = anterior. The first postcingular
2026	homologue (*1"') is designated as such because it lies within the sulcus and may not
2027	contact the cingular plate series.
2028	

Table 21. Taxonomic All taxonomic names cited in the text, with full authorial attributions. A (\bullet) indicates that the type is treated as a fossil for nomenclatural purposes.

Genus Alexandrium Halim 1960<u>*</u> Alexandrium australiense Murray in John et al., 20914 Alexandrium catenella (Whedon and Kofoid 1936) Balech 1985 Alexandrium mediterraneum John in John et al. 2014 Alexandrium pacificum Litaker in John et al. 2014 Alexandrium tamarense (Lebour 1925) Balech 1995

Genus *Ataxiodinium* Reid 1974 (●) *Ataxiodinium choane* Reid 1974 (●)

Genus Amylax Meunier 1910

Genus *Bitectatodinium* Wilson 1973 (●) *Bitectatodinium tepikiense* Wilson 1973 (●)

Genus *Brigantedinium* Reid 1977 ex Lentin and Williams 1993 <u>Brigantedinium auranteum</u> Reid 1977 ex Lentin and Williams 1993 (
) <u>Brigantedinium majusculum</u> Reid 1977 ex Lentin and Williams 1993 (
) Brigantedinium simplex Wall 1965 ex Lentin and Williams 1993

Genus *Chytroeisphaeridia* (Sarjeant 1962) Downie and Sarjeant 1965 (•) *Chytroeisphaeridia simplicia* Wall 1965 (now *Brigantedinium simplex*)

<u>Genus Dapsilidinium Bujak et al. 1980</u> Dapsilidinium pastielsii (Davey and Williams 1966) Bujak et al. 1980 (•)</u>

Genus *Desotodinium* De Schepper, Head and Louwye 2004 (

Desotodinium wrennii
De Schepper, Head and Louwye 2004 (

Desotodinium wrennii

<u>Genus Diplopsalopsis Meunier 1910</u> <u>Diplopsalopsis orbicularis (Paulsen 1907) Meunier 1910</u>

Genus Dubridinium Reid 1977 (
) Dubridinium caperatum Reid 1977 (
) Dubridinium cassiculum Reid 1977 (
) Dubridinium cavatum Reid 1977 (
) Dubridinium ulsterum Reid 1977 (
)

Genus *Echinidinium* Zonneveld 1997 ex Head, Harland and Matthiessen 2001 *Echinidinium granulatum* Zonneveld 1997 ex Head, Harland and Matthiessen 2001 *Echinidinium karaense* Head, Harland and Matthiessen 2001 (()

