

Rapport de fin de mission -Campagne MD242-MAYOBS25

Du 11 au 28 septembre 2023

De la Réunion à la Réunion

ZEE de Mayotte (France)

Auteurs et contributions

Cheffes de mission: Isabelle Thinon (BRGM) et Elodie Lebas (IPGP) ;

SIG, mise en forme des métadonnées: Isabelle Bernachot (BRGM) ;

Equipe Quart Scientifique suivi des opérations scientifiques et suivi en temps réels des données bathymétriques et de la colonne d'eau: Fabien Paquet (BRGM) /responsable équipe Quart et du Quart 0-4; Eric Jacques (IPGP)/responsable Casino et du Quart 8-12; Jean-Christophe Komorowski (IPGP) & Aude Lavayssière (IUEM-UBO)/responsable Quart 4-8; Participants au Quart: Carla Scalabrin (Ifremer), Olivier Peden (Ifremer), Pauline Verdurme (LMV), Mathilde Frey (IPGP), Margaux Dufosse (Alseamar), Alexandre Heumann (Alseamar), Kalini Bruckel (LMV), Pascale Lherminier (Ifremer), Anthony Potier (IPGP), Valerie Ballu (La Rochelle), Sara Bazin (IUEM-UBO) Jonathan Tanrin (IUEM-UBO) ;

Equipe traitement acoustique (bathymétrie et colonne d'eau): Carla Scalabrin (Ifremer), Anthony Potier (IPGP), Olivier Ragu (Genavir) ;

Référents des opérations de mouillage :

- OBS INSU et BB-OBS (opérations et analyses préliminaires des données): Lise Retailleau (IPGP-OVPF)/responsable opération, Kevin Canjamalé (IPGP-OVPF), Cyprien Griot (IPGP-OVPF), Pierre Sakic (IPGP) en collaboration avec Simon Besançon (à terre);
- Hydrophones (opérations et analyses préliminaires des données): Sara Bazin/responsable opération, Jean-Yves Royer, Jonathan Tanrin et Aude Lavayssière (IUEM-UBO) ;
- Capteurs A-O-A (opérations et analyses préliminaires des données): Valérie Ballu/responsable opération et Denis Dausse (Université La Rochelle) ;

 Châssis CIAM + ADCP coque (opérations et analyses préliminaires des données): Pascale Lherminier/responsable opération et Olivier Peden (LOPS, Ifremer), en collaboration avec Jérôme Paillet (à terre);

Référents des opérations de prélèvements:

- Bathysonde CTD-Rosette (prélèvements et analyses géochimiques): Emmanuel Rinnert/responsable opération, Cécile Cathalot, Jean-Pierre Donval (Ifremer), Setareh Rad/coresponsable opération, Sylvain Stephant et Gilles Braibant (BRGM);
- Planeurs sous-marin (Gliders): Margaux Dufosse/responsable opération, Alexandre Heumann (Alseamar);
- Dragages (opérations et descriptions préliminaires): Jean-Christophe Komorowski (IPGP)/responsable opération, Pauline Verdurme (Université de Clermont-Ferrand), Karolina Brückel (Université de Clermont-Ferrand), Mathilde Frey (Université Paris Saclay);

Observateurs mammifères marins: Aymeric Bein (Globice), Camille Dardhalon, Joséphine Pierrat (Université de La Réunion).

Remerciements

Nous tenons à remercier :

- Le commandant G. Ginat, ainsi que l'ensemble de l'équipage du N/O Marion Dufresne.
- Supervision opérations entre équipage et scientifique (OPEXO) + postes électroniciens (GENAVIR): Sébastien Laville Saint-Martin, Léa Gest ;
- Opérateurs GENAVIR: Laurence Morvan, Nicolas Le Viavant, Arthur Quenec'h, Olivier Ragu ;
- Assistance logistique à terre de Jean-Marie Saurel (IPGP), mais aussi de DAT Mayotte (roches pour le musée), Jerôme Paillet (LOPS), Simon Besançon (IPGP), REVOSIMA, et les assistantes des organismes du BRGM, IPGP, et des laboratoires CNRS-INSU.

Citation de ce rapport: Isabelle Thinon, Elodie Lebas, Isabelle Bernachot, Valerie Ballu, Sara Bazin, Alexandre Heumann, Eric Jacques, Jean-Christophe Komorowski, Pascale Lherminier, Setareh Rad, Lise Retailleau, Emmanuel Rinnert, Carla Scalabrin, Fabien Paquet, Gilles Braibant, Kalini Bruckel, Kevin Canjamalé, Cécile Cathalot, Denis Dausse, Jean-Pierre Donval, Margaux Dufosse, Mathilde Frey, Cyprien Griot, Aude Lavayssière, Olivier Peden, Anthony Potier, Lise Retailleau, Jean-Yves Royer, Pierre Sakic, Sylvain Stephant, Jonathan Tanrin, Pauline Verdurme, Aymeric Bein, Camille Dardhalon, Joséphine Pierrat, Jean-Marie Saurel, Simon Besançon, Jérôme Paillet, Genavir, Marion Dufresne & REVOSIMA teams– 2024- Rapport de fin de mission - campagne MD242-MAYOBS25 (2023) / Report of MD242-MAYOBS25 cruise (2023). P. 176, 79 fig., 24 tabl. 10 Ann.

Table des matières

١.	Contex	te	9
П.	Récapi	tulatifs des actions précédentes	10
III.	Object	fs de la mission MD242-MAYOBS25	13
IV.	Déroul	ement de la campagne MD242-MAYOBS25	15
IN	V.1.	Les opérations de mouillage	17
IV	V.2.	Les OBS (INSU)	18
	IV.2.1	Les objectifs	18
	IV.2.2	Description des instruments	19
	IV.2.3	Notes pour les déploiements par câble	21
	IV.2.4	Informations sur les opérations	22
	IV.2.5	Les données récupérées et leur évaluation	27
	IV.2.6	Récapitulatif : Opérations de mouillage OBS (INSU)	34
IV	V.3.	Les Hydrophones	35
	IV.3.1	Objectifs	35
	IV.3.2	Bilan des opérations réalisées	36
	IV.3.3	Notes sur les opérations réalisées	38
	IV.3.4	Récapitulatif : Opérations hydrophones et analyses préliminaires	38
I)	V.4.	Les capteurs de pression A-0-A	40
	IV.4.1	Objectifs	40
	IV.4.2	Instruments utilisés (A-0-A) :	41
	IV.4.3	Récupération des capteurs et analyse préliminaire des données	41
	IV.4.4	Déploiement du SN213112 sur le site de la Couronne	47
	IV.4.5	Déploiement du SN208295 sur le site de référence	49
	IV.4.6	Récapitulatif : Opération de mouillage A-0-A et analyses préliminaires	51
I)	V.5.	Le châssis CIAM	52
	IV.5.1	Déroulement de la mission	52
	IV.5.2	Analyses préliminaires	58
IV	V.6.	SADCP (LOPS)	59
IV	J.7.	Acoustique colonne d'eau : Données de sondeur multifaisceaux (SMF) et monofaisce	au
(EK8	0)	61	
	IV.7.1	Introduction	61
	IV.7.2	Déroulement	62
	IV.7.3	Résultats préliminaires (à valider en post-traitement à terre)	63
	IV.7.4	Récapitulatif des observations préliminaires	66
IV	V.8.	Evolution des fonds marins : Données de sondeur multifaisceaux (SMF)	et
mon	ofaisce	aux (EK80)	67
	IV.8.1	Traitement des données SMF bathymétriques	67
	IV.8.2	Modèles Numériques de Terrain obtenus	73
	IV.8.3	Analyses préliminaires des données SMF bathymétriques	75
١١	<i>V</i> .9.	Prélèvements CTD/Rosette et analyses géochimiques dans la colonne d'eau	77
	IV.9.1	Avant-propos	77

	IV.9.2.	Matériel et méthodes	79
	IV.9.3.	Localisation des sites et stratégies d'échantillonnage	81
	IV.9.4.	Profils in situ préliminaires de conductivité, salinité, température, oxygè	ne dissous,
tι	irbidité et	: pH	83
	IV.9.5.	Résultats des analyses d'alcalinité, DIC et pH	87
	IV.9.6.	Récapitulatif des prélèvements CTD-Rosette	87
	IV.9.7.	Notes sur le transfert de compétences Ifremer-BRGM pour l'échantillonr	nage à bord
		88	
P	V.10. O	pération et mesures des planeurs sous-marins (Glider)	89
	IV.10.1.	Descriptif des opérations	89
	IV.10.2.	Analyses préliminaires	90
P	V.11. Lo	es prélèvements des roches : opération dragages	91
	IV.11.1.	Résumé	91
	IV.11.2.	Stratégie d'exploration	92
	IV.11.3.	Méthodes d'échantillonnage et d'analyse	92
	IV.11.4.	Résultats des opérations de dragage	94
	IV.11.5.	Echantillons pour le Musée de Mayotte et l'Aéroport	129
	IV.11.6.	Métadonnées transmises au REVOSIMASIG	130
	IV.11.7.	Archivage des échantillons	131
	IV.11.8.	Récapitulatif : Prélèvement de roches	131
P	V.12. O	bservations des Mammifères marins	135
V.	Référenc	ces des campagnes:	137
VI.	Annexes		138

Illustrations

FIGURE 1 : LOCALISATION DES MOUILLAGES PAR DISTINCTION DE CAPTEURS DEPLOYES ET DE PRELEVEMENTS REALISES I	LORS
DE LA CAMPAGNE MD242-MAYOBS25 SUR FOND DE CARTE BATHYMETRIQUE MAYOBS	17
FIGURE 2 : LOCALISATION THEORIQUE DES SIX OBS ET DES DEUX BB-OBS (TABLEAU 22) A DEPLOYER LORS DE LA	
CAMPAGNE MD242-MAYOBS25 SUR FOND DE CARTE BATHYMETRIQUE MAYOBS	18
FIGURE 3 : DESCRIPTION ET PHOTO D'UN OBS (INSU)	19
FIGURE 4 : PHOTO D'UN BB-OBS (INSU)	20
Figure 5 : Photo d'anneau de levage de l'OBS problematique	22
FIGURE 6 : LOCALISATION DES CINQ SP-OBS ET DES DEUX BB-OBS DEPLOYES LORS DE LA CAMPAGNE MD242-MAYO	3S25
SUR FOND DE CARTE BATHYMETRIQUE MAYOBS. LES INSTRUMENTS NECESSITANT UNE RELOCALISATION SONT	
INDIQUES EN ORANGE. A NOTER QU'UNE OPERATION DE RELOCALISATION DE MOAQ A ETE REALISEE EN TOUTE FIN	I DE
CAMPAGNE	25
FIGURE 7 : EXEMPLE DE DONNEES ENREGISTREES TRES BRUITEES	28
FIGURE 8 : EXEMPLE DE BRUIT NUMERIQUE SUR LA COMPOSANTE HH2	28
FIGURE 8 : EXEMPLE DE BRUIT NUMERIQUE SUR LA COMPOSANTE HH2 FIGURE 9 : EXEMPLE DE PERIODE SANS SEISME	28 28 28
Figure 8 : Exemple de bruit numerique sur la composante HH2 Figure 9 : Exemple de periode sans seisme Figure 10 : Exemples comparatifs d'enregistrements de seismes sur la composante verticale de MOTM et	28 28 28 DE
Figure 8 : Exemple de bruit numerique sur la composante HH2 Figure 9 : Exemple de periode sans seisme Figure 10 : Exemples comparatifs d'enregistrements de seismes sur la composante verticale de MOTM et MOUM	28 28 28 DE 29
FIGURE 8 : EXEMPLE DE BRUIT NUMERIQUE SUR LA COMPOSANTE HH2 FIGURE 9 : EXEMPLE DE PERIODE SANS SEISME FIGURE 10 : EXEMPLES COMPARATIFS D'ENREGISTREMENTS DE SEISMES SUR LA COMPOSANTE VERTICALE DE MOTM ET MOUM FIGURE 11 : SEISME SUR MOAP	28 28 DE 29 29
 Figure 8 : Exemple de bruit numerique sur la composante HH2 Figure 9 : Exemple de periode sans seisme Figure 10 : Exemples comparatifs d'enregistrements de seismes sur la composante verticale de MOTM et MOUM Figure 11 : Seisme sur MOAP Figure 12 : Seisme du 31 aout 2023 	28 28 DE 29 29 30
 Figure 8 : Exemple de bruit numerique sur la composante HH2 Figure 9 : Exemple de periode sans seisme Figure 10 : Exemples comparatifs d'enregistrements de seismes sur la composante verticale de MOTM et MOUM Figure 11 : Seisme sur MOAP Figure 12 : Seisme du 31 aout 2023 Figure 13 : Seisme du 09 avril 2023 vu par toutes les stations 	28 28 DE 29 29 30 30

FIGURE 15 : LOCALISATION DES HYDROPHONES DEPLOYES PENDANT LA CAMPAGNE MD242-MAYOBS25 SUR FOR CARTE BATHYMETRIOIIE MAYOBS	ND DE 36
FIGURE 16 : VISUALISATION DE LA POSITION DU LARGUEUR PAR POSIDONIA LORS DU LARGAGE (CHUTE VERTICAL	LE) ET DE
FIGURE 17 : COINS RADAR AVANT (A) ET APRES DEPLOIEMENT: LE CUBE A ETE ARRACHE (B) MAIS LE TUBE A RESIS	TE (C)37
FIGURE 18 : SPECTROGRAMMES DES 4 HYDROPHONES SOFAR PENDANT LES 14 MOIS D'ACQUISITION ENTRE LES C	AMPAGNES
MAYOBS23 ET MAYOBS25	39
FIGURE 19 : LOCALISATION DES DEPLOIEMENTS A-0-A SUR LE SITE DE LA COURONNE (PROFONDEUR 1720M) ET I	LE SITE DE
REFERENCE (PROFONDEUR 1730 m) sur fond de carte bathymetrique MAYOBS. Les sites choisis sol	NT
IDENTIQUES AUX SITES DE DEPLOIEMENT DE MAYOBS23. LES SEISMES LP ET VT DETECTES ET LOCALISES P	AR LE
REVOSIMA ENTRE LE 01/08/2022 ET LE 18/04/2023 Y SONT AUSSI REPORTES	40
FIGURE 20 : RECUPERATION A-O-A SN 208295, LE 11/07/2022	
FIGURE 21 : DONNEES DU A-0-A SN208295 DEPLOYE LORS DE MAYOBS23 (JUILLET 2022) ET RECUPERE LORS	S DE
MAYOBS25 (SEPTEMBRE 2023). LES TRAITS ROUGES CORRESPONDENT AUX SESSIONS DE CALIBRATION	
FIGURE 22 : A) SERIE TEMPORELLE DU CAPTEUR PAROS2 DU A-O-A SN 208295 (EN GRIS) ET RESIDU (EN BLEU)	APRES
RETRAIT DE LA MAREE PREDITE (PREDICTION UTIDE A PARTIR D'UNE ANALYSE HARMONIOUE EFFECTUEE SUI	R LE IEU DE
DONNEES EN FORCANT LES CONSTITUANTS DE MAREE. CE SIGNAL RESIDUEL CONTIENT DES VARIATIONS LIFE	S A LA
DVNAMIQUE OCEANIQUE AINSI QU'UN RESIDU DE MAREE DE L'ORDRE DE OCCENTIMETRES. LI INTECRE ECALE	MENT
L'EVENTUEL SICNAL DE DECOMMATION VEDTICALE DU EOND QUE NOUS CUEDCUONS A IDENTIEIED B) ZOOM S	
E EVENTOLE SIGNAL DE DEFORMATION VERTICALE DO FOND QUE NOUS CHERCHONS A IDENTIFIER. DJ 200M S	/2
EICUDE 22 · DIFFEDENCE ENTRE LES 2 CARTEURS DADOS TET DADOS Λ III Λ Λ SN209205 I ES CARTEURS MES	UDANT EN
TIGURE 25 . DIFFERENCE ENTRE LES 2 CAPTEURS FARUST ET FARUS2 DU A-U-A SIN2002 75. LES CAPTEURS MES	
THEORIE EXACTEMENT LA MEME PRESSION EXTERIEURE, CETTE DIFFERENCE REFLETE LE BRUIT INSTRUMENT	ALEILA
DERIVE DES CAPTEURS. ZOOM A DROTTE SUR LE SAUT D'ENVIRON 5-0MM OBSERVE EN DEBUT DE DEPLOTEMET	43
FIGURE 24 : RECUPERATION A-U-A SN 211508, LE 18/09/2023	
FIGURE 25 : AJ COURBE D ESTIMATION DE LA DERIVE DES CAPTEURS ESTIMEE PAR LES SESSIONS « ZEROS » A P	
ATMOSPHERIQUE DANS LE CYLINDRE. B) DIFFERENCE PAROSZ – PAROS1, EN PRENANT EN COMPTE OU NON L	A DERIVE
ESTIMEE DES CAPTEURS.	45
FIGURE 26 : A) CAPILLAIRE THEORIQUEMENT EN HUILE ET PRESENTANT DES BULLES D'AIR AVANT LE DEPLOIEMEN	(T. B)
PETITE FUITE D'HUILE IDENTIFIEE A LA RECUPERATION ; LE CAPILLAIRE NE PRESENTE PLUS DE BULLES	45
FIGURE 27 : DONNEES DU A-0-A SN211568 DEPLOYE LORS DE MAYOBS23 (JUILLET 2022) ET RECUPERE LORS	S DE
MAYOBS25 (SEPTEMBRE 2023). LES TRAITS ROUGES CORRESPONDENT AUX SESSIONS DE CALIBRATION. A	CETTE
ECHELLE, LES 2 JEUX DE DONNEES SONT IDENTIQUES	46
FIGURE 28 : DIFFERENCE PAROS 2 – PAROS 1. ZOOM MONTRANT LE COMPORTEMENT LORS DES BASCULEMENTS DE	E VANNE.
	46
FIGURE 29 : A) COURBE D'ESTIMATION DE LA DERIVE DES CAPTEURS ESTIMEE PAR LES SESSIONS « ZEROS » A P	
ATMOSPHERIQUE DANS LE CYLINDRE. B) DIFFERENCE PAROS2 – PAROS1, EN PRENANT EN COMPTE OU NON L	A DERIVE
ESTIMEE DES CAPTEURS	47
FIGURE 30 : A) DEPLOIEMENT DU AOA SN213112, SITE DE LA COURONNE ; B) DEPLOIEMENT DU AOA SN2082	95 sur
SITE DE REFERENCE	49
FIGURE 31 : A) LOCALISATION DU CHASSIS CIAM DEPLOYE PENDANT LA CAMPAGNE MD242-MAYOBS25 SUR FO)ND DE
CARTE BATHYMETRIQUE MAYOBS. ; B) LOCALISATION DES CHASSIS CIAM EN 2022-2023 ET 2023-2024	SUR FOND
DE CARTE TOPOGRAPHIQUE. LES POINTS JAUNES SONT LES PANACHES DE GOUTTELETTES DE GAZ DEJA OBSERV	VES DEPUIS
PLUSIEURS ANNEES. LES POINTS ROSE ET VIOLET SONT RESPECTIVEMENT LES POSITIONS TRIANGULEES DES C	HASSIS EN
2022-2023 ET 2023-2024. COURTESY CARLA SCALABRIN ; C) PHOTO DU CHASSIS CIAM	53
FIGURE 32 : PHOTO DE CORROSION	
FIGURE 33 : INTENSITE DU RETOUR ACOUSTIQUE DES FAISCEAUX 1 ET 4 A DIFFERENTES PERIODES DE TEMPS · A) S	EPTEMBRF
. B) NOVEMBRE 2022	
FIGURE 34 : DONNEES DE L'OS75 ET COURBES DE MAREE	57
FIGURE 35 : RELOCALISATION ET POSITION DU CIAM REDEPLOYE	

FIGURE 36 : PROFILS SMF COQUE DES BOITES « RIDE-ESSAIM SISMIQUE DISTAL » ET « CÔTE-ESSAIM SISMIQU	JE
PROXIMAL » SUR FOND DE LA COUVERTURE ACOUSTIQUE MD242-MAYOBS25. ENCADRE: BOITE FER A	Cheval et
"ROUTES DES PANACHES" DEDIEES A L'ANALYSE DES PANACHES ACOUSTIQUES SUR LA ZONE ELARGIE DU F	er a Cheval.
-	61
FIGURE 37 : PROFILS SMF COQUE DE LA BOITE « FER A CHEVAL » ET « ROUTES DES PANACHES » DEDIEES A L'A	ANALYSE DES
PANACHES ACOUSTIQUES SUR LA ZONE ELARGIE DU FER A CHEVAL.	62
FIGURE 38 : ECHOGRAMME LONGITUDINAL DE LA COLONNE D'EAU CORRESPONDANT AU PROFIL O/E A L'APLOM	IB DU VOLCAN
FANI MAORE	
FIGURE 39 : LOCALISATION DES SITES ACTIFS D'EMISSION DE FLUIDES FOND DE MER DANS LE PERIMETRE ELARG	JI DU FER A
CHEVAL LE NOUVEAU SITE ACTIF KO OBSERVE (@SCALABRIN & A POTIER) POUR LA PREMIERE FOIS PEN	JDANT LA
CAMPAGNE MD242-MAYOBS25 Y EST INTEGRE (ENTOURE EN ROUGE)	64
FIGURE 40 \cdot ECHOGRAMMES POLAIRES DU NOUVEAU SITE ACTIE KO OBSERVE POUR LA PREMIERE FOIS PENDAN	ΓΙΑ
CAMPACNE MD242-MAYORS25 CES ECHOCRAMMES POLAIRES SONT ACOULS AVEC LE SME EM122 SU	
DDOFILS DIFFEDENTS ET TRAITES AVEC LE LOCICIEL CLORE	64
FIGURE 41 \cdot Evende e d'un dogeil acous lors de la madre a l'etale avec le EKRO sud les danaches ac	OUSTIOUES
DANG LE FED A CHEVAL (@DHOTO D'ECDAN DONNEE BUITE)	65
Figure 42 \cdot Converting a constinue et local isation des doceils d'aconisition dad SMF constraints in l'a	ENSEMBLE DE
FIGURE 42. COUVERTURE ACOUSTIQUE ET LOCALISATION DES EROFILS D'ACQUISITION FAR SMIT COQUE SUR ET	SN3EMBLE DE
EA LONE D'ETODE.	
TIGURE TO . I RANSITS VALORISES REALISES (IRAITS ROUGE) DURANT LA CAMPAGNE MDZTZ-MATODSZO. I TRANSITS VALORISES DEEVIS INITIALEMENT DOINT DE LEU FONCE : DOINT DE DEIET DES DOCHES DEEL EVE	CALLCOURS DE
I RANSI I S VALORISES PREVOS INTITALEMENT. FOINT DLEU FONCE . POINT DE REJET DES ROCHES PRELEVE	SAU COURS DE
LA CAMPAGNES MAYOPS DECEDENTES	د <u>ع</u> ر ۲۵
CAMPAGNES MATODS PRECEDENTES.	00
FIGURE 44 : SELECTION DES COUCHES POUR CHAQUE DIM	
FIGURE 45 : CADRE GEOGRAPHIQUE DE LA BOITE « COTE »	72
FIGURE 40 : CADRE GEOGRAPHIQUE DE LA BOITE « VOLCAN »	72
FIGURE 47 : MODELE NUMERIQUE DE TERRAIN GENERAL GENERE AU PAS DE GRILLE DE SUM	
FIGURE 40 : MODELE NUMERIQUE DE LERRAIN DES DONNEES BATHYMETRIQUES DE LA BOITE « COTE » GENEL	ALE AU PAS DE
GRILLE DE 20M (@LOGICIEL GLODE)	
FIGURE 49 : MODELE NUMERIQUE DE LERRAIN DES DONNEES BATHYMETRIQUES DE LA BOITE « VOLCAN » GE	NERE AU PAS
DE GRILLE DE SOM (@ LOGICIEL GLODE)	
FIGURE 50 : MODELE NUMERIQUE DE LERRAIN DES DONNEES BATHYMETRIQUES DE LA BOITE « RIDE » GENER	E AU PAS DE
GRILLE DE 25M (@ LOGICIEL GLOBE) AVEC UNIQUEMENT LES PROFILS EVV	
FIGURE 51 : CARTE DES LOCALISATIONS DES BATHYSONDES MDZ42-MATOD525 SUR FOND DE CARTE BATHY MAYODS	METRIQUE 70
MATUDS.	
FIGURE 52 : SYNUPSIS DES OPERATIONS DE PRELEVEMENT REALISEES LORS DE LA CAMPAGNE MATODS25	80 02
FIGURE 53 : REPRESENTATION DU PROFIL TO TO SUD-OUEST / NORD-EST DE L'OPERATION HTOS	82
FIGURE 54 : SCHEMA DE PRINCIPE DE L'OPERATION HYUS REALISEE EN YO-YO.	
FIGURE 55 : ANALYSES D'ALCALINITE, DIC ET PH POUR LA BATHYSONDE HYOI (SITE C'FER A CHEVAL) – GLIL	ER 1250M83
FIGURE 56 : ANALYSES D'ALCALINITE, DIC ET PH POUR LA BATHYSONDE HYOZ (CENTRE FER A CHEVAL, MOUII	LAGE CIAMJ
EVEN E 7 . An alward real number \mathbf{D} is the real range of the second real second	
FIGURE 57 : ANALYSES D'ALCALINITE, DIC ET PH POUR LA BATHYSONDE HTUS (CENTRE FER A CHEVAL, MOUII	LAGE CIAMJ
+ GLIDERS 1000 ET 1250M	04 05
FIGURE 58 : ANALYSES D'ALCALINITE, DIC ET PH POUR LA BATHYSONDE HYO4 (CHENAL DEVERSOIR DU FAC)	
FIGURE 59 : ANALYSES D'ALCALINITE, DIC ET PH POUR LA BATHYSONDE HTUS TOTO AVEC GLIDER 1250M T	ANSELT SU -
	85
FIGURE OU ANALISES D'ALCALINITE, DIC ET PH POUR LA BATHYSONDE HIVO (SHE KU)	
FIGURE OT ANALYSES D'ALCALINITE, DIC ET PER POUR LA BATHYSUNDE ET UV (KEFEKENCE)	ðb
FIGURE 02 . F RUTUS DES DEUX PLANEURS (GLIDERS, TUUUM ET TZOUM) INSTALLES SUR LA GTD-RUSETTE FIGURE 62 : LOCALICATION DES TROIS DRACHES ORTENUES LORS DE LA CAMPA CHE MD242 MAXOCD27	
LIGORE 03 . FOCATION DES LEGIS DEVENUES OR LENGES FORS DE LA CAMPAGNE MD747-MATO2872	

FIGURE 64 : LOCALISATION DE LA DRAGUE DR39 NON REALISEE (ETOILE VIOLETTE) SUITE A UNE PANNE SUR LE TREUII	Ĺ
GRAND FOND. LES DRAGUES REALISEES DR36-DR37-DR38 (CERCLES ROUGES) SONT INDIQUEES.	93
FIGURE 65 : ZONE DE REJET DE L'EXCEDENT DES ROCHES DES DRAGUES	95
FIGURE 66 : LOCALISATION DES DRAGUES A ROCHES (DR36-DR38 EN ROUGE) REALISEES LORS DE LA CAMPAGNE MD2	242-
MAYOBS 25 ET DES DRAGUES (ETOILES JAUNES) REALISEES LORS DES CAMPAGNES PRECEDENTES MAYOBS01 A	ł
MAYOBS23, GEOFLAMME.	96
FIGURE 67 : DRAGUE DR36, FRAGMENTS DE COULEE PHONOLITIQUE PRESENTANT LES TROIS TEXTURES :	97
FIGURE 68 : FICHE DE PREPAPRATION DE LA DRAGUEDR36	107
FIGURE 69 : FICHE D'OPERATION DE LA DRAGUE DR36	107
FIGURE 70 : DRAGUE DR37, FRAGMENTS DE COULEE PHONOLITIQUE PRESENTANT LES TROIS TEXTURES :	108
FIGURE 71 : FICHE DE PREPAPRATION DE LA DRAGUEDR37	117
FIGURE 72 : FICHE D'OPERATION DE LA DRAGUEDR37	117
FIGURE 73 : DR38, FRAGMENTS DE COULEE PHONOLITIQUE PRESENTANT LES TROIS TEXTURES :	118
FIGURE 74 : FICHE DE PREPARATION DE LA DRAGUEDR38	128
FIGURE 75 : FICHE D'OPERATION DE LA DRAGUEDR38	128
FIGURE 76 : ECHANTILLONS DE ROCHES PROVENANT DES DRAGUES DR36, DR37, DR38 DE MAYOBS25 DONNES PAR	۱LE
REVOSIMA AU MUSEE DE MAYOTTE ET A L'AEROPORT POUR LA REALISATION D'EXPOSITIONS A MAYOTTE	129
FIGURE 77 : LOCALISATION DES TROIS DRAGUES OBTENUES LORS DE LA CAMPAGNE MD242-MAYOSB25	131
FIGURE 78 : PROTOCOLE POUR LA PROTECTION DES MAMMIFERES MARINS (@ EXTRAIT DU DOCUMENT D'AUTORISATION	N DE
TRAVAUX , REF : 142/CZM REUNION/AEM/NP)	135
FIGURE 79 : A) OBSERVATIONS MAMMIFERES MARINS, OBSERVATIONS DE BIODIVERSITE, DECHETS INTEGRES DANS LE	
CAHIER DE QUART CASINO (EXTRAIT DE CASINO) ; B) OBSERVATIONS CONCERNANT LES MAMMIFERES MARINS AV	VEC
INDICATION DE LA DISTANCE PAR RAPPORT AU NAVIRE	136

Tableau

TABLEAU 1 : PLANNING DES OPERATIONS DE LA CAMPAGNE MD242-MAYOBS25	15
TABLEAU 2 : COORDONNEES DE DEPLOIEMENT SOUHAITEES POUR LES OBS DITS DE « COURTE PERIODE » (SP-OBS). MC)T
ET MOU REPRESENTANT LES POSITIONS DE DEUX OBS « LARGE BANDE » (BB-OBS)	19
TABLEAU 3 : CARACTERISTIQUE D'UN OBS AVEC ET SANS LEST	20
TABLEAU 4 : CARACTERISTIQUE D'UN BB-OBS AVEC ET SANS LEST	20
TABLEAU 5 : CARACTERISTIQUES DETAILLEES DES OBS	21
TABLEAU 6 : CODES DES ACOUSTIQUES UTILISES POUR LES SPOBS	23
TABLEAU 7 : CODES ACOUSTIQUES UTILISES POUR LE BBOBS	23
TABLEAU 8 : COORDONNEES DES SPOBS ET BBOBS DEPLOYES LORS DE MAYOBS24 (P) ET 23 (M) RESPECTIVEMENT.	24
TABLEAU 9 : DUREE DES OPERATIONS DE RECUPERATION	24
TABLEAU 10 : CODES ACOUSTIQUES POUR LES DEPLOIEMENTS DES SPOBS	25
TABLEAU 11 : CODE ACOUSTIQUE POUR LES DEPLOIEMENTS DES BBOBS	26
TABLEAU 12 : PARAMETRES D'ACQUISITION POUR LES DEPLOIEMENTS	26
TABLEAU 13 : RESUME DES OPERATIONS DE DEPLOIEMENTS	26
TABLEAU 14 : PARAMETRES AU DEPART DES ACQUISITIONS	27
TABLEAU 15 : POSITIONS ET PERIODES D'ENREGISTREMENT DES HYDROPHONES DE LA CAMPAGNE MD242-MAYOBS25	5. 37
TABLEAU 16 : PLAGES HORAIRES DES COUVERTURES ACOUSTIQUES SUR LES BOITES VOLCAN, CÔTE, FER A CHEVAL ET	
RIDE (HORS TRANSITS)	62
TABLEAU 17 : ENSEMBLE DES TIRS SIPPICCANS REALISES ET FICHIERS DE CELERITE INTEGRES DANS SIS	70
TABLEAU 18 : LISTE DES CAPTEURS DEPLOYES SUR LA CTD/ROSETTE	77
TABLEAU 19 : Listing des operations CTD/rosette realisees a bord du N/O Marion Dufresne lors de la	
CAMPAGNE MAYOBS25. HEURE DE MISE A L'EAU ET POSITIONS DU NAVIRE LORSQUE LA CTD/ROSETTE EST AU FO	ND

EXCEPTE POUR LE YO-YO DONT LES POSITIONS SONT DONNEES $\operatorname{CTD}/\operatorname{rosette}$ en surface en debut et fin de	
TRANSECT	78
TABLEAU 20 : PARAMETRES ANALYSES A TERRE ET A BORD SUR LES ECHANTILLONS PRELEVES DURANT LA CAMPAGNE	
MAYOBS25	79
TABLEAU 21 : RECAPITULATIF DES SITES ECHANTILLONNES PRESENTANT LES ZONES ET LES OBJECTIFS	81
TABLEAU 22 : METADONNEES POUR LA ZONE DE REJET DE L'EXCEDENT DES ROCHES DES DRAGUES	95
TABLEAU 23 : METADONNEES DES DRAGUES DE LA CAMPAGNE MAYOBS25	130
TABLEAU 24 : CARACTERISTIQUES DES DRAGAGES REALISEES PENDANT MD242-MAYOBS25	133

Annexes

ANNEXE 1 : CHASSIS CIAM - SCRIPT POUR L'ADCP WH-150 KHZ-N° 13267 AVEC « PLANADCP »	. 138
ANNEXE 2 : CHASSIS CIAM – RETOUR TURBIDIMETRE	.141
ANNEXE 3 : CHASSIS CIAM - SPHERE N°102 ET N°47	.142
Annexe 4 : Liste des profils de donnees du sondeur multifaisceaux (date de debut, heure de debut, date d heure de fin, nom de profil)	e fin, 144
ANNEXE 5 : LISTE DES PRELEVEMENTS CTD-ROSETTE AU COURS DE LA CAMPAGNE MAYOBS26	.149
ANNEXE 6 : SYNTHESE DES ANALYSES REALISEES PAR LE BRGM DANS LE CADRE DU TRANSFERT DE COMPETENCES	
IFREMER/BRGM	.153
Annexe 7 : Synthese des mesures physico-chimique effectuees a bord par le BRGM dans le cadre des	
INTERCOMPARAISONS DE DONNEES IFREMER/BRGM	.154
ANNEXE 8 : RESULTATS DES ANALYSES D'ALCALINITE ET DE PH MESURES A BORD PAR LE BRGM DANS LE CADRE DES	
INTERCOMPARAISONS DE DONNEES IFREMER/BRGM	.155
ANNEXE 9 : CONDITIONNEMENT DES ECHANTILLONS	.156
ANNEXE 10 : FICHES DESCRIPTIVES DES OBSERVATIONS MAMMIFERES MARINS, OISEAUX, DECHETS	.158

I. Contexte

L'île de Mayotte fait face à un phénomène sismo-volcanique sans précédent depuis cinq ans. L'activité se traduit par la présence d'essaims sismiques très actifs qui ont débuté le 10 mai 2018 à l'Est des côtes volcaniques de Mayotte. Plusieurs milliers de séismes avaient été enregistrés par le réseau sismologique à terre (RESIF, RENASS, BRGM, REVOSIMA) et plusieurs centaines ont été ressentis par la population. Le plus gros séisme d'une magnitude de M=5,9 a eu lieu le 15 mai 2018 et a fortement inquiété la population mahoraise (bulletins REVOSIMA¹). Les données de GPS montrent que l'île s'est déplacée vers l'Est de 21 à 25 cm et s'est enfoncée de 10 à 19 cm, en fonction de la localisation, essentiellement en début de crise à partir du mois de juillet 2018 (bulletins REVOSIMA). Les modèles de déformation suggèrent que la source de ce phénomène soit la déflation d'une poche de magma très volumineuse, profonde, à l'Est de l'île (Cesca *et al.*, 2020 ; Lemoine *et al.*, 2020 ; Feuillet *et al.*, 2021).

En réponse à cette éruption volcanique sous-marine qui a débuté en mai 2018 et à la sismicité associée, l'Etat a confié en 2019 la mission de surveillance de cette zone volcanique au Réseau de Surveillance Volcanologique et Sismologique de Mayotte (REVOSIMA). L'IPGP et le BRGM assurent la coordination et le pilotage du REVOSIMA. La surveillance opérationnelle de l'activité sismo-volcanique est réalisée par l'IPGP (OVPF) en co-responsabilité avec le BRGM. Le REVOSIMA s'appuie sur un étroit partenariat scientifique et technique avec l'Ifremer et le CNRS.

Dans le cadre du REVOSIMA, les équipes scientifiques et techniques de l'IPGP, du BRGM, de l'Ifremer et des laboratoires du CNRS-INSU acquièrent des données de géophysique marine permettant l'identification et l'analyse des panaches acoustiques causés par des émissions de fluides ou de particules dans la colonne d'eau et la production de cartes bathymétriques et de réflectivité du fond marin dans l'objectif d'évaluer les évolutions des émissions de fluides ou de particules, de la morphologie et de la nature du fond marin d'une campagne MAYOBS à l'autre (https://doi.org/10.18142/291; Rinnert et al. 2019²). Ils maintiennent également un réseau d'instruments sous-marins notamment les sismomètres fond de mer qui enregistrent les ondes générées par les séismes et permettent la localisation de leur source avec précision. Des profils de sismique réflexion ont également pu être acquis imageant ainsi la géométrie de la couverture sédimentaire et les structures volcaniques récentes sur les premiers kilomètres de profondeur (MAYOBS17). Des prélèvements de la colonne d'eau par CTD-rosette sont réalisés pour localiser et caractériser les anomalies géochimiques en lien avec les émissions de fluides dans la colonne d'eau. Certaines analyses sur le contenu en gaz, en particules et en composés dissous des fluides prélevés, sont effectuées à bord ou en laboratoire, au retour des missions océanographiques. Des échantillons de roches volcaniques, issus des coulées de lave émises par le nouveau volcan formé, dénommé « Fani Maoré », ainsi que des complexes volcaniques présents et composant la chaîne volcanique sous-marine orientale de Mayotte (i.e., complexe volcanique du Fer à Cheval et cônes alentours), sont également prélevés par dragages sur le fond marin pour connaître la composition géochimique et le contenu en gaz des magmas des éruptions récentes, notamment dans la zone active du Fer à Cheval. Les descriptions macroscopiques sont effectuées à bord et les analyses sont réalisées en laboratoire au

¹ REseau de surveillance VOlcanologique et SIsmologique de MAyotte (REVOSIMA)

² RINNERT Emmanuel, LEBAS Elodie, PAQUET Fabien, JORRY Stéphan, FEUILLET Nathalie, THINON Isabelle, FOUQUET Yves (2019) MAYOBS

retour de mission. Les résultats des analyses informent sur l'âge, la source, le trajet et l'évolution des fluides magmatiques, les temporalités de remontée des magmas, en plus du style et du dynamisme des éruptions au cours du temps. Des prélèvements des archives sédimentaires ont également été effectués par carottage (MAYOBS19) pour fournir des informations sur la nature, les propriétés physiques et mécaniques des sédiments superficiels et leurs propriétés géotechniques ainsi que sur l'enregistrement des éruptions volcaniques passées. Les niveaux volcaniques, composés de téphras, intercalés dans les sédiments sont datées et analysées par différentes méthodes dont les méthodes de la téphrochronologie, pour compléter la reconstruction du passé éruptif de la zone.

II. Récapitulatifs des actions précédentes

Dans le cadre du programme de surveillance, ce phénomène sismo-volcanique a d'abord été documenté grâce aux données du projet SISMAYOTTE (projet INSU-CNRS Tellus financé par les ministères MESRI et MTE). Afin de compléter le réseau existant à terre, trois nouvelles stations sismologiques ainsi que des GPS des réseaux mobiles de l'INSU ont été installés à Mayotte en mars 2019 par le BRGM et l'IPGS. Une quatrième station (sismomètre + GPS) a été installée sur Grande Glorieuse (île à l'Est de Mayotte) par l'IPGP/OVSG. Des OBS (sismomètres fond de mer) du parc INSU et de l'Ifremer sont déployés et récupérés à plusieurs reprises à l'Est de Mayotte depuis février 2019, à l'aide de navires de la société SGTM.

Depuis le début de la crise, 13 campagnes avec levés acoustiques, MAYOBS1, 2, 3, 4, 15, 21, 23 (*N*/O³ *Marion Dufresne*), SHOM-MAYOBS5 (*Beautemps-Beaupré*⁴), MAYOBS13-2 (*FUGRO-GAUSS*), MAYOBS17, 18, 19 et GEOFLAMME (N/O *Pourquoi Pas?*) ont eu lieu en mai, juin, juillet et août 2019, mai et octobre 2020, janvier, avril, mai, septembre 2021 et juillet 2022. Plusieurs campagnes de déploiement et redéploiement des OBS ont eu lieu de février 2019 à mars 2023 pour la maintenance et la récupération des données enregistrées à partir du *N/O Marion Dufresne*, N/O *Pourquoi Pas ?*, du *BSAOM Champlain*, de l'*OSIRIS II* ou de barges privées. Les résultats de ces campagnes sont transmis par le REVOSIMA mensuellement.

La campagne MAYOBS1 en mai 2019 a mis en évidence un nouveau volcan sous-marin actif, de 820 m de haut et 5 km de diamètre, à 3500 m de profondeur à 50 km à l'Est de Mayotte représentant l'éruption d'environ 6,55 km³ de magma. Ce volcan, nommé par la suite « Fani Maoré », se situe sur une ride volcanique d'orientation N110 composée de plusieurs autres édifices et de coulées de laves ayant des morphologies très bien préservées (Feuillet *et al.*, 2021). Cette ride se situe dans le prolongement des cratères de maars de Grande-terre près de Mamoudzou et des cônes de scories et tuff-cônes volcaniques de Petite-Terre.

Les observations et mesures effectuées lors de ces campagnes successives ont permis de confirmer l'activité volcanique sous-marine importante de Fani Maoré, depuis mai 2019 jusqu'au 18 janvier 2021 (dernières évidences d'émission de lave sur les vidéos Scampi). Les levés acoustiques (différentiels acoustiques des levés de la boîte « VOLCAN ») ont montré une évolution spatiale et temporelle des coulées de lave de Fani Maoré: de mai à juin 2019 au sud du volcan Fani Maoré (coulée de 8 km de diamètre et 70 m de hauteur), de juin à juillet 2019 à l'ouest du volcan Fani Maoré (150 m de hauteur),

Rapport Mission MD242-MAYOBS25 <u>https://doi.org/10.17600/18003404</u> 23/11/2023

³ N/O: Navire Océanographique affrété par la Flotte Océanographique Française (FOF)

⁴ bâtiment hydrographique et océanographique du SHOM

de juillet 2019 à janvier 2021 au nord-ouest du volcan Fani Maoré (820 m de hauteur) (e.g., bulletins REVOSIMA, Berthod et al. 2021 a, b, 2022). A l'aide de mesures acoustigues de la colonne d'eau, des panaches importants (sur plus de 2 km de hauteur) ont été détectés au-dessus du volcan Fani Maoré de mai à juin 2019. Au cours des campagnes MAYOBS1 à 23, des panaches acoustigues allant jusqu'à 1000 m de hauteur, associés à des émissions de fluides fond de mer, ont été identifiés au niveau de l'ancien complexe volcanique du Fer à Cheval, situé à l'aplomb de l'essaim sismique proximal. Les campagnes MAYOBS4, 15, 18, 21, 23 ont permis: (1) d'échantillonner la colonne d'eau, en particulier les zones identifiées à partir des panaches acoustiques avec des prélèvements d'eau de mer/gaz dissous (CTD-Rosette), ainsi que de prélever des roches au fond par dragage, (2) de faire des observations directes in-situ (vidéos et photos SCAMPI) sur le fond-marin, ainsi que (3) des levés bathymétriques très haute résolution par AUV (Autonomous Underwater Vehicle). Les résultats préliminaires ont permis de préciser la morphologie du fond, la localisation des sorties de fluides au niveau du Fer à Cheval et du volcan Fani Maoré, ainsi que d'identifier les principaux gaz dissous dans la colonne d'eau (CO₂, CH₄, H₂, He) et d'autres paramètres géochimiques. Les résultats sont présentés régulièrement dans les bulletins mensuels du REVOSIMA. Les différentiels bathymétriques sur la boîte « CÔTE » entre les différents levés (MAYOBS1, 2, 4, 13-2, 15, 17, 18, 23, GEOFLAMME) n'ont montré aucune modification morphologique du fond marin (résolution SMF coque). La campagne MAYOBS17 a permis d'acquérir des profils sismiques de différentes résolutions (sondeur de sédiments haute résolution, sismique réflexion) imageant ainsi l'architecture interne et la géométrie des formations sédimentaires, et du substratum ainsi que de leurs relations avec les structures volcaniques au niveau des pentes sousmarines et du talus volcanoclastique de Mayotte. La campagne MAYOBS19 a, quant à elle, permis l'acquisition de carottages sédimentaires superficiels dédiés à la connaissance géologique, volcanologique et géotechnique de la zone potentielle tsunamigène sur la pente nord et est de Mayotte. Plus d'informations sur les différentes campagnes MAYOBS réalisées ainsi que sur l'évolution de l'activité sismo-éruptive sont disponibles sur le site du REVOSIMA (http://www.ipgp.fr/fr/reseaude-surveillance-volcanologique-sismologique-de-mayotte).

III. Objectifs de la mission MD242-MAYOBS25

Dans le cadre des actions menées par le REVOSIMA, la nouvelle campagne en mer MD242-MAYOBS25 se déroule à bord du *N/O Marion Dufresne* depuis le 11 septembre jusqu'au 28 septembre 2023. Le *N/O Marion Dufresne* est arrivé sur la zone d'étude le 14 septembre matin et en est reparti le 25 septembre matin.

Le <u>premier objectif</u> de la campagne MD242-MAYOBS25 est **de cartographier les émissions de fluides (gaz, liquide et particules) dans la colonne d'eau, d'identifier et localiser de nouveaux sites d'émission sur le fond-marin, et de collecter des données pour l'estimation d'un proxy acoustique de leur flux, en particulier dans la zone active du Fer à Cheval (sonde moyenne de 1500 m), à l'aide des échosondeurs monofaisceau (EK80) et/ou multifaisceaux coques (SMF EM122).** Pour rappel, deux panaches uniquement ont été initialement identifiés en mai 2019 contre 22 panaches en juillet 2022 lors de la dernière campagne MAYOBS23, soulignant une activité continue et croissante de ces émissions. Il est important de suivre la propagation des sites d'émissions au sein de la zone du Fer à Cheval, tout particulièrement, mais aussi en dehors de celui-ci, notamment au sein de la chaîne volcanique sous-marine Est (EMVC) en direction de Petite-Terre et ses principaux sites d'émissions de fluides (zone de la plage de l'aéroport, lac Dziani). Cette cartographie des panaches acoustiques par les sondeurs coque du navire est complémentaire du suivi quasi en temps réel réalisé par le planeur sous-marin (Glider) jusqu'à 1000m d'immersion depuis septembre 2021 et étendue à 1250 m de la colonne d'eau, depuis juillet 2023.

Le <u>deuxième objectif</u> de la campagne MD242-MAYOBS25 est d'établir de nouvelles cartographies sous-marines pour surveiller l'activité éruptive sous-marine du volcan Fani Maoré sur les zones d'investigation des précédentes campagnes MAYOBS. Ceci pour savoir si les phénomènes volcaniques sous-marins détectés lors des précédentes missions MAYOBS sont restés actifs et/ou si de nouveaux phénomènes ont eu lieu depuis. Le fond marin est balayé avec un échosondeur monofaisceau (EK80) et/ou multifaisceaux (EM122) qui permet de réaliser des cartes bathymétriques (topographiques, morphologiques du fond). Ces nouvelles cartes permettent de suivre les dernières évolutions de Fani Maoré et de ses alentours constatés lors de la campagne MAYOBS17 en janvier 2021 (dernière émission de lave connue). Associée à l'acquisition des données bathymétriques (SMF) et de colonne d'eau, des valeurs de magnétisme sont aussi acquises simultanément sur la boîte «VOLCAN».

Le <u>troisième objectif</u> de la campagne MD242-MAYOBS25 est de **récupérer les données géophysiques et de maintenir opérationnels les différents réseaux de surveillance et leurs capteurs** déployés en mars 2023 lors de MAYOBS24 pour le réseau des six sismomètres de fond de mer dits de « courte période » (SP-OBS) qui enregistre les séismes et en juillet 2022 lors de MAYOBS23 pour le réseau des quatre hydrophones SOFAR (enregistrement des séismes et des bruits émis dans la colonne d'eau), les 2 capteurs de pression A-0-A (enregistrement des mouvements verticaux du fond-marin), les deux sismomètres fond de mer « large bande » (BB-OBS) et le châssis CIAM (« ADCP » enregistrant les courants dans la colonne d'eau).

Le <u>quatrième objectif</u> de la campagne MD242-MAYOBS25 est d'**effectuer des prélèvements/mesures** *in situ* d'eau par la bathysonde CTD-Rosette au sein des panaches acoustiques (émissions de fluides) du Fer à Cheval, identifiés sur les données monofaisceau (EK80) et multifaisceaux

(EM122) inclus dans la zone sismiquement active, proche de Petite-Terre. Ces mesures sont comparées d'une campagne à l'autre pour suivre l'évolution des éléments émis (CO₂, CH₄, H₂, He), particulièrement les marqueurs magmatiques.

Le <u>cinquième objectif</u> de la campagne MD242-MAYOBS25 est **d'effectuer l'inter-comparaison à partir des mesures in situ de concentration de gaz dissous** (méthane CH₄ et dioxyde de carbone CO₂) obtenues par la bathysonde CTD-Rosette avec celles mesurées par les capteurs des planeurs sousmarins déployés sur la zone depuis septembre 2021 (planeur 1000 m) et depuis juillet 2023 avec un planeur 1250 m.

Enfin, le <u>sixième objectif</u> de la campagne MD242-MAYOBS25 est d'**effectuer des prélèvements de roches par dragages dans la zone active du Fer à Cheval,** zone du volcanisme le plus récent, pour dater, caractériser le type (degré d'explosivité) et déterminer les temporalités de déstabilisation des zones de stockage du magma et la vitesse de remontée du magma culminant en éruption sur le fond de la mer. Ces informations sont fondamentales pour affiner les scénarios d'activité éruptive potentielle future et interpréter les données issues du réseau de surveillance de l'activité.

IV. Déroulement de la campagne MD242-MAYOBS25

Les opérations et acquisitions de MD242-MAYOBS25 sur zone se sont déroulées sur 11 jours du 14 au 25 septembre 2023 au matin (Tableau 1).

Tableau 1 : Planning des opérations de la campagne MD242-MAYOBS25

Les observations sont commentées sur les points suivants :

- <u>Les opérations de mouillage</u>: maintenance des différents capteurs (OBS, BB-OBS, hydrophones, capteurs de pression A-O-A, châssis CIAM) et récupération des données ;
- Les éventuels changements majeurs observés dans la <u>colonne d'eau via les sondeurs coques SMF</u> <u>EM122 et EK80</u> (présence/évolution des panaches acoustiques) et dans la bathymétrie et la réflectivité (SMF EM122) du fond marin (changement de topographie/morphologie);
- Les prélèvements et analyses de la colonne d'eau par CTD-Rosette avec ou sans planeurs sousmarin (Glider) ;
- <u>Les prélèvements de roches</u> par dragage pour dater et caractériser le caractère éruptif des événements précédents ou en cours dans le cas où il y en aurait.

IV.1. Les opérations de mouillage

Les opérations dites « de mouillage » sont dédiées à la récupération des capteurs pour leur maintenance, la récupération des données et à leur redéploiement. Ces opérations concernent les OBS et BB-OBS INSU, les hydrophones SOFAR, les capteurs de pression A-O-A et le châssis CIAM (ADCP).

La localisation des mouillages par distinction de capteurs est présentée en Figure 1.

Figure 1 : Localisation des mouillages par distinction de capteurs déployés et de prélèvements réalisés lors de la campagne MD242-MAYOBS25 sur fond de carte bathymétrique MAYOBS.

IV.2. Les OBS (INSU)

<u>Auteurs</u>: Lise Retailleau (IPGP, OVPF), Cyprien Griot (IPGP, OVPF), Pierre Sakic (IPGP), Kévin Canjamalé (IPGP, OVPF)

IV.2.1. Les objectifs

Dans le cadre du REVOSIMA, le parc INSU de sismomètres marins OBS (*Ocean Bottom Seismometers*) et l'OVPF assurent la jouvence du réseau sismologique sous-marin pour la surveillance et l'étude de la distribution sismique au large de Mayotte. Les premiers déploiements ont été effectués en mars 2019 et des opérations de récupération et de remise à l'eau sont depuis effectuées en moyenne tous les 4 mois. Les mesures sont assurées par un réseau de 6 OBS coute période « SP-OBS » et 2 BBOBS (Broad Band OBS) déployés depuis juillet 2023 (Figure 1, Figure 2, Tableau 2), les données recueillies par ces appareils sont indispensables pour comprendre les processus physiques en jeu dans cette crise.

Figure 2 : Localisation théorique des six OBS et des deux BB-OBS (Tableau 22) à déployer lors de la campagne MD242-MAYOBS25 sur fond de carte bathymétrique MAYOBS.

Ce réseau marin vient compléter le réseau de sismomètres à terre et mieux contraindre les localisations des séismes liés à l'activité sismo-volcanique de Mayotte. Les données acquises viendront parfaire nos connaissances sur l'évolution spatio-temporelle de la distribution des séismes.

	Latitude	Longitude	Latitude	Longitude	Profondeur
	degrés minute décima	ale	Degré décimal		mètre
MOAx	12°57.75'S	45°49.19'E	-12.9625	45.8199	3520
MOBx	12°50.50'S	45°37.50'E	-12.8417	45.6250	3130
MOCx	12°47.02'S	45°24.68'E	-12.7837	45.4113	1720
MODx	12°40.26'S	45°35.57'E	-12.6710	45.5929	3260
MONx	12°35.74'S	45°24.55'E	-12.5956	45.4091	2010
MOSx	13°01.41'S	45°27.40'E	-13.0235	45.4567	2530
MOTx	12°45,67'S	45°34,66' E	-12.76125	45.57771	2865
MOUx	12°56,35'S	45°34,85' E	-12.93915	45.58081	3040

Tableau 2 : Coordonnées de déploiement souhaitées pour les OBS dits de « courte période » (SP-OBS). MOT et

 MOU représentant les positions de deux OBS « large bande » (BB-OBS).

IV.2.2. Description des instruments

Les instruments utilisés sont des sismomètres marinisés (Figure 3, Figure 4, Tableau 3, Tableau 4, Tableau 5): ils sont débordés depuis un bateau et peuvent être immergés jusqu'à une profondeur de 5000 mètres. Ils ont une autonomie d'enregistrement d'ondes sismiques de plus d'un d'an.

Figure 3 : Description et photo d'un OBS (INSU)

Chaque instrument est équipé :

- De trois géophones pour la mesure des vitesses des vibrations sismiques ;
- D'un hydrophone pour la mesure des ondes acoustiques ;
- D'un système d'acquisition de données pour enregistrer les signaux provenant de ces capteurs ;
- D'un transpondeur acoustique pour communiquer (aide à la localisation et ordre de largage du lest) ;
- D'un système mécanique de largage électrolytique ;
- D'un flotteur équipé d'une balise flash, radio (canal 62 coast 160.725MHz) et d'un drapeau ;
- D'un lest (37,2 kg).

	Environnement	Avec lest (37,2 kg)	Sans lest
Poids d'un OBS avec ses	air	162kg	125kg
batteries	eau	29kg	-3.5kg

Tableau 3 : Caractéristique d'un OBS avec et sans lest.

Les BBOBS partagent des caractéristiques similaires au OBS classiques. Les différences majeures sont : l'utilisation d'un sismomètre nivelé électroniquement externe à la structure, la présence d'un jeu de batterie supplémentaire pour pallier la surconsommation associée et des flotteurs pour compenser le poids de l'ensemble.

Figure 4 : Photo d'un BB-OBS (INSU).

	Environnement	Avec lest (68,4 kg)	Sans lest
Poids d'un BBOBS avec ses	air	396kg	327,6kg
batteries	eau	43kg	-2,182kg

Tableau 4 : Caractéristique d'un BB-OBS avec et sans lest.

	Tableau 5 : Caracteristiques detaillees des OBS
Capteurs	3 géophones L28 4,5Hz ±0.5 Hz nivellement amorti dans bain d'huile Hydrophone HTI-90u de chez High Tech, Inc.
Bande passante	Géophone : 4,5 Hz - 300 Hz Hydrophone : 2 Hz - 20 kHz
Analogique/Digital	Codeur Delta sigma 24 bits (Crystal CS5321 et CS5322) Nombre de bits effectifs : 21 à 16 Hz ou 20 à 125 Hz
Fréquences d'échantillonnage	16,125 Hz, 31.25 Hz, 62.5 Hz, 125 Hz, 250 Hz, 500 Hz ou 1KHz
Nombre de voies	1 Voie Hydrophone, 2 voies Géophones horizontale et 1 voie Géophone verticale
Précision de l'horloge	1 horloge Seascan modèle SISMTB haute précision, dérive 5.10 -8 . L'erreur de prise de temps est de 4mS/Jour typique. Synchronisation GPS pré et post-opératoire.
Positionnement de l'OBS	10 m par triangulation acoustique. 20 m par tir sismique.
Orientation de l'OBS	5° par analyse a posteriori des ondes dans l'eau de tirs de surface
Processeur	1 CPU Motorola 68332 avec 256K de RAM, 256K d'EEPROM développé par Real Time System (Fredericksburg, Texas, US)
Stockage temporaire	Les données sont stockées temporairement sur une carte mémoire de 8 Mbyte
Mode d'acquisition	Continue
Acquisition Stockage	128Go Transcend 2.5" PATA SSD
Consommation Autonomie	340 mW : 4 Voies @ 62.5 Sample/S 350 mW : 4 Voies @ 125 Sample/S 360 mW : 4 Voies @ 250 Sample/S 400 mW : 4 Voies @ 500 Sample/S Plus d'un 1 an à 62,5Samples/S en acquisition continue
Énergie	Version IDE : 36 Batteries DD (capacité max) pour une autonomie de plus d'1an @ 62,5 Samples/Second + 1 pile D sauvegarde d'horloge par OBS Toutes au lithium
Conteneur étanche	Cylindre de l'électronique de traitement du signal des capteurs : Longueur 80 cm x 18 cm de diamètre (7075 T6 avec anodisation dur) Cylindre de l'électronique de release de l'OBS : Longueur 55 cm x 12 cm de diamètre (7075 T6 avec anodisation dur) Cylindre Capteur sismo 3 axes : Longueur 10 cm x 8 cm de diamètre (7075 T6 avec anodisation dur)

IV.2.3. Notes pour les déploiements par câble

- A l'arrivée sur site, il faut effectuer une mesure SMF de la profondeur du site de déploiement.
- Lors de la mise à l'eau, il est primordial d'éviter tout choc entre l'OBS et le bateau pour ne pas compromettre son fonctionnement.
- Le filage est démarré à faible allure, puis il est recommandé d'effectuer toute la descente à 0,4m/s
- Après une centaine de mètres, il est recommandé d'effectuer un test acoustique pour vérifier que le largueur acoustique n'est pas sujet à un problème d'étanchéité. Il faut aussi vérifier qu'aucun équipement du bord n'opère sur la même fréquence d'émission ce qui pourrait bloquer la communication.

- Il est recommandé d'effectuer le largage de l'OBS à 50 mètres du fond, sauf s'il y a trop de courant dans ce cas le largage est effectué à 100 mètres. On vérifie ensuite en faisant des ping via l'acoustique que l'OBS s'est déposé au fond et que lors de la remontée du câble que celui-ci y reste.
- La dernière commande envoyée à l'OBS est obligatoirement un ordre de DISABLE.

L'anneau de levage de l'OBS (Figure 5) devra obligatoirement avoir une cote interne compatible avec les dimensions du largeur. Sur le Marion Dufresne avec le largeur iXblue RT861B2S il faut que les cotes intérieures de l'anneau soient au moins de **65mm**. Il est recommandé de lester le largueur afin de maintenir son acoustique vers le haut et faciliter la communication lors du filage.

Figure 5 : Photo d'anneau de levage de l'OBS problématique

IV.2.4. Informations sur les opérations

Les opérations effectuées au cours de cette mission sont :

- La récupération des 4 SPOBS (Short Band OBS) déployés lors de MAYOBS24 ;
- La récupération de 2 BBOBS déployés lors de MAYOBS23 ;
- Le redéploiement des 5 sur les 6 SPOBS (2 retours de réparation MAYOBS24 et 1 une nouvelle avarie lors de cette mission), la localisation est renseignée dans le Tableau 8 ;
- Le reconditionnement des 2 BBOBS avec changement de l'ensemble des batteries pour une autonomie théorique d'un an ;
- Changement de toutes les batteries largeur ;
- Relocalisation de MOAQ.

a) Récupérations

Pour récupérer un OBS du fond, un signal acoustique (Tableau 6, Tableau 7) correspondant au code de largage du transpondeur de l'appareil à remonter est envoyé à l'aide d'un équipement EdgeTech (modèle 8011XS). Le signal acoustique active le début du processus de "burn Wire" : il corrode électriquement la liaison entre l'OBS et son lest. Cette corrosion dure environ 10 minutes avant de provoquer le délestage. L'opération est reproduite jusqu'à ce que l'appareil au fond donne une réponse claire de réception de l'ordre de remonter. Le bateau peut être déplacé sur une autre position pour favoriser la transmission entre le bateau et l'appareil.

Une fois l'OBS délesté, il remonte alors à une vitesse d'environ **0,5 m / s**. Une fois en surface la balise radio envoie un signal VHF sur le canal 62 et de nuit la balise flash émet un signal lumineux.

Nous avons pour cette mission, à chaque fois, débordé les têtes acoustiques pour l'envoi des ordres de largage. Nous avons eu des difficultés de communication avec la valise la plus récente 8011M qui avait un défaut de clavier empêchant son utilisation dans un premier temps. En démontant la valise et en déconnectant le clavier, celle-ci a pu être utilisée pour l'envoi d'ordre acoustique via des commandes RS232. Cependant, de nouvelles défaillances sont apparues : variation de la puissance d'émission de la tête acoustique selon son positionnement, la réception était au début toujours correcte jusqu'en fin de manip ou la valise a cessé de fonctionner en réception.

L'ancienne valise, quant à elle, fonctionnait à peu près correctement pour les réponses en 13kHz cependant très bruitée en 12kHz. La tête acoustique présente un défaut d'isolation, plusieurs fois les opérateurs déployant cette dernière ont subi un choc électrique lors des transmissions de commandes.

L'ensemble des opérations OBS aurait pu être compromis au vu de l'état des valises. Il est nécessaire d'en avoir une en parfait état de marche.

Site de récupé	tite de récupération MOAP MODP		MODP	MONP	MOSP	Non déployé		
N° structure O	BS	19	16	08	18			
Acoustique	Numéro	11	16	7	15	18	17	
Edgtech	Serial #	29706	29711	29702	29710	29713	29712	
	Int. Freq.	11kHz						
	Reply Freq.	13kHz						
	Enable	221 535	221 760	221 323	221 726	222 077	222 031	
	Disable	221 550	222 012	221 346	221 734	222 106	222 054	
	Release #1	246 574	247 031	246 362	246 767	247 125	247 077	
	Release #2	246 616	247 054	246 405	247 012	247 140	247 106	

 Tableau 6 : Codes des acoustiques utilisés pour les SPOBS

Tableau 7 : Codes acoustiques utilisés pour le BBOBS

Site de récupération		МОИМ МОТМ				
N° structure OBS	3	BB05	BB08			
Acoustique	Numéro	BB05	ACO-03			
Edgtech	Serial #	32366	53287			
Int. Freq.	Int. Freq.	11kHz				
Reply Freq.		12kHz				
	Enable	636 030	212 127			
	Disable	636 055	212 142			
Release #1 Release #2	Release #1	635 656	227 374			
	Release #2	635 675	227 413			
Option		Х	212 161			

Tableau 8 : Coordonnées des SPOBS et BBOBS déployés lors de MAYOBS24 (P) et 23 (M) respectivement

	MOAP	MODP	MONP	MOSP	MOUM	MOTM
Prof.	3487	3463	1074	2594	3038	2873
DD	-12.96243 45.82088	-12.66814 45.59219	-12.59049 45.40662	-13.01668 45.46142	12°56,3508S 45°34,8137E	12°45,7194S 45°34,6626E
Туре	Relocalisation acoustique				BUC	

Tableau 9 : Durée des opérations de récupération

Site	MOAP	MODP	MONP	MOSP	MOUM	МОТМ
Profondeur	3486	3463	1074	2594	3041	2861
Durée remontée estimée (min)	145 (2H25)	144 (2H24)	45 (0H45)	83 (1H23)	127 (1H07)	119 (1H59)
Heure Arrivée sur zone (local)	01H00	05H27	23H35	15H05	22H29	17H23
Heure Release (local)	01H13	05H32	23H44	15H35	22H37	18H03
Arrivée en surface (local)	03H10	07H21	00H50	17H02	00H27	19H47
Arrivée à bord	03H25	07H33	01H03	17H20	00H45	21H21
Durée opération	2H25	2H06	1H28	2H15	2H16	3H58
Vit. remontée m.s-1	0,4	0,4	0,39	0,52		

Sans comptabiliser le transit, les opérations de remontée ont duré 14H28 (Tableau 9).

b) Déploiements

Tous les déploiements ont été initiés par câble, avec localisation par BUC (Figure 6, Tableau 8, Tableau 10, Tableau 11, Tableau 12). Nous avons eu des difficultés pour obtenir une position précise, une fois arrivée au fond, car nous avons souvent fait face à un courant marin élevé.

Suite à ces problèmes, on a relocalisé l'OBS MOAQ par acoustique.

Le largage s'est mal passé pour l'OBS MONQ, l'anneau d'attache entre l'OBS et le largeur, de trop petite dimension, est certainement resté coincé sur ce dernier. Lors de la remontée du câble, l'OBS est remonté avec et s'est décroché à l'approche de la surface.

Suite à une défaillance sur l'électronique du datalogger, l'OBS19 n'a pas pu être déployé et a servi de source de pièces détachées pour réparer le BBOBS_08 (en position MOT) également en défaut.

Figure 6 : Localisation des cinq SP-OBS et des deux BB-OBS déployés lors de la campagne MD242-MAYOBS25 sur fond de carte bathymétrique MAYOBS. Les instruments nécessitant une relocalisation sont indiqués en orange. A noter qu'une opération de relocalisation de MOAQ a été réalisée en toute fin de campagne.

	rubledu 10. codes dcoustiques pour les depinientes des 57065								
Site de récupération MC		MOAQ	MOCQ	MODQ	MONQ	MOSQ	Non déployé		
N° structure C	BS	18	16	8	18	7			
Acoustique Edgtech	Numéro	18	16	7	15	17	11		
	Serial #	29713	29711	29702	29710	29712	29706		
	Int. Freq.	11kHz							
	Reply Freq.	13kHz							
	Enable	222 077	221 760	221 323	221 726	222 031	221 535		
	Disable	222 106	222 012	221 346	221 734	222 054	221 550		
	Release #1	247 125	247 031	246 362	246 767	247 077	246 574		
	Release #2	247 140	247 054	246 405	247 012	247 106	246 616		

Tableau 10 : Codes acoustiques pour les déploiements des SPOBS

 Tableau 11 : Code acoustique pour les déploiements des BBOBS

Site de récupération		ΜΟυQ ΜΟΤQ				
N° structure OBS	;	BB05	BB08			
Acoustique	Numéro	BB05	ACO-03			
Edgtech	Serial #	32366	53287			
-	Int. Freq.	11kHz				
	Reply Freq.	12kHz				
	Enable	636 030	212 127			
	Disable	636 055	212 142			
R R C	Release #1	635 656	227 374			
	Release #2	635 675	227 413			
	Option	х	212 161			

Tableau 12 : Paramètres d'acquisition pour les déploiements

Site	MOAQ	MOCQ	MODQ	MONQ	MOSQ	MOTQ	MOUQ
Numéro datalogger	18	16	8	11	7	BB05	BB08
File name	MAYOBS25_ MOAQ_DL18_ OBS11	MAYOBS25_ MOCQ_DL16_ OBS16	MAYOBS25_ MODQ_DL08_ OBS08	MAYOBS25_ MONQ_DL11_ OBS18	MAYOBS25_ MOSQ_DL07_ OBS07	MAYOBS25_ MOTQ_BB05_ BB05	MAYOBS25 _MOUQ_BB 05_BB08
sample rate	125 Hz 62.5 Hz						
Nb channel	4	4					
Year	2023						
Sync time	2023-09-13 T23:59:00	2023-09-23 T05:13:00	2023-09-21 T22:00:00	2023-09-18 T21:43:00	2023-09-16 T13:51:00	2023-09-21 T08:56:00	2023-09-24 T05:54:00
Time tag	0,00004						
Wake up time	2023-09-14 T06:00:00	2023-09-23 T12:00:00	2023-09-22 T12:00:00	2023-09-19 T05:00:00	2023-09-17 T00:00:00	2023-09-22 T00:00:00	2023-09-24 T16:00:00

Tableau 13 : Résumé des opérations de déploiements

Site	MOAQ	MOCQ	MODQ	MONQ	MOSQ	MOUQ	MOTQ
Profondeur	-3513.32	1718	3257	Х	Х	Х	2867
LAT (S)	-12.959106	12°47.0355	12°40.2688	Х	Х	Х	12°45.6925
LONG (E)	45.822191	45°24.6841	45°35.5809	Х	Х	Х	45°34.6653
Date & Heure arrivée sur zone (local)	15/09 03H25	23/09 08H26	22/09 2H00	19/09 01H03	16/09 17H20	24/09 09H38	21/09 13H22
Heure déploiement (local)	08H17	09H59	04H32	03H09	20H06	14H12	18H22
Heure BUC à bord	09H18	10H31	05H32	03H50	20H54	15H17	19H26
Arrivée manip reloc acoustique	23:12	x					
Fin reloc	01:19	~					
Temps d'opération	05H53	02H05	03H32	02H47	03H34	05H39	06H04

Le calcul de la position de MOAQ a été fait selon méthode similaire à Sakic et al. "Geodetic seafloor positioning using an unmanned surface vehicle—contribution of direction-of-arrival observations." Frontiers in Earth Science 9 (2021): 636156.

Lors du déploiement de MOTQ un problème d'alimentation sur le largueur acoustique du bord a retardé le déploiement. La première mise à l'eau fut à 14H17, la seconde à 16H16 soit 2H pour remonter le BBOBS et changer les piles de la BUC.

De forts courants marins ont perturbé les déploiements de MOAQ, MOSQ et MOUQ qui n'ont pas permis l'obtention de position. Problème de largage pour MONQ.

Au total, les opérations de déploiement ont duré 1 jour et 7H41 (Tableau 13).

IV.2.5. Les données récupérées et leur évaluation

Les 6 OBS ont pu être récupérés (Figure 6) donc 4 OBS classiques (MOAP, MOSP, MODP, MONP) et 2 OBS large bande (MOTM et MOUM). Les 6 OBS déployés ont bien enregistré jusqu'au bout à part le BBOBS MOTM (Tableau 14). La station MOTM s'est arrêtée d'enregistrer le 14 mai 2023, probablement quand la batterie a manqué.

Site	MOAP	MODP	MONP	MOSP	МОТМ	MOUM
Numero datalogger	07	16	8	11	BB08	BB05
File name	MAYOBS24_ MOAP_DL07 _OBS19	MAYOBS24_M ODP_DL16_O BS16	MAYOBS24_M ONP_DL08_O BS08	MAYOBS24_M OSP_OBS18_ DL11	MAYOBS23_MO TM_DLbb08_OB Sbb08	MAYOBS23_ MOUM_DLbb 05_OBSbb05
sample rate	125 Hz					62.5 Hz
Nb channel	4					
Year	2023				2022	
Sync time	2023-03-31 T09:21:00	2023-03-30 T05:07:00	2023-04-01 T04:14:00	2023-03-31 T05:24:00	2022-07-21 T15:53:00	2022-07-19 T21:47:00
Time tag	0,00004					
Wake up time	2023-03-31 T19:00:00	2023-03-30 T15:00:00	2023-04-01 T14:00:00	2023-03-31 T15:00:00	2022-07-22 T01:30:00	2022-07-20 T04:00:00
GPS time	2023-09-14 T00:45:00.70 74498	2023-09-19 T04:44:00.0305 136	2023-09-18 T22:21:40.2620 620	2023-09-16 T14:38:00.1748 740	2023-09-15 T18:44:13.97635 42	2023-09-15 T22:06:30.96 34150
Instrument time	2023-09-14 T00:45:01	2023-09-19 T04:44:01	2023-09-18 T22:21:40	2023-09-16 T14:38:00	2023-09-15 T18:44:12	2023-09-15 T22:06:33
Shift D	2023-09-14 T00:48:14	2023-09-19 T03:46:51	2023-09-18 T22:23:57	2023-09-16 T14:38:00	*Problème	2023-09-15 T22:07:22

Tableau 14 : **Paramètres au départ des acquisitions**

*Lors de la remontée à bord du bateau de MOTM le BBOBS a subi un choc avec le bateau : le câble du sismo a été endommagé et a causé le redémarrage du datalogger. Ce dernier affichait le compteur temps en permanence comme lors de la phase d'attente avant début d'acquisition.