Genus Goniodoma Stein 1883

2				
3 4	Goniodoma milneri Murray and Whitting 1899 (now Lingulaulax milneri)			
5	Genus Gomaular Diesing 1866			
6	Compaular digitale (Douchet 1992) K ofoid 1011			
7	Gonyaulax digitale (Pouchet 1883) Kotold 1911			
8	Gonyaulax ellegaardiae Mertens, Aydın, Takano, Yamaguchi and Matsuoka in Mertens et al.			
9	2015 ex Head, Mertens and Fensome (herein)			
10	Gonyaulax geomunensis Kim, Li, Gu, Mertens and Shin in Kim et al. 2023Gonyaulax digitale			
11	(Pouchet 1883) Kofoid 1911			
12				
13	Gonvaulax hvaling Ostenfeld and Schmidt 1901			
14 1	Gonvaular milneri (Murray and Whitting 1899) Kofoid 1911 (now Lingulaular milneri)			
15	Gonvaular neganiae Gu and Mertens in Gu et al. 2021			
17	Convallant nezunide Ou and Mertens in Ou et al. 2021			
18	Gonyaulax ovum (Gaaldel 1934) Head et al. (III levision)			
10	Gonyaulax polygramma Stein 1883			
20	Gonyaulax polyedra Stein 1883 (now Lingulaulax polyedra)			
21	Gonyaulax scrippsae Kofoid 1911			
22				
23	Genus Gymnodinium Stein 1878			
24	Gymnodinium nolleri Ellegaard and Moestrup 1999			
25				
26	Genus Heterodinium Kofoid 1906			
27	Heterodinium milneri (Murroy and Whitting 1900) Kafaid 1006 (now Lingulaulan milneri)			
28	Therefore the second state of the second sec			
29				
30	Genus "Hystrichosphaera" Wetzel 1933, ex Deflandre 1937			
31	Hystrichosphaera furcata var. pachyderma Rossignol et al. 1964 (now Spiniferites pachydermus)			
32				
33	Genus Islandinium Head, Harland and Matthiessen 2001 (
34	<i>Islandinium brevispinosum</i> Pospelova and Head 2002 (•)			
35	Islandinium minutum (Harland and Reid in Harland et al. 1980) Head. Harland and Matthiessen			
36	2001 (•)			
3/	Islandinium minutum subsp. minutum (autonym) (@)			
30	Islandinium minutum subsp. hanhatum Datuin et al. 2018 (@)			
39 40	Istandinium minutum subsp. barbatum Polvin et al. 2018 ()			
40	Islandinium pacificum Gurdebeke, Mertens, Pospeiova, van Nieuwennove and Louwye 2019			
41				
43				
44	Genus <i>Lingulaulax</i> n. gen.			
45	<i>Lingulaulax milneri</i> (Murray and Whitting 1899) n. comb. nov.			
46	Lingulaulax polyedra (von Stein 1883) n. comb. nov.			
47				
48	Genus Lingulodinium Wall 1967 ()			
49	Linguladinium machaeronhorum (Deflandre and Cookson 1055) Wall 1067 (@)			
50	Lingulouinium machaerophorum (Denandre and Cookson 1955) wan 1967 (*)			
51	Linguloainium milneri (Multay and Willung 1899) Dodge 1989 (now Lingulaulax milneri)			
52	Linguloainium polyeara (von Stein 1883) Dodge 1989 (now Lingulaulax polyeara)			
53				
54	Genus <i>Multispinula</i> Bradford 1975 (●)			
55	Multispinula minuta Bradford 1975 () (now Selenopemphix quanta)			
56				
57				
58				
59				

Nema	atosphaeropsis lemniscata Bujak 1984 (•)
Oper	culodinium Wall 1967 (●)
Oper	<i>culodinium centrocarpum</i> (Deflandre and Cookson 1955) Wall 1967 (
Genu Palae	s <i>Palaeoperidinium</i> Deflandre 1934 ex Sarjeant 1967 (●) eoperidinium pyrophorum (Ehrenberg 1837 ex Wetzel 1933) Sarjeant 196
Genu	s Peridinium Ehrenberg 1832
Peria Peria	<i>linium claudicans</i> Paulsen 1907 (now <i>Protoperidinium claudicans</i>) <i>linium ponticum</i> Wall and Dale in Wall et al. 1973 ((Image: State State
<u>Genu</u>	as Preperidinium Mangin 1913
<u>Prep</u>	eridinium meunieri (Pavillard 1913) Elbrächter 1993
Genu	s Protoceratium Bergh 1881
Prote	oceratium reticulatum (Claparède and Lachmann 1859) Bütschli 1885
Genu Proto Proto Proto <u>Proto</u> Proto Proto Proto Proto Proto Constanto Constanto Proto Proto Proto Proto Proto Proto	as Protoperidinium Bergh 1881 operidinium claudicans (Paulsen 1907) Balech 1974 operidinium conicoides (Paulsen 1905) Balech 1974 operidinium conicum (Gran 1900) Balech 1974 operidinium denticulatum (Gran and Braarud 1935) Balech 1974 operidinium divergens (Ehrenberg 1841) Balech 1974 operidinium latidorsale (Dangeard 1927) Balech 1974 operidinium mutsuense (Abé 1936) Balech 1974 operidinium ponticum Vershinin and Morton 2005 operidinium sinuosum Lemmermann 1905 operidinium stellatum (Wall in Wall and Dale 1968) Balech 1994 operidinium subinerme (Paulsen 1904) Loeblich III 1969 operidinium tricingulatum Kawami, van Wezel, Koeman and Matsuoka 2 as Pterosperma Pouchet 1893
<u>Pterc</u>	osperma labyrinthus Ostenfeld 1903 (now Nematosphaeropsis labyrinthu.
Genu Pyroj Pyroj autor Pyroj (Ross	as Pyrophacus von Stein 1883 phacus horologium Stein 1883 phacus steinii (Schiller 1935) Wall and Dale 1971 phacus steinii (Schiller 1935) Wall and Dale 1971 subsp. steinii hym phacus steinii (Schiller 1935) Wall and Dale 1971 subsp. vancampoae signol 1962) Balech 1979 (•)