Dès le début du déploiement, les données enregistrées par MOTM sont très bruitées et enregistrent mal les séismes (Figure 7). On observe beaucoup de bruit numérique sur la composante HH2 (Figure 8).

Figure 7 : Exemple de données enregistrées très bruitées.

Figure 8 : Exemple de bruit numérique sur la composante HH2

La Figure 9 montre un exemple de période sans séisme.

Figure 9 : Exemple de période sans séisme

La Figure 10 montrent quelques exemples comparatifs d'enregistrements de séismes sur la composante verticale de MOTM et de celle de l'autre OBS large bande MOUM.

Figure 10 : Exemples comparatifs d'enregistrements de séismes sur la composante verticale de MOTM et de MOUM.

Les données des autres stations sont plutôt propres, comme par exemple la présence de séisme sur MOAP (Figure 11, Figure 12, Figure 13).

Figure 11 : Séisme sur MOAP

Figure 12 : Séisme du 31 août 2023

Figure 13 : *Séisme du 09 avril 2023 vu par toutes les stations.*

a) Journal de bord des opérations de récupération

MOAP Nuit du 13/09/23 au 14/09/23

UTC	
22H00	Arrivée sur site
22h08	Envoi de commande ENABLE (221 535)
22h11	Réponse claire après plusieurs envois de la commande ENABLE
22h13	Envoi de l'ordre de largage RELEASE1
22H28	Fin de release
22H28	Ping de l'OBS à 3292 m
22H29	Confirmation de remontée (ping de l'OBS à 3268 m)
Passage au 14/0	09/23
00H10	OBS en surface
00H25	OBS à bord
Notes : RAS ?	

<u>MOTM 15/09/23</u>

UTC	
14H23	Arrivée sur site
14H34	Envoi de commande ENABLE (212 127)
Pas de réponse	
14H40	Envoi de commande ENABLE (212 127)
Pas de réponse	
14H44	Envoi de commande ENABLE (212 127)
Réponse pas sûre	(le bateau était à 500m du point)
15H00	Envoi de commande ENABLE (212 127)
Réponse OK	
15H03	Envoi de l'ordre de largage RELEASE1 (227 374)
Réponse OK	
15H03	Ping de l'OBS à 2800m
15H13 « Double	ping » => OBS déjà en train de remonter, surface théorique à 16H48
15H18	Fin de release théorique
Pas entendu	
15H37	Ping de l'OBS => confirmation de remontée
15H40	Ping de l'OBS à 1900m
17H47	OBS en surface
18H21	OBS à bord
Notes :	

La flash n'a pas fonctionné.

Le câble reliant le sismomètre au datalogger a raclé contre la paroi du bateau pendant la remontée => les pins ont été complètement tordus et une électrolyse de leur revêtement s'est produite.

MOUM Nuit du 15/09/23 au 16/09/23

UIC	
19H29	Arrivée sur site
19H34	Envoi de commande ENABLE (636 030)
Réponse OK	
19H36	Ping de l'OBS à 4052 m
19H37 Envoi du	mauvais ordre de largage (faute de frappe => 635 ?56)
19H39	Envoi de l'ordre de largage RELEASE1 (635 656)
Réponse OK	
19H47	Bip de réponse
19H54	Fin de release
19H54	Ping de l'OBS à 3653 m
Confirmation de la remontée, surface théorique à 21hH32	
20H03	Ping de l'OBS à 3351 m
21H27	OBS en surface
21H45	OBS à bord
Notes : RAS ?	

<u>MOSP 16/09/23</u>

UTC	
12H05	Arrivée sur site
12H07	Envoi de commande ENABLE (221 726)
Pas de réponse	
12H11	Envoi de commande ENABLE (221 726
Pas de réponse	
12H34	Envoi de commande ENABLE (221 726)
Réponse OK	
12H35	Envoi de l'ordre de largage RELEASE1
Réponse OK	
12H44	« Double ping » => surface théorique à 14hH07
12H50 Fin de rel	ease
14H02	OBS en surface
14H20	OBS à bord
Notes : RAS ?	

MONP Nuit du 18/09/23 au 19/09/23

UTC	
20H35	Arrivée sur site
20H38	Envoi de commande ENABLE
Pas de réponse	
20H39	Envoi de commande ENABLE depuis la nouvelle valise
Pas de réponse	
20H43	Envoi de commande ENABLE depuis l'ancienne valise
Réponse OK	
20H44 Envoi de	l'ordre de largage RELEASE1 (246 362)
Réponse OK	
20H52	« Double ping », surface théorique à 21H58
20H59	Fin de release
21H14	Ping de l'OBS à 1234 m
21H30	Ping de l'OBS à 679 m
21H50	OBS en surface
22H03	OBS à bord, route vers MONQ pour déploiement
Notes : RAS ?	

<u>MODP 19/09/23</u>

Arrivée sur site
Envoi de commande ENABLE (221 760)
OK
Ping de l'OBS à 3299 m
Envoi de l'ordre de largage RELEASE1 (247 031)
OK
Ping de l'OBS à 2938 m, surface théorique à 04H20
OBS en surface
OBS à bord

b) Journal de bord des opérations de déploiement

MOAQ 14/09/23

UTC	
00H25	Fin de récupération de MOAP
00H47	OBS à l'eau
???	Test acoustique OK
05H17	Ordre de largage de la BUC
06H18	BUC à bord
Notes :	

Problème de précision avec la BUC et les forts courants marins.

MOSQ 16/09/23

UTC

010	
14H20	Fin de récupération de MOSP
14H58	OBS à l'eau
17H06	Ordre de largage de la BUC
17H54	BUC à bord
Notes : RAS ?	

MONQ Nuit du 18/09/23 au 19/09/23

010	
22H03	Fin de récupération de MONP
???	Arrivée sur site
22H36	OBS à l'eau
23H15	Test acoustique OK

--- Passage au 19/09/23 ---

00H29 Ordre de largage de la BUC

00H50 BUC à bord, route vers MODP pour récupération

Notes :

L'OBS est resté accroché à la BUC après le largage, a été remonté à 1m/S et s'est détaché en arrivant à la surface. Largage en free fall.

<u>MOTQ 21/09/23</u>

UTC	
???	Arrivée sur site
11H17	OBS à l'eau
11H36	Descente stoppée, problème de batterie BUC
12H05	OBS à bord
13H16	OBS à l'eau après changement des batteries
15H22	Ordre de largage de la BUC
16H26	BUC à bord, route vers MODQ pour déploiement
A. 1 .	

Notes :

Batteries de la BUC faibles, le BBOBS a été remonté au bout de 200m de filage pour changer les batteries. Il a fallu refaire la procédure de lancement de la sphère du sismomètre.

MODQ Nuit du 21/09/23 au 22/09/23

010	
???	Arrivée sur site
23H07	OBS à l'eau
???	Test acoustique pendant la descente

--- Passage au 22/09/23 ---

01H32	Ordre de largage de la BUC
02H32	BUC à bord

Notes : RAS ?

<u>MOCQ 23/09/23</u>

010	
???	Arrivée sur site
05H40	OBS à l'eau
???	Test acoustique pendant la descente
06H58	Ping de l'OBS à 1684m (avant largage BUC)
06H59	Largage à 50m du fond
07H02	Ping de l'OBS à 1734m (fond océanique)
07H03	Envoi de la commande DISABLE
07H31	BUC à bord
Notes : RAS ?	

MOUQ 24/09/23

UTC ??? Arrivée sur site 06H58 OBS à l'eau ??? Test acoustique pendant la descente 08H43 Ordre de largage de la BUC 12H17 BUC à bord Notes : RAS ?

IV.2.6. Récapitulatif : Opérations de mouillage OBS (INSU)

Au cours de MD242-MAYOBS25, les opérations (Figure 6) ont permis de :

- Récupérer quatre SP-OBS du réseau (MOA, MON, MOD, MOS) déployés lors de MAYOBS24 (mars 2023) et deux OBS large bande dits « BB-OBS » pour « broad band » (MOU, MOT) déployés lors de MAYOBS23 (juillet 2022) ;
- Récupérer les données enregistrées ;
- Effectuer la maintenance des instruments ;
- Redéployer par câble avec un largeur BUC (Base Ultra Courte) pour plus de précision et de répétabilité sur leur localisation les quatre OBS dits "SP" (courte période) récupérés lors de MAYOBS24 ainsi qu'un autre SP-OBS (MOC) qui n'avait pas pu être déployé lors de cette mission, ainsi que deux autres instruments dits "large bande" (BB-OBS) déployés lors de MAYOBS23 (MOT, MOU). A noter, qu'un SP-OBS n'a pas pu être redéployé sur le site MOB, la maintenance n'ayant pu être faite sur cet appareil.

Les données récupérées ont été vérifiées à bord pour connaître leur viabilité. Sur les six OBS (4 SP et 2BB) récupérés, les données sont belles sur tous les instruments à part le BB-OBS MOTM où les données n'ont plus été enregistrées depuis mai. Dès le déploiement en juillet 2022, les données du BB-OBS MOTM ont été très bruitées.

L'ensemble des données des SP-OBS et BB-OBS relevés lors de MD242-MAYOBS25 sera traité ultérieurement à terre.

IV.3. Les Hydrophones

<u>Auteurs :</u> Sara Bazin, Jean-Yves Royer, Jonathan Tanrin, Aude Lavayssière (IUEM/UBO)

IV.3.1. Objectifs

Figure 14 : Hydrophone à l'eau lors d'une opération de récupération

La surveillance hydroacoustique consiste à acquérir des séries temporelles continues de signaux acoustiques dans l'océan à l'aide de réseaux d'hydrophones (Figure 14). Cette observation est particulièrement bien adaptée à l'étude des volcans sous-marins car elle enregistre la sismicité et les sons associés aux sorties de lave sur le fond de l'océan. Elle permet aussi de caractériser et suivre l'évolution du bruit océanique ambiant, notamment celui généré par les grands mammifères marins. En général, la surveillance hydroacoustique se fait avec des réseaux très larges (>1000 km) de mouillages. Ici nous avons choisi une distance de 50 km du volcan pour limiter les temps de transit du navire (Figure 15). Le réseau hydroacoustique de Mayotte a été déployé en octobre 2020 (4 hydrophones déployés pendant MAYOBS15), en avril 2021 (4 hydrophones redéployés pendant MAYOBS18), en septembre 2021 (seulement 3 hydrophones redéployés pendant MAYOBS23).

Figure 15 : Localisation des hydrophones déployés pendant la campagne MD242-MAYOBS25 sur fond de carte bathymétrique MAYOBS.

IV.3.2. Bilan des opérations réalisées

Les 4 hydrophones ont été récupérés avec succès pendant MAYOBS25. MAHY31, MAHY32 et MAHY34 ont fonctionné à 100%. MAHY33 s'est arrêté d'enregistrer le 10/06/2023.

La durée nécessaire à la récupération puis au redéploiement d'un mouillage varie entre 3h et 4h35. La réparation du système POSIDONIA pendant le dernier arrêt technique du MD a permis d'obtenir le positionnement des mouillages sans avoir recours à la triangulation (gain de temps par rapport à MAYOBS23). Le nouvel outil de visualisation des positions POSIDONIA est bien utile (Figure 16). La récupération des mouillages s'est faite de jour car ils ne possèdent pas de système radio et les lumières flash ne sont pas fiables (une des lumières ne s'est allumée qu'une fois au labo). Des tests ont été faits avec différentes géométries de coins radar, ils montrent que seul le tube fin accroché le long du fanion a tenu (Figure 17).

En raison de la difficulté de transporter les piles Lithium vers et surtout depuis la Réunion, nous avons adapté les cartes d'acquisition aux piles de type Alcaline, moins énergétiques mais plus faciles à transporter. Ces cartes modifiées ont été utilisées dans 3 des 4 hydrophones. L'arrêt prématuré de MAHY33 est dû à ce changement, les piles n'ont duré que 10 mois et 20 jours. Étonnamment, MAHY31 et MAHY34 pourtant avec le même type de carte d'acquisition et de piles Alcaline que MAHY33, ont duré 14 mois. Il est à noter que l'instrument MAHY33 était le plus profond (immersion 1384 m) donc dans une eau légèrement plus froide. MAHY32 était toujours sur piles Lithium. Nous avons également testé grâce à un doublon sur le mouillage de MAHY43, un prototype de nouvelle carte d'acquisition

permettant en même temps une moindre consommation électrique, et un choix de la fréquence d'échantillonnage.

Figure 16 : *Visualisation de la position du largueur par POSIDONIA lors du largage (chute verticale) et de la remontée (oblique).*

Figure 17 : Coins radar avant (a) et après déploiement: le cube a été arraché (b) mais le tube a résisté (c).

Les positions et périodes d'enregistrement sont résumées dans le Tableau 1515 :

HYDROPHO	ONES positionr	lés par triang	ulation									
	date début	heure début date fin h		heure fin	Latitude (°)	Longitude (°)	Prof (m)	N° capteur	sensibilité	dérive		
MAHY31	14/07/2022	09:12	20/09/2023	08:50	-13,19533	45,35683	1301	580019	-163,50	-0,0715		
MAHY32	14/07/2022	19:55	16/09/2023	03:57	-13,35450	45,82350	1356	580017	-163,50	0,0416		
MAHY33	16/07/2022	14:07	10/06/2023	09:34	-12,77150	46,15567	1396	580020	-163,50	perdue		
MAHY34	10/07/2022	01:10	19/09/2023	05:48	-12,51283	45,55417	1342	580009	-163,90	0,1045		
HYDROPHO	ONES positionr	iés par posido	nia									
	date début	heure début	date fin	heure fin	Latitude (°)	Longitude (°)	Prof (m)	N° capteur	sensibilité	dérive		
MAHY41	date début 20/09/2023	heure début 11:57	date fin	heure fin	Latitude (°) -13,19569	Longitude (°) -45,82179	Prof (m) 1263	N° capteur 580019	sensibilité -163,50	dérive		
MAHY41 MAHY42	date début 20/09/2023 16/09/2023	heure début 11:57 09:23	date fin	heure fin	Latitude (°) -13,19569 -13,35617	Longitude (°) -45,82179 45,82179	Prof (m) 1263 1303	N° capteur 580019 580017	sensibilité -163,50 -163,50	dérive		
MAHY41 MAHY42 MAHY43	date début 20/09/2023 16/09/2023 14/09/2023	heure début 11:57 09:23 12:43	date fin	heure fin	Latitude (°) -13,19569 -13,35617 -12,78354	Longitude (°) -45,82179 45,82179 46,15846	Prof (m) 1263 1303 1336	N° capteur 580019 580017 580020 & 25	sensibilité -163,50 -163,50 -163,50	dérive		
MAHY41 MAHY42 MAHY43 MAHY44	date début 20/09/2023 16/09/2023 14/09/2023 19/09/2023	heure début 11:57 09:23 12:43 14:40	date fin	heure fin	Latitude (°) -13,19569 -13,35617 -12,78354 -12,51209	Longitude (°) -45,82179 45,82179 46,15846 45,55533	Prof (m) 1263 1303 1336 1332	N° capteur 580019 580017 580020 & 25 580009	sensibilité -163,50 -163,50 -163,50 -163,90	dérive		
MAHY41 MAHY42 MAHY43 MAHY44 Changemen	date début 20/09/2023 16/09/2023 14/09/2023 19/09/2023 nts par rapport	heure début 11:57 09:23 12:43 14:40 aux infos pré	date fin	heure fin	Latitude (°) -13,19569 -13,35617 -12,78354 -12,51209 et fin correspond à	Longitude (°) -45,82179 45,82179 46,15846 45,55533 la période où l'acc	Prof (m) 1263 1303 1336 1302 quisition est e	N° capteur 580019 580017 580020 & 25 580009 n cours et l'insti	sensibilité -163,50 -163,50 -163,50 -163,90 rument en plac	dérive		

 Tableau 15 : Positions et périodes d'enregistrement des hydrophones de la campagne MD242-MAYOBS25.

IV.3.3. Notes sur les opérations réalisées

- Récupération MAHY31: les 3 packs Alcaline (2 4S19P & 1 4S9P) ont duré 14 mois. Immersion= 1306m. Bouée détectée au radar. Flash allumé (anode épaisse) en surface, gros coin radar arraché. Durée 1h32. Bonne dérive d'horloge ;
- Déploiement MAHY41: 3 packs Alcaline (2 4S19P & 1 4S9P en 6V). Durée 1h32 ;
- Récupération MAHY32: les 2 packs lithium ont duré 14 mois. Immersion= 1360m. Bouée détectée au radar. Flash allumé une fois dans le labo (anode fine). Petit tube radar encore en place le long du drapeau. Durée 2h05. Bonne dérive d'horloge ;
- Déploiement MAHY42: 3 packs Alcaline (2 4S19P & 1 4S9P en 6V). Durée 2h03 ;
- Récupération MAHY33 : 3 packs Alcaline (2 4S19P & 1 4S9P) ont duré -11 mois. Immersion= 1384m. Bouée détectée au radar. Flash allumé (anode fine) en surface, gros coin radar arraché. Durée 2h11. Perte de la dérive d'horloge ;
- Déploiement MAHY43 : doublon avec 1 cage contenant une carte d'acquisition OSEAN. Les 2 hydrophones sont avec 2 packs Alcaline 5S19P en 7.5V. Les deux plaques martyr dans la bouée et dans la cage ont dû être enlevées. Durée 2h26. Le mouillage est maintenant plus long (10m de squareline, 1 m de cage et 20m de vectran au-dessus du lest) : l'immersion sera moindre ;
- Récupération MAHY34 : 3 packs Alcaline (2 4S19P & 1 4S9P) ont tout juste duré 14 mois. Immersion= 1333m Bouée détectée au radar. Flash allumé (anode fine) en surface, gros tube radar arraché. Bonne dérive d'horloge. Durée 1h47 ;
- Déploiement MAHY44 : 3 packs Alcaline (2 4S19P & 1 4S9P en 6V). La tige cage tordue a été changée sur la cage. Durée 2h14.

IV.3.4. <u>Récapitulatif : Opérations hydrophones et analyses préliminaires</u>

Trois instruments ont fonctionné pendant les 14 mois de déploiement, mais un instrument (MAHY33) s'est arrêté à cause de l'épuisement des piles le 10 juin 2023. Les données récupérées sont d'excellente qualité. Elles seront traitées ultérieurement.

Un examen rapide montre que les quatre hydrophones ont enregistré la sismicité locale et différentes espèces de baleines déjà identifiées (Figure 18). Pour rappel, les enregistrements précédents avaient permis d'identifier une corrélation entre des signaux impulsionnels et des épanchements de lave dans le TikTak (Bazin *et al.,* 2022) en novembre 2020. Un développement méthodologique, en partie financé par le REVOSIMA, est en cours pour détecter de façon automatique les signaux impulsionnels d'origine volcanique (Lavayssière *et al.,* 2023).

Figure 18 : Spectrogrammes des 4 hydrophones SOFAR pendant les 14 mois d'acquisition entre les campagnes MAYOBS23 et MAYOBS25.

D'autres signaux impulsionnels avaient été observés au pied du site 4, mais une analyse a montré que ces signaux étaient vraisemblablement d'origine anthropique (dont des tirs de carrière) et mal localisés car à l'extérieur du réseau de stations (analyse en cours).

Enregistré par trois hydrophones, un signal impulsionnel observé le 31/07/2023 vers 00:55TU et localisé proche de la dernière position connue pourrait correspondre au bruit généré par l'implosion du planeur sous-marin Alseamar perdu le 30/07/2023 à 18:35TU.

IV.4. Les capteurs de pression A-0-A

<u>Auteurs :</u> Denis Dausse (Resp. technique, LIENSs / La Rochelle) et Valérie Ballu (Resp. scientifique, LIENSs / La Rochelle)

IV.4.1. Objectifs

Le capteur A-O-A a pour objectif de mesurer les variations verticales du fond de la mer. Fabriqué et amélioré par la société RBR, il est mis en œuvre par le LIENSs (CNRS/La Rochelle Université).

Deux capteurs de pression A-O-A sont déployés dans la zone de l'essaim sismique principal, l'un au centre de la structure appelée « La Couronne » (capteur déployé pour la première fois en octobre 2020 lors de MAYOBS15), l'autre à l'extérieur du système, servant de référence (déployé pour la première fois en juillet 2022 lors de MAYOBS23) (Figure 19). Ils sont distants de distants de ~10 km.

Figure 19 : Localisation des déploiements A-O-A sur le site de la Couronne (profondeur 1720m) et le site de référence (profondeur 1730m) sur fond de carte bathymétrique MAYOBS. Les sites choisis sont identiques aux sites de déploiement de MAYOBS23. Les séismes LP et VT détectés et localisés par le REVOSIMA entre le 01/08/2022 et le 18/04/2023 y sont aussi reportés.

Il y a deux objectifs durant la campagne MD242-MAYOBS25 :

- Récupération de deux capteurs de pression à dérive contrôlée déployés en juillet 2022, lors de MAYOBS23 sur le site de la Couronne (A-0-A SN 211568) et sur un site de référence, à environ 10 km plus au nord (SN 208295);
- Déploiement de deux capteurs de pression à dérive contrôlée (A-0-A SN 208295 et 213112) sur le site de la Couronne et sur un site de référence (Figure 19). Le choix du site de référence résulte

d'un compromis de distance entre 1) la proximité du site de la Couronne pour que les deux sites soient dans un contexte océanographique similaire (profondeur proche, distance proche) afin que le signal lié à la variabilité océanique soit identique puisse être éliminé par différence et 2) le fait d'être hors de la zone de l'essaim de sismicité proximal pour capturer, si elle existe, une déformation différentielle entre l'intérieur et l'extérieur de cette zone sismiquement active.

IV.4.2. Instruments utilisés (A-0-A) :

Lors des premières campagnes MAYOBS, des capteurs de pression SBE37 ont été déployés sur les châssis des OBS courte période. L'objectif initial de ces déploiements était de pouvoir quantifier des mouvements verticaux soudains et pluri-centimétriques si ceux-ci arrivaient. Jusqu'à présent, ce type de mouvement n'a pas été identifié.

Compte tenu de l'activité sismique actuelle, il a semblé important de tenter de quantifier d'éventuels mouvements verticaux liés à l'activité dans la zone de l'essaim proximal de sismicité. Ces mouvements pouvant être lents, sous une forme continue ou sous la forme de signaux transitoires, les SBE37 ne sont pas adaptés à leur détection et ce sont des capteurs A-O-A nouvellement acquis qui ont été déployés, afin que la dérive des capteurs puisse être connue et retirée.

Le A-O-A est un instrument de mesure de pression, utilisant (dans notre cas) 2 capteurs Paroscientific (model 46K 313) dont les dérives instrumentales sont corrigées in-situ (si tout va bien) par une mesure répétée d'un zéro dans une chambre à pression atmosphérique. In-situ, grâce à un système de tuyauterie perfectionnée et motorisée, les capteurs Paroscientific mesurent successivement la pression extérieure ambiante (A) dans l'eau et la pression à l'intérieure du cylindre de l'instrument fermé à pression atmosphérique (0). La pression à l'intérieur du cylindre à pression atmosphérique est contrôlée par un baromètre Paroscientific digital (modèle 216B-102). Les températures intérieures et extérieures sont également mesurées par les différents capteurs Paroscientific.

Les unités A-O-A utilisées sur la campagne MAYOBS25 sont des instruments développés par RBR au Canada. Ces unités sont parmi les premières de la série RBRzero³, et si le but est que le chantier Mayotte bénéficie de ces nouveaux développements, nous essuyons également clairement quelques plâtres.

Les châssis de déploiement ont été développés par Daniel Cobas (DC ENGINEERING), en collaboration avec Denis Dausse (LIENSs). Ces châssis sont ensuite équipés d'un largueur iXblue/Exail au centre pour permettre de maintenir (puis larguer) le lest (caillebotis) en base de la structure.

IV.4.3. <u>Récupération des capteurs et analyse préliminaire des données</u>

a) A-0-A SN208295 (site de référence)

Le A-O-A SN208295 déployé en juillet 2022 sur le site MAY23-05 (S12°41,7096 / E45°25,6025 / prof 1730m) a été récupéré le 17/09/2023 (Figure 20).

- Ordre de largage le 17/09/2023 à 8 :49 HL (de nuit), remontée à une vitesse moyenne de 0,35m/s, en surface à 10h12, à bord à 10h30 ;
- Observation du décalage en temps de l'instrument (avance de 6494ms) par rapport un mac, luimême décalé d'environ 1 seconde (synchronisation manuelle sur l'horloge du bord). Finalement, l'avance de l'horloge de l'instrument, par rapport à l'heure TU, est estimée à 7494ms.

Figure 20 : Récupération A-O-A SN 208295, le 11/07/2022

L'analyse préliminaire des données (Fichier :_208295_20230917_1042.rsk (taille : 1 106 068 Ko) : données du 20/07/2022 au 17/09/2023, pas d'échantillonnage 6 secondes) a montré (Figure 21, Figure 22, Figure 23) :

- Qu'il y avait bien des données sur les 2 capteurs ;
- Que le système de vanne permettant de quantifier la dérive *in-situ* a fonctionné sur toute la durée du déploiement (34 sessions de calibration à zéro) et que les capteurs Paroscientific ont continuellement mesuré la pression à l'extérieur ou à l'intérieur, en fonction de la position de la vanne.

Figure 22 : a) série temporelle du capteur Paros2 du A-O-A SN 208295 (en gris) et résidu (en bleu) après retrait de la marée prédite (prédiction UTide à partir d'une analyse harmonique effectuée sur le jeu de données, en forçant les constituants de marée. Ce signal résiduel contient des variations liées à la dynamique océanique ainsi qu'un résidu de marée de l'ordre de qq centimètres. Il intègre également l'éventuel signal de déformation verticale du fond que nous cherchons à identifier. B) zoom sur le résidu sur un mois de données.

Figure 23 : Différence entre les 2 capteurs Paros1 et Paros2 du A-O-A SN208295. Les capteurs mesurant en théorie exactement la même pression extérieure, cette différence reflète le bruit instrumental et la dérive des capteurs. Zoom à droite sur le saut d'environ 5-6mm observé en début de déploiement.

L'analyse préliminaire des sessions de calibration (sessions de mesure de la pression à l'intérieur du cylindre qui sert de « zéro » *in situ*) montre que chacun des capteurs Paros a dérivé avec une dérive qui tend à diminuer et devient plus linéaire dans le temps, selon un comportement classique pour des

Paros. Cependant, on observe lors des premiers mois, un comportement anormal identique pour les deux capteurs qui reflète, a priori, non pas un changement de dérive des capteurs mais un problème dans le circuit qui fait que les Paros ne mesurent pas réellement la pression « zéro » du cylindre en raison de bulles dans le capillaire ou d'obstruction partielle du capillaire.

b) A-0-A SN211568 (site de la Couronne)

Le A-O-A SN211568 déployé en juillet 2022 sur le site MAY23-04 (S12°46,8048 / E45°24,7226 / prof 1720m) a été récupéré le 18/09/2023 (Figure 24).

- Ordre de largage le 18/09/2023 à 09:15 HL, remontée à une vitesse moyenne rapide de 0,52m/s, en surface à 10h10, à bord à 10h23. La vitesse de remontée du cadre orange, nettement plus rapide que le cadre blanc (malgré l'absence des 2 blocs de flottabilité additionnelle sur le cadre blanc), est due à un changement du système d'accroche des blocs de mousse sur le cadre orange : les pains sont fixés par des inserts+ tige filetée sur le cadre et non par des grosses brides métalliques comme sur le cadre blanc ;
- Observation du décalage en temps (= -27396ms) avec l'ordinateur de Valérie, synchronisé sur le temps bateau (serveur de temps : 192.168.47.202 ou 192.168.41.13 = heure TU) (Figure 25).

Le connecteur USB-C de l'instrument étant altéré (vu avant le déploiement), nous avons changé de tape pour pouvoir décharger totalement le fichier. Un déchargement partiel avait été fait avec la tape endommagée (par connecteur extérieur) pour récolter le décalage d'horloge (cf. fichier 211568_20230918_0919.rsk dans lequel on peut voir le décalage si on utilise l'application Ruskin).

Figure 24 : Récupération A-0-A SN 211568, le 18/09/2023

Cet instrument a été déployé avec un capillaire de trop-plein rempli de bulles (Figure 26, en juillet 2022, le constructeur pensait que ces bulles n'avaient pas d'impact). Il a été récupéré avec un capillaire rempli d'huile, sans bulles apparentes. Une légère fuite d'huile est apparue visiblement sur le connecteur rigide (olive) au niveau de la jonction entre le capillaire métallique qui va vers les Paros et la tête de vanne.

Les basculements de vanne (sessions de calibration) se sont arrêtés au mois de juin 2023, a priori en raison d'un voltage trop faible (voltage du pack batteries à 9,30V à la récupération).

Figure 25 : a) courbe d'estimation de la dérive des capteurs estimée par les sessions « zéros » à P atmosphérique dans le cylindre. b) Différence Paros2 – Paros1, en prenant en compte ou non la dérive estimée des capteurs.

Figure 26 : a) Capillaire théoriquement en huile et présentant des bulles d'air avant le déploiement. b) Petite fuite d'huile identifiée à la récupération ; le capillaire ne présente plus de bulles.

L'analyse préliminaire des données (Fichier : 211568_20230918_1050.rsk (taille : 3 358 396 Ko/3,3 Go, déchargé en 2h via USB-C)) a montré (Figure 27, Figure 28, Figure 29):

- Qu'il y avait bien des données sur les 2 capteurs ;
- Le système A-0-A avec rotation de vanne pour faire les sessions de calibration a fonctionné de juillet 2022 à juin 2023 avec un total de 25 basculements pendant le déploiement ;
- La différence entre les deux capteurs Paros montre que les basculements de vanne provoquent une perturbation sur au moins un des deux capteurs. Le début de l'enregistrement présente un comportement hiératique.

Figure 27 : Données du A-O-A SN211568 déployé lors de MAYOBS23 (juillet 2022) et récupéré lors de MAYOBS25 (septembre 2023). Les traits rouges correspondent aux sessions de calibration. A cette échelle, les 2 jeux de données sont identiques.

Figure 28 : Différence Paros2 – Paros 1. Zoom montrant le comportement lors des basculements de vanne.

La comparaison entre les deux Paros du SN211568 (Couronne) avec ceux du SN208295 (référence) montre que c'est le capteur Paros 1 du SN211568 qui a un comportement anormal avec des sauts très clairs sur les deux premiers mois, puis des sauts/réajustements à chaque session de calibration. Le Paros 1 n'est pas vraiment utilisable pour l'étude des déformations lentes car sa dérive est mal contrôlée. Le Paros 2 ne montre pas de comportement suspect et peut donc être utilisé pour l'évaluation de la déformation lente.

Figure 29 : a) courbe d'estimation de la dérive des capteurs estimée par les sessions « zeros » à P atmosphérique dans le cylindre. b) Différence Paros2 – Paros1, en prenant en compte ou non la dérive estimée des capteurs.

IV.4.4. Déploiement du SN213112 sur le site de la Couronne

a) Préparation

Cet instrument (Figure 30a), tout juste sorti de fabrication par RBR, a été livré en juin au laboratoire, en prévision d'un échange standard pour remplacer a priori l'instrument sur lequel un problème de mémoire avait été identifié en juillet 2022.

L'instrument avait été recetté correctement en juin 2023 au laboratoire. En septembre 2023, nous avons été informés par RBR que la présence de bulles dans le capillaire de trop-plein était problématique et perturbe significativement les sessions de calibration et ce, car un poids variable de l'huile (ou d'un mélange air/huile) dans le capillaire de trop plein engendre une variation de l'offset entre la pression dans le cylindre et sa mesure par les Paros dans la tête de vanne. Par ailleurs, on nous

a également demandé de nous assurer (via un petit foret) que l'extrémité du capillaire n'était pas compressée et permettait une transmission sans blocage de la pression du cylindre vers la tête de vanne.

A la livraison, le capillaire de trop-plein était encore rempli de bulles d'air. A bord, nous avons purgé le capillaire en le remplissant d'huile à l'aide d'une seringue récupérée à l'hôpital du bord. Les microbulles encore présentes à l'issue de l'opération (car pas sous vide) ont fini par partir progressivement toutes seules, en mettant l'instrument en position verticale, avec le tube de trop-plein orange vers le haut.

b) Déploiement

- Cadre orange, instrument SN213112 (BPR1 SN158064 et BPR2 SN159886);
- Conteneur batterie Fermata #3 avec pack alcaline 8s7p à 12,93V nominal ;
- Il reste un micro-micro bulle à 8cm du réservoir d'évacuation. Le raccord plastique a été percé à 1.7mm afin de ne pas comprimer le capillaire. Le capillaire dépasse dans le réservoir et le tissu absorbant a été recoupé selon les recommandations de RBR pour ne pas être en contact avec le capillaire ;
- Synchronisation de l'horloge avec le PC de Denis (mis à l'heure TU manuellement). Retard de l'horloge du BPR estimé visuellement à 1.5sec ;
- Echantillonnage 1 Hz ;

- Programmation des sessions de calibration :
- Segment n°1 : Delay = 0 day 12h00 Duration = 00h20 Interval = 2 Day 00h00
- Segment n°2 : Delay = 4 day 01h00 Duration = 00h20 Interval = 7 Day 00h00
- Segment n°3 : Delay = 28 day 01h00 Duration = 00h20 Interval = 15 Day 00h00
- Segment n°4 : Delay = 46 day 00h00 Duration = 00h20

MUSKIT V2.20.0.20230307 1230															
File Instruments Options Help															
* Navigator	□ □ RBRquartz ³ 213112 🛛		- 6												
✓ Instruments	Configuration Information Calibration Paramètres														
 RBRquartz³ 213112 	Planification	Sampling	Options												
MLM Leux de données	Status: Schedule enabled	Mode: Continu	Realtime: Aucun V Format: Highest resolution (RBRquartz) V												
-	Clock 2023-09-22 21:14:59Z UTC Local	Serial: 115200 V Mode: RS232													
	Start: 23/09/2023 🐨 02:00 🔹 Now		Storage: Desktop VWi-Fi: off V 0												
	End: 2024-09-06 😭 349 days 📲 +87,3 days														
	Power		Valve control												
	Battery: Lithium thionyl chloride		Status: In marine position												
	External: Fermata - Alkaline (shrink wrap)		Set position: O atmospheric I marine												
	Extended battery end-cap		Schedule movement (00 16:45:02)												
	Sample power details		Type: O Uniform Segmented												
			Segment count 4 🚖												
			Duration (HH:mm): 00:20 🗘												
			Segment 1 Segment 2 Segment 3 Segment 4												
			Delay (DD HH:mm): 0 + 12:00 + 4 + 01:00 + 28 + 01:00 + 46 + 00:00 +												
			Interval (CD HH/mm)' 2 + 00:00 + 7 + 00:00 + 15 + 00:00 + 30 + 00:00 +												
	Memory used: <1% Transfert														
	Stop Renverser les réglages Utiliser le dernier paramétrage														

Interval = 30 Day 00h00

c) Mise à l'eau

- Flash XEOS sn1619 (LIENSs) neuf ;
- Balise VHF XEOS sn1114 (LIENSs) neuve ;
- Balise Argos XEOS sn1018, argos-id 252862 ;
- Largueur IXBLUE AR861 CS, sn 475 (IPGP-OBS).
- Lest de 4 caillebotis de 25km assemblés avec une tige filetée centrale et de la ficelle de lin aux 4 coins ;
- Mise à l'eau le 23/09/2023 à 6h15, descente à 0.4m/s, profondeur de la sonde : 1730m ;
- Largage du mouillage à 7h35 ;
- Position du A0A, obtenue par localisation BUC/Posidonia du bord (Couronne 2023) :
- Latitude : Sud 12°46,8123 Longitude : Est 045°24,7025 immersion 1730m

Figure 30 : a) Déploiement du AOA SN213112, site de la Couronne ; b) Déploiement du AOA SN208295 sur site de référence

IV.4.5. Déploiement du SN208295 sur le site de référence

a) Préparation

L'analyse préliminaire des données du AOA SN 208295 déployé sur le site de référence (Figure 19, Figure 30b) a montré que tout avait fonctionné, même si à 6 secondes. Afin d'assurer au minimum la même chose, nous avons décidé de redéployer cet instrument (plutôt que le 212568 qui a une petite fuite et un BPR1 présentant un drôle de comportement et une dérive mal estimée), avec le même montage de piles et un pas d'échantillonnage à 6 secondes.