URL: http://mc.manuscriptcentral.com/tpal

	Pyrophacus vancampoae (Rossignol 1962) Wall and Dale 1971 (
	Genus Pyxidinopsis Habib 1976 ()
	Genus Selenopemphix Benedek 1972- <u>emend. Head 1993</u> (•) Selenopemphix nephroides Benedek 1972 (•) Selenopemphix quanta Bradford 1975 (•) Selenopemphix undulata Verleye, Pospelova, Mertens and Louwye 2011
	Genus Sourniaea Gu, Mertens, Li and Shin in Zhang et al. 2020 Sourniaea diacantha (Meunier 1919) Gu, Mertens, Li and Shin in Zhang et al. 2020
 	Genus Spiniferites Mantell 1850-emend. Sarjeant 1970 () Spiniferites bentorii (Rossignol 1964) Wall and Dale 1970 () Spiniferites bulloideus (Deflandre and Cookson 1955) Sarjeant 1970 () <u>Spiniferites delicatus Reid 1974 ()</u> Spiniferites elongatus Reid 1974 () Spiniferites lazus Reid 1974 () Spiniferites pachydermus (Rossignol 1964) Reid 1974 ()
	<u>Genus Succiniperidinium Masure et al. 2013</u> <u>Succiniperidinium inopinatum Masure et al. 2013</u>
	Genus <i>Tectatodinium</i> Wall 1967-emend. Head 1994 (●) <i>Tectatodinium pellitum</i> Wall 1967-emend. Head 1994 (●)
	Genus <i>Tuberculodinium</i> Wall 1967 () <i>Tuberculodinium vancampoae</i> (Rossignol 1962) Wall 1967 ()
	Genus Votadinium Reid 1977 () <u>Votadinium calvum Reid 1977 ()</u> Votadinium spinosum Reid 1977 ()
	Genus Xandarodinium Reid 1977 () Xandarodinium xanthum Reid 1977 ()
	* The genus Alexandrium was considered a junior heterotypic synonym of Blepharocysta
	Ehrenberg 1873 (Elbrächter et al. 2018, 2019). However, the conservation of an epitype for
	Blepharocysta splendor-maris and its genus Blepharocysta allows Blepharocysta to be
	understood in a way that includes no currently accepted species of Alexandrium (Carbonell-
	Moore 2018; Wilson 2023). We provisionally accept that Alexandrium was validly published
I	

under the ICZN (see text for discussion), athough according to Wilson et al. (2023) the ICZN

commissioners will be asked to provide a ruling on this matter.

URL: http://mc.manuscriptcentral.com/tpal

Table $\frac{12}{2}$. Nomenclatural status and, where known, motile–cyst equivalence of <u>those fossil-taxa and cyst-producing non-fossil</u> taxa discussed in the text. A fossilspecies is one in which the type is a fossil. A name-element in bold face indicates that it is based on a type that is a fossil.			
Fossil-species	Non-fossil species (c=cyst, m-=motile stage)		
Ataxiodinium choane Reid 1974	? Gonyaulax polygramma Stein 1883		
<i>Bitectatodinium tepikiense</i> Wilson 1973	<u>Gonyaulax sp. indet. (n</u> Not Gonyaulax digitale (Pouchet 1883) Kofoid 1911 (m)—		
Brigantedinium auranteum Reid 1977	Unknown		
Brigantedinium majusculum Reid 1977	Protoperidinium sinuosum Lemmermann 1905 (m)		
Dapsilidinium pastielsii (Davey and Williams 1966) Bujak et al. 1980	No equivalent non-fossil name.		
? Desotodinium wrennii De Schepper et al. 2004	Pyrophacus horologium Stein 1883 (m)		
Dubridinium caperatum Reid 1977	Preperidinium meunieri (Pavillard 1913) Elbrächter 1993 (m)		
Dubridinium cassiculum Reid 1977	Unknown		
Dubridinium cavatum Reid 1977	Diplopsalopsis orbicularis (Paulsen 1907) Meunier 1910 (m)		
Dubridinium ulsterum Reid 1977	Unknown		
Islandinium minutum (Harland and Reid in Harland et al. 1980) Head et al. 2001	Emended by Potvin et al. (2013) to include thecal characteristics. Otherwise no equivalent non-fossil name.		
Islandinium pacificum Gurdebeke et al. 2019	Protoperidinium mutsuense (Abé 1936) Balech 1974 (m)		
Lingulodinium machaerophorum (Deflandre and Cookson 1955) Wall 1967	Lingulaulax polyedra (von Stein 1883) n. gen et comb. nov. (m)		
? Nematosphaeropsis lemniscata Bujak 1984	Nematosphaeropsis labyrinthus (Ostenfeld 1903) Reid 1974 (c)		
Operculodinium centrocarpum (Deflandre and Cookson 1955) Wall 1967	Unknown (nNot Protoceratium reticulatum (Claparède and Lachmann 1859))		
Buischii <u>, 1883 (m)</u>	1885 (m)		