Chaque mesure de zéro dure 20 minutes. Les mouvements de vanne pour la mesure du zéro sont programmés de la façon suivante :

 Séquence 1 : Délais : 12h (1^{er} mouvement de vanne 12h après le début de l'enregistrement) / Fréquence : 2 jours ;

- Séquence 2 : Délais : 4 jours (séquence commence 4 jours après le début de la séquence 1) / Fréquence : 7 jours ;
- Séquence 3 : Délais : 28 jours / Fréquence : 15 jours ;
- Séquence 4 : Délais : 46 jours / Fréquence : 30 jours.

Ruskin v2.20.6.202309071258	_			- 0	J .:	×
File Instruments Options Help						
★ Navigator	□ RBRquartz ³ 208295 🛛				-	
Instruments ■ Jean V2206201236 Instruments ■ Jean de données	RBRquartz ² 208295 :: Configuration Information & Calibration Paramètres Firmware Update Under ouvelle version de firmware est disponible.Mettez à jour avec une d Planification Status: Schedule enabled Clock: 2023-09-23 13:46:34Z UTC local Stat: 24:09/2023 → 01:00 Now End: 2026-11-14 Javant 200 Now End: 2026-11-14 Javan	connexion USB pour garantir une comp Sampling Mode [Continu] Speed] Cadence 0000006 \$	atibilité totale. Options Reatime: Aucun in Format: Highest resolution (RBRquartz) in Serial: Serial: 115200 Mode: R5232 Storage: Desktop in Wi-Fi: off Image: Serial: Valve control Status: Unknown - check external power Serial: Serial: Valve control Status: Outsopheric () marine Vischedue movement (?00 23:33:27?) Vispe::: Uniform in Segment d Segment count: 4 © Duration (HHrmm): Dia: Segment 1 Segment 1 Delay (IOD HHrmm): 0 @ 20 @ Segment 1 Segment 3 Dia:	Segmer 46	nt 4	
	(Memory used: <1%) Transfert. Stop Reriverser les réglages Utiliser le dernier paramétrage		Interval (//// HH-mm/) 2 0000 0 7 0 0000 0 15 0 0000 0	30	\$ 00:	• • • • • • • • • • • • • • • • • • • •

b) Déploiement

Cadre blanc, instrument SN208295 (BPR1 SN153122 et BPR2 SN153123)

- Fermata #02 : batterie Isa-électronique 11s5p 17,7V nominal
- Flash NOVATECH 523-12000 MM, serial n° : H02-069 Ref DT-INSU: FLH047 , 7
- Balise Argos NOVATECH MMA-7500, serial n° : H02-067, Argos Id n° : 180243, Ref DT-INSU : ARG033
- Balise VHF NOVATECH FR-700A1, serial n° : R11-127, LOCEAN
- Largueur IXBLUE AR861 CS, numéro 2935, RESIF-LIENSs
- 2 blocs de mousse supplémentaires portant la flottabilité de l'ensemble de 5kg à 9,4kg, sans le lest.

c) Mise à l'eau

- 24 septembre 2023 à 6h15 heure locale. Descente à 0,4m/sec. Profondeur de la sonde : 1730m ;
- Largage du mouillage à 7h35 ;
- Remontée du câble : durée totale de la manip : 1h52 ;
- Position finale (donnée par la BUC/Posidonia et profondeur du sondeur) :
- S12°41,6977 / E45°25,6453 / prof 1731m

IV.4.6. Récapitulatif : Opération de mouillage A-O-A et analyses préliminaires

Les deux instruments relevés ont enregistré sur l'ensemble de la période (juillet 2022-septembre 2023). Chaque instrument contient 2 capteurs de pression redondants. Sur l'instrument situé dans la couronne, un des capteurs (Paros 1) a eu un comportement anormal lors des sessions de calibration. Les conclusions préliminaires ci-dessous sont basées sur le second instrument (Paros 2).

Les données récupérées sont analysées pour évaluer leur qualité. Le traitement sera achevé après la campagne.

L'analyse préliminaire des différences de pressions mesurées sur le site de la Couronne (SN211568, Paros 2) et sur le site de référence (SN208295, Paros 1 et Paros 2) suggère :

- Qu'il n'y a pas eu de déformation lente significative entre les deux sites (résidu < ~0.5 cm/an) ;
- Qu'il n'y a pas eu de déformation transitoire pouvant correspondre à une activité de pulse magmatique ou de déformation tectonique, relative entre les deux sites. Si déformation il y a, celle-ci affecte les deux sites de la même façon.

IV.5. Le châssis CIAM

<u>Auteurs :</u> Pascale Lherminier, Olivier Peden (LOPS, IFREMER)

Le châssis instrumenté CIAM (*Châssis d'Instrumentation Autonome de Mesures*) a été conçu par le Laboratoire d'Océanographie Physique et Spatiale (LOPS) afin de recueillir des données de physique et biogéochimie au fond de l'océan. Il a été déployé en juillet 2022 pendant la campagne MAYOBS23 dans la zone du "Fer à Cheval" à 0,2 MN au nord du panache acoustique site G (Figure 31a). Ce châssis (Figure 32) dispose d'un courantomètre Doppler (Acoustic Doppler Current Profiler) et de deux capteurs physico-chimiques. Il est destiné à mesurer, pendant un an, les courants marins dans les 400 derniers mètres de la colonne d'eau et les propriétés hydrologiques (température, salinité, oxygène dissous, turbidité) par 1500 m de fond. Ces mesures permettront d'étudier le transport et la dispersion de ces gaz, et serviront aussi à préparer le déploiement d'un observatoire profond permanent dans la zone, dans le cadre des projets MARMOR et SCINOBS.

IV.5.1. Déroulement de la mission

Lundi 11/09/2023

A notre arrivée nous constatons que le conteneur de transport a été vidé et que notre matériel est stocké dans le hangar hélico. On s'installe dans l'atelier Genavir/Ifremer attenant au hangar.

Mardi 12/09/2023

- Test des largueurs acoustiques avec la TT301 SA102 Essais acoustiques Ok :
 - Largage et Accusé de rotation moteur Ok
 - Réarmement Ok
 - Vide Ok
 - Vis de sécu enlevés
- SA47 Essais acoustiques Ok
 - Largage et pas d'accusé de rotation moteur Ok
 - Réarmement Ok
 - Vide Ok
- Vis de sécu enlevés
- ADCP WH150 (N°13267)
- Tests pré-déploiements Ok
- Cellules de 4m
- 60 cellules
- Un ping toutes les 15 secondes
- Un ping par ensemble

Mercredi 13/09/2023

Test de la balise Argos N° 27481 avec piles lithium acheter à La Réunion (Leroy Merlin à Saint Louis). Mise en route ok. La balise est positionnée sur la DZ pour transmission satellite. Elle est bien reçue par le satellite et on reçoit bien la position par mail.

Figure 31 : a) Localisation du châssis CIAM déployé pendant la campagne MD242-MAYOBS25 sur fond de carte bathymétrique MAYOBS. ; b) Localisation des châssis CIAM en 2022-2023 et 2023-2024 sur fond de carte topographique. Les points jaunes sont les panaches de gouttelettes de gaz déjà observés depuis plusieurs années. Les points rose et violet sont respectivement les positions triangulées des châssis en 2022-2023 et 2023-2024. Courtesy Carla Scalabrin ; c) Photo du châssis CIAM.

Du Jeudi 14/09/2023 au Mardi 19/09/2023

Participation au quart 4-8 et/ou 16-20 pour Pascale.

Mercredi 20/09/2023

Dans la nuit, deux profils CTD sont effectués au point PP50 là où est mouillé le CIAM-75hz (S 12° 49',494 ; E 045° 22',940).

- La profondeur est de 1484 mètres au sondeur multifaisceaux EM 122 ;
- Lors de la remontée du deuxième profil CTD, nous opérons une interrogation de la sphère SA-23 du CIAM pour voir s'il n'a pas bougé. La distance donnée par la TT-801 du bord (dans le PC science) est de 1483 mètres et en interrogeant la sphère SA-46 la distance est de 1482 mètres ;

- Une fois la CTD sur le pont nous effectuons un largage avec la sphère SA-23 à 08h31 (local) l'ordre de largage est bien reçu et l'accusé de rotation moteur est reçu 30 secondes plus tard ;
- Nous effectuons quelques interrogations pour confirmer que le châssis a bien quitté le fond (Ok);
- Nous demandons à la passerelle de rester sur place pour estimer la vitesse de remontée du châssis ;
- Nous effectuons deux interrogations à 5 minutes d'intervalle ce qui nous donne une différence de distance de 174 mètres (1363-1189). La vitesse de remontée est estimée à 0,58 m/s. Nous annonçons à la passerelle que le châssis devrait arriver en surface entre 9h10 et 9h15 heures locales ;
- Le châssis est aperçu en surface à 200 m du bateau sur tribord avant à 9h14 local.
- Le châssis a mis environ 45 minutes pour remonter ;
- Une fois le châssis a bord l'équipe de pont utilise la grue Palfinger pour le monter en DZ ;
- Visuellement il n'apparaît aucun choc violent sur les bases acoustiques ;
- Nous écoutons l'ADCP, il pingue a 2 minutes d'intervalle comme programmé ;
- On le connecte et on l'arrête en lui envoyant un Break. Nous regardons la mémoire (RR) il y a 511 MB enregistré dans un seul fichier (MAYO_000.000) ;
- Nous effectuons la commande PC 1 pour faire un premier test des beams, le test est concluant les 4 beams répondent ;
- On prend la décision de démonter l'ADCP du châssis (il ne sera pas redéployé), pour le positionner dans le labo afin de pouvoir le connecter avec un câble court. Nous commençons le vidage des données en passant la vitesse à 115200 bauds (CB811) ;
- Le temps de vidage est estimé à plus de 24h ;
- Démontage du SBE-37-ODO-21586 ; on le positionne dans un bac d'eau douce pour que la membrane O2 reste humide et qu'il n'y ait pas de formation de cristaux de sel dans la cellule de conductivité ;
- Démontage de la balise Iridium qui a bien fonctionnée reçue par satellite le 20/09/2023 à 06h52'57" pour une arrivée en surface le 20/09/2023 à 06h14'00", soit environ 40 minutes après.

Pour le futur, il faudra bien alerter les collègues de RDT d'une corrosion intensive dans la zone du fer à cheval, en vue du déploiement de la future station MARMOR (Figure 32).

Figure 32 : Photo de corrosion

Jeudi 21/09/2023

- Les données du Microcat sont extraites et converties en fichier « cnv » à l'aide du logiciel SeaBird SeaDataProcessing ;
- Après environ 25h de vidage on confirme que l'ADCP WH-75khz-N° 5692 mouillé depuis 14 mois dans la zone du Fer à Cheval a très bien fonctionné, autant pour la mesure de courant que pour observer les panaches de gouttelettes de fluides.

La Figure 33 montre l'intensité du retour acoustique des faisceaux 1 et 4 à différentes périodes de temps (septembre et novembre 2022). On y observe des réflexions intenses qui durent 1-2 heures, que l'on interprète comme des gouttelettes de panaches. Ces gouttelettes, dont le diamètre est de l'ordre de 1-10mm, ont souvent une carapace solide d'hydrates de gaz. Elles sont très bien vues par l'EK80 à 18, 38 et 70 kHz, donc il n'est pas étonnant qu'elles soient aussi détectées par l'ADCP 75kHz. Le châssis CIAM était placé au nord des sites de panaches G et B (à environ 400m et 800m respectivement). Nous suspectons qu'ils sont responsables des fortes rétroflexions observées par les faisceaux de l'ADCP.

Les données de l'ADCP sont ensuite traitées à l'aide du logiciel TOOTSEA V1.1 (Balem Kevin 2020). Matlab Toolbox for Time Series Exploration and Analysis. SEANOE. https://doi.org/10.17882/59331). On y calcule une déviation magnétique de 8.1° dont la correction est appliquée aux vitesses UCUR et VCUR (à savoir : pour le glider, le GPS donne 9°). La marée extraite de TPXO 9.11 est aussi ajoutée en données ancillaires.

Les premières observations préliminaires sont (Figure 34) :

- Pendant les vives eaux, par marée descendante associée à des vitesses au fond vers le nord-nordest, l'ADCP détectent distinctement des gouttelettes dès 20m du fond (i.e. 1460m). La plus forte concentration est généralement observée vers 1150m.
- Les vitesses verticales mesurées dans ces panaches sont de l'ordre de 10-25 cm/s vers le haut.
- Les données du Microcat sont également traitées avec TOOTSEA. Tous les paramètres : P, C, T, O2 sont complets. Pas de dérive sauf pour la salinité qui a l'air de dériver de -0.2 psu environ. C'est pour cette raison que le Microcat doit être renvoyé en étalonnage et n'est pas remis à l'eau avec le nouveau mouillage.

Figure 33 : Intensité du retour acoustique des faisceaux 1 et 4 à différentes périodes de temps : a) septembre , b) novembre 2022.

Vendredi 22/09/2023

- Après avoir regardé les données de l'ADCP WH-75khz-N° 5692 en place depuis un an, nous créons le script final pour l'ADCP WH-150 khz-N° 13267 avec « PlanADCP » (Annexe 1).
 - Cellules de 8 m ; 44 cellules ;
 - Un ping toutes les 20 secondes ; Un ping par ensemble ;
 - Mise à l'heure TU ;
- Suite au visionnage des données du SBE il ne sera pas redéployé, en accord avec les autres personnes intéressées par les mesures (dérive trop importante du capteur de conductivité).

La demande de prêt du turbidimètre n'étant effective que pour 1 an, il ne sera pas redéployé. L'appareil n'a pas fonctionné, aucune donnée sur l'année c'est comme s'il avait perdu sa date et son heure dès le début de l'acquisition (01/01/2000) et qu'il n'a jamais trouvé sa date de départ différé (11/07/2022).

Samedi 23/09/2023

- Ecoute ADCP à 06h00'00'' TU Ok (à la second prêt). Bout de relevage en place, vis de sécurité des largueurs enlevées et balise Iridium en place.
- Basculeurs et étriers Largueurs graissés (Ok).
- Châssis positionné sur la plage arrière sous le portique à 10h30 locale.
- La balise Iridium est reçue à plusieurs reprises (mail Ok).
 - N° IMEI 300434064302990
 - Une émission toutes les 20 minutes
- Ecoute de l'ADCP juste avant mise à l'eau (Ok).
- Bout de manutention enlevés (Ok).
- Déploiement du châssis CIAM

Point Visé : S 12°49',7376 ; E 45°22',8648 ; Prof : 1420 m

Arrivée sur le point on constate un courant de 15 cm/s qui porte au Sud, on demande au bateau de se positionner l'arrière du bateau à 100 m au nord du point.

Déploiement réalisé à 11h23'57" (TU). Durée du déploiement 0h30 minutes.

Point largué : S 12°49',6630 E 45°22',919 ; Prof : 1443 m

On tente une écoute acoustique lors de la descente mais trop bruitée par les sondeurs et ADCP de coque. Nous opérons une triangulation le même jour à 18h00 local après une CTD.

Les trois points de triangulation (Figure 35) ont été réalisés correctement en 0h50 minutes avec la sphère 102 (Annexe 3). La sphère 47 ne répond pas (Annexe 3). Le positionnement sera calculé le lendemain.

Dimanche 24/09/2023

- Relocalisation du châssis CIAM déployé (Figure 31, Figure 35);
- Après utilisation des programmes de triangulation, le châssis est localisé à environ 35 m du point visé ;

Les trois premières figures ci-dessus représentent 6 jours de données de l'OS75 en novembre 2022. Les données ont été lissées sur 30 minutes, après un nettoyage préliminaire qui devra être affiné. Les courbes en 4è position représentent la hauteur de marée et la vitesse nord-sud associée telle que prédite par le modèle TPXO 9.1. Les périodes de vitesses vers le nord (et marée descendante) sont reportées par des traits rouges sur les figures au-dessus qui représentent en fonction de la profondeur 1) l'intensité du signal rétrodiffusé moyenné sur les 4 faisceaux ; 2) la vitesse verticale mesurée et 3) la composante zonale du courant mesuré.

P-Triang N°1 :

12°49',33698 E45°22',64262 ; Dist : 1631 m S12°49',33956 E45°22',6455 ; Dist : 1627 m S12°49',34526 E45°22',6491 ; Dist : 1619 m *P-Triang N°2 :*

S12°50',14302 E45°22',7394 ; Dist : 1589 m S12°50',14278 E45°22',73322 ; Dist : 1590 m S12°50',14308 E45°22',7298 ; Dist : 1591 m

P-Triang N°3 :

S12°49',5993 E45°23',33934 ; Dist : 1683 m S12°49',59504 E45°23',34798 ; Dist : 1692 m S12°49',5945 E45°23',35986; Dist : 1701 m

Figure 35 : Relocalisation et Position du CIAM redéployé

Point Triangulé : S12°49',746 E45°22',844 ; Prof : 1400 m

IV.5.2. Analyses préliminaires

Le châssis CIAM récupéré dans le Fer à Cheval montre que les anodes servant à le protéger de l'oxydation ont quasiment disparu, ce qui atteste d'un environnement très corrosif dont il conviendra de tenir compte pour la maintenance d'un futur observatoire ;

Les données de l'ADCP 75kHz monté sur le CIAM sont extrêmement riches d'information, bien audelà des 400 m espérés en portée verticale. Les résultats les plus marquants, bien que très préliminaires, sont:

- Au fond, les événements de forts courants (plus d'un nœud) coïncident avec les marées de vives eaux. A ces périodes, le courant est généralement en phase avec la marée prédite par les modèles, mais très intensifié ;
- Les forts courants mesurés vers le nord sont accompagnés de la détection de gouttelettes dès 20m du fond, qui ont une vitesse verticale significative entre 1450 à 1000m de profondeur; un tel signal est absent pendant les flux vers le sud (marée montante). On suppose que c'est le panache G, à plus de 2 NM au sud, en partie couché par le courant, qui crée ce signal à la verticale de l'ADCP;
- Conformément aux données SMF recueillies ces dernières années et aux observations de Carla Scalabrin, la localisation des panaches et de leur source est nettement plus aisée pendant les périodes de mortes eaux.

L'opération du Châssis CIAM est supervisée et réalisée par P. Lherminier et O. Peden (LOPS, IFREMER), avec le soutien à terre de Jérôme Paillet.

IV.6. SADCP (LOPS)

<u>Auteure :</u> Pascale Lherminier (LOPS, IFREMER)

Le *N/O Marion Dufresne* est équipé de trois courantomètres Doppler de coque (SADCP) qui permettent de mesurer l'intensité et la direction des courants marins sous le navire. Ils fournissent un profil de courant toutes les 2 minutes. L'OS38 fonctionne à 38kHz, a une portée de 1500m et une résolution verticale de 24m. L'OS75 a une portée de 800m et une résolution verticale de 16m, et l'OS150 une portée de 200m et une résolution de 8m. La redondance permet de diminuer l'erreur sur la mesure. Durant la campagne MD245-MAYOBS25, pour la première fois depuis le début des campagnes MAYOBS, nous avons pu synchroniser correctement les SADCP avec les autres sondeurs acoustiques (EM122, EK80, SDS) pour qu'ils n'interfèrent pas. De cette façon, nous avons pu acquérir beaucoup plus de données que lors des campagnes précédentes, et la présence d'une spécialiste offre la possibilité de traiter les données en temps quasi-réel.

<u>Analyses préliminaires</u>: Grâce à une bonne synchronisation entre les sondeurs acoustiques (EM122, EK80) et les 3 ADCP «de coque du *N/O Marion Dufresne*, nous avons pu acquérir des données de courant quasi durant tout la mission. Ces données seront traitées à terre en collaboration avec C. Scalabrin (analyse colonne d'eau acoustique).

IV.7. Acoustique colonne d'eau : Données de sondeur multifaisceaux (SMF) et monofaisceau (EK80)

Auteurs : C. Scalabrin (Ifremer, responsable), A. Potier (IPGP)

IV.7.1. Introduction

La couverture acoustique de la zone de travail pour la mesure de la rétrodiffusion de la colonne d'eau a été effectuée sur les zones de surveillance (boîtes CÔTE, RIDE et VOLCAN) définies par le CST REVOSIMA, (Figure 36, Figure 37) avec⁵ :

- Le sondeur multifaisceau Kongsberg (SMF) : l'EM122 (12 kHz) installé sous la coque du navire pour la réalisation des cartes de bathymétrie, de rétrodiffusion du fond et de localisation des sites potentiels d'échappements de fluides sous-marins (détection des échos dans la colonne d'eau) ;
- Le sondeur monofaisceau Simrad EK80 (fréquences 18, 38, 70, 120 et 200 kHz) pour l'acquisition de données acoustiques colonne d'eau en valeur absolue (étalonnées) et la détection des sites potentiels d'échappements de fluides sous-marins.

Figure 36 : Profils SMF coque des boîtes « RIDE-essaim sismique distal » et « CÔTE-essaim sismique proximal » sur fond de la couverture acoustique MD242-MAYOBS25. Encadré: boîte Fer à Cheval et "routes des panaches" dédiées à l'analyse des panaches acoustiques sur la zone élargie du Fer à Cheval.

L'EM122, installé sous la coque du navire, est utilisé pour la réalisation des cartes de bathymétrie, de rétrodiffusion du fond et de localisation des sites potentiels d'échappements de fluides sous-marins

⁵ Pour les détails techniques concernant le protocole d'acquisition acoustique se référer au document « 2023_09_27_note_protocole acoustique_SCALABRIN_MAYOBS25_V3.pdf » mis à disposition en début de campagne et validé à la fin.

(détection des échos dans la colonne d'eau). Le sondeur monofaisceau EK80 (fréquences 18, 38, 70, 120 et 200 kHz) est utilisé pour l'acquisition de données acoustiques colonne d'eau en valeur absolue (étalonnées) et la détection des sites potentiels d'échappements de fluides sous-marins.

Figure 37 : Profils SMF coque de la boîte « FER A CHEVAL » et « ROUTES DES PANACHES » dédiées à l'analyse des panaches acoustiques sur la zone élargie du Fer à Cheval.

IV.7.2. Déroulement

L'acquisition de données acoustiques par le SMF et l'EK80 a été réalisée en continu pendant toute la campagne, sauf pendant les opérations nécessitant l'arrêt des émissions acoustiques (déploiement ou récupération de systèmes résidants avec positionnement acoustique). Les conditions d'acquisition ont été adéquates avec un vent faible et mer peu agitée.

Les couvertures acoustiques des boîtes « VOLCAN », « CÔTE », « Fer à Cheval » et « RIDE » ont été réalisées conformément au plan de surveillance pendant les plages horaires suivantes (Tableau 16).

(nors transits)									
Boîte	Début (heure TU)	Fin (heure TU)	Remarques						
VOLCAN	14/09/23 14h56	15/09/23 13h15	Avec profils calibration SMF						
COTE 1	16/09/23 19h44	17/09/23 05h11	Interruption 3 heures récupération A0A						
COTE 2	17/09/23 08h33	18/09/23 05h26	Interruption 7 heures déploiements						
COTE 3	18/09/23 12h12	18/09/23 19h08							
Fer à Cheval	19/09/23 12h22	19/09/23 22h26							
RIDE	20/09/23 21h45	21/09/23 02h36	Seulement profils E/O						

Tableau 16 : Plages horaires des couvertures acoustiques sur les boites VOLCAN, CÔTE, Fer à Cheval et RIDE

Le suivi des sites actifs d'émission de fluides de la zone du Fer à Cheval constitue une des priorités de la campagne MD242-MAYOBS25. Une majoration de l'effort d'échantillonnage acoustique sur cette

zone a été effectuée avec 19 heures d'acquisition supplémentaire de données en profil ("Routes de Panaches"), totalisant 24 heures dédiées au suivi et à la surveillance des panaches (Figure 37).

La prise en compte de la marée et du coefficient de marée dans le planning des opérations pour la réalisation des "Routes de Panaches" dédiées a permis d'améliorer la qualité de la donnée acquise.

IV.7.3. <u>Résultats préliminaires (à valider en post-traitement à terre)</u>

a) Boîtes « VOLCAN », « RIDE » et « COTE »

D'après les couvertures acoustiques des boîtes « VOLCAN », « RIDE » et « CÔTE », aucun signal significatif indiquant la présence d'émission de fluides en fond de mer (panaches acoustiques) n'a été observé à partir des acquisitions réalisées dans les zones du volcan Fani Maoré (Figure 38) ni sur la zone intermédiaire de la ride volcanique.

Pour les acquisitions côtières (< 2000 m de sonde), des panaches acoustiques ont été observés seulement dans la zone du Fer à Cheval.

Figure 38 : Echogramme longitudinal de la colonne d'eau correspondant au profil O/E à l'aplomb du volcan Fani Maoré

b) Boîte « Fer à Cheval » et « Routes de Panaches »

D'après les couvertures acoustiques (EM122 et EK80) de la boîte « FER A CHEVAL » et des « ROUTES DE PANACHES », qui sont dédiées à l'observation des émissions de fluides fond de mer (principalement du CO₂ liquide sous la forme de gouttelettes ou des fontaines) localisées dans le périmètre élargi de la zone du Fer à Cheval (Figure 37), il a été permis:

- D'identifier sans ambiguïté la continuité de l'activité d'émission de fluides des sites déjà observés pendant les campagnes antérieures (A0, A1, A2, B0, B1, C0, C1, C2+C3, C5, D0, D1, D2, D3, E0, G0, H0, I1, J0);
- De détecter un nouveau site actif KO (Figure 39, Figure 40) localisé juste à l'ouest de la partie nord de la bordure ouest de la structure du Fer à Cheval et à environ 400m à l'Est du site HO. KO est situé en dehors du Fer à Cheval mais en alignement avec les zones actives J, C, B et A.

Le post-traitement à terre doit permettre de lever les ambiguïtés suivantes :

- Continuité des émissions du site F (signal faible ou non observé) ;
- Continuité des émissions du site C4 qui peut être masqué par l'élargissement des sites C2+C3 ;
- Continuité des émissions du site IO ou jonction avec le site I1.

Figure 39 : Localisation des sites actifs d'émission de fluides fond de mer⁶ dans le périmètre élargi du Fer à Cheval. Le nouveau site actif KO observé (@Scalabrin & A. Potier) pour la première fois pendant la campagne MD242-MAYOBS25 y est intégré (entouré en rouge).

Figure 40 : Echogrammes polaires du nouveau site actif K0 observé pour la première fois pendant la campagne MD242-MAYOBS25. Ces échogrammes polaires sont acquis avec le SMF EM122 sur deux profils différents et traités avec le logiciel GLOBE.

⁶ Site d'émissions de fluides, Mayotte, zone du Fer à Cheval d'après C. Scalabrin, 2023, Ifremer GEO-OCEAN), https://doi.org/10.12770/070818f6-6520-49e4-bafd-9d4d0609bf7d

L'analyse préliminaire, effectuée à bord, des données acquises a permis de valider la pérennité de l'activité d'émission de fluides sur 20 sites (Figure 39, 19 préexistants) et le nouveau site K₀ dans le périmètre élargi de la zone du Fer à Cheval (Figure 39, Figure 40).

L'activité de trois sites (F₀, C₄ et I₀) reste à déterminer à partir d'une analyse plus approfondie qui sera réalisée à terre: soit le signal est trop faible pour être détecté ou inexistant soit l'activité des sites adjacents s'est intensifiée rendant leur discrimination spatiale difficile.

En absence des plongées AUV (non prévu pour la campagne MD242-MAYOBS25), il ne sera pas possible de suivre l'évolution du nombre des points d'émission pour les sites habituellement observés à partir de données acoustiques acquises avec l'AUV. Le dénombrement des points d'émission, en particulier pour les sites E0, G0, H0, I0, I1 et J0, était un indicateur robuste de l'évolution interannuelle du niveau d'activité et de l'emprise spatiale pour chaque site.

Les observateurs en quart scientifique ont souligné que sous certaines conditions marines (courants faibles, marée à l'étale), certains panaches les plus actifs atteignent une profondeur minimale de 350 m sous la surface de la mer. Ces observations en temps réel sont à analyser plus finement et à confirmer ou non. Leur confirmation permettrait d'affiner le protocole d'observations réalisées pendant le quart ce qui permettrait de noter ces observations, même préliminaires, de manière systématique dans CASINO. En fonction des conditions marines ces informations sont importantes car elles constituent un proxy accessible en temps réel de la variabilité des flux d'émission des fluides.

La mission MD242-MAYOBS25 a démontré l'intérêt de **prendre en compte la marée et son coefficient** pour la réalisation des « ROUTES DE PANACHES », afin d'acquérir des données de qualité optimale. Pour exemple: à l'étale, les panaches acoustiques, peu déviés, se présentent sur toutes leurs hauteurs (Figure 41). Cette prise en compte dans le planning des opérations est contraignante mais nécessaire. Pour les prochaines acquisitions, coupler le plus possible le planning des opérations avec le calendrier des marées et courants.

Figure 41 : Exemple d'un profil acquis lors de la marée à l'étale avec le EK80 sur les panaches acoustiques dans le Fer à Cheval (@photo d'écran, donnée brute).

IV.7.4. Récapitulatif des observations préliminaires

Pour les acquisitions côtières (<2000m de profondeur), des panaches acoustiques ont été observés seulement dans la zone élargie du Fer à Cheval (Scalabrin, 2023, <u>https://doi.org/10.12770/070818f6-6520-49e4-bafd-9d4d0609bf7d</u>). L'ordre chronologique de la première observation acoustique des sites actifs⁷ du Fer à Cheval sur la base du dernier bulletin (@ Bulletin REVOSIMA du 30/08/2021– C. Scalabrin (Ifremer)) est le suivant:

- Sites A0 et B0 : mai 2019
- Site C0: août 2019
 Sites D0 et E0 : mai 2020
- Sites A1, A2, B1, C1, D1 et F0: octobre 2020
- Sites C2, C3 et C4: janvier 2021
 Site G0: avril 2021
- Site G0: avril 2021
 Site H0: juillet 2021
- Sites C5, D1 et I0 : septembre 2021
- Sites D3, I1 et J0 juillet 2022
- Site KO septembre 2023

Le nombre de sites (Figure 39) est en augmentation depuis le début de la crise avec 22 sites individuels en activité observés en juillet 2022, soit 19 de plus en 4 ans sur 11 localités (A à K). La superficie des sites s'est également étendue, sur la plupart des sites avec des diversités au niveau des sorties (fontaines avec gouttelettes, amas mis en évidence sur les données ROV lors de la mission GEOFLAMME).

Le suivi et le traitement de l'analyse acoustique de la colonne d'eau durant la campagne MD242-MAYOBS25 ont été supervisés et réalisés par C. Scalabrin (Ifremer) et A. Potier (OVSM-IPGP). Un transfert de connaissances et de protocole de mesures pour le suivi des panaches et de la colonne d'eau est en cours entre l'IFREMER et l'IPGP.

⁷ L'absence de données antérieures ne permet pas de dater l'apparition de ces émissions, cependant, il est possible d'affirmer que le site E, sur la ride à l'est du Fer à Cheval, n'était pas actif en novembre 2015 (données acquises en transit avec le N/O Pourquoi pas ? lors de la campagne MOZ04 du projet PAMELA).

IV.8. Evolution des fonds marins : Données de sondeur multifaisceaux (SMF) et monofaisceaux (EK80)

Durant la campagne MD242-MAYOBS25, des levés acoustiques avec les sondeurs de coque du *N/O Marion Dufresne* ont été réalisés sur les boîtes « CÔTE », « RIDE » et « VOLCAN » selon le protocole de surveillance REVOSIMA (Figure 36, Figure 42, Figure 43). Des levés ont aussi été réalisés lors des transits dans la zone d'étude (ZEE Mayotte) mais aussi dans la ZEE de la Réunion et la ZEE de Tromelin (Transits valorisés avec autorisations, ref. : 142/CZM REUNION/AEM/NP).

Figure 42 : Couverture acoustique et localisation des profils d'acquisition par SMF coque sur l'ensemble de la zone d'étude.

IV.8.1. Traitement des données SMF bathymétriques

Auteur : Olivier Ragu (Genavir)

La campagne MD242-MAYOBS25 s'inscrit dans la continuité des missions précédentes, l'acquisition et le traitement des données bathymétriques ont pour but d'évaluer d'éventuelles évolutions du terrain par rapport aux années précédentes. Plus précisément, des boîtes « VOLCAN », « RIDE », « CÔTE », du « FER à Cheval », des « ROUTES DE PANACHES ». Les transits dans la zone d'étude (ZEE Mayotte) sont aussi valorisés.

Figure 43 : Transits valorisés réalisés (traits rouge) durant la campagne MD242-MAYOBS25. Trait gris : Transits valorisés prévus initialement. Point bleu foncé : point de rejet des roches prélevés au cours de la campagne MD242-MAYOBS25. Point bleu clair : point de rejet des roches prélévés lros des campagnes MAYOBS précédentes.

L'acquisition et le traitement des données ont été effectuées par l'équipe Genavir,

- Laurence Morvan responsable embarquée Genavir
- Arthur Quenec'h et Nicolas Le Viavant opérateurs pour l'acquisition
- Olivier Ragu pour le traitement de la bathymétrie

Sondeur utilisé : Sondeur Grand fonds EM122, version SIS 4.3.2.

Modes d'acquisition :

- **BATHY**: angle de 60°, DualSwath en dynamique, durant les transits ralliements de nouveaux points,
- COLONNE D'EAU : angle de 40°, DualSwath en Off pour la réalisation des boîtes volcan, ride et côte.

Vitesse navire lors des acquisitions : 4-5nd

Conditions météo : très clément, pas de houle, pas de pluie,

a) Etapes du traitement appliqué aux données (version Globe 2.3.7)

- conversion données .all en .xsf
- découpe des girations et des profils nommés en accord avec ceux notés dans le cahier de quart P_XXX.
- application d'une correction de marée, celle du SHOM pour la zone Mayotte mais celle de la réunion Pointe à Pitre pour les transits aller et retour TR_001 et TR_0002.

- correction du biais de roulis appliqué à l'ensemble des fichiers, estimé grâce au profil de calibration P_015 et P_016.
- utilisation du filtre automatique filtri, puis contrôle et nettoyage manuel.
- correction de célérité sur trois fichiers, P_149, P164_A et 164_B.
- conversion en DTM en respectant les coordonnées des zones et les tailles de maille des années précédentes.
- création d'un Geotiff par DTM backscatter et elevation.

Au total, 472 fichier « .all » convertis en 164 profils « .xsf » (liste en Annexe 4)

Chemin d'accès aux données

Differentiels	27/09/2023 17:02	Dossier de fichiers	
	27/09/2023 17:02	Dossier de fichiers	
Geotiff	28/09/2023 00:29	Dossier de fichiers	
Profils_xsf	27/09/2023 17:05	Dossier de fichiers	
MAYOBS25_Liste_Profils_DTM.txt	28/09/2023 10:23	Document texte	13 Ko

Commentaires										T7_0009 finalement utilisé remis au fichier 100 de l'EM122																																			
Fichier EM122 / 710	0000	0011	0021	0026	0035	0054	0066	0071	080	0092	106	109	125	129	132			141	142	152	166	171	177	183	206	231	267	269	281	292	296	315	343	409	420	455	460								
Chargement EM122/710	16h22	18h03	14h31	17h46	23h00	11h20	23h26	11h09	19h44	02h25	10h55	11h59	20h24	22h04	23h33	01h30	02h58	04h32	04h44	12h12	20h05	05h41	12h38	14h22	20h52	12h43	09h56	17h31	03h55	11h33	12h50	18h22	03h10	15h04	00h25	07h52	11h07								
čélérité ASVPÀ 5m	1534,71	1539,09	1538,71	1539,41	1538,69	1538,69	1538,72	1538,99	1539,3	1539,32	1539,22	1540									1539,52	1539,46	1539,4	1540,64	1539,36	1539,41	1539,78		1539,54		1540,21	1540,81	1539,87	1540,48	1540,15	1535,82	1534,64								
Temp .EDFÀ 5mC	25,14	26,97	26,32	27,1	26,78	26,78	26,81	26,95	27,08	26,35	27,03	27,37									27,16	27,1	27,1	26,93	27,06	27,12	27,36		26,04		27,53	27,73	26,1	26,85	27,43	25,5	25								
Sonde(m)	4981	3500	3544	3375	3470	3530	3518	3450	400	1114	1647	1571									1880	3199	1261	1271	1579	2284	2669		1345		1460	1200	1726	3508	2046	4400	4400								
Célérité SBE21	l en cours de mise en route	1539,1	1538,8	1539,3	1538,4	1538,6	1539,5	1538,9	1539,7	1538,8	1539,8	1540,5									1539,6	1539,3	1539,6	1539	1539,3	1541,1	1541		1539,9		1540,8	1540,6	1539,2	1540,4	1539,7	1536,3	1534,4			ppican en stock le 26/09/2023	carton	7	5	2	
T°SBE21	inées SBE2'	26,91	26,771	27,046	26,65	26,741	27,084	26,85	27,17	26,801	27,227	27,477									27,15	27,037	27,123	27,305	27,017	27,596	27,745		27,265		27,68	27,558	27,001	27,47	27,177	25,5	25,1			NBr de si		T5=	=17=	T10=	
Salinité SBE21	Pas de doi	35,21	35,201	35,206	35,135	35,126	35,157	35,167	35,175	35,17	35,189	35,228									35,201	35,17	35,175	35,176	35,189	35,196	35,214		35,187		35,213	35,204	35,16	34,234	35,174	35	35								
Fichier ASVP	Cel_T7_00001.asvp	Cel T7_00002.asvp	Cel T5 00003,asvp	Cel T5 00004,asvp	Cel T5 00005,asvp	Cel T5 0006,asvp	Cel_T7_00007.asvp	Cel T7_00008.asvp	Cel T7 00009.asvp	Cel T7 00010.asvp	Cel T7_00011.asvp	Cel T5 00012,asvp	Cel T7 00009.asvp	Cel T5 00012,asvp	Cel T7_00009.asvp	Cel T5 00012,asvp	Cel T7_00009.asvp	Cel T5 00012,asvp	Cel T7 00011.asvp	Cel T5 00012,asvp	Cel T7 00013,asvp	Cel T7 00014,asvp	Cel T7 00015,asvp	Cel T7 00016,asvp	Cel T7_00017,asvp	Cel_T7_00018,asvp	Cel T5_00019,asvp	Cel T7_00016,asvp	Cel T7 00020,asvp	Cel T5_00012,asvp	Cel_T7_00021,asvp	Cel T7 00022,asvp	CEL T7 00023.asvp	CEL T5 00024.asvp	CEL_T7_00025.asvp	CEL_T5_00026.asvp	CEL_T7_00027.asvp								
N° Sippican	-	2	3	4	2	9	7	8	6	10	11	12									13	14	15	16	17	18	19		20		21	22	23	24	25	26	27		an tiré	3	6	20	•	29	
Heure Tir	19h52	17h55	14h18	17h29	22h30	10h50	23h10	10h50	19h32	02h14	10h37	11h51									19h52	05h31	12h23	14h10	20h40	12h34	09h36	17h30	03h45		12h35	18h10	03h10	14h43	00h02	07h35	10h58		Bilan sippic;	27/09/2	T5=	=17=	T10=	total=	
Date	11/09/2023	13/09/2023	14/09/2023	14/09/2023	14/09/2023	15/09/2023	15/09/2023	16/09/2023	16/09/2023	17/09/2023	17/09/2023	17/09/2023	17/09/2023	17/09/2023	17/09/2023	18/09/2023	18/09/2023	18/09/2023	18/09/2023	18/09/2023	18/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023	20/09/2023	21/09/2023	21/09/2023	22/09/2023	22/09/2023	22/09/2023	22/09/2023	23/09/2023	24/09/2023	25/09/2023	27/09/2023	27/09/2023								

 Tableau 17 : Ensemble des tirs sippiccans réalisés et fichiers de célérité intégrés dans SIS.

Liste des DTM

MAYOBS25_50m_BATHY.dtm.nc MAYOBS25_Cote_20m_BATHY.dtm.nc MAYOBS25_Cote_20m_BATHY_lation.dtm.nc MAYOBS25_Fer_cheval_20m_BATHY.dtm.nc MAYOBS25_Panache1_20m_BATHY.dtm.nc MAYOBS25_Panache2_20m_BATHY.dtm.nc MAYOBS25_Panache3_20m_BATHY.dtm.nc MAYOBS25_Panache4_20m_BATHY.dtm.nc MAYOBS25_Panache5_20m_BATHY.dtm.nc MAYOBS25_Panache6_20m_BATHY.dtm.nc MAYOBS25_Panache7_20m_BATHY.dtm.nc MAYOBS25_Panache8_20m_BATHY.dtm.nc MAYOBS25_Panache9_20m_BATHY.dtm.nc MAYOBS25_PanacheGLOBAL_20m_BATHY.dtm.nc MAYOBS25_Ride_25m_BATHY.dtm.nc MAYOBS25_Ride_25m_BATHY_latlon.dtm.nc MAYOBS25_Volcan_30m_BATHY.dtm.nc

MAYOBS25_Volcan_30m_BATHY_lation.dtm.nc

Liste des GeoTIF

MAYOBS25 50m BATHY Backscatter.tif MAYOBS25_50m_BATHY_Elevation.tif MAYOBS25_Cote_20m_BATHY_Backscatter.tif MAYOBS25_Cote_20m_BATHY_Elevation.tif MAYOBS25_Fer_cheval_20m_BATHY_Backscatter.tif MAYOBS25_Fer_cheval_20m_BATHY_Elevation.tif MAYOBS25_Panache1_20m_BATHY_Backscatter.tif MAYOBS25_Panache1_20m_BATHY_Elevation.tif MAYOBS25_Panache2_20m_BATHY_Backscatter.tif MAYOBS25_Panache2_20m_BATHY_Elevation.tif MAYOBS25_Panache3_20m_BATHY_Backscatter.tif MAYOBS25_Panache3_20m_BATHY_Elevation.tif MAYOBS25_Panache4_20m_BATHY_Backscatter.tif MAYOBS25_Panache4_20m_BATHY_Elevation.tif MAYOBS25 Panache5 20m BATHY Backscatter.tif MAYOBS25_Panache5_20m_BATHY_Elevation.tif MAYOBS25_Panache6_20m_BATHY_Backscatter.tif MAYOBS25_Panache6_20m_BATHY_Elevation.tif MAYOBS25_Panache7_20m_BATHY_Backscatter.tif MAYOBS25_Panache7_20m_BATHY_Elevation.tif MAYOBS25_Panache8_20m_BATHY_Backscatter.tif MAYOBS25 Panache8 20m BATHY Elevation.tif MAYOBS25_Panache9_20m_BATHY_Backscatter.tif MAYOBS25_Panache9_20m_BATHY_Elevation.tif MAYOBS25_Panache10_20m_BATHY_Backscatter.tif MAYOBS25 Panache10 20m BATHY Elevation.tif MAYOBS25_PanacheGLOBAL_20m_BATHY_Backscatter.tif MAYOBS25_PanacheGLOBAL_20m_BATHY_Elevation.tif MAYOBS25_Ride_25m_BATHY_Backscatter.tif MAYOBS25_Ride_25m_BATHY_Elevation.tif MAYOBS25_Volcan_30m_BATHY_Backscatter.tif MAYOBS25_Volcan_30m_BATHY_Elevation.tif

Pour la réalisation des dtm, les couches stdev et backscatter ont été sélectionnées.

G Export MBG/XSF to DTM #2

Select optional layers to export. Layer Depth is exported by default

Double-click on selection to uncheck

elevation_min	
elevation_max	
🗹 stdev	
☑ backscatter	
min_across_distance	
max_across_distance	
max_across_angle	
filtered_sounding	

Figure 44 : Sélection des couches pour chaque dtm

b) Projections des Modèles Numérique de Terrain

Les MNTs pour la boite «CÔTE» sont réalisés en projection Mercator, S13°, au pas de grille de 20 mètres. Les limites géographiques sont identiques aux modèles des années précédentes, pour permettre le calcul de différentiel avec les MNTs équivalents de campagnes précédentes.

Figure 45 : Cadre géographique de la boîte « CÔTE »

Les MNTs pour la boite « VOLCAN » sont réalisés en projection Mercator, S13°, au pas de grille de 30m.

Figure 46 : Cadre géographique de la boîte « VOLCAN »

Des MNT « *ROUTE PANACHE »* et « *FER A CHEVAL »* ont été réalisés pour obtenir plus de précision sur ces zones d'intérêt.
IV.8.2. Modèles Numériques de Terrain obtenus

Figure 47 : Modèle Numérique de Terrain général généré au pas de grille de 50m – MAYOBS25_50m_BATHY.dtm.nc

Figure 48 : Modèle Numérique de Terrain des données bathymétriques de la boite « COTE » généré au pas de grille de 20m (@logiciel GLOBE)

- MAYOBS25_Cote_20m_BATHY.dtm.nc

Figure 49 : Modèle Numérique de Terrain des données bathymétriques de la boite « VOLCAN » généré au pas de grille de 30m (@ logiciel GLOBE)

- MAYOBS25_Volcan_30m_BATHY.dtm.nc.

Figure 50 : Modèle Numérique de Terrain des données bathymétriques de la boite « RIDE » généré au pas de grille de 25m (@ logiciel GLOBE) avec uniquement les profils EW

- MAYOBS25_Ride_25m_BATHY.dtm.nc

Remarques : Les fichiers Geotiff ont été générés par un module du logiciel Globe dont nous ne sommes pas certains de la fiabilité, à comparer donc avec un autre logiciel. La plupart de ces différences sont constatée au niveau des reliefs, zones encaissées et des canyons. Des détections prématurées ont également été remarquées, elles sont dues aux lobes secondaires de l'EM122, le problème était déjà présent lors de MAYOBS23.

IV.8.3. Analyses préliminaires des données SMF bathymétriques

a) Levés boîte « CÔTE - essaim sismique proximal » (Priorité 1)

La zone « Côte » est la région située à proximité de Petite-Terre sur la pente de Mayotte au niveau de l'essaim sismique proximal (Figure 48) où se concentrent les sites actifs d'émission de fluides/gaz fond de mer (sites de panaches acoustiques) au niveau de la structure du Fer à Cheval (cf. Bulletins REVOSIMA). L'objectif pendant MD242-MAYOBS25 est de déterminer s'il y a des changements morphologiques significatifs et/ou des évolutions de l'activité des sites, tels qu'ils ont été observés par les données acoustiques de la colonne d'eau, depuis les derniers levés réalisés en juillet 2022 lors de MAYOBS23.

Le traitement des données bathymétriques SMF acquis lors de MD242-MAYOBS25, le calcul des différentiels entre les levés MAYOBS18/GEOFLAMME/MAYOBS23 et MD242-MAYOBS25, ont été initiés à bord, mais dans le temps imparti n'ont pas pu être finalisé. Les différentiels réalisés à bord à partir des données prétraitées mais non finalisées, ne montrent pas de différences majeures. Ce travail de traitement devra être poursuivi ultérieurement à terre (opérateur à sélectionner).

b) Levé boîte « VOLCAN » (Priorité 2)

La zone « VOLCAN » a été classée priorité 2 par le REVOSIMA pour le suivi de l'activité lors de MD242-MAYOBS25.

La zone « VOLCAN » est la région située à environ 50 km à l'Est de Mayotte où ont été identifiées les éruptions volcaniques de 2018-2021 (cf. Bulletins REVOSIMA). Des évolutions morphologiques importantes ont été mises en évidence au nord-ouest du volcan Fani Maoré pour la première fois en août 2019 (campagne MAYOBS5-SHOM) puis grâce aux levés bathymétriques de mai 2020 (MAYOBS13-2), octobre 2020 (MAYOBS15) et janvier 2021 (MAYOBS17). Les différences de bathymétrie observées entre une de ces campagnes et la campagne précédente ont toujours été positives et interprétées comme liées à la mise en place de reliefs et/ou coulées volcaniques durant la période séparant les deux levés.

L'objectif pendant MD242-MAYOBS25 est de déterminer si des changements morphologiques significatifs se sont produit dans cette zone depuis le dernier levé réalisé en juillet 2022 (MAYOBS23) et les dernières activités volcaniques identifiés en janvier 2021 lors de MAYOBS17.

Le levé avec le sondeur multifaisceaux 12 kHz de la boîte « VOLCAN » (Figure 49) a été réalisé à 5,3 nœuds selon le protocole de surveillance REVOSIMA. Les profils N-S et E-W ont été réalisés entre le 14 et le 15 septembre 2023. Les données sont en cours de traitement.

c) Levés boîte « RIDE volcanique - essaim sismique distal » (Priorités 3 et 4)

La zone « ride volcanique - essaim distal » est la région située entre les boîtes « CÔTE » et « VOLCAN », au niveau de l'essaim distal (Figure 50), où plusieurs cônes volcaniques alignés ont été imagés sur les données bathymétriques lors de MAYOBS1. L'objectif de ce levé de reconnaissance est de vérifier qu'il n'y a pas eu de changements morphologiques majeurs dans cette zone.

IV.9. Prélèvements CTD/Rosette et analyses géochimiques dans la colonne d'eau

Auteurs : E. Rinnert (responsable des opérations), C. Cathalot J.-P. Donval ((Ifremer REM/GEO-OCEAN), S. Rad (co-responsable des opérations), S. Stephant et G. Braibant (BRGM).

IV.9.1. Avant-propos

La mission MAYOBS25 réalisée sur le N/O Marion Dufresne fait partie intégrante des missions hauturières multidisciplinaires de surveillance du REVOSIMA. Les opérations diverses menées à bord ont pour objectif le monitoring de la crise sismovolcanique qui a débuté fin 2018 au large de Mayotte.

a) Objectifs

- Echantillonner et caractériser les anomalies géochimiques au large de Mayotte. Assurer un suivi avec les missions précédentes afin d'identifier toute évolution temporelle ou spatiale.
- Réaliser les mesures nécessaires à l'inter-comparaison des données entre les gliders évoluant à Mayotte et les techniques de référence.
- Former les personnels du BRGM aux opérations dans le cadre de la sortie progressive de l'Ifremer des actions récurrentes du REVOSIMA.

b) Stratégie d'échantillonnage

La stratégie d'échantillonnage de la colonne d'eau sur la campagne MAYOBS25 reposait sur des prélèvements d'eau par la CTD/Rosette 1) sur des sites déjà identifiés au niveau du Fer à Cheval, 2) sur le nouveau panache acoustique identifié lors des derniers profils réalisés au Sondeur MultiFaisceaux (SMF), 3) sur des zones d'intérêt pour l'inter-comparaison glider / techniques de référence et 4) sur une zone de référence afin de quantifier les anomalies observées.

Au total, 7 déploiements ont été réalisés : ils sont synthétisés dans le Tableau 19 et le Tableau 18. Ils sont rapportés sur la carte en Figure 51.

Les prélèvements d'eau par bathysonde sont effectués durant MS242-MAYOBS25 par la Rosette de l'INSU et la CTD de l'Ifremer.

Equipement	Constructeur	Modèle	Numéro de série	Propriétaire				
Rosette	Sea-Bird			DT-INSU				
Moteur rosette	Sea-Bird			lfremer				
Conductivité	Sea-Bird	SBE4C	4031	lfremer				
Pression	Sea-Bird	SBE9Plus	1089	lfremer				
Température	Sea-Bird	SBE3plus	5555	lfremer				
Turbidité	Seapoint	STM 0-2.5 NTU		lfremer				
Turbidité	Seapoint	STM 0-5 NTU	STM24	Ifremer				
Oxygène	Sea-Bird	SBE43	4831F	Ifremer				
pH/Eh	Idronaut	Ocean Seven 306	0223044	Ifremer				
Altitude	Valport	PSA916D	57068	DT-INSU				

Tableau 18 : Liste des capteurs déployés sur la CTD/rosette.

Tableau 19 : Listing des opérations CTD/rosette réalisées à bord du N/O Marion Dufresne lors de la campagne MAYOBS25. Heure de mise à l'eau et positions du navire lorsque la CTD/Rosette est au fond excepté pour le Yo-Yo dont les positions sont données CTD/rosette en surface en début et fin de transect.

CTD	Date	Heure	Latitude	Longitude	Immersion (m)	Sonde (m)
MAY25-HY01 Glider 1250m	18/09/2023	08:17	12°50.0095	45°23.0702	1246	1267
MAY25-HY02	20/092023	00:03	12°49.480	45°22.937	1465	1502
MAY25-HY03 Gliders 1000/1250m	20/09/2023	02:56	12°49.478	45°22.98	998	1484
MAY25-HY04	21/09/2023	06:50	12°48.182	45°23.407	1739	1754
MAY25-HY05 Yo-Yo	22/09/2023	04:52	12°50.172	45°22.472	Surface	1419
Glider 1250m	22/09/2023	10:51	12°49.0202	45°24.0588	Surface	1484
MAY25-HY06	23/09/2023	13:05	12°48.859	45°22.265	1460	1487
MAY23-HY07	24/09/2023	16:32	13°20.640	13°20.6407	3485	3512

Figure 51 : Carte des localisations des bathysondes MD242-MAYOBS25 sur fond de carte bathymétrique MAYOBS.

IV.9.2. Matériel et méthodes

a) Matériels

Initialement, la CTD/Rosette devait être celle fournie par le parc instrumental de la DT-INSU. Suite à des dysfonctionnements constatés lors de la mission précédente (Amaryllis), l'équipe Ifremer a expédié un jeu complet de CTD et capteurs (hormis la partie châssis de la rosette). La DT-INSU a également expédié un moteur de rechange mais cela s'est révélé inutile suite à l'expertise du moteur incriminé lors de la campagne précédente. Une fois à bord, l'équipe Ifremer a diagnostiqué un défaut de communication entre les modems situés dans la deck-unit ou dans la CTD. Ces composants étant incompatibles avec le matériel de l'Ifremer, l'ensemble a été remplacé. Par mesure de praticité et de sécurité, l'ensemble des capteurs connectés à la CTD ont été remplacés. L'équipement comprenait un altimètre, un capteur de température, conductivité, oxygène dissous et turbidité (x2), ainsi qu'un capteur pH. Les 24 bouteilles de prélèvement étaient des Niskin Standard Internal Spring de General Oceanics d'une contenance de 12L en PVC couplée à un moteur SBE32 connecté à la CTD SBE9Plus.

b) Prélèvements

Durant cette campagne, les prélèvements nécessaires à la réalisation des objectifs ont été réalisés. Pour chaque bouteille Niskin, plusieurs échantillons sont prélevés et conditionnés selon le synopsis (Figure 52) pour les paramètres du Tableau 20. De nombreux prélèvements ont été dupliqués afin de réaliser une inter-comparaison des techniques employées par l'Ifremer et le BRGM.

		IVIAT	06323		
Numéro prélèvement	Composés	Conditionnement	Paramètres	Méthode d'analyse	Lieu de l'analyse et plus court délai
1	Hélium (gaz rares)	Tube en cuivre scellé	Concentration et isotopie	MS	A terre (Univ. de Brême), 6 mois
2	Méthane	Ampoule en verre	Concentration	GC-FID-Purge and trap	A terre (Ifremer), 3 mois
3	Méthane, dihydrogène, dioxyde de carbone	Flacon en verre	Concentration	GC-HID-FID- Head space	A bord
4	Méthane, dioxyde de carbone	Flacon en verre	Isotopie du 13C	GC après extraction à bord. Phase gaz conservée	A terre (Isolab)
5	lons hydronium	Flacon en verre	рН	pH-métrie	A bord, 2 heures
	Essentiellement venant du dioxyde de carbone dissous	Flacon en verre	Alcalinité totale et carbone organique total dissous	Titration potentiométriqu e	A bord, 2 heures
6	Métaux dissous	Flacon PEHD	Concentration et isotopie	ICP-MS	A terre (Ifremer), 4 mois
7	Silicates	Flacon plastique	Concentration	Colorimétrie en flux segmenté	A terre (Ifremer), 2 mois
8	Métaux totaux	Flacon PEHD	Concentration et isotopie	ICP-MS	A terre (Ifremer), 4 mois

Tableau 20 : Paramètres analysés à terre et à bord sur les échantillons prélevés durant la campagne MAYORS25

Figure 52 : Synopsis des opérations de prélèvement réalisées lors de la campagne MAYOBS25.

En raison de l'impossibilité d'analyses à bord du CH₄ par purge and trap, les prélèvements 2 sont additionnés d'azoture de sodium (NaN₃) pour la conservation des échantillons. L'expédition vers la métropole a lieu en aérien avec liaison routière frigorifique en ajoutant des blocs accumulateurs de froid.

Les prélèvements 6 et 7 pour l'analyse des métaux sont additionnés d'acide chlorhydrique de haute pureté (HCl Suprapur) à 2 pour mille. Le prélèvement optionnel a consisté en la filtration de l'intégralité d'une bouteille de 12L sous pression d'azote pour éviter toute oxydation par l'air ambiant. Le filtre de type Sterivex est conservé ainsi qu'un litre de filtrat additionné d'acide Suprapur.

c) Analyses à bord

La titrimétrie a permis de mesurer l'alcalinité totale et d'en déduire le carbone inorganique total dissous (DIC) grâce aux mesures continues du pH. La mesure de pH des échantillons est également réalisée sur chaque échantillon avant la titration.

d) Analyses à terre

La quantification des concentrations en méthane est effectuée à terre à l'issue de la campagne par extraction de type purge and trap puis une détection par chromatographie en phase gaz couplée à un détecteur FID. L'analyse des silicates par la méthode en flux continu segmenté est, dans ce contexte, utilisée pour s'assurer du déclenchement des bouteilles Niskin à la bonne profondeur.

Les résultats des analyses de gaz réalisées à bord seront retraités à terre avant leur diffusion au format quantitatif et validé sous un délai de 3 mois.

IV.9.3. Localisation des sites et stratégies d'échantillonnage

Pendant la campagne MAYOBS25, en dehors des opérations de tests, la CTD/Rosette a été déployée sept fois (Figure 51, Tableau 21): six fois dans le secteur du Fer à Cheval dont une en Yo-Yo et une référence au Sud-Est de la zone d'étude. Le déploiement HY05 sur le Fer à Cheval a été réalisé en mode Yo-Yo dont l'objectif était de suivre des profils simulant un transect que le glider réalise. Sur ce profil, le glider 1250m était mécaniquement associé à la rosette. La Figure 53 présente le profil suivi du Sud-Ouest au Nord-Est traversant les panaches de la zone active B/C puis D. La Figure 54 décrit la stratégie des prélèvements.

Opération	Zone	Mode	Objectifs
HY00	FAC, centre	Profil	Test incluant capteur pH
HY01	FAC, centre	Profil	Caractérisation au point de mouillage du CIAM
HY02	FAC, site J	Profil guidé par SMF	Caractérisation du nouveau site J
HY03	Proche MAHY#2	Profil	Référence
HY04	Volcan, coulée NO	Profil	Suivi temporel (point identique à MAY21-HY01)
HY05	FAC	Yo-Yo	Suivre un transect conjointement au glider avec un focus de la zone 900/1000m
HY06	FAC, sites D	Profil guidé par SMF	Suivi temporel de la composition
HY07	Ouest FAC	Profil	Vérifier l'augmentation des concentrations en pied de pente (
HY08	Couronne	Profil	Suivi temporel de la composition et des concentrations

Tableau 21 : Récapitulatif des sites échantillonnés présentant les zones et les objectifs

Figure 53 : Représentation du profil Yo-Yo Sud-Ouest / Nord-Est de l'opération HY05.

(a) Carte représentant le transect. (b) Représentation sur VGraph en 3 dimensions de la trajectoire de CTD/Rosette associant le glider 1250m.

REVOSIMA PREVISIONNEL HY05 – Profil glider Vitesse navire : 0,7nd entre les points 0m -900 -1000 -1150 -1200 1220n 2 -1400-16003000 0 500 1000 1500 2000 2500 3500

Figure 54 : Schéma de principe de l'opération HY05 réalisée en Yo-Yo.

IV.9.4. <u>Profils *in situ* préliminaires de conductivité, salinité, température, oxygène</u> <u>dissous, turbidité et pH</u>

Figure 55 : Analyses d'alcalinité, DIC et pH pour la bathysonde HY01 (Site C Fer à Cheval) – Glider 1250m

Figure 56 : Analyses d'alcalinité, DIC et pH pour la bathysonde HY02 (centre Fer à cheval, mouillage CIAM)

Figure 57 : Analyses d'alcalinité, DIC et pH pour la bathysonde HY03 (centre Fer à cheval, mouillage CIAM) + gliders 1000 et 1250m

Figure 59 : Analyses d'alcalinité, DIC et pH pour la bathysonde HY05 YOYO avec glider 1250m transect SO – NE FAC

Figure 61 : Analyses d'alcalinité, DIC et pH pour la bathysonde HY07 (Référence)

IV.9.5. Résultats des analyses d'alcalinité, DIC et pH

Figure 55 : Analyses d'alcalinité, DIC et pH pour la b	oathysonde HY01 (Site C Fer à Cheval) – Glider
1250M	
Figure 56 : Analyses d'alcalinité, DIC et pH pour la ba CIAM)	athysonde HYO2 (centre Fer à cheval, mouillage
Figure 57 : Analyses d'alcalinité, DIC et pH pour la ba CIAM) + gliders 1000 et 1250m	athysonde HYO3 (centre Fer à cheval, mouillage
Figure 58 : Analyses d'alcalinité, DIC et pH pour la b	athysonde HY04 (Chenal déversoir du FAC)
Figure 59 : Analyses d'alcalinité, DIC et pH pour la transect SO – NE FAC	a bathysonde HY05 YOYO avec glider 1250m
Figure 60 : Analyses d'alcalinité, DIC et pH pour la b	athysonde HY06 (Site K0)
Figure 61 : Analyses d'alcalinité, DIC et pH pour la b	athysonde HY07 (Référence)

IV.9.6. <u>Récapitulatif des prélèvements CTD-Rosette</u>

Au total, 7 profils CTD-Rosette ont été effectués (Figure 51, Tableau 19). Ils ont permis le prélèvement d'échantillons pour des analyses de gaz dissous dans l'eau. Des mesures ont été effectuées *in situ* durant les profils (pH, turbidité, température, conductivité, oxygène dissous) et à bord sur les échantillons (pH, température, alcalinité, DIC) ainsi que des analyses de gaz (CH₄, CO₂ et H₂). Des prélèvements, envoyés en métropole, nous permettront de réaliser des analyses de gaz rares (He et Ne) et de leurs isotopes, de l'isotope 13 du carbone sur le CO₂ et le CH₄, ainsi que des silicates utilisés comme traceurs de la profondeur des prélèvements.

Les profils HY01, HY03 et HY05 ont permis de coupler les gliders et la CTD-Rosette. Des résultats préliminaires sur les profils de concentrations de CH₄ montrent une cohérence entre les techniques. Un travail de validation des données de gaz dissous dans les prélèvements et l'application d'un algorithme d'étalonnage du capteur de CH₄ déployé sur le glider restent à faire.

Le profil HY01 a permis d'échantillonner un des panaches situés sur le site C ce qui permettra, sauf difficulté technique, de déterminer la composition en gaz dissous dans la colonne d'eau et d'inférer la composition physico-chimique du fluide émis.

Le profil HY04 a permis d'identifier une nouvelle zone d'intérêt en partie externe au nord-est du Fer à Cheval. La morphologie est comparable à un « déversoir » soit une zone de vidange de la masse d'eau du Fer à Cheval. Ce site d'étude pourrait être monitoré dans les années à venir afin de moyenner les concentrations en gaz issues des interactions eau de mer / fluides: cela constituerait une résultante intégratrice de la totalité des émissions, et complètera efficacement les analyses dans des zones plus proximales des panaches, en particulier dans la perspective d'évaluation potentielle de l'impact environnemental de ces émissions.

Comme la stratégie le prévoit, le nouveau site actif d'émission de fluides K₀ a été investigué à l'occasion du profil HY06. Cependant, lors du déploiement, le panache n'a pas été détecté sur les données SMF en temps réel. Les concentrations mesurées sont donc à interpréter avec précaution, car elles peuvent très certainement être influencées par les panaches voisins plus intenses, situés aux sites H et I.

A noter que des problèmes techniques intervenus sur le câble électro-porteur et sur la CTD-Rosette mise à disposition pour cette campagne ont entraîné un retard de l'acquisition, avec 3 profils test avant le premier profil effectif HY01. Le programme prévu a toutefois été réalisé en effectuant de nombreux tests en temps masqué pendant d'autres opérations. Cela a mobilisé davantage les équipes pour trouver des solutions viables. Pour les prochaines opérations, il serait souhaitable de discuter de la pertinence, du coût et de la faisabilité d'avoir à bord une seconde CTD-rosette ou des éléments en spare et/ou techniciens associés.

Afin d'accomplir le programme de transfert prévu de l'Ifremer vers le BRGM pour l'action géochimie de la colonne d'eau, la formation s'est basée sur l'observation et la pratique concernant le déploiement et les prélèvements des échantillons. Le dernier profil HY07 a été réalisé en autonomie par l'équipe du BRGM. L'inter-comparaison des données qui seront acquises à terre ultérieurement constitue la dernière phase du transfert prévue en 2023.

Ces opérations ont été supervisées et réalisées par E. Rinnert (responsable des opérations), C. Cathalot J.-P. Donval (Ifremer), S. Rad (co-responsable des opérations), S. Stephant et G. Braibant (BRGM). Les analyses des données récupérées seront poursuivies ultérieurement à terre.

IV.9.7. <u>Notes sur le transfert de compétences Ifremer-BRGM pour l'échantillonnage</u> <u>à bord</u>

Le transfert de compétences entre les géochimistes de l'IFREMER vers les géochimistes du BRGM avait pour objectifs de:

- 1) Reprendre le cortège de mesures et d'analyses assurées par l'équipe géochimie de l'Ifremer, en mer et au laboratoire à terre.
- 2) Apprendre à utiliser la CTD-Rosette et toute la méthodologie associée pour son déploiement en mer.

L'équipe BRGM a dupliqué environ ¼ des prélèvements effectués pour inter-comparaison des mesures à bord et en laboratoire. Pour chaque profil CTD-Rosette (7 au total), 14 à 24 bouteilles ont été prélevées. Sur chacun, au moins 4 échantillons d'eau de mer ont été prélevés pour chaque bouteilles (anions, cations et isotopes) avec les protocoles d'échantillonnages adaptés aux analyses envisagées. Des prélèvements d'eaux brutes destinés à la mesure des gaz dissous ont été effectués sur des ampoules en verre (fait à façon) et dans des flacons en verre. Un tableau synthétique des analyses réalisées est fourni Annexe 6 pour un total de 168 analyses. La synthèse des mesures acquises à bord est présentée en Annexe 7 et les mesures d'alcalinités en Annexe 8. A noter que les résultats présentés en annexes sont provisoires et seront retraités à partir des analyses réalisés dans les laboratoires du BRGM.

IV.10. Opération et mesures des planeurs sous-marins (Glider)

Auteurs : A. Heumann et M. Dufosse (responsable des opérations) de la société Alseamar.

Dans l'objectif de renforcer le réseau d'observation en mer du REVOSIMA, un planeur (drône) sousmarin autonome de type planeur SeaExplorer est à Mayotte depuis le 17 septembre 2021. Ce planeur, appelé aussi « Glider », est mobilisé en mer au large de Mayotte, à 10-15 km des côtes Est, sur la zone de l'essaim sismique proximal actif. Le SeaExplorer, entièrement fabriqué en France et seule plateforme de ce type de conception européenne, est mis en œuvre par la société Alseamar, filiale du groupe Alcen⁸. Cette prestation fait l'objet d'un marché conclu entre l'Ifremer et l'entreprise. Capable de se déplacer selon une trajectoire prédéfinie avec une précision de l'ordre de la centaine de mètres, ce type de planeur collecte *via* des capteurs océanographiques des données physiques, chimiques, biologiques et/ou acoustiques. Il transmet un sous-échantillonnage de certaines de ces données et réceptionne de nouvelles instructions de navigation dès qu'il rejoint la surface, ceci plusieurs fois par jour.

Le SeaExplorer déployé au large de Mayotte est équipé de capteurs miniaturisés, permettant de mesurer à haute-résolution spatiale et temporelle, et de façon quasi-continue, les concentrations en gaz dissous (CH₄, CO₂, O₂), les propriétés physiques (température, salinité, courant) et acoustique de l'eau. Des algorithmes spécifiques de traitement de données ont été développés par Alseamar, pour la plupart adaptés de méthodes publiées et répondant aux standards internationaux.

IV.10.1. <u>Descriptif des opérations</u>

Durant la campagne en mer MD242-MAYOBS25, des manœuvres d'inter-comparaison des données ont pu être réalisées. Pour cela, deux Gliders sont utilisés: un planeur classique ayant pour limite de profondeur 1000 mètres et un autre prototype de planeur pouvant aller jusqu'à 1250 mètres, spécialement adapté pour la mission à Mayotte.

Après avoir récupéré directement en mer les deux engins grâce aux moyens du navire océanographique (workboat), ces moyens de mesures ont été couplés à trois mesures de CTD-rosette (HY01, HY03 et HY05; Figure 51) grâce à un socle spécialement réfléchi et fabriqué pour l'occasion (Figure 62). Le but de ces mesures a été de comparer les mesures des capteurs autonomes du planeur SeaExplorer aux mesures de références des capteurs installés sur la bathysonde CTD-Rosette ainsi qu'aux mesures de gaz dissous obtenus en laboratoires grâce aux échantillons collectés en même temps. Les planeurs, installés capteurs vers le bas afin de se trouver au même niveau que les instruments installés sur la bathysonde, ont ainsi pu échantillonner entre-autres les valeurs de CO₂ et CH₄ dissous dans la zone du Fer à Cheval où ont été réalisées les trois manœuvres (profils HY02, HY03 et HY05).

Les manœuvres effectuées conjointement aux bathysondes lors de la campagne MD242-MAYOBS25 se sont déroulées sans problème notable, ce qui est en soit une première réussite. Le

⁸ www.alseamar-alcen.com

harnachement des planeurs sur la bathysonde était robuste, et a permis d'effectuer ces mesures sans risque de perte des engins ou de la bathysonde.

Les données échantillonnées par le planeur sous-marin étant disponibles dès retour des appareils sur le navire, une première analyse a pu être effectuée. Les données permettant l'inter-comparaison des valeurs de gaz dissous au moyen des techniques de référence obtenus via les échantillons bouteilles n'étant pas encore disponibles, ces points ne seront pas abordés.

Figure 62 : Photos des deux planeurs (gliders, 1000m et 1250m) installés sur la CTD-Rosette

IV.10.2. <u>Analyses préliminaires</u>

Les données préliminaires des planeurs mettent en lumière plusieurs points :

Les données ADCP ont permis de détecter avec acuité la présence des panaches de gouttelettes émis par les sites actifs du Fer à Cheval. La comparaison avec les données SMF du troisième profil sera possible une fois les coordonnées de celui-ci affinées.

Les capteurs de gaz dissous ont, en première analyse, détecté des concentrations de gaz dissous en accord avec les concentrations attendues dans le milieu. Le travail plus poussé d'inter-comparaison des valeurs sera réalisé une fois que les données de concentrations de CH₄ et CO₂ seront disponibles grâce au travail de l'IFREMER.

Cette première manœuvre conjointe a permis de mettre encore une fois en lumière la synergie entre les différentes méthodes de mesures sur la zone active de Mayotte.

Ces opérations ont été supervisées et réalisées par M. Dufosse (responsable des opérations) et A. Heumann (Alseamar). Les données récupérées seront analysées plus finement et achevées après la campagne.

IV.11. Les prélèvements des roches : opération dragages

Auteurs : J-C. Komorowski (responsable des opérations, IPGP), P. Verdurme, K. Brückel (UCA) et M. Frey (Université Paris Saclay).

IV.11.1. <u>Résumé</u>

Les 3 dragages réalisés lors de la campagne MD242-MAYOBS25 (Figure 63) ont permis d'échantillonner avec succès trois coulées phonolitiques localisées dans la zone du Fer à Cheval caractéristiques d'une activité effusive. La zone du Fer à Cheval est la région qui a été la plus active de la chaîne volcanique et qui a produit une grande diversité de dynamismes éruptifs. Ces derniers sont caractérisés par la prédominance d'éruptions explosives, à partir d'une multitude de petits édifices, mais aussi par l'émission de coulées phonolitiques, de faible à gros volume. Les magmas phonolitiques, riches en gaz, sont des magmas différenciés ayant séjourné et évolué pendant de longues périodes dans la lithosphère avant de remonter rapidement vers la surface. Ces échantillons ont donc une importance significative car ils permettront de mieux contraindre l'origine, la teneur en gaz, la composition chimique, la vitesse de remontée mais aussi l'âge de ces coulées.