<i>Peridinium ponticum</i> Wall and Dale in Wall et al. 1973 equivalent non-fossil name.	Protoperidinium sp. cf. P. divergens (Ehrenberg 1841) Balech 1974 (m)No
Selenopemphix quanta Bradford 1975	? Protoperidinium conicum (Gran 1900) Balech 1974
Selenopemphix nephroides Benedek 1972	Protoperidinium subinerme (Paulsen 1904) Loeblich III 1969 (m)
Spiniferites bentorii (Rossignol 1964Wall 1965) Wall and Dale 19671970	Gonyaulax nezaniae Gu and Mertens in Gu et al. 2021 (m)
Spiniferites bulloideus (Deflandre and Cookson 1955) Sarjeant 1970	? Gonyaulax scrippsae Kofoid 1911 (m)
Spiniferites delicatus Reid 1974	Unknown
Spiniferites elongatus Reid 1974	Gonyaulax ovum (Gaarder 1954) Head et al. (in revision) (m)
Spiniferites lazus Reid 1974	Unknown
Stelladinium reidii Bradford 1975	No equivalent non-fossil name.
Tuberculodinium vancampoae (Rossignol 1962) Wall 1967	Pyrophacus steinii (Schiller 1935a) Wall and Dale 1971 (m)
Votadinium calvum Reid 1977	Protoperidinium latidorsale (Dangeard 1927) Balech 1974 (m)
Votadinium spinosum Reid 1977	Protoperidinium claudicans (Paulsen 1907) Balech 1974 (m)
Xandarodinium xanthum Reid 1977	Unknown
No equivalent fossil name.	<i>Brigantedinium simplex</i> Wall 1965, ex Lentin and Williams 1993 (c). A heterotypic junior synonym of <i>Protoperidinium conicoides</i> (Paulsen 1905) Balech 1974 (m)
No equivalent fossil name.	Echinidinium granulatum Zonneveld 1997 ex Head et al. 2001 (c)
No equivalent fossil name.	Gonyaulax baltica Ellegaard et al. 2002 (c)
No equivalent fossil name (not <i>Spiniferites pachydermus</i> (Rossignol 1964) Reid 1974)	<i>Gonyaulax ellegaardiae</i> Mertens, Aydin, Takano, Yamaguchi and Matsuoka in Mertens et al. 2015 ex Head, Mertens and Fensome (herein) 2015 (m).
No equivalent fossil name.	Islandinium tricingulatum (Kawami et al. 2009) Potvin et al. (2013) (m)

URL: http://mc.manuscriptcentral.com/tpal

2		
3	No geologically preservable cyst known.	Lingulaulax milneri (Murray and Whitting 1899) n. gen et comb. (m)
4 5	No equivalent fossil name	Protoperidinium stellatum (Wall in Wall and Dale 1968) Balech 1994 (m)
6	rto equivalent rossir nume.	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
1/		
18		
19		
20		
21		
22		
23		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
3/		
30		
39 40		
40 41		
42		
43		
44		
45		URL: http://mc.manuscriptcentral.com/tpal
46		
47		