Figure 63 : Localisation des trois dragues obtenues lors de la campagne MD242-MAYOSB25.

IV.11.2. <u>Stratégie d'exploration</u>

Les opérations de dragues à roche avaient pour objectif d'explorer et de prélever des roches sur plusieurs coulées phonolitiques proches du Fer à Cheval. Les prélèvements attendus devraient permettre de caractériser la nature et l'âge du volcanisme de type effusif de la zone étudiée. Les choix se sont concentrés sur cette zone à cause de l'installation future du réseau MARMOR et de potentiels DCP. Les informations sur la profondeur d'origine des magmas, leur teneur en gaz, les temporalités de déstabilisation des zones de stockage de magma, la rhéologie et les vitesses de remontée sont fondamentales pour contraindre les scénarios plausibles de future réactivation éruptive mais aussi les scénarios de réactivation susceptibles d'être enregistrés/détectés par les réseaux de surveillance. Ces informations contribuent à l'alerte scientifique montante vers les autorités en charge de la réponse de sécurité civile en cas de phénomènes dangereux.

Trois zones cibles ont été identifiées, au préalable lors de discussions au sein du GT Pétrologie du REVOSIMA, et classées par priorité d'intérêt et en fonctions de diverses contraintes. :

- La zone du Fer à Cheval est caractérisée par une structure en forme de fer à cheval liée à une déstabilisation de flanc, plusieurs larges coulées phonolitiques au sud (dragues DR07 et DR13 réalisées lors de MAYOBS 2 et MAYOBS 15) et de nombreux cônes volcaniques (de type laviques ou pyroclastiques dragues DR29, DR33, DR32 réalisées lors de MAYOBS 23) dispersés sur l'ensemble de la zone. Une coulée phonolitique située au Sud du Fer à Cheval a été échantillonnée avec la drague DR36 (Figure 64). La drague DR37 échantillonne une seconde coulée, de direction NW, située au Nord du Fer à Cheval. La drague DR38, quant à elle, a permis d'échantillonner une troisième coulée ou dôme de lave sur le flanc SE du Fer à Cheval.
- Une quatrième drague (DR39, Figure 64) était positionnée sur le flanc S du cône pyroclastique du Fer à Cheval et sur un petit évent volcanique ayant produit des coulées de laves tardives au sommet du Fer à Cheval. Malheureusement, suite à un problème mécanique sur le treuil au moment de la pesée à 100 m de la surface, la drague a dû être annulée sans pouvoir être réalisée dans de bonnes conditions compte tenu des dernières opérations obligatoires à réaliser en toute fin de campagne.

IV.11.3. <u>Méthodes d'échantillonnage et d'analyse</u>

Nous avons mis tout en œuvre pour avoir le trait de dragage le plus court sur le fond tout en assurant de récolter plusieurs centaines de kilos de roches (min : 110m ; max : 140m ; moyenne : 123m ; écart type : 15m, voir Tableau 23). Les dragages ont été réalisés sans balise acoustique BUC. Un exemple des aspects généraux de la stratégie de dragage est décrit en annexe avec un exemple de fiche prévisionnelle de dragage et de fiche opérationnelle de dragage réalisées pour chaque drague. Les détails de toute la procédure se trouvent dans un protocole de dragage que nous avons commencé à rédiger sur les différentes phases du dragage.

Une fois sur le pont, l'ensemble des échantillons ont été mis en caisse afin d'être montés sur la DZ où tout le travail de tri se fait.

Figure 64 : Localisation de la drague DR39 non réalisée (étoile violette) suite à une panne sur le treuil grand fond. Les dragues réalisées DR36-DR37-DR38 (cercles rouges) sont indiquées.

Un premier tri rapide a été réalisé sur le pont dans le but de :

- Séparer en sélectionnant les typologies les plus représentatives et les plus atypiques : types communs et tout ce qui est différent et/ou très particulier, et selon des caractéristiques telles que la présence des produits laviques et/ou pyroclastiques. Dans le cas des produits laviques : texture de la lave (pillows, cordée, lobes, prisme, dalle), présence de croûte vitreuse, cristaux, enclaves, dépôts ferrugineux, traces sublimés gaz/hydrothermaux, variation de la vésicularité (taille, forme, et quantité vésicules), fragments avec traces d'organismes biologiques.
- Faire des photos avec échelle de chaque type, lithologie et des fragments les plus beaux
- Identifier les échantillons avec des enclaves etc ...

Puis un second tri a été réalisé afin de :

- Passer en revue tous les fragments et valider ce qui ne sera pas gardé en caisses
- Affiner le tri selon les morphologies et compléter les catégories

- Rechercher les enclaves (si nécessaire en sciant et cassant les échantillons qui ne sont pas sélectionnés pour être conservés)
- Déterminer les échantillons les plus propices pour la datation
- Scier certains échantillons des différents types afin d'affiner l'observation des textures, de révéler la présence de minéraux, et enclaves, et de préparer les échantillons pour l'analyse en roche totale à Paris et les lames minces à l'UCA
- Décrire finement les divers types d'échantillons à l'aide d'une loupe et éventuellement d'une loupe binoculaire.
- Consigner les descriptions dans le grand carnet de dragues, log book

Les photos ont été prises à l'échelle de la drague, de l'échantillon total et pour chaque type, avec une étiquette présentant l'échelle et le numéro correspondant de l'échantillon. Dans chacun des lots, les échantillons sont mis individuellement dans des sacs qui sont numérotés (MAYOBS25-DR36-01, MAYOBS25-DR36-02, et ainsi de suite). Une étiquette protégée dans un petit sac en plastique est également insérée dans le sac à échantillon. Ce numéro sera le numéro de référence de l'échantillon. Il lui a été adjoint un numéro dans la nomenclature internationale (code IGSN), avec une étiquette code barre pré-imprimée avant la campagne, consigné dans la base de données Excel du CNRS.

Tout comme lors des campagnes MAYOBS 15, GEOFLAMME, MAYOBS 21 et MAYOBS 23, nous avons décidé de rejeter durant le transit les reliquats des échantillons non gardés en un site unique hors zone d'étude (Figure 65, Tableau 22), dans la ZEE Française afin de ne pas contaminer la zone d'étude et que la localisation de ce dépôt soit répertoriée dans le cas de futures dragues dans cette zone. La position du site varie de manière systématique et prévisible du fait des acquisitions de données lors de transit valorisés successifs.

IV.11.4. <u>Résultats des opérations de dragage</u>

Lors de cette mission MAYOBS 25, trois dragues ont été réalisées sur la chaîne sous-marine à l'Est de Mayotte (Figure 64) et principalement dans la zone du Fer à Cheval. La drague sans nom sur la Figure 64 (étoile violette) située sur le cône du Fer à Cheval a débuté mais a été arrêtée et annulée en raison d'un problème mécanique sur le treuil grand fond intervenu lors de la pesée à 100 m sous la surface. Après 4h de tentatives de réparation, la drague a été annulée. Elle n'a pas pu être reprogrammée pendant la campagne faute de temps compte tenu de l'urgence de terminer de déployer les capteurs restants avant la fin de la campagne le lundi 25 septembre à 8h00 locale.

Figure 65 : Zone de rejet de l'excédent des roches des dragues

NumPrel	MAY25-ROCHES
Campagne	MD242 MAYOBS25
PPxx (point position souhaitée du début de rejet)	P9
DateDeb rejet à l'eau	27/09/2023
HeureDeb TU rejet à l'eau	12:54
DateFin rejet à bord	27/09/2023
HeureFin TU rejet à bord	13:14
Durée totale	0:20
Lat_Debut_rejet_roches_DM.dd	18
Lat_Debut_rejet_roches_DM.dd	7,8888
Lon_Debut_rejet_roches_DM.dd	54
Lon_Debut_rejet_roches_DM.dd	7,8138
Lat_Fin_rejet_roches_DM.dd	18
Lat_Fin_rejet_roches_DM.dd	9,38082
Lon_Fin_rejet_roches_DM.dd	54
Lon_Fin_rejet_roches_DM.dd	8,40966
Lat_Debut_rejet_roches_D.dd	-18,131480
Lon_Debut_rejet_roches_D.dd	54,130230
Lat_Fin_rejet_roches_D.dd	-18,156347
Lon_Fin_rejet_roches_D.dd	54,140161
Prof_debut_rejet m	4612
Prot_fin_rejet m	4480 1.6 Nm 2001 m
irait de rejet autonom	Rejet reshes
Uutii	point de rejet anique de wat
	le reliquat des dragues mais
	variant légérèment en
Site	position en fonction de
	l'acquisition de la
	patnymethe lors des transits
	valorises el passages succesife
Comment	ZEE La Réunion
Poids (kg)	1586

Tableau 22 : Métadonnées pour la zone de rejet del'excédent des roches des dragues.

Figure 66 : Localisation des dragues à roches (DR36-DR38 en rouge) réalisées lors de la campagne MD242-MAYOBS 25 et des dragues (étoiles jaunes) réalisées lors des campagnes précédentes MAYOBS01 à MAYOBS23, GEOFLAMME.

a) Drague DR36

La drague DR36, réalisée le 20 septembre 2023, sur une coulée phonolitique localisée au Sud du Fer à Cheval, à plus de 1500m de profondeur (Figure 66, Figure 67), a permis de collecter un ensemble très homogène et présentant 3 textures distinctes. Les fragments obtenus ne présentent pas de trace d'oxydation et seulement quelques traces de sédiments en surface, ce qui suggère une coulée fraîche qui pourrait être relativement jeune. Les nombreuses vésicules allongées présentes dans la roche suggèrent une lave visqueuse lors de l'emplacement de la coulée. Des enclaves ont été retrouvés dans certains fragments. Une est de type sédimentaire et les autres sont probablement d'origine mantellique. Des pieds de coraux sont également présents sur certains échantillons.

Figure 67 : Drague DR36, Fragments de coulée phonolitique présentant les trois textures : croûte vitreuse, couche vitreuse massive et couche extrêmement foliée.

Fiche descriptive de la drague DR36 (MD242-MAYOBS25)

MAYOBS 25 Drague DR36

Date : 20/09/2023

Description du site : Coulée de lave importante récente, émise au sud de la base du flanc Sud du Fer à Cheval (3ème grosse coulée de lave dans cette zone)

	Position de la drague au fond				
	Latitude	Longitude	Profondeur (m)		
Début (drague au fond)	-12,868512	45,378893	1527		
Fin (drague décollée)	-12,867077	45,374987	1514		
Trait de drague au fond			110		
Durée	3:37				

Poids approximatif de roches collectées : 500 kg (pesée 50m fond 510 kg ; pesée 100m surface 540 kg)

Principales lithologies

Conditionnement des échantillons

Echantillon	Archives	IPGP	Orsay	UCA
MAY25_DR36_01	x			х
MAY25_DR36_02	x	х		
MAY25_DR36_02a	x		x	xx
MAY25_DR36_02b		xx		
MAY25_DR36_03	x			
MAY25_DR36_03a		xx		
MAY25_DR36_03b	x			
MAY25_DR36_04	x			
MAY25_DR36_04a	x			
MAY25_DR36_04b	x			
MAY25_DR36_04c	x			
MAY25_DR36_05	x	х	x	х
MAY25_DR36_05a		х		
MAY25_DR36_05b				х
MAY25_DR36_05b1				х
MAY25_DR36_05b2				х
MAY25_DR36_05c	x			and P
MAY25_DR36_05c1				х
MAY25_DR36_05c2				х
MAY25_DR36_05c3		x		10.5
MAY25_DR36_06	Х			

MAY25_DR36_07	x
MAY25_DR36_08a	x
MAY25_DR36_08b	x
MAY25_DR36_08b1	x

Liste des Échantillons MAYOBS25-DR36

Informations générales

DR36-01 : (Texture 1 – Croûte vitreuse) - UCA, Archive

- 7 x 5 x 5 cm
- 6 x 7 x 4 cm

- 9 x 8 x 5 cm
- 7 x 9 x 8 cm

Fragments denses, vitreux, aspect frais et de couleur noire avec des fractures conchoïdales liées au trempage (rapide quenching lors du contact de l'eau) donnant un aspect croûte de pain. Quelques traces de sédiments sur la surface. De rares vésicules sont visibles. Elles sont allongées (1 mm x 0.5 mm). Les fractures semblent être concentrées sur la surface et diminue avec la profondeur. Ces vésicules sont très régulières (2 mm x 0.5 mm) et sont subparallèle à la surface. Quelques vésicules sont sub-sphériques (4 mm x 2 mm). Mais généralement elles restent aplaties. Ces fragments font penser à des obsidiennes micro fracturées.

REVOSIMA

DR36-02 : (Texture 1 + 2 – Croûte vitreuse et moins vitreuse commençant à avoir des vésicules) - UCA, Archive, IPGP, Orsay

- 6.8 x 6 x 9 cm
- 9 x 14 x 12.5 cm
- 8 x 10 x 8.1 cm
- 7.5 x 8 x 19 cm

- 7.2 x 7.6 x 9 cm
- 9.5 x 13 x 11.6 cm
- 14.5 x 13 x 12.8 cm

Croûte en surface ayant une épaisseur variant de 3 à 3.5 cm. Cette croûte peut être séparée en 2 ; avec une croûte type DR36_01 et une couche intérieure type DR36_03 (décrite ci-dessous). Le dessus de cette croûte a un aspect « foliée » en surface. De manière générale, les fragments sont massifs. En revanche, la croûte « inférieure » possède un peu plus de vésicules (quoiqu'elles restent rares). Ces vésicules restent allongées et aplaties (0.3 x 0.1 cm) ayant une orientation subparallèle à la surface. Sur l'un des fragments et sur sa face inférieure, on peut mesurer une vésicule de longueur 2.7 cm. De manière générale, les vésicules millimétriques à centimétriques sur la longueur. La surface possède une apparence en croûte de pain avec des fractures conchoïdales. Les vésicules sub-sphériques (0.3 x 0.2 cm). Les vésicules sont plus présentes vers l'intérieur.

DR36-03 : (Texture 2 – Partie interne peu vitreuse et peu vésiculée) - IPGP, Archive

• 9 x 5.4 x 6 cm

5.5 x 9 x 7.7 cm

• 6.5 x 8.1 x 7 cm

Ces fragments représentent la partie interne « peu » vitreuse arrivant juste après la croûte. Ces fragments restent massifs avec pas de cristaux visibles à l'œil nu. Quelques fractures arrivent jusqu'à là. Les vésicules sont sub-sphériques à allongées ($1.1 \times 0.4 \text{ cm}$, $0.3 \times 0.5 \text{ cm}$, $1.1 \times 0.5 \text{ cm}$, $0.2 \times 0.6 \text{ cm}$, $0.5 \times 0.2 \text{ cm}$). Les vésicules allongées ont une taille plus importante que les vésicules subsphériques qui elles sont de taille millimétrique. Les vésicules restent subparallèles à la surface.

DR36-04 : (Texture 3 – Partie interne foliée et vésiculée) - Archive

• 12.5 x 12 x 2 cm

- 12 x 20 x 10 cm
- 6.5 x 10.5 x 10 cm

Ces fragments correspondent à la partie interne non vitreuse. Ils restent denses malgré la présence accrue de vésicules allongées qui sont toujours subparallèles à la surface. La direction préférentielle des vésicules donne l'aspect folié à cette couche interne. La taille des vésicules (0.5 x 0.1 cm, 0.4 x 0.1 cm, 2 x 0.1 cm, 4 x 0.9 cm, 2.1 x 0.2 cm). Quelques grosses cavités (4.2 x 1.2 x 2 cm) sont visibles. Quelques traces de sédiments sont visibles à l'intérieur des vésicules. Ces dernières sont toujours allongées suggérant une lave visqueuse lors de l'emplacement de la coulée de lave. La « densité » des vésicules allongées augmentent avec la profondeur. Pas de cristaux visibles à l'œil nu.

DR36-05 : (Texture 1 + 2 + 3 – Fragments représentant toutes les couches) - IPGP, UCA, Archive

- 12.2 x 15.5 x 12.5 cm
- 9 x 8 x 5 cm
- 9 x 15 x 9.2 cm
- 17 x 23 x 6 cm
- 7 x 13.5 x 10 cm
- 10 x 17 x 9.8 cm
- 10 x 11.8 x 17 cm
- 25 x 15.5 x 19 cm
- 11.5 x 10.2 x 9.7 cm
- 8.8 x 16 x 14 cm

Fragments présentant les 3 textures (DR36_01, DR36_03 et DR36_04) décrites ci-dessus. La couche type DR36_01 reste vitreuse avec des fractures conchoïdales donnant un aspect en croûte de pain à la surface. Son épaisseur varie de 2.5 à 3 cm. Rares vésicules et de couleur noire. La couche venant juste après (DR36_03) possède un peu plus de vésicules qui sont majoritairement allongées et de taille millimétriques à centimétriques (2.5 x 0.5 cm, 0.4 x 0.1 cm). On peut observer une augmentation de la densité des vésicules avec la profondeur jusqu'à aller former la 3^{ème} couche (DR36_04). Cette densité permet d'obtenir un aspect folié avec une orientation préférentielle subparallèle à la surface. C'est dans un de ces fragments que plusieurs enclaves ont été trouvées (décrite dans la catégorie DR36_08).

DR36-06 : Pieds de coraux sur fragments - Archive

• 14.5 x 7 x 5.1 cm • 10 x 10.2 x 7 cm Fragments type (DR36_05) présentant des pieds de coraux sur leur surface

DR36-07 : Sanidine ? – UCA

• 4 - 7 cm de longueur • 1 - 2 cm de largeur

Ces cristaux sont majoritairement dans DR36_03 (Texture 2) ou DR36_01 (Texture 1). Elles ont une forme rectangulaire et sont de couleur blanche. Certaines présentent des clivages dans une direction. Leur aspect est plutôt vitreux.

DR36-08 : Enclaves - UCA

• DR36_08a

Enclave sédimentaire (7 x 2 cm) ayant une forme de lentille et étant de couleur beige. Elle est composée de fines particules (sable / argile) prise dans une croûte vitreuse type DR36_01.

- 4.5 4 2.5 cm de longueur
- 1.5 2 cm de largeur

De couleur verte et probablement composées d'Olivine, clinopyroxènes, orthopyroxènes (?). Elles sont plutôt de forme ovale. Une texture fluidale peut être observée sur l'une. Les cristaux contenus dans les enclaves vertes ont une taille maximale de 1 mm. On les observe dans les textures 2 et 3.

DR36_08b1

Matrice entourant les enclaves de type DR36_08b (mantellique)

DR36-by : Baby drague - UCA

Sable avec des microfragments de couleur noir (hyaloclastite ?). Présence de ponces fibreuses type Fer à Cheval de taille centimétrique.

PREPA MAYOBS25

Version du: 20/09/2023 (17:29:00) Drague DR36 (P1) - PP54b

Fiche prévisionnelle

<u>Géologie:</u> Coulée de lave sud du cône du Fer à Cheval <u>Popping rocks:</u> NON - <u>Coraux possible:</u> NON

Position provisoire avant profil drague précis (T0-1H):

Site	Temps	Latitude	Longitude	РНІ	G	Bathy (m)	Courant surface CAP
PP54b -DR36 - début travail drague	début	-12,8697	45,380925	S12'52.150'	E45°22.855'	1599	290
F-DR36 drague à faire décoller	fin	-12,86855	-45,379193	S12'52.113'	E45°22.752'	1519	290

Opérations:

arrivée depuis PP52 garder EM122 + ACCP + EK80 remontée magnétomètre dragage sans BUC

Matériel	Stratégie générale de dragage
Type de drague : ronde + filet	Pas de BUC
Baby drague	CAP navire 290 face au vent et/ou courant
Gréement : 180 m	Profondeur théorique: 1599 m
Type de câble porteur : acier	Filer entre 150 et 300m câble en plus
Montage sur treuil : hydrophone +	toucher théorique pour incliner
drague	correctement câble
Câble martyr, seuil : 16 tonnes	Ne pas dépasser une dizaine de croches
	Stopper navire bien avant décoller drague
Logiciel VGRAPH3D	
Bathy: MAYOBS1_30m + Mayobs17 7m + AUV MAYOBS 1m	Longueur trait drague sol ciblée : 200 m

MAYOBS1_30m_DEPTH.tif

Valeur Elevée : -90

Faible : -2500

Figure 68 : Fiche de prépapration de la dragueDR36

OPERATION MAYOBS25

Mercredi 20/09 Drague DR36 (P1) - PP54b

<u>Géologie:</u> Coulée de lave sud du cône du Fer à Cheval <u>Popping rocks:</u> NON - <u>Coraux possible:</u> NON

Position au fond provisoire avant retour profil drague précis (T0-1H):

Site	Temps	Latitude	Longitude	PHI	G	Bathy (m)	Courant surface CAP
PP54b-DR36 - début travail drague	début	-12,8697	45,380925	S12°52.150'	E45°22.855'	1599	290
F-DR36 drague à faire décoller	fin	-12,86855	-45,37919	\$12°52.113'	E45*22.752'	1519	290

Opérations:

arrivée depuis PP53 garder EM122 et ADCP en marche remontée magnétomètre dragage sans BUC

Matériel	Stratégie générale de dragage
Type de drague : ronde + filet	Pas de BUC
Baby drague	CAP navire 290 face au vent / courant
Gréement : 180 m	Pesée drague à -100m descente + montée
Type de câble porteur : acier	Profondeur théorique : 1599 m
Câble martyr, seuil : 16 tonnes	Longueur filée min : 1599-180 = 1419 m
Montage sur treuil : hydrophone + drague	Toucher théorique : 1419 m
Logiciel VGRPAH et VGRAPH3D	Stop à 100m du fond = 1319 m filé
	Longueur filée en plus travail : 150 – 200m
Bathy: MAYOBS1_30m + Mayobs17 7m + AUV MAYOBS 1m	Longueur drague au sol ciblée : 200 m
	Longueur totale filée : 1419+200=1619m
	Position navire GPS : 80 m devant la drague

Isocontours 10 m MAYOBS1_30m_DEPTH.tif Valeur Elevée : -1400 Faible : -2000

Figure 69 : Fiche d'opération de la drague DR36

b) Drague DR37

La drague DR37 a été réalisée le 21 septembre 2023, sur une coulée phonolithique, de direction, située au Nord du cône du Fer à Cheval (Figure 66, Figure 70). Les fragments récupérés sont de nature phonolitique et homogènes et présentent des textures très similaires à celles trouvées dans la drague DR36. La majorité des fragments sont recouverts d'une patine de couleur rougeâtre à ocre soulignant une oxydation et potentiellement un âge plus ancien que la coulée échantillonnée via DR36. Cette patine est présente sur toutes les faces suggérant la reprise de blocs dans la coulée lors de son avancée et de la formation des levées latérales et frontales. Les nombreuses vésicules allongées présentes indiquent une lave assez visqueuse lors de l'emplacement. Du dépôt blanc a été observé sur certains fragments suggérant une circulation de fluide hydrothermal. Deux types d'enclaves ont été trouvées sur certains fragments : mantellique ou roche intrusive ignée et type inconnu.

Figure 70 : Drague DR37, Fragments de coulée phonolitique présentant les trois textures : croûte vitreuse, couche vitreuse massive et couche extrêmement foliée qui génère le son caractéristique des phonolites d'où elles tirent leur appellation.

Fiche descriptive de la drague DR37 (MD242-MAYOBS25)

MAYOBS 25 Drague DR37 – PP59_D

Date : 22/09/2023

Description du site : Coulée de lave phonolitique (GFL-779-10-04) émise sur le flanc NE d'un cône pyroclastique basanitique (DR16) qui ferme le FAC au Nord

	Posit	tion de la drague au fo	ond
	Latitude	Longitude	Profondeur (m)
Début (drague au fond)	-12,812978	45,378835	1596
Fin (drague décollée)	-12,815702	45,374830	1567
Trait de drague au fond			120
Durée	3 :16		

Poids approximatif de roches collectées : 700 kg (pesée 50m fond 690 kg ; pesée 100m surface 670 kg)

Principales lithologies

Conditionnement des échantillons

Echantillon	Archives	IPGP	Orsay	UCA
DR37_01	Х			Х
DR37_02	Х		X	
DR37_02a	Х			
DR37_02a1				Х
DR37_02b		Х		
DR37_02b1		Х		
DR37_02b2		Х		
DR37_02b3		Х		
DR37_02c				Х
DR37_02c1				Х
DR37_03	Х	Х		
DR37_03a	Х			
DR37_03a1				Х
DR37_03b	Х			
DR37_03b1				Х
DR37_04	Х			
DR37_04a	Х			
DR37_04a1				Х
DR37_04b	Х			
DR37_04b1				Х
DR37_04b2				Х
DR37_05	Х			
DR37_06a				Х
DR37_06b				Х
DR37_07a				Х
DR37_07b				Х

				REVOSIMA
4			 	
	DR37_by	Х		

Liste des Échantillons MAYOBS25-DR37

Informations générales

DR37-01 : (Archive, UCA) – Croûte vitreuse (Texture 1)

- 5.4 x 3.2 x 2.8 cm
- 4.5 x 7 x 4 cm
- 4 x 6.7 x 5.2 cm

- 3.4 x 5 x 2.7 cm
- . .
- 4.9 x 6.5 x 1.6 cm
- 5 x 4.6 x 2.5 cm

Fragments de la croûte vitreuse de couleur noire. La croûte vitreuse est massive avec des fractures conchoïdales donnant une aspect croûte de pain (Similaire à DR36_01). De rares vésicules allongées sont visibles (0.4 x 0.1 cm, 1 x 0.2 cm), majoritairement de taille millimétrique. La direction des vésicules est subparallèle à la surface.

DR37-02: (Archive, UCA, Orsay, IPGP) - Croûte vitreuse et moins vitreuse (Texture 1 + Texture 2)

- 6 x 7.5 x 6.1 cm
- 14.2 x 10.4 x 15 cm
- 6.5 x 1.1 x 11 cm

- 5.9 x 11 x 9 cm
- 8.5 x 13 x 8 cm
- 5.5 x 21.5 x 16.6 cm .

Fragments présentant 2 textures plus ou moins mélangées. La première est du type DR37_01 (croûte vitreuse) ayant une épaisseur variant de 0.8 et 2.5 cm. Sur certaines surfaces, la texture présente 2 types de morphologies : croûte de pain et coulée en cordée.

La seconde texture est massive, noire et moins vitreuse. Elle est localisée majoritairement endessous de la croûte vitreuse type DR37_01. Cependant, elle peut aussi se retrouver sur les côtés et/ou dessus suggérant une reprise de blocs lors de l'emplacement de la coulée. De rares vésicules sont visibles. Elles sont allongées et subparallèles à la surface (0.5 x 0.1 cm, 0.8 x 0.2 cm). Quelques grosses cavités (1.1 x 0.4 cm) sont aussi visibles. Beaucoup de fragments sont observés avec une patine de couleur rougeâtre à ocre soulignant une oxydation. Cette patine est retrouvée sur toutes les faces appuyant la reprise de blocs dans la coulée lors de son avancée.

DR37-03 : (Archive, UCA, IPGP) – Foliation (Texture 3)

• 13.5 x 4.6 x 4 cm • 22.5 x 5.2 x 6.4 cm • 6.6 x 7 x 5.4 cm

Fragments correspondant à la 3^{ème} texture : couche extrêmement foliée. La foliation est reliée à l'allongement des vésicules dans une direction préférentielle subparallèle à la surface. Trois tailles de vésicules peuvent être observées :

- > Millimétrique (< 0.1 cm) alignée dans un plan et soulignant la foliation
- Millimétrique à centimétrique (0.5 à 1.2 cm de long et 0.1 à 0.3 cm de largeur) suivant majoritairement le plan de foliation
- Cavités centimétriques (> 2 cm de largeur, 3-5 cm de longueur)

Quelques fragments sont oxydés sur toutes les faces (patine rougeâtre à ocre). Cette couche n'est absolument pas vitreuse.

Une biotite a été retrouvée sur un de ces fragments (1.1 cm de largeur) qui est légèrement en diagonale par rapport au plan de foliation.

DR37-04 : (Archive, UCA) – Fragments avec les 3 textures

• 20 x 14 x 9 cm

44 x 15 x 16 cm (gros bloc non gardé)

Fragments qui présentent 3 textures :

- DR37_01 : croûte vitreuse
- DR37_02 : croûte vitreuse et moins vitreuse (massive)
- DR37_03 : foliation

Sur la surface, on observe toujours les fractures conchoïdales donnant un aspect en croûte de pain. De rares vésicules sont allongées et de taille millimétrique ($0.5 \times 0.2 \text{ cm}$, $1 \times 0.3 \text{ cm}$, $0.8 \times 0.1 \text{ cm}$). Elles sont subparallèles à la surface supposant que la lave était assez visqueuse lors de l'emplacement. La croûte vitreuse + moins vitreuse a une épaisseur variant de 5 à 9 cm. La couche foliée (aspect lité) suite à l'alignement préférentiel des vésicules allongées. Les vésicules les plus importantes de taille centimétrique ($2 \times 0.4 \text{ cm}$). Voir la description de la couche DR37 03.

Le gros bloc présente une patine rougeâtre à ocre soulignant une oxydation de la croûte vitreuse. Cette croûte présente un mix entre une morphologie en croûte de pain et de lave en cordée. L'épaisseur de la croûte Texture 1 et Texture 2 est environ 5 cm. Du dépôt blanc est observable sur l'une face suggérant une circulation de fluide hydrothermal. Les traces d'oxydation se retrouvent sur plusieurs faces suggérant que les blocs ont été repris lors de l'emplacement de la coulée de lave (Type a'a').

DR37-05: (Archive) - Bio

- 6.5 x 5.7 x 4.8 cm 14.5 x 13 x 10.4 cm
- Fragments de type DR37_04 présentant les 3 textures (croûte vitreuse, croûte moins vitreuse, foliation). De petites boules blanches laiteuses sont présentes dans les fractures et les cavités. Ces boules ont une taille variant de millimétrique à 0.4 cm de diamètre. L'aspect est blanc laiteux avec de petits poils / piquets en surface. C'est boules ne sont pas « dur ».

DR37-06 : (UCA) – Cristaux

DR37_06a: Biotite / Phlogopite

Cristal en feuillet trouvé dans la couche DR37_03 et positionné de manière à ce qu'elle soit légèrement en diagonale du plan de foliation. Centimétrique de largeur et de 1 à 2 mm de large. Couleur brunâtre à noire. Cristal ressortant du fragment (apparent).

DR37_06b : Minéraux blancs

De couleur blanche à beige ayant un aspect laiteux et de forme ronde. Taille millimétrique et majoritairement positionnés dans les fractures de la croûte vitreuse.

DR37-07 : (UCA) – Enclave

DR37_07a: Inconnu ?

1.5 cm de long x 1 cm de large. Forme plus ou moins arrondie et aspect spongieux. Composée de grains fins, cette enclave semble être altérée et est de couleur blanche à beige avec quelques pigments noirs. Elle est observée dans la croûte.

DR37 07b: Mantellique ? Roche intrusive igneous ?

1 cm de long x 6-7 mm de large. De forme sub-angulaire à ronde. Cette enclave est aussi observée dans la croûte. Elle est de couleur blanchâtre à verdâtre ; le vert étant très probablement lié à la présence d'olivine (cristaux de taille millimétrique).

DR37_by : (Archive)

La baby drague contient :

- Du sable avec des fragments de taille microscopique de croûte vitreuse (?) de couleur noire
- Des fragments millimétriques à centimétriques de croûte vitreuse (type DR37_01)
- Des ponces de type Fer à Cheval (fibreuse et angulaire)
- Des ponces rondes de type Petite Terre

PREPA MAYOBS25 Version du: 21/09/2023 (18:33:21)

Drague DR37 (P2) - PP59 Fiche prévisionnelle

<u>Géologie</u>:Coulée de lave NW cône sortie N Fer à cheval <u>Popping rocks:</u> NON - <u>Coraux possible</u>: NON

Position provisoire avant profil drague précis (T0-1H):

Site	Temps	Latitude	Longitude	PHI	G	Bathy (m)	Courant surface CAP	
PP59 -DR37 zone	début	-12,812808	45,37746	S12°48.769	E45°22.648'	1575	XXX	
Opération	s:							
arrivée depuis	PP58	garder E	M122 + A	DCP + EK8	30			
pas de magne	étomètre	dragage	sans BUC)				
Matériel			Strate	égie géné	rale de d	ragag	e	
Type de drag	ue : ronde	e + filet	Pas d	Pas de BUC				
Baby drague			CAP	CAP navire xxx face au vent et/ou courant				
Gréement : 180 m			Profo	Profondeur théorique: 1575 m				
Type de câbl Montage sur drague	e porteur treuil : hyd	: acier drophone +	Filer 2 pour i filée e longue 1395	279m câble ncliner cor n plus : 20 eur filée (ic = 1575 – 1	e en plus ti rectement 10m pour 1 11 : longueu 80m)	ouche câble 000m ir filée	théorique (longueur de théorique	
Câble martyr	, seuil : 16	6 tonnes	Ne pa	s dépasse	er une diza	ine de	croches	
			Stopp	er navire b	ien avant	décolle	er drague	
Logiciel VGR	APH + VC	GRAPH3D						
Bathy: MAYOBS1_30m + Mayobs17 7m + AUV MAYOBS 1m		n Longu	ieur trait di	ague sol o	ciblée	200 m		
SitesEmis Isocontou MAYOBS1_30m_I	ssionFluides Irs 10 m DEPTH.tif	_Mayotte_Fen	ACheval_C	Scalabrin_deo	2022			

WGS84/Mercator 13°S

Figure 71 : Fiche de prépapration de la dragueDR37

OPERATION MAYOBS25

Jeudi 21/09 Drague DR37 (P2) - PP59

<u>Géologie:</u>Coulée de lave NW cône sortie N Fer à cheval <u>Popping rocks:</u> NON - <u>Coraux possible:</u> NON

Position profil drague précis (T0-1H):

Faible - 2500

Site	Temps	Latitude	Longitude	РНІ	G	Bathy (m)	Courant surface CAP
PP59_D-DR37 - début travail	début	-12.8127	45.379282	\$12°48.762	E45°22.757′	1589	235
F-DR37 drague à	fin	-12 9137	45 377773	\$12948.825	E45°22 666'	1564	225

 faire décoller
 fin
 -12.8137
 45.377773
 \$12'48.825
 E45'22.666'

 Bathy : Profondeur MAYOBS23_AUV01_AUV04_1m_BATHY

Opérations:

Matériel		Stratégie de dragage		
Type de drague : ronde + filet		Pas de BUC		
Baby drague		CAP navire 235 face au v	ent / courant	
		0 du calcul de la longueur filée treuil grand fond		
Gréement : 180 m		Pesée drague -100m des	cente + montée moy 120s	
Type de câble porteur : acier		Profondeur théorique : 1589 m		
Câble martyr, seuil : 16 tonnes		Longueur filée min : 1589-180 = 1409 m		
Montage treuil : treuil grand fond sous bâche sous câble hydrophone		Longueur filée correspond m	ant au toucher théorique : 1409	
Logiciel VGRAPH et VGRAPH3D ON		Stop à 50m du fond = 135	i9 m filé	
		Longueur totale filée trava totale filée travail = longue une longueur filée addition en + / 1000m longueur filé	il : 1409+280=1689m (longueur au filée au toucher théorique + anelle selon le ratio : 200m filée te théorique : = + 280m ici)	
Bathy: MAYOBS1_30m + Mayobs17 7m + AUV MAYOBS 1m		Longueur drague au sol c	iblée : 200 m	
		Position navire GPS : 80 r	n devant la draque	

Elevée : -100

Faible : -3650

Figure 72 : Fiche d'opération de la dragueDR37

c) Drague DR38

La drague DR38 a été réalisée le 22 septembre 2023 sur une coulée/dôme localisée sur le flanc Sud-Est du Fer à Cheval et sud de l'éperon volcanique qui s'étend à l'Est du cône pyroclastique du Fer à Cheval. Les fragments obtenus sont de nature phonolitique, très homogène et présentent encore une fois des textures très similaires aux dragues DR36 et DR37 (**Figure** 66, **Figure** 73). Des zones de couleur ocre sont visibles sur certains fragments suggérant qu'il y a eu une oxydation. Des fines couches de sédiments sont également visibles sur certains fragments. Ces deux éléments suggèrent que cette coulée est plus ancienne que la coulée échantillonnée par la drague DR36. La foliation de cette coulée due aux vésicules permet le débit en plaquette de cette coulée et la formation de nombreux fragments très plats au son caractéristique des phonolites d'où elles tirent leur appellation. Les vésicules allongées suggèrent une lave visqueuse lors de son emplacement. Des traces de biologie ont été retrouvées sur plusieurs échantillons de cette drague (ex : étoile de mer de taille 3cm, pieds de corail). Deux enclaves probablement d'origine mantellique ou de roche intrusive ignée ont été retrouvées dans un échantillon.