IBC and year	Code and authors	Relevant introduction or change
7 th IBC, Stockholm 1950	Stockholm Code (Lanjouw et al. 1952)	Appendix on fossils introduced that includes "organ- genera" and "form-genera"; the term "subfossil" also introduced for which the same provisions apply as for fossils.
8 th IBC, Paris 1954	Paris Code (Lanjouw et al. 1956)	Names of non-fossil algae require illustration showing distinctive features, from 1 January 1958; and Latin description/diagnosis between 1 January 1958 and 31 December 2011.
9 th IBC, Montreal 1959	Montreal Code (Lanjouw et al. 1961)	Appendix on fossils integrated into the main body of the Code. "Organ-genera" and "form-genera" redefined as mutually exclusive concepts.
10 th IBC, Edinburgh 1964	Edinburgh Code (Lanjouw et al. 1966)	Requirement of "stratigraphic relations" at the site of original occurrence introduced for fossil taxa as a means to distinguish from "Recent material".
12 th IBC, Leningrad 1975	Leningrad Code (Stafleu et al. 1978)	"Organ-genera" discontinued.
13 th IBC, Sydney 1981	Sydney Code (Voss et al. 1983)	Relationship clarified between "fossil" and "recent" (now lowercased) plants by referring to the latter as "non-fossil" plants.
15 th IBC, Tokyo 1993	Tokyo Code (Greuter et al. 1994)	Names of new taxa of "fossil plants" require Latin or English description or diagnosis or full and direct reference to such from 1 January 1996 (hence Latin no longer required).
16 th IBC, St Louis 1999	St Louis Code (Greuter et al. 2000)	"Morphotaxa" introduced for fossils that consist of a part, life-history stage, or preservational state. The term "fossil taxon" appears, along with first example of dual nomenclature in dinoflagellates. The type specimen of the name of a new fossil-taxon must be identified among the validating illustrations, from 1 January 2001. A type specimen of the name of an algal taxon may be a culture if metabolically inactive.
17 th IBC, Vienna 2005	Vienna Code (McNeill et al. 2006)	The type of a name of a new non-fossil taxon at the rank of species or below from 1 January 2007 must be a specimen (illustrations allowed previously for algae) except where preservation is difficult.
18 th IBC, Melbourne 2011	Melbourne Code (McNeill et al. 2012)	New title "International Code of Nomenclature for algae, fungi, and plants" (ICN) introduced. Discontinuation of terms "subfossil" and "morphotaxon", instead distinguishing only between "fossil-taxa" and "non-fossil taxa". Names of new non- fossil taxa require Latin or English description or diagnosis or full and direct reference to such from 1
19 th IBC,	Shenzhen Code	Simple distinction between "fossil-taxa" and "non-fossil

Table 3. Summary of changes to the nomenclatural Codes that affect those fossil- and non-fossil algal taxa, as explained in the text, with reference to each International Botanical Congress (IBC) from 1950 and the published Code resulting from it.

Shenzhen 2017

(Turland et al. 2018)

taxa" continued. Three examples of dual nomenclature in dinoflagellates provided in total (in Arts. 11.7 and 11.8). If a type specimen of the name of an algal taxon is a metabolically inactive culture, from 1 January 2019

this must be specified within the protologue.

1	
2	
2	
3	
Δ	
-7	
5	
6	
7	
/	
8	
9	
10	
10	
11	
12	
12	
13	
14	
15	
15	
16	
17	
10	
10	
19	
20	
21	
21	
22	
23	
25	
24	
25	
26	
20	
27	
28	
20	
29	
30	
31	
20	
32	
33	
31	
54	
35	
36	
27	
37	
38	
39	
40	
41	
12	
42	
43	
44	
 лг	
45	
46	
47	
-T/	
48	
49	
50	
50	
51	
52	
52	
ר ר	