Figure 73 : DR38, Fragments de coulée phonolitique présentant les trois textures : croûte vitreuse, croûte non vitreuse et couche extrêmement foliée.

109 123

Fiche descriptive de la drague DR38 (MD242-MAYOBS25)

MAYOBS 25 Drague DR38 - point PP62_D

Date : 23/09/2023

Description du site : Coulée de lave/dôme sur le flanc S du massif volcanique orienté N130 à l'E du FAC

	Positi	ion de la drague au fe	ond
	Latitude	Longitude	Profondeur (m)
Début (drague au fond)	-12,834252	45,401403	1455
Fin (drague décollée)	-12,839308	45,401403	1421
Trait de drague au fond			140
Durée	2 :54		

Poids approximatif de roches collectées : 600 kg (pesée 50m fond 590 kg ; pesée 100m surface 610 kg)

<u>Principales lithologies :</u> Fragments <u>de coulée phonolitique</u>

Conditionnement des échantillons

Echantillon	Archives	IPGP	Orsay	UCA
DR38_by	Х			
DR38_01	Х			х
DR38_02	Х			
DR38_02a				Х
DR38_02b		Х		
DR38_02b1		Х		
DR38_02b2		Х		
DR38_02c		х		
DR38_03	Х			
DR38_03a		Х		
DR38_03a1		Х		
DR38_04	Х			
DR38_05			X	
DR38_05a				Х
DR38_05a1				Х
DR38_05d		Х		
DR38_06	Х	х		
DR38_07a				Х
DR38_07b				Х
DR38_08a				Х
DR38_08b				Х
DR38_09	X			

Liste des Échantillons MAYOBS25-DR38

DR38-01 : Croûte vitreuse (Texture 1) – UCA, Archive

- 1.9 x 2.7 x 0.6 cm
- 2.9 x 0.7 x 2.2 cm
- 2.6 x 0.6 x 1.7 cm
- 2 x 0.5 x 1.6 cm
- 1.7 x 1.5 x 1.6 cm
 2 x 1.7 x 2 cm
 2 x 3.2 x 3.5 cm

• 3.1 x 2.5 x 2.2 cm

- 4.5 x 2.6 x 2.2 cm
 - 2 x 3 x 2.7 cm

Fragments de croûte vitreuse, massive et de couleur noir. Présence de fractures conchoïdales donnant un aspect en croûte de pain. Quelques rares vésicules, très aplaties de largeur < 0.1 cm et de longueur 0.4 cm. Ces vésicules sont subparallèles à la surface. Rares vésicules de taille plus importante sont visibles (0.3×0.1 cm). Sur certains fragments la surface est lisse.

DR38-02 : Croûte vitreuse et moins vitreuse (Texture 1+2) – IPGP, Archive, UCA

- 4,6 x 6,5 x 2,7 cm
- 6 x 10 x 18 cm
- 8,5 x 12 x 9 cm
- 9 x 13 x 8 cm
- 9 x 10,1 x 3,9 cm

Fragments massifs présentant 2 textures. La première est du type DR38_01 (croûte vitreuse) ayant une épaisseur variant de 1.1 à 1.7 cm. Elle présente des fractures conchoïdales ainsi qu'une morphologie en « croûte de pain ». Un des fragments permet de voir que la croûte vitreuse suit la surface mais reste assez constante. Quelques vésicules sont visibles. Elles sont sphériques et de taille millimétrique (4 x 0.3 cm, 0.2 x 0.1 cm).

La seconde texture correspond à la croûte inférieure. Elle se distingue car elle est moins vitreuse. Elle présente une couleur un peu plus grise avec des tâches ocre suggérant qu'il y a eu une oxydation. Elle est massive mais présente des vésicules. Elles sont sphériques et allongées ($0.6 \times 0.1 \text{ cm}$, $1.9 \times 0.7 \text{ cm}$).

DR38-03 : Foliation (Texture 3) - IPGP, Archive

- 7.2 x 12.5 x 6.1 cm •
 - 9 x 16.5 x 10 cm • 21.6 x 15.4 x 4.4 cm •
 - 16 x 7 x 15.6 cm

Fragments de la partie interne, non vitreux. De fines couches de sédiments sont visibles sur certains fragments. A noter la présence d'une étoile de mer de taille de 3 cm sur une face. Ces fragments sont extrêmement foliés à cause des vésicules allongées. Le plan de foliation est très fin (environ 0.1 cm entre chaque plan, voire moins). Les vésicules faisant le plan de foliation sont quasiment invisibles à l'œil nu. Quelques vésicules sont de taille plus importante (0.5 x 0.1 cm, 1.6 x 0.1 cm, 2 x 0.2 cm, 8 x 0.5 cm). Des vésicules sont également plus larges et semblent suivre le plan de foliation (0.1 x 0.6 cm, 0.7 x 0.1 cm, 0.3 x 0.1 cm, 0.5 x 0.3 cm, 0.4 x 0.3 cm). D'autres vésicules sont plus étirées (1 x 0.3 cm, 1.6 x 0.3 cm). Une grosse cavité est aperçue dans un fragment (0.9 cm de largeur - longueur non mesurée car fragment cassé). Des petites bulles sub-sphérique sont situées en surface. La foliation permet le débit en plaquette de cette coulée.

DR38-04 : Texture 2+3 – Archive

- 10.2 x 9.3 x 4.4 cm
- 8 x 4.6 x 11.5 cm
- 3.3 x 12.5 x 9 cm
- 14 x 11.2 x 4.3 cm

Fragments avec deux textures différentes : la croûte dense peu vitreuse (Texture 2) et la couche foliée (Texture 3 – Type DR38_03). La croûte a une épaisseur variant de 2 à 3 cm. Comme pour le DR38_03, la couche foliée contient des vésicules sphériques millimétriques (0.4 x 0.3 cm, 0.2 x 0.2 cm, 0.2 x 0.3 cm, 0.3 x 0.2 cm, 0.5 x 0.4 cm) sur les surfaces supérieure et inférieure. Certains fragments semblent être plus oxydés avec une patine ocre.

DR38-05 : Texture 1+2+3 – Archive, UCA, IPGP, Orsay

- 13 x 12.5 x 5 cm
- 9.4 x 15 x 22 cm
- 18.5 x 13.7 x 21 cm
- 10.5 x 8 x 8.5 cm
 8 x 17 x 21 cm

17 x 10 x 17 cm

•

- 17.3 x 12 x 13.5 cm
- 25 x 13 x 8.5 cm
- Fragments regroupant les 3 textures. La première, la croûte vitreuse (DR38_01), massive, noir, aspect en croûte de pain, fractures conchoïdales, avec parfois une morphologie en cordée sur certains fragments. La deuxième couche représente la croûte interne peu vitreuse avec de rares vésicules millimétriques et allongées (DR38_02). L'épaisseur des 2 croûtes réunies varie entre 2 et 6 cm et semble suivre la morphologie. Sur un fragment des traces de biologie sont observées sur la surface (1.8 cm de long). La troisième couche (DR38_03) correspond à la couche foliée. On peut très bien voir que les plaquettes (DR38_06) proviennent de cette couche foliée.

DR38-06 : Plaquette – IPGP, Archive

- 1.1 x 9.3 x 6.2 cm
- 0.4 x 8.1 x 8.2 cm
- 3.5 x 7 x 12.3 cm
- 1 x 9.6 x 6.5 cm
- 5.6 x 4.5 x 2.1 cm
 2 1 x 9 5 x 4.8 cm
 - 2.1 x 9.5 x 4.8 cm 1.1 x 8.5 x 5.9 cm

1.1 x 10 x 5.4 cm

.

- 2.1 x 9.4 x 6.2 cm
- 2.2 x 7.2 x 3.6 cm

Plaquettes phonolitiques qui font un bruit particulier lorsqu'elles s'entrechoquent entre elles (bruit aigu). Ces plaquettes sont certainement le résultat d'un débit en plaquette dans le plan de foliation lié à l'allongement des vésicules dans une direction préférentielle. Les plaquettes ne sont pas vitreuses et font parties de la couche interne de la coulée (DR38_03). La couleur est grise avec une patine beige. Les vésicules allongées ($2 \times 0.4 \text{ cm}$, $2.2 \times 0.1 \text{ cm}$, $1.5 \times 0.3 \text{ cm}$, $1.5 \times 0.3 \text{ cm}$, $2.3 \times 0.3 \text{ cm}$) sont étirées par la lave visqueuse lors de son emplacement. Les vésicules sont subparallèles à la surface. Certains fragments ont des vésicules sphériques à sub sphériques ($1 \times 1.1 \text{ cm}$, $0.4 \times 0.4 \text{ cm}$, $0.4 \times 0.5 \text{ cm}$, $0.4 \times 0.4 \text{ cm}$) ont l'air d'être principalement localisées sur la surface des plaquettes. Sur un fragment une patine couleur ocre est visible avec quelques traces de bio.

DR38-07 : Cristaux – UCA DR38_07a : Biotite / Phlogopite

1 cm de long x 5 mm de large. Couleur brun foncé, aspect vitreux et en feuillet. Ce cristal a une forme sub-angulaire à angulaire. Ce cristal est localisé dans la croûte interne, peu vitreuse et non dans la couche foliée.

DR38_07b:?

< 1 mm à 2 mm de long. Couleur brun foncé, aspect vitreux et translucide. Fractures conchoïdales. Forme ronde. Ces cristaux sont principalement situés dans la croûte.

DR38-08 : Enclave - UCA

> DR38_08a :

Enclave plutôt ronde, de taille centimétrique (1.5 x 1.8 cm). Cette enclave est localisée entre la croûte vitreuse et la croûte interne. Elle est de couleur blanche avec quelques pointes de vert ; le vert étant très probablement relié à la présence de cristaux millimétriques (<0.1 mm) d'Olivines. Enclave mantellique ou roche intrusive ignée ?

DR38_08b :

Enclave subrectangulaire de couleur blanche. La longueur de l'enclave est légèrement supérieure à 1cm et à une largeur de 0.5 cm environ. La taille des grains est millimétrique et on peut observer des clivages. Potentiellement des cristaux de Feldspaths. L'enclave est située entre la croûte interne et la couche foliée.

Roche intrusive igneous ?

DR38-09 : Bio - Archive

• 10.5 x 9 x 0.8 cm

Fragment de type DR38_06, soit en plaquette avec un pied de corail sur sa surface.

DR38-by : Baby drague (Archive)

Contenu dans la baby drague:

- Sable avec des micro fragments vitreux noir, probablement provenant de la croûte vitreuse
- > Fragments centimétriques à pluri décimétrique de la croûte vitreuse noir
- > Ponces centimétriques fibreuses de type Fer à Cheval

PREPA MAYOBS25 Version du: 22/09/2023 (14:33:27)

Drague DR38 (P3) - PP62 Fiche prévisionnelle

<u>Géologie:</u> Coulée de lave SE flanc SE Fer à Cheval <u>Popping rocks:</u> NON - <u>Coraux possible:</u> NON

Position provisoire avant profil drague précis (T0-1H):

Site	Latitude	Longitude	PHI	G	Bathy (m)	Courant surface CAP
PP62 - DR38 zone	-12.836035	45.403901	S12*50,162	E45*24,234'	1507	XXX
Pt-calage-GENAVIR	-12.839866	45.402148	S12*50,392	E45°24,129'	1555	XXX

Bathy: Profondeur MAYOBS15_AUV02_1m_BATHY

Opérations:

arrivée depuis RP2G garder EM122 + ADCP + EK80 pas de magnétomètre dragage sans BUC

Matériel	Stratégie générale de dragage
Type de drague : ronde + filet	Pas de BUC
Baby drague	CAP navire xxx face au vent et/ou courant
Gréement : 180 m	Profondeur théorique: 1507 m
Type de câble porteur : acier Montage sur treuil : hydrophone + drague	Détails sur fiche opérationnelle
Câble martyr, seuil : 16 tonnes	
Logiciel VGRAPH + VGRAPH3D	
Bathy: MAYOBS1_30m + Mayobs17 7m + AUV MAYOBS 1m	Longueur trait drague sol ciblée : 200 m

Isocontours 10 m MAYOBS1_30m_DEPTH.tif Valeur Elevée : -90 Faible : -2500

Figure 74 : Fiche de préparation de la dragueDR38

OPERATION MAYOBS25

Jeudi 21/09 Drague DR38 (P3) - PP62_D

<u>Géologie:</u> Coulée de lave SE flanc SE du Fer à cheval <u>Popping rocks:</u> NON - <u>Coraux possible:</u> NON

Position provisoire au fond avant profil drague précis (T0-1H):

PP62_D-DR38 - debut 12.83392 45.401414 512'50.035 E45'24.085 1448 - debut travail - DR38 drague à fin - 12.83573 45.401414 512'50.144 E45'24.085 1424 - 1	180
F-DR38 drague à fin -12.83573 45.401414 S12*50.144 E45*24.085* 1424	
laire decoller	180
Bathy : Profondeur MAYOBS15_AUV02_1m_BATHY	

arrivée depuis PP61	garder EM122 + ADCP + EK80
pas de magnétomètre	dragage sans BUC
Matériel	Stratégie générale de dragas

Baby drague propre	CAP navire 180 face au vent / courant
	0 du calcul de la longueur filée treuil grand fond
Gréement : 180 m	Pesée drague -100m descente + montée moy 120s
Type de câble porteur : acier	Profondeur théorique : 1448 m
Câble martyr, seuil : 16 tonnes	Longueur filée min : 1448-180 = 1268 m
Montage treuil : treuil grand fond sous bâche sous	Longueur filée correspondant au toucher théorique :
câble hydrophone	1268 m
Logiciel VGRAPH et VGRAPH3D ON	Longueur filée à 100m du fond : 1168m, 0,5kn
	Stop à 50m du fond = 1218 m filé, pesée 120s
	Longueur totale filée travail : 1268+254=1522m
	(= longueur filée toucher théorique + longueur filée
	selon ratio : 200m filée en + / 1000m filée : = + 254m
Bathy: MAYOBS1_30m + Mayobs17 7m + AUV MAYOBS 1m	kö)ngueur drague au sol ciblée : 200 m
	Basilian provine CPS : 90 m devent la drague

----- Isocontours 10 m

MAY15_AUV04_1m_raw_DEPTH.tif

Elevée : -100 Faible : -3650

s raible.

Figure 75 : Fiche d'opération de la dragueDR38

IV.11.5. <u>Echantillons pour le Musée de Mayotte et l'Aéroport</u>

Figure 76 : Echantillons de roches provenant des dragues DR36, DR37, DR38 de MAYOBS25 donnés par le REVOSIMA au Musée de Mayotte et à l'Aéroport pour la réalisation d'expositions à Mayotte.

Les échantillons sont répertorié »s dans la base de données CNRS avec un numéro IGSN.

IV.11.6. <u>Métadonnées transmises au REVOSIMASIG</u>

FID	NumPrel	Campagne	PPxx (position point souhaité début de travail drague)	DateDeb drague à l'eau	HeureD eb TU drague à l'eau	DateFin drague à bord	HeureF in TU drague à bord	Duré e totale h:mm	Lat_D ebut_ DM.dd _drag ue_au _fond	Lat_Deb ut_DM.d d_dragu e_au_fo nd	Lon_ Debu t_DM .dd_d ragu e_au _fond	LonDeb ut_ DM.dd_ drague_ au_fond	Lat_Fi n_DM. dd_dr ague_ decoll ee_re elle	Lat_Fi n_DM. dd_dr ague_ decoll ee_rell e	Lon_Fi n_DM. dd_dra gue_d ecolle e_reell e	Lon_Fi n_DM.d d_drag ue_dec ollee_r eelle	Lat_Debut_ D.dd_dragu e_au_fond	Lon_Debut _Ddd_drag ue_au_fond	Lat_Fin_D.c d_drague_c ecollee_rell e	Lon_Fin_D .dd_dragu e_decolle e_reelle	Prof_dra gue_au_ fond m	Prof_dra gue_dec olee_ree lle (QGIS) m	Trait de drague au fond m	Longueur profil bateau entre drague au fond et drague décollée m	Outil	Site	Poids (kg) à 50m du fond	Poids (kg) à - 100 m surfac e
1	MAY25-DR3(MD242_MAYOBS2	PP54-b	20/09/2023	15:01	20/09/2023	18:38	3:37	12	52,1107	45	22,734	12	52,09	45	22,677	-12,868512	45,378893	-12,868150	45,377950	1527	1514	110	447	Drague à roches = Babydrag ue	Coulée de lave importante récente,émise au sud de la base du flanc Sud du Fer à Cheval (3ème grosse coulée phonolitique dans cette zone)	510	540
2	MAY25-DR3	MD242_MAYOBS2	PP59_D	21/09/2023	17:46	21/09/2023	21:02	3:16	12	48,7787	45	22,73	12	48,82	45	22,675	-12,812978	45,378835	-12,813600	45,377917	1596	1567	120	528	Drague à roches = Babydrag ue	Coulée de lave phonolitique émise sur le flanc NE d'un cône pyroclastique (DR16) qui ferme le FAC au Nord	690	670
3	MAY25-DR3	MD242_MAYOBS2	PP62_D	23/09/2023	21:16	24/09/2023	0:10	2:54	12	50,0551	45	24,084	12	50,13	45	24,084	-12,834252	45,401403	-12,835517	45,401400	1455	1421	140	560	Drague à roches = Babydrag ue	Coulée de lave phonolitique ? émise sur le flanc S du massif volcanique orienté N130 à l'E du FAC	590	610
		· I		TOTAL MIN MAX MOYENNE ECART TYPE				9:47 2:54 3:37 3:15 0:21									•	•			E	MIN MAX MOYENNE CART TYF	110 140 123 15	447 560 512 58		TOTAL	1790	1820

TOTAL collecté : 1820kg Total gardé et archivé : ca. 234 kg (13 %)

Tableau 23 : Métadonnées des dragues de la campagne MAYOBS25

IV.11.7. <u>Archivage des échantillons</u>

Les échantillons ont été conditionnés dans 8 caisses dont des caisses d'archives et des caisses de travail (IPGP, UCA, ORSAY). Le conditionnement des échantillons est listé en Annexe 9. Les caisses d'archives seront stockées dans la lithothèque marine de l'IPGP (Chambon la Forêt). Une caisse concerne l'inventaire (sacs, tubes, crayons, marteau etc) qui sera utilisée lors de la prochaine campagne et une caisse contient le matériel de la scie à roche. Des échantillons ont été ramenés en avion (UCA, IPGP, ORSAY) pour réaliser les premières analyses prioritaires avant l'arrivée des caisses par fret maritime d'ici 2-3 mois.

IV.11.8. <u>Récapitulatif : Prélèvement de roches</u>

Trois zones cibles ont été identifiées, au préalable lors de discussions au sein du GT Pétrologie du REVOSIMA, et classées par priorité d'intérêt et en fonctions de diverses contraintes.

Figure 77 : Localisation des trois dragues obtenues lors de la campagne MD242-MAYOSB25.

La zone du Fer à Cheval est caractérisée par une structure en forme de fer à cheval liée à une déstabilisation de flanc, plusieurs larges coulées phonolitiques au sud (dragues DR07 et DR13 réalisées lors de MAYOBS 2 et MAYOBS 15) et de nombreux cônes volcaniques (de type laviques ou pyroclastiques – dragues DR29, DR33, DR32 réalisées lors de MAYOBS 23) dispersés sur l'ensemble de la zone. Une coulée phonolitique située au Sud du Fer à Cheval a été échantillonnée avec la drague DR36. La drague DR37 échantillonne une seconde coulée, de direction NW, située au Nord du Fer à Cheval. La drague DR38, quant à elle, a permis d'échantillonner une troisième coulée ou dôme de lave sur le flanc SE du Fer à Cheval.

Une quatrième drague (DR39) était positionnée sur le flanc S du cône pyroclastique du Fer à Cheval et sur un petit évent volcanique ayant produit des coulées de laves tardives au sommet du Fer à Cheval. Malheureusement, suite à un problème mécanique sur le treuil au moment de la pesée à 100 m de la surface, la drague a dû être annulée sans pouvoir être réalisée dans de bonnes conditions compte tenu des dernières opérations obligatoires à réaliser en toute fin de campagne.

Nous avons mis tout en œuvre pour avoir le trait de dragage le plus court sur le fond tout en assurant de récolter plusieurs centaines de kilos de roches (min: 110 m; max: 140 m; moyenne: 123 m; écart type: 15 m, voir Tableau 24). Les dragages ont été réalisés sans balise acoustique BUC.

<u>Analyses préliminaires :</u> Les trois dragues DR36, DR37, et DR38 ont échantillonné 2 coulées phonolitiques et un dôme/coulée phonolitique. Les roches récupérées (total de 1820 kg) se caractérise par ensemble très homogène et présentant 3 textures distinctes, une croûte très vitreuse, une couche sous-jacente massive et vitreuse, et une partie basale très foliée non vitreuse et contenant des vésicules très allongées et aplaties. Les fragments obtenus ne présentent pas ou peu de traces d'oxydation et seulement quelques traces de sédiments en surface, ce qui suggère des coulées récentes et notamment la DR36 qui devrait être la plus récente des trois et être relativement jeune. Les roches de la DR37 pourraient être les plus vieilles de ces 3 dragues car elles sont recouvertes d'une patine ocre-orange d'oxydation. La couche basale extrêmement foliée (multiples couches de 1-2 mm de lave en feuillets) de ces roches font qu'elles génèrent, quand elles s'entrechoquent, un son qui est caractéristique des phonolites, d'où leur appellation. Les nombreuses vésicules allongées présentes dans la roche suggèrent une lave visqueuse lors de l'emplacement de la coulée. Des enclaves probablement d'origine mantellique et/ou crustale ont été retrouvées dans certains fragments dans les trois dragues.

Les opérations de dragage ont été supervisées et réalisées par J-C. Komorowski (responsable des opérations, IPGP), P. Verdurme, K. Brückel (UCA) et M. Frey (Université Paris Saclay). Les échantillons récupérés seront analysés en laboratoire à terre.

Num Prelevement	Date	Heure Debut ⁹	Heure Fin ¹⁰ ,	Durée totale h:mm	Latitude Debut en D.dd ¹¹	Longitude Debut en D.dd¹º	Latitude Fin en D.dd ¹²	Longitude Fin en D.dd ¹²	Profondeur en m ⁽¹⁰⁾	Profondeur en m (QGIS) ⁽¹¹⁾	Trait de drague au fond m
MAY25-DR36	20/09/2023	15:01	18:38	3:37	-12.868512	45.378893	-12.868150	45.377950	1527	1514	110
MAY25-DR37	21/09/2023	17:46	21:02	3:16	-12.812978	45.378835	-12.813600	45.377917	1596	1567	120
MAY25-DR38	23/09/2023,/ 24/09/2023	21:16	0:10	2:54	-12.834252	45.401403	-12.835517	45.401400	1455	1421	140

 Tableau 24 : Caractéristiques des dragages réalisées pendant MD242-MAYOBS25

⁹ * Drague à l'eau ;

¹⁰ drague à bord

¹¹ drague_au_fond

¹² drague_decollee_relle

IV.12. Observations des Mammifères marins

Trois personnes, ayant une expertise en biologie marine, ont embarqué pour aider à la mise en pratique du protocole (Figure 78) pour la protection des mammifères marins via l'observation des mammifères marins, en journée durant les acquisitions acoustiques tout particulièrement. L'équipe des observateurs a aussi observé et notifié la présence d'oiseaux et des déchets, observations qui seront utile à d'autres projets de recherche sur le suivi de la faune et de l'écologie dans l'océan indien (cf. Université de La Réunion / association Globice).

5. EN TERMES D'ENJEU ÉCOLOGIQUE ET DE PROTECTION DE LA FAUNE

Un renfort de surveillance accrue et permanente de la présence de mammifères et espèces protégées dans la zone devra être intégrée à la veille passerelle pendant la durée des travaux, notamment via une veille visuelle renforcée avant tout démarrage des appareils.

Le démarrage des sources acoustiques devra être effectué après s'être assuré qu'aucune espèce de mammifère marin ou de tortue marine ne se trouve à une distance de moins de 300m du navire.

Le démarrage des sources acoustiques devra se faire progressivement.

Un arrêt des sources acoustiques devra être effectué en cas d'observation à une distance inférieure à 200m des sources acoustiques émises.

Figure 78 : Protocole pour la protection des mammifères marins (@ extrait du document d'autorisation de travaux , ref : 142/CZM REUNION/AEM/NP).

Les observations (début et fin de surveillance, observations de biodiversité, déchets) ont été intégrées dans le cahier de quart électronique CASINO (Figure 79).

L'acquisition acoustique (sondeurs) a été interrompue par deux fois lors de la campagne MD242-MAYOBS25.

Les fiches de descriptions des mammifères marins, oiseaux et déchets sont en Annexe 10. Ces informations devront à terme être transmises à la SINP via le site Botanica (<u>https://www.borbonica.re/sinp/</u>).

Late	lente leannac	rouginge	NOTI FTIASE IVE	or De Fridsy I ypv	INOTII Appareir		CApparel North Acuon	Code Action Identificateur C	UDBELVERIOU	num station
12/09/2023	04:19:00 -17,80328	34 52,93623		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	Début surveillance MMO	DEB_MMO_MAY25MMO_T	Toute premiel N	AAY 25-MMO-001
12/09/2023	04:19:33 -17,80135	57 52,93514		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIODIV_MAY25MMO_o	oiseau N	AY 25-MMO-001
12/09/2023	04:32:05 -17,75434	19 52,906483		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIODIV MAY25MMO_0	oiseau N	AAY 25-MMO-001
12/09/2023	05:04:21 -17,63181	4 52,832583		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIODIV MAY25MM0_0	oiseau N	AAY 25-MMO-001
12/09/2023	05:17:17 -17,58360	17 52,801627		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIODIV MAY25MMO_0	oiseau N	AAY 25-MMO-001
12/09/2023	06:09:11 -17,39115	39 52,68376		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIODIV MAY25MMO_0	oiseau N	AAY 25-MMO-001
12/09/2023	08:04:00 -16,96675	54 52,429807		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	Fin surveillance MMO	FIN_MMO MAY25MM0_1	2	AAY 25-MMO-001
12/09/2023	09:40:00 -16,61125	37 52,239543		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	Debut surveillance MMO	DEB_MMO MAY25MMO_2	2	AAY 25-MMO-002
12/09/2023	13:40:00 -15,72725	54 51,767336		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	D_ Fin surveillance MMO	FIN_MMO MAY25MM0_P	as de mamm	AAY 25-MMO-002
13/09/2023	06:16:00 -11,95425	39 49,421777		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	D_ Début surveillance MMO	DEB_MMO MAY25MMO_3	2	AAY 25-MMO-003
13/09/2023	06:40:26 -11,91185	5 49,314852		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	D Observation déchet	OBS_DECH MAY25MMO_3	2	AY 25-MMO-003
13/09/2023	06:40:31 -11,91185	5 49,314852		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIODIV MAY25MMO_0	oiseau N	AY 25-MMO-003
13/09/2023	06:40:33 -11,91185	5 49,314852		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	D Observation déchet	OBS_DECH MAY25MM0_3	2	AAY 25-MMO-003
13/09/2023	06:40:51 -11,91142	22 49,312431		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIODIV MAY25MMO_0	oiseau N	AAY 25-MIMO-003
13/09/2023	06:50:26 -11,90671	4 49,265631		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIODIV MAY25MMO_0	oiseau 🛛	AAY 25-MMO-003
13/09/2023	06:57:09 -11,91167	7 49,232318		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	Observation biodoversité (autre que mammifère marin)	OBS_BIODIV MAY25MMO 0	oiseau N	AAY 25-MMO-003
13/09/2023	07:04:01 -11,91732	26 49,200074		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	 Observation biodoversité (autre que mammifère marin) 	OBS_BIDDIV MAY25MMO_0	oiseau	AAY 25-MMO-003
13/09/2023	07:14:00 -11,9251:	59 49,155458		OPE	Observation MAMMIFERE MA	RIN et BIODIVERSITE MMC	O Observation de mammifère marin	OBS_MMO_MAY25MMO_B	3al eine a bos <mark>i</mark> N	AY 25-MMO-003
1)				1						
Date	Heure	Latitude	Longitude	Nom Act	tion	Identificateur Oper	a Observation		Num Stat	ion
13/09/202	23 07:14:00	-11,925159	49,155458	Observa	tion de mammifère marin	MAY25MMO 3	Baleine a bosse dist> 2km NTOT 2		MAY25-N	AMO-003
13/09/202	23 10:05:00	-12,048852	48,427087	Observa	tion de mammifère marin	MAY25MMO 3	Baleines a bosse dist 150m		MAY25-N	AMO-003
13/09/202	23 11:15:00	-12,114719	48,131601	Observa	tion de mamnifère marin	MAY25MMO 3	baleine a bosse dist> 1km		MAY25-N	AMO-003
13/09/202	23 11:40:00	-12,138014	48,024122	Observa:	tion de mammifère marin	MAY25MMO 3	baleine a bosse dist> 1km NTOT 3		MAY25-N	AMO-003
13/09/202	23 11:40:00	-12,138014	48,024122	Observa	tion de mammifère marin	MAY25MM0_3	baleine a bosse dist> 1km NTOT 2		MAY25-N	AMO-003
13/09/202	23 11:56:00	-12,152638	47,956178	Observa:	tion de mammifère marin	MAY25MM0_3	baleine a bosse dist> 1km NTOT 2		MAY25-N	AMO-003
13/09/202	23 12:00:00	-12,156643	47,939511	Observa:	tion de mammifère marin	MAY25MMO 3	baleine a bosse dist> 1km		MAY25-N	AMO-003
14/09/202	23 08:00:00	-12,783968	46,134983	Observa:	tion de mammifère marin	MAY25MM0 4	Cétacé distance > 1km		MAY25-N	AM0-004
14/09/202	23 13:33:00	-12,824462	46,023783	Observa:	tion de mamnifère marin	MAY25MM0_4	Cétacé tachete avec long bec distance 200m Nt	ot 500	MAY25-N	AM0-004
14/09/202	23 13:41:00	-12,831998	45,993947	Observa:	tion de mammifère marin	MAY25MM0_4	Baleine à bosse distance > 1km		MAY25-N	AM0-004
15/09/202	23 12:38:00	-12,765136	45,783892	Observa:	tion de mammifère marin	MAY25MM0_5	Dauphin distance > 1km		MAY25-N	AMO-005
15/09/202	23 14:19:01	-12,763332	45,58301	Observa:	tion de mamnifère marin	MAY25MM0_5	4 Dauphins à bosse distance > 1km		MAY25-N	AMO-005
22/09/20	23 12:40:18	-12,821881	45,372744	Observa:	tion de mamnifère marin	MAY25MM0_12	Grand dauphin distance >1km minimum 3 indivi	dus	MAY25-N	AMO-012
22/09/20	23 12:40:29	-12,821881	45,372744	Observa:	tion de mamnifère marin	MAY25MM0_12	Globicéphale tropical distance > 1km environ 40	0-50 individus	MAY25-N	AMO-012
22/00/20	23 13:53:26	-12,846607	45,391032	Observa:	tion de mamnifère marin	MAY25MM0_12	Globicéphale tropical		MAY25-N	AMO-012
22/09/20	23 14:13:22	-12,843919	45,382089	Observa:	tion de mamnifère marin	MAY25MM0_12	Globicéphale tropical fuite		MAY25-N	AMO-012
23/09/202	23 13:00:17	-12,81532	45,371129	Observa:	tion de mamnifère marin	MAY25MM0_13	Baleine à bosse distance >1km		MAY25-N	AMO-013
25/09/202	23 08:18:11	-12,771463	45,677747	Observa:	tion de mammifère marin	MAY25MM0_15	Dauphin a long bec dist env 200 m N tot 80-100		MAY25-N	AMO-015
b)										

Figure 79 : a) Observations Mammifères marins, observations de biodiversité, déchets intégrés dans le cahier de Quart Casino (Extrait de Casino) ; b) Observations concernant les mammifères marins avec indication de la distance par rapport au navire.

REVOSIMA

V. Références des campagnes:

RINNERT Emmanuel, LEBAS Elodie, PAQUET Fabien, JORRY Stéphan, FEUILLET Nathalie, THINON Isabelle, FOUQUET Yves (2019) MAYOBS, https://doi.org/10.18142/291

FEUILLET Nathalie (2019) MAYOBS1 cruise, RV Marion Dufresne, https://doi.org/10.17600/18001217

JORRY Stéphan (2019) MAYOBS2 cruise, RV Marion Dufresne, https://doi.org/10.17600/18001222

- THINON Isabelle, FEUILLET Nathalie (2019) MAYOBS3 MD222 cruise, RV Marion Dufresne, https://doi.org/10.17600/18001230
- FOUQUET Yves, FEUILLET Nathalie (2019) MAYOBS4 cruise, RV Marion Dufresne, https://doi.org/10.17600/18001238
- RINNERT Emmanuel, FEUILLET Nathalie, THINON Isabelle (2020) MAYOBS13-2 cruise, RV Gauss (FUGRO), https://doi.org/10.17600/18001729
- RINNERT Emmanuel, THINON Isabelle, FEUILLET Nathalie (2020) MD 228/MAYOBS15 cruise, RV Marion Dufresne, https://doi.org/10.17600/18001745
- THINON Isabelle, RINNERT Emmanuel, FEUILLET Nathalie (2021) MAYOBS17 cruise, RV Pourquoi pas?, https://doi.org/10.17600/18001983
- RINNERT Emmanuel, THINON Isabelle, LEBAS Elodie (2021) MAYOBS18 cruise, RV Pourquoi pas?, https://doi.org/10.17600/18001984
- RINNERT Emmanuel, PAQUET Fabien, LEBAS Elodie (2021) MAYOBS19 cruise, RV Pourquoi pas?, https://doi.org/10.17600/18001985
- RINNERT Emmanuel, THINON Isabelle, LEBAS Elodie (2021) MAYOBS21 cruise, RV Marion Dufresne, https://doi.org/10.17600/18001986

LEBAS Elodie (2022) MAYOBS22 cruise, RV OSIRIS II, https://doi.org/10.17600/18003293

JORRY Stéphan, PAQUET Fabien, LEBAS Elodie (2022) MAYOBS23 cruise, RV Marion Dufresne, https://doi.org/10.17600/18002494

LEBAS Elodie, BESANCON Simon (2023) MAYOBS24 cruise, RV OSIRIS II, https://doi.org/10.17600/18003294

THINON Isabelle, LEBAS Elodie (2023) MD242/MAYOBS25 cruise, RV Marion Dufresne, https://doi.org/10.17600/18003404

VI. Annexes

Annexe 1 : Châssis CIAM - script pour l'ADCP WH-150 khz-N° 13267 avec « PlanADCP »

> <u>Script ADCP WH150:</u> CR1 CF11101 EA0 EB0 ED14000 ES35 EX11111 EZ1111101 WA255 WB1 WC0 WD111100000 WE5000 WF352 WN44 WP1 WS800 WV175 TE00:00:20.00 TP00:20.00 TF23/09/23 06:00:00 RN MO25 CK CS ;Instrument = Workhorse Sentinel = 153600 ;Frequency ;Water Profile = YES Bottom Track = NO ;High Res. Modes = NO ;High Rate Pinging = NO ;Shallow Bottom Mode= NO ;Wave Gauge = NO:Lowered ADCP = YES ;Ice Track =NO ;Surface Track = NO Beam angle; = 20;Temperature = 5.00;Deployment hours = 9120.00;Battery packs = 4

```
;Automatic TP = YES
;Memory size [MB] = 2000
;Saved Screen = 3
;
;Consequences generated by PlanADCP version 2.06:
;First cell range = 12.21 m
;Last cell range = 356.21 m
;Max range = 338.17 m
;Standard deviation = 7.11 cm/s
;Ensemble size = 1034 bytes
;Storage required = 1618.78 MB (1697414400 bytes)
;Power usage = 1728.19 Wh
;Battery usage = 3.8
```

Log-01 ADCP WH-150khz-N°13267:

ps0 Instrument S/N: 13267 Frequency: 153600 HZ Configuration: 4 BEAM, JANUS Match Layer: 10 Beam Angle: 20 DEGREES Beam Pattern: CONVEX Orientation: UP Sensor(s): HEADING TILT 1 TILT 2 DEPTH TEMPERATURE PRESSURE Pressure Sens Coefficients: c3 = +2.378505E-12 c2 = -6.500813E-08c1 = +4.391105E-01 Offset = -3.319133E+01 Temp Sens Offset: 0.11 degrees C CPU Firmware: 50.40 [0] Boot Code Ver: Required: 1.16 Actual: 1.16 DEMOD #1 Ver: ad48, Type: 1f DEMOD #2 Ver: ad48, Type: 1f PWRTIMG Ver: 85d3, Type: 5

1) Board Serial Number Data:

2)

>PA

PRE-DEPLOYMENT TESTS

CA 00 00 05 88 C4 2C 09 HPA727-3009-02A CE 00 00 05 88 D6 B1 09 REC727-1004-05A E9 00 00 05 88 FC D9 09 CPU727-2000-00M C8 00 00 05 89 1D 05 09 HPI727-3007-00A 1D 00 00 05 A4 9C CD 09 TUN727-1005-05A EC 00 00 05 89 18 77 09 DSP727-2001-05H >rr

Recorder Directory:

Volume serial number for device #1 is 206f-6241

No files found.