55	
54	
55	

URL: http://mc.manuscriptcentral.com/tpal

Page 101 of 108

Palynology

Figure 1. Phylogeny of the fossil-genera Ataxiodinium, Bitectatodinium, Impagidinium, Spiniferites and Tectatodinium inferred from partial large subunit (LSU) rRNA gene sequences using Bayesian inference. These genera have all been linked by incubation studies to the non-fossil Gonyaulax spinifera and Gonyaulax polygramma complexes, and all are paraphlyetic. These genera nonetheless all include extinct species, and as presently circumscribed are needed in fossil cyst nomenclature. Branch lengths drawn to scale; scale bar indicates number of nucleotide substitutions per site. Numbers on branches are statistical support values to clusters on their right (left: Bayesian posterior probabilities; right: maximum likelihood (ML) bootstrap support values). Only Bayesian posterior probabilities above 0.9 and ML bootstrap support values above 50 are shown. An asterisk (*) indicates maximal support (BI posterior probability = 1.0, ML bootstrap support = 100). The scale bar represents inferred evolutionary distance in changes/site. From fig. 77 of Gu et al. (2021).

172x151mm (300 x 300 DPI)

Page 102 of 108

Figure 2. Phylogeny of the Protoperidinium sensu stricto clade inferred from LSU rRNA gene sequences using Bayesian inference, and its taxonomic implications for the fossil-genera Selenopemphix and Multispinula. Selenopemphix undulata plots within the Tabulata clade whereas Protoperidinium conicum, to which Selenopemphix (formerly Multispinula) quanta has been attributed, groups within the Conica 2 clade, suggesting that Selenopemphix and Multispinula might be treated as separate fossil-genera. Protoperidinium subinerme (its fossil-defined equivalent being Selenopemphix nephroides) has not yet been sequenced. The maximum likelihood (ML) bootstrap support values (ML) over 50 and Bayesian posterior probabilities (PP) over 0.7 are shown at the nodes (ML/PP), where an asterisk (*) indicates maximal support. Clades within the Protoperidinium sensu stricto clade are shown. The scale bar represents inferred evolutionary distance in changes/site. From fig. 3 of Mertens et al. (2017b).

173x103mm (300 x 300 DPI)

aspects of the life cycle as well as genetic and other molecular information on the living organism. The species is typified by a non-fossil specimen or illustration, and a single non-fossil species name applies to all parts of the life history and may include information from genome sequencing. The paleontological species concept is, with rare exception, confined to the morphology of the fossilized resting cyst wall, although the significance of morphological attributes may be informed by independent evidence of phylogeny (e.g. molecular) where species are extant. The species is typified by a fossil specimen, and a fossil-species name is applied. Living cysts provide the overlap between these two nomenclatural systems: dual nomenclature allows both names Selenopemphix nephroides and (the cyst of) Protoperidinium subinerme to be used for the illustrated cyst according to context and preference. The SEM illustration of Protoperidinium subinerme is from Hansen and Larson (1992) and the illustration of Selenopemphix nephroides is from modern sediments of the Gulf of Mexico (KNM, unpublished).

88x74mm (300 x 300 DPI)

URL: http://mc.manuscriptcentral.com/tpal

URL: http://mc.manuscriptcentral.com/tpal

Page 107 of 108

Palynology

URL: http://mc.manuscriptcentral.com/tpal

Figure 5. Lingulaulax polyedra (von Stein 1883) comb. nov. A, B, D, E, tracings of different motile stage cells from an SEM stub (strain K3-G8 isolated from the type locality off Kiel in the Baltic Sea) which serves as the epitype (from figs. 4B, 4G, 4D, and 4H respectively in Tillmann et al. 2021); ventral, apical, dorsal, and antapical views respectively. C and F, schematic representation of C, apical pore complex and surrounding plates (from fig. 6C in Tillmann et al. 2021), and F, mid-ventral area showing details of sulcus and surrounding plates (from fig. 6D in Tillmann et al. 2021). Solid green arrows indicate plate overlap, open green arrows indicate uncertain direction of plate overlap, and the red dashed line indicates line along which plates separate during cell division (from fig. 6 in Tillmann et al. 2021). Scale bars = 10 µm.
Modified kofoidian plate labeling includes: APC = apical pore complex, vp = ventral pore, cp = cover plate, po = pore plate, X = X-plate; and the sulcal plates, as = anterior, ras = right accessory, ms = median, rs = right, ls = left, as = anterior. The first postcingular homologue (*1''') is designated as such because it lies within the sulcus and may not contact the cingular plate series.

196x141mm (300 x 300 DPI)