Bytes used on device #1 = 0Total capacity = 2045476864 bytes Total bytes used = 0 bytes in 0 files Total bytes free = 2045476864 bytes

>PC2

Press any key to quit sensor display ...

All Sens	ors are	Internal	Only.				
Heading	Pitch	Roll	Up/Down	Attitude	Temp	Ambier	nt Temp
PRESSU	JRE						
38.39ø	0.33ø	1.02ø	Up	24.78øC	24.3	4øC	-49.6 kPa
38.21ø	0.39ø	0.94ø	Up	24.79øC	24.3	7øC	-41.9 kPa
38.15ø	0.68ø	0.64ø	Up	24.80øC	24.3	3øC	-47.0 kPa
38.03ø	0.97ø	0.30ø	Up	24.76øC	24.3	5øC	-53.3 kPa
37.85ø	1.15ø	0.18ø	Up	24.78øC	24.3	38øC	-34.6 kPa
37.61ø	1.42ø	0.34ø	Up	24.80øC	24.3	8øC	-53.8 kPa
37.57ø	1.62ø	0.36ø	Up	24.80øC	24.3	4øC	-57.5 kPa
37.57ø	1.70ø	0.24ø	Up	24.80øC	24.3	35øC	-59.4 kPa
37.68ø	1.52ø	0.09ø	Up	24.80øC	24.3	8øC	-43.0 kPa
37.71ø	1.28ø	0.22ø	Up	24.83øC	24.3	7øC	-61.9 kPa
37.59ø	0.84ø	0.89ø	Up	24.80øC	24.3	6øC	-51.2 kPa
37.37ø	0.18ø	1.43ø	Up	24.78øC	24.3	35øC	-48.6 kPa
37.12ø	0.32ø	1.18ø	Up	24.79øC	24.3	7øC	-56.4 kPa
37.09ø	0.19ø	1.34ø	Up	24.79øC	24.3	7øC	-45.0 kPa
36.89ø	0.05ø	1.25ø	Up	24.79øC	24.3	6øC	-50.0 kPa
36.83ø	0.19ø	1.01ø	Up	24.83øC	24.3	35øC	-40.7 kPa

CPU TESTS:
RTCPASS
RAMPASS
ROMPASS
RECORDER TESTS:
PC Card #0NOT DETECTED
PC Card #1DETECTED
Card DetectPASS
CommunicationPASS
DOS StructurePASS
Sector Test (short)PASS
DSP TESTS:
Timing RAMPASS
Demod RAMPASS
Demod REGPASS
FIFOsPASS
SYSTEM TESTS:
XILINX Interrupts IRQ3 IRQ3 IRQ3 PASS
Wide BandwidthPASS
Narrow BandwidthPASS
RSSI FilterPASS
TransmitPASS
SENSOR TESTS:
H/W OperationPASS
>PC1

BEAM CONTINUITY TEST

When prompted to do so, vigorously rub the selected beam's face.

If a beam does not PASS the test, send any character to the ADCP to automatically select the next beam.

3) Collecting Statistical Data...

4)

Rub Beam 1 = PASS Rub Beam 2 = PASS Rub Beam 3 = PASS Rub Beam 4 = PASS

>TS ERR: Bad command parameters!Out of range!
>7□ □TS?
TS 23/09/12,06:34:43 --- Time Set (yr/mon/day,hour:min:sec)
>TS 23/09/12,06:32:00
>TS?
TS 23/09/12,06:32:29 --- Time Set (yr/mon/day,hour:min:sec)
>TS?
TS 23/09/12,06:32:45 --- Time Set (yr/mon/day,hour:min:sec)
>LOG□ □□ □

> Log-02 ADCP WH-150khz-Nº13267 :

RR Recorder Directory: Volume serial number for device #1 is 206f-6241

No files found.

Bytes used on device #1 = 0Total capacity = 2045476864 bytes Total bytes used = 0 bytes in 0 files Total bytes free = 2045476864 bytes

>TS? TS 23/09/22,12:52:54 --- Time Set (yr/mon/day,hour:min:sec) >T TS 23/09/22,12:54:00 >TS? TS 23/09/22,12:54:10 --- Time Set (yr/mon/day,hour:min:sec) >CR1 [Parameters set to FACTORY defaults] >CF11101 >EA0 >EB0 >ED14000 >ES35 >EX11111 >EZ1111101 >WA255 >WB1 >WC0 >WD111100000 >WE5000 >WF352 >WN44 >WP1 >WS800 >WV175 >TE00:00:20.00 >TP00:20.00 >TF23/09/23 06:00:00 >RN MO25ERR: Deployment Name must be 5 characters! >CK [Parameters saved as USER defaults] 5) >CS

6)

Annexe 2 : Châssis CIAM – Retour turbidimètre

Retour Turbidimètre :

Prog 2022 :

Ruskin v1.13.10 Fichier Instruments Options Aide				-		×
* Navigator	RBRvirtuoso 054057					
V T Instruments RBNATLosso 054057 Z M M MLM Die Jeux die données	Information Ruranterusgo Transferer Calibration Plantification Condition de déclenchement Configuration de base Config Etat de l'energistre Arrête, Gernande de futilisat Honloge energistre 2009/2022 © 660000 Lancer l'enregistrement 2009/2022 © 120000 (Configuration de déclarchement) Fin d'enregistrement 2009/2022 © 120000 (Configuration de déclarchement) Régime d'échantitionnage Précode Caderce 20200 (Configuration de déclarchement) La plantification est validé Menore reouise pour la clantificat) Energistrement parametrizage Active Reiverser les registages Utilisie le demire parametrizage	suration avancée Syncho sur UTC Synchro temps local Commencer immédiatement				
RBRvirtuoso 054057 10			Echantillon -			-
9,55 0.90			Temps -			
081 080 077 077 085 085 085			# Valeur 1	Dernier	Unité NTU	

Retour 2023 :

Navigator	10 El RBR/virtuoso 054037 11	
L Instruments	Information Paramétrage Transferer Calibration	
RBRvinuoso 054057 🛣	Details de l'exemptions àll meritation Mean part channels	
M MAL Die Ruid de donnees	Modele 88844500 Sover US Glevenion Lan 2011 Ememe 12392 (mm 12374 (mm 12374)) Trability (MTI) Seapoint Store US 12400 (mm 12374 (mm 12374)) (MTI) Seapoint Trability (MTI) Seapoint Trability (MTI) Seapoint Trability (MTI) Seapoint Trability (MTI) Seapoint Trability (MTI) Seapoint Trability (MTI) Seapoint Seapoint Trability (MTI) Seapoint Seapoint Trability (MTI) Seapoint Seapoint Trability (MTI) Seapoint Sea	
	Redirer RX location	
RBRvinuoso 054057	Realitive RSX location	
RBRinfluoso 054057 0	Paultine KSI location	Eduarition -
RRPs/tuceo 054037 2	Healtine KIX location	Eduarition - Temps -
Biblishone (940)7 21 10 10 10 10 10 10 10 10 10 10 10 10	Realitive RSX location	Extendion - Tengs - # Value Denser Unite

Annexe 3 : Châssis CIAM - Sphère n°102 et n°47

Sphère Acoustique Nº 47 :

3 FICHE D'EQUIPEMENT

Туре	:	AR961G-13	Date de Fabrication	:	24/12/2009
N/S	:	047	Client	:	IFREMER
P/N	:	424 9400	Agent	:	
Fonction	:	Largueur Acoustique Sphère 13	Affaire	:	9B000142
Modification	:		Approbation client	:	

SPECIFICAT	IONS TECHNIQUES						
	CARTE ELECTRONIQUE	SPECIFICATIONS ELECTRONIQUES					
Référence 424 2010 4	Rev Fonction N/S 2.3 Carte AR 9x1 047 Logiclel: Flash (U9) – AR9_V1.2 FPGA (U5) - REC_V1.0	Largeur émission : 10 ms Niveau émission : 192±5 dB ref 1µPa à 1 m Cadence Pinger : 5 s Durée Pinger après largage : 3 mn					
	FPGA (U40) - EM_V1.0	FR0 = 09.0 kHz · FR1 = 13.0 kHz					
Time-out « Time-out «	LARGAGE » est de 40 secondes PERIPH » est de 40 secondes	CAF = 12.0 kHz FT0 PFR = 12.0 kHz					

SPECIFICATIONS FONCTIONNELLES

Fonction / Code	7T301 / TT701 / TT801		1	Séq	uence	
ARMEMENT / DISTANCE	1934		CAF		Durée inh Durée act	lbition = 4s ivation = 20s
Les codes acoustiques suiva	nts doivent être précédés	d'un co	de ARME	MENT		
LARGAGE	1955	⇒	CAF	⇒ .	CAF	
LARGAGE AVEC PINGER	1956	⇒	CAF	⇒	$CAF \Rightarrow$	PFR
PINGER ON	1947	⇒	CAF	⇒	PFR	
PINGER OFF	1948	⇒	CAF			
DIAGNOSTIC	1949	⇒	CAF.	⇒	CAF,	
PERIPHERIQUE	1958	⇒	CAF	⇒	CAF	
PERIPHERIQUE AVEC PING	BER 1959	⇒	CAF	⇒	CAF ⇒	PFR

ł

AR961G-13 N/S = 047

> Sphère Acoustique Nº 102:

3 FICHE D'EQUIPEMENT

Туре	:	AR961G-13	Date de Fabrication	:	23/07/2015
N/S	:	102	Client	:	IFREMER
P/N	:	KAA00099	Agent	:	
Fonction	:	Largueur Acoustique Sphère 13	Affaire	:	AR1151202
Modification	:		Approbation client	:	

SPECIFICAT	TIONS T	ECHNIQUES	a and a second				
CARTE ELECTRONIQUE				SPECIFICATIONS ELECTRONIQUES			
Référence SCE00150	<u>Rev</u> B.03	Fonction N/S Carte AR 9x1 102 Logiciel: Flash (U9) – AR9_V1.2 FPGA (U5) - REC_V1.1 FPGA (U40) - EM_V1.0		Largeur émission : 10 ms Niveau émission : 192 ± 5 dB ref 1µPa à 1 m Cadence Pinger : 5 s Durée Pinger après largage : 3 mn Durée Pinger après Périph. : 3 mn			
Time-out « LARGAGE » est de 40 secondes Time-out « PERIPH » est de 40 secondes				FR0 = 09.0 kHz FR1 = 13.0 kHz CAF = 12.0 kHz PFR = 12.0 kHz			

SPECIFICATIONS FONCTIONNELLES ,

Fonction / Code	TT301 / TT701 / TT801		Séquence			
ARMEMENT / DISTANCE	197A	⇒	CAF		Durée inhibition = 4s Durée activation = 20	
Les codes acoustiques suivan	ts doivent être précédés	d'un co	de ARMEN	MENT		
LARGAGE	1955	⇒	CAF	⇒	CAF	
LARGAGE AVEC PINGER	1956	⇒	CAF	⇒	CAF ⇒	PFR
PINGER ON	1947	⇒	CAF	⇒	PFR	
PINGER OFF	1948	⇒	CAF			
DIAGNOSTIC	1949	⇒	CAF1	⇒	CAF ₂	
PERIPHERIQUE	1958	⇒	CAF	⇒	CAF	
PERIPHERIQUE AVEC PING	ER 1959	⇒	CAF	⇒	CAF ⇒	PFR
4 4 4 4						

AR961G-13 N/S = 102

Annexe 4 : Liste des profils de données du sondeur multifaisceaux (date de début, heure de début, date de fin, heure de fin, nom de profil).

VOLCAN

> 14/09/2023 14:55:53.385 14/09/2023 16:40:00.000 P_005
> 14/09/2023 16:59:46.120 14/09/2023 18:45:50.949 P_006
> 14/09/2023 19:06:58.994 14/09/2023 20:52:48.274 P_007
> 14/09/2023 21:12:34.243 14/09/2023 22:57:28.866 P_008
> 14/09/2023 23:17:26.633 15/09/2023 01:03:51.280 P_009
> 15/09/2023 01:30:07.354 15/09/2023 03:02:11.346 P_010
> 15/09/2023 03:20:15.985 15/09/2023 04:52:39.809 P_011

> 15/09/2023 05:11:58.358 15/09/2023 06:45:04.024 P_012
> 15/09/2023 07:07:28.004 15/09/2023 09:00:23.127 P 013

> 15/09/2023 09:22:32.781 15/09/2023 11:12:29.981 P_014 COTE

> 16/09/2023 19:26:14.950 16/09/2023 20:42:24.993 P_022
> 16/09/2023 20:50:23.998 16/09/2023 22:07:59.042 P_023
> 16/09/2023 22:15:05.257 16/09/2023 23:34:29.000 P_024
> 16/09/2023 23:43:52.097 17/09/2023 01:00:28.140 P_025
> 17/09/2023 01:09:35.145 17/09/2023 02:24:38.188 P_026
> 17/09/2023 02:33:16.193 17/09/2023 03:46:32.234 P_027
> 17/09/2023 03:55:41.240 17/09/2023 05:09:29.281 P_028
> 17/09/2023 08:32:33.397 17/09/2023 09:54:04.443 P_031
> 17/09/2023 10:06:06.450 17/09/2023 11:25:51.495 P_032
> 17/09/2023 11:38:26.502 17/09/2023 12:58:58.548 P_033
> 17/09/2023 13:10:42.555 17/09/2023 14:30:26.600 P_034
> 17/09/2023 14:43:56.608 17/09/2023 15:57:21.650 P_035
> 17/09/2023 16:12:31.658 17/09/2023 17:33:07.705 P_036
> 17/09/2023 17:46:34.590 17/09/2023 19:08:15.657 P_037
> 17/09/2023 19:24:42.768 17/09/2023 20:51:20.818 P_038
> 17/09/2023 21:01:35.824 17/09/2023 22:28:31.874 P_039
> 17/09/2023 22:40:10.880 18/09/2023 00:07:17.930 P_040
> 18/09/2023 00:19:13.937 18/09/2023 01:53:01.990 P_041
> 18/09/2023 02:09:16.000 18/09/2023 03:44:54.054 P_042
> 18/09/2023 03:55:22.828 18/09/2023 05:25:39.466 P_043
> 18/09/2023 12:04:13.927 18/09/2023 13:46:34.339 P_047
> 18/09/2023 13:58:36.464 18/09/2023 15:30:19.797 P_048
> 18/09/2023 15:43:12.809 18/09/2023 17:20:03.258 P_049
> 18/09/2023 17:31:14.296 18/09/2023 19:08:09.147 P_050

FER A CHEVAL

> 19/09/2023 12:23:43.410 19/09/2023 12:56:48.809 P_055
> 19/09/2023 13:08:41.480 19/09/2023 13:41:45.728 P_056
> 19/09/2023 13:50:39.153 19/09/2023 13:41:45.728 P_056
> 19/09/2023 13:50:39.153 19/09/2023 14:18:03.686 P_057
> 19/09/2023 14:24:44.085 19/09/2023 14:45:43.641 P_058
> 19/09/2023 14:52:32.131 19/09/2023 15:11:59.531 P_059
> 19/09/2023 15:18:19.044 19/09/2023 15:43:32.827 P_060
> 19/09/2023 15:51:18.348 19/09/2023 16:58:10.122 P_062
> 19/09/2023 16:30:55.966 19/09/2023 16:58:10.122 P_062
> 19/09/2023 17:14:11.916 19/09/2023 17:41:09.775 P_063
> 19/09/2023 17:50:06.691 19/09/2023 18:17:02.653 P_064
> 19/09/2023 18:25:49.399 19/09/2023 18:51:33.424 P_065
> 19/09/2023 19:05:16.944 19/09/2023 20:06:46.426 P_067
> 23/09/2023 00:31:40.920 23/09/2023 00:34:12.279 P 115

- > 23/09/2023 00:48:56.088 23/09/2023 01:20:29.587 P 116
- > 23/09/2023 01:30:55.802 23/09/2023 01:37:58.212 P 117
- > 23/09/2023 01:49:14.136 23/09/2023 01:57:49.446 P_118

PANACHE 6

PANACHE 5

PANACHE 4

> 23/09/2023 02:19:17.436 23/09/2023 02:38:10.055 P 119

> 22/09/2023 18:17:21.722 22/09/2023 18:24:22.528 P 107 > 22/09/2023 18:26:22.408 22/09/2023 18:42:04.949 P 108 > 22/09/2023 18:49:33.905 22/09/2023 19:27:04.614 P 109 > 22/09/2023 19:35:36.056 22/09/2023 19:46:16.567 P 110 > 22/09/2023 19:52:18.355 22/09/2023 19:58:50.344 P 111

> 22/09/2023 18:02:18.719 22/09/2023 18:17:18.212 P 106

> 22/09/2023 16:21:47.451 22/09/2023 16:42:57.952 P_102_C > 22/09/2023 16:52:29.939 22/09/2023 17:10:34.945 P 103 > 22/09/2023 17:16:24.544 22/09/2023 17:32:37.553 P_104

- > 22/09/2023 16:16:28.391 22/09/2023 16:19:25.876 P_102_B
- > 22/09/2023 16:06:53.600 22/09/2023 16:15:19.601 P_102_A

> 22/09/2023 17:37:20.037 22/09/2023 17:48:11.032 P_105

PANACHE 3

> 22/09/2023 15:08:22.891 22/09/2023 15:12:17.377 P_100 > 22/09/2023 15:17:58.329 22/09/2023 15:52:16.330 P 101

> 22/09/2023 14:44:29.145 22/09/2023 15:03:30.127 P 099

> 22/09/2023 14:18:14.782 22/09/2023 14:36:54.782 P 098

PANACHE 2

RIDE

> 22/09/2023 13:06:09.723 22/09/2023 13:17:32.223 P 095 > 22/09/2023 13:24:52.075 22/09/2023 13:55:50.575 P_096 > 22/09/2023 14:03:46.042 22/09/2023 14:14:12.551 P_097

> 22/09/2023 11:04:37.757 22/09/2023 11:13:00.268 P 090 > 22/09/2023 11:26:16.259 22/09/2023 11:52:08.565 P 091 > 22/09/2023 11:52:15.575 22/09/2023 12:04:35.265 P 092 > 22/09/2023 12:12:28.357 22/09/2023 12:44:08.857 P 093 > 22/09/2023 12:49:07.173 22/09/2023 13:01:36.172 P 094

> 21/09/2023 01:07:41.459 21/09/2023 02:36:17.309 P 081 > 21/09/2023 02:59:11.440 21/09/2023 04:32:26.814 P_082 PANACHE 1

> 19/09/2023 20:18:52.149 19/09/2023 20:44:04.148 P_068 > 19/09/2023 20:52:41.459 19/09/2023 21:16:17.668 P_069 > 19/09/2023 21:25:02.678 19/09/2023 21:51:06.040 P 070 > 19/09/2023 22:00:17.134 19/09/2023 22:25:32.907 P 071

> 20/09/2023 21:47:59.616 20/09/2023 23:07:10.864 P_079 > 20/09/2023 23:27:26.492 21/09/2023 00:50:41.508 P 080

PANACHE7

> 23/09/2023 08:04:53.364 23/09/2023 08:20:20.864 P_122

> 23/09/2023 08:34:57.123 23/09/2023 08:47:39.905 P_123

PANACHE8

> 23/09/2023 16:16:56.094 23/09/2023 16:33:40.595 P_136 > 23/09/2023 16:36:13.949 23/09/2023 16:58:34.451 P_137 > 23/09/2023 17:03:05.948 23/09/2023 17:27:21.942 P_138 > 23/09/2023 17:33:44.845 23/09/2023 18:17:55.595 P_139 > 23/09/2023 18:24:58.230 23/09/2023 18:42:56.230 P_140 > 23/09/2023 18:44:09.729 23/09/2023 18:54:33.480 P_141 > 23/09/2023 18:57:58.791 23/09/2023 19:15:25.244 P_142 > 23/09/2023 19:25:31.941 23/09/2023 20:02:14.339 P_143 > 23/09/2023 20:06:12.176 23/09/2023 20:21:27.584 P_144 > 23/09/2023 20:25:17.679 23/09/2023 20:34:59.738 P_145 > 23/09/2023 20:38:34.226 23/09/2023 21:01:09.498 P_146

PANACHE 9

> 25/09/2023 00:36:46.648 25/09/2023 01:20:13.557 P_152 > 25/09/2023 01:20:17.069 25/09/2023 01:32:56.557 P_153 > 25/09/2023 01:42:34.085 25/09/2023 02:02:13.596 P_154 > 25/09/2023 02:06:57.095 25/09/2023 02:29:10.410 P_155 > 25/09/2023 02:34:47.692 25/09/2023 03:17:56.210 P_156 > 25/09/2023 03:26:50.127 25/09/2023 03:45:35.373 P_157 > 25/09/2023 03:48:07.955 25/09/2023 03:57:09.117 P_158 > 25/09/2023 03:59:06.521 25/09/2023 04:16:30.728 P_159 > 25/09/2023 05:22:32.384 25/09/2023 05:48:49.007 P_161 > 25/09/2023 05:59:15.278 25/09/2023 06:21:33.102 P_162

PANACHE 10

> 25/09/2023 06:35:28.160 25/09/2023 06:55:32.048 P 163

TRANSITS, RALLIEMENTS ET AUTRES OPERATIONS

> 11/09/2023 16:34:49.216 12/09/2023 00:57:28.723 TR 001 > 13/09/2023 18:02:38.146 13/09/2023 21:54:51.779 P 001 > 14/09/2023 06:29:02.602 14/09/2023 08:06:52.612 P 002 > 14/09/2023 12:55:08.332 14/09/2023 13:27:24.830 P 003 > 14/09/2023 13:34:51.615 14/09/2023 14:55:45.790 P 004 > 15/09/2023 11:34:55.495 15/09/2023 12:19:36.482 P 015 > 15/09/2023 12:33:47.274 15/09/2023 13:15:45.960 P 016 > 15/09/2023 13:25:02.606 15/09/2023 14:21:22.472 P 017 > 15/09/2023 18:37:53.059 15/09/2023 19:25:14.798 P 018 > 15/09/2023 21:53:12.537 16/09/2023 00:26:47.127 P_019 > 16/09/2023 09:31:34.513 16/09/2023 12:01:58.046 P_020 > 16/09/2023 18:00:47.517 16/09/2023 19:23:56.255 P_021 > 17/09/2023 05:11:40.282 17/09/2023 05:45:17.302 P_029 > 17/09/2023 08:00:57.379 17/09/2023 08:28:46.394 P_030 > 18/09/2023 05:34:39.991 18/09/2023 06:08:44.459 P 044 > 18/09/2023 07:28:12.865 18/09/2023 07:57:03.049 P 045 > 18/09/2023 11:29:52.879 18/09/2023 11:59:15.070 P 046 > 18/09/2023 19:12:48.655 18/09/2023 20:32:47.193 P 051 > 19/09/2023 00:59:42.121 19/09/2023 02:13:04.792 P 052 > 19/09/2023 04:38:37.295 19/09/2023 05:47:16.507 P 053

> 19/09/2023 10:29:51.260 19/09/2023 11:34:47.086 P 054 A > 19/09/2023 11:34:51.223 19/09/2023 12:19:28.628 P_054_B > 19/09/2023 22:35:14.693 19/09/2023 22:50:10.323 P 072 > 19/09/2023 22:59:28.108 19/09/2023 23:09:33.910 P 073 > 19/09/2023 23:19:02.757 19/09/2023 23:35:15.757 P 074 > 19/09/2023 23:42:17.858 19/09/2023 23:50:24.371 P 075 > 20/09/2023 06:52:21.497 20/09/2023 08:48:49.745 P 076 > 20/09/2023 12:16:04.912 20/09/2023 13:59:07.901 P 077 > 20/09/2023 19:08:44.459 20/09/2023 19:15:59.887 P 078 A > 20/09/2023 19:16:03.310 20/09/2023 21:42:50.416 P 078 B > 21/09/2023 04:38:34.475 21/09/2023 05:40:00.951 P 083 > 21/09/2023 05:57:34.975 21/09/2023 06:10:45.868 P 084 > 21/09/2023 06:22:39.473 21/09/2023 06:41:30.483 P 085 > 21/09/2023 08:29:03.601 21/09/2023 10:17:46.400 P 086 > 21/09/2023 16:36:00.978 21/09/2023 17:40:47.251 P 087 > 21/09/2023 21:37:13.777 21/09/2023 22:53:21.226 P_088 > 22/09/2023 02:35:50.320 22/09/2023 03:35:44.059 P 089 A > 22/09/2023 03:38:44.822 22/09/2023 04:48:08.803 P_089_B > 22/09/2023 06:11:46.899 22/09/2023 09:21:10.908 CTD_HYO5_YOYO > 22/09/2023 20:03:32.969 22/09/2023 20:40:09.377 P 112 > 22/09/2023 20:45:35.836 22/09/2023 20:59:49.845 P_113 > 22/09/2023 22:05:29.414 22/09/2023 22:45:40.924 D_001 > 22/09/2023 22:50:13.923 22/09/2023 23:12:58.917 D 002 > 23/09/2023 00:19:39.424 23/09/2023 00:31:37.417 P 114 > 23/09/2023 02:41:48.924 23/09/2023 03:06:29.433 P 120 > 23/09/2023 07:38:16.476 23/09/2023 07:59:26.975 P 121 > 23/09/2023 08:52:20.796 23/09/2023 09:03:40.454 P 124 > 23/09/2023 09:14:48.213 23/09/2023 09:22:28.884 P 125 > 23/09/2023 09:30:49.390 23/09/2023 09:40:24.697 P 126 > 23/09/2023 09:47:33.557 23/09/2023 09:56:57.063 P 127 > 23/09/2023 10:10:29.562 23/09/2023 10:18:23.138 P 128 > 23/09/2023 10:25:38.106 23/09/2023 10:32:17.798 P 129 > 23/09/2023 10:41:24.341 23/09/2023 10:46:28.610 P 130 > 23/09/2023 10:52:02.480 23/09/2023 11:00:51.434 P 131 > 23/09/2023 12:35:32.542 23/09/2023 12:46:03.052 P 133 > 23/09/2023 14:53:40.817 23/09/2023 15:46:55.868 P 134 > 23/09/2023 15:52:45.352 23/09/2023 16:11:56.846 P_135 > 24/09/2023 01:54:32.749 24/09/2023 01:56:28.251 P 147 > 24/09/2023 04:58:09.824 24/09/2023 06:33:33.897 P_148 > 24/09/2023 12:34:36.444 24/09/2023 15:11:47.621 P 149 > 24/09/2023 18:07:04.683 24/09/2023 20:01:23.968 P 150 > 24/09/2023 22:22:53.125 25/09/2023 00:25:27.657 P_151 > 25/09/2023 04:27:26.102 25/09/2023 05:13:21.877 P 160 > 25/09/2023 07:00:11.912 25/09/2023 07:23:15.372 P 164 A > 25/09/2023 07:23:19.420 25/09/2023 11:49:24.556 P 164 B

> 27/09/2023 07:41:21.595 27/09/2023 22:25:54.779 TR_002

Cruise	Hydrocast	Bottle	Sample	Date	Time (UT)	Depth aimed (m)	# Scan	Depth (m)	(1) He	(2) Bulb [CH₄]	(3) HeadSpace [CH4, H2, CO2]	(4) HeadSpace ¹³ C CO ₂ , CH ₄	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L	Remarks
									MAY25-HY0	1:								
MAY25	HY01	B01	MAY25-HY01-B01	18/09/2023	08h58	500	4949	500	2	1	1		1	1	1	1		
MAY25	HY01	B02	MAY25-HY01-B02	18/09/2023	09h11	700	6527	700	1	1	1		1		1			
MAY25	HY01	B03	MAY25-HY01-B03	18/09/2023	09h24	900	8107	900		1	1		1		1			
MAY25	HY01	B04	MAY25-HY01-B04	18/09/2023	09h31	1000	8893	1000	1	1	1		1	1	1	1		
MAY25	HY01	B05	MAY25-HY01-B05	18/09/2023	09h31	1000	8901	1000									1	12L filtrés
MAY25	HY01	B06	MAY25-HY01-B06	18/09/2023	09h34	1050	9289	1050		1	1		1	1	1	1		
MAY25	HY01	B07	MAY25-HY01-B07	18/09/2023	09h37	1100	9681	1100	1	1	1	1	1	1	1	1		
MAY25	HY01	B08	MAY25-HY01-B08	18/09/2023	09h41	1150	10079	1150	1	1	1		1	1	1	1		
MAY25	HY01	B09	MAY25-HY01-B09	18/09/2023	09h41	1150	10087	1150									1	12L filtrés
MAY25	HY01	B10	MAY25-HY01-B10	18/09/2023	09h44	1200	10471	1200	1	1	1		1	1	1	1		
MAY25	HY01	B11	MAY25-HY01-B11	18/09/2023	09h40	1200	10477	1200									1	
MAY25	HY01	B12	MAY25-HY01-B12	18/09/2023	09h48	1250	10971	1246	2	1	1	1	1	1	1	1		
MAY25	HY01	B13	MAY25-HY01-B13	18/09/2023	09h48	1250	10979	1246										bouteille fissurée et fuyante
MAY25	HY01	B14	MAY25-HY01-B14	18/09/2023	09h48	1250	10987	1246									1	+ bio (7.4L), métau1 (4.6L)
MAY25	HY01	B15	MAY25-HY01-B15	18/09/2023	09h52	1200	11443	1200		1	1	1	1		1			
MAY25	HY01	B16	MAY25-HY01-B16	18/09/2023	09h56	1150	11859	1150		1	1		1		1			
MAY25	HY01	B17	MAY25-HY01-B17	18/09/2023	09h59	1100	12277	1100		1	1		1		1			
MAY25	HY01	B18	MAY25-HY01-B18	18/09/2023	10h03	1050	12691	1050		1	1		1		1			
MAY25	HY01	B19	MAY25-HY01-B19	18/09/2023	10h06	1000	13107	1000		1	1		1		1			
MAY25	HY01	B20	MAY25-HY01-B20	18/09/2023	10h13	900	13941	900		1	1		1		1			
MAY25	HY01	B21	MAY25-HY01-B21	18/09/2023	10h27	700	15609	700		1	1		1		1			
MAY25	HY01	B22	MAY25-HY01-B22	18/09/2023	10h41	500	17275	500		1	1		1		1			
MAY25	HY01	B23	MAY25-HY01-B23	18/09/2023	09h25	915	18222	915		1	1		1		1			dans panache
MAY25	HY01	B24	MAY25-HY01-B24	18/09/2023	11h16	10	21477	10		1	1		1		1			

Annexe 5 : Liste des prélèvements CTD-Rosette au cours de la campagne MAYOBS26

Cruise	Hydrocast	Bottle	Sample	Date	Time (UT)	Depth aimed (m)	# Scan	Depth (m)	(1) He	(2) Bulb [CH ₄]	(3) HeadSpace [CH ₄ , H ₂ , CO ₂]	(4) HeadSpace ¹³ C CO ₂ , CH ₄	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L	Remarks
								MAY25-HY0	2 : centre FAC	C / châssis CIA	M							
MAY25	HY02	B01	MAY25-HY02-B01	20/09/2023	00:38:00	1465	4521	1463	2	1	1	1	1	1	1	1		
MAY25	HY02	B02	MAY25-HY02-B02	20/09/2023	00:38:00	1450	4635	1450		1	1		1		1			
MAY25	HY02	B03	MAY25-HY02-B03	20/09/2023	00:39:00	1400	4743	1400	2	1	1		1	1	1	1		
MAY25	HY02	B04	MAY25-HY02-B04	20/09/2023	00:40:00	1350	4853	1350		1	1		1		1			
MAY25	HY02	B05	MAY25-HY02-B05	20/09/2023	00:42:00	1300	5093	1300		1	1		1	1	1	1		
MAY25	HY02	B06	MAY25-HY02-B06	20/09/2023	00:43:00	1250	5197	1250		1	1		1	1	1	1		
MAY25	HY02	B07	MAY25-HY02-B07	20/09/2023	00:43:00	1250	5219	1235										Bio
MAY25	HY02	B08	MAY25-HY02-B08	20/09/2023	00:44:00	1200	5299	1200		1	1	1	1		1			
MAY25	HY02	B09	MAY25-HY02-B09	20/09/2023	00:45:00	1150	5401	1150		1	1		1		1			
MAY25	HY02	B10	MAY25-HY02-B10	20/09/2023	00:46:00	1100	5507	1100		1	1		1		1			
MAY25	HY02	B11	MAY25-HY02-B11	20/09/2023	00:48:00	1050	5747	1050		1	1		1		1			
MAY25	HY02	B12	MAY25-HY02-B12	20/09/2023	00:49:00	1000	5871	1000		1	1		1		1			
MAV25	HV02	B13	MAV25 HV02 B13	20/09/2023	00.49.00	1000	5971	1000										Rio

REVO	DSIMA
------	-------

Cruise	Hydrocast	Bottle	Sample	Date	Time (UT)	Depth aimed (m)	# Scan	Depth (m)	(1) He	(2) Bulb [CH₄]	(3) HeadSpace [CH ₄ , H ₂ , CO ₂]	(4) HeadSpace ¹³ C CO ₂ , CH ₄	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L	Remarks
								MAY25-HY0	3 : centre FA	C / châssis CIA	M							
MAY25	HY03	B01	MAY25-HY03-B01	20/09/2023	03:39:00	500	5429	527		1	1		1		1			
MAY25	HY03	B02	MAY25-HY03-B02	20/09/2023	03:50:00	700	6765	700		1	1		1		1			
MAY25	HY03	B03	MAY25-HY03-B03	20/09/2023	04:03:00	900	8323	900		1	1		1		1			
MAY25	HY03	B04	MAY25-HY03-B04	20/09/2023	04:10:00	1000	9100	998		1	1		1		1			
MAY25	HY03	B05	MAY25-HY03-B05	20/09/2023	04:19:00	900	10307	900		1	1		1		1			
MAY25	HY03	B06	MAY25-HY03-B06	20/09/2023	04:36:00	700	12331	700		1	1		1		1			
MAY25	HY03	B07	MAY25-HY03-B07															bouteille retirée
MAY25	HY03	B08	MAY25-HY03-B08	20/09/2023	04:52:00	500	14251	500		1	1		1		1			
MAY25	HY03	B09	MAY25-HY03-B09	20/09/2023	05:24:00	10	18061	10		1	1		1		1			

Cruise	Hydrocast	Bottle	Sample	Date	Time (UT)	Depth aimed (m)	# Scan	Depth (m)	(1) He	(2) Bulb [CH4]	(3) HeadSpace [CH4, H2, CO2]	(4) Head Space ¹³ C CO ₂ , CH ₄	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L	Remarks
								MAY25	5-HYO4 : chen	al N du FAC								
MAY25	HY04	B01	MAY25-HY04-B01	21/09/2023	07:41:00	1740	5931	1739	2	1	1		1	1	1	1		
MAY25	HY04	B02	MAY25-HY04-B02	21/09/2023	07:43:00	1720	6105	1720		1	1	1	1		1			
MAY25	HY04	B03	MAY25-HY04-B03	21/09/2023	07:44:00	1700	6187	1700	2	1	1	1	1	1	1	1		
MAY25	HY04	B04	MAY25-HY04-B04	21/09/2023	07:44:00	1700	6193	1699							1		1	12L filtrés
MAY25	HY04	B05	MAY25-HY04-B05	21/09/2023	07:45:00	1600	6424	1600	1	1	1		1	1	1	1		
MAY25	HY04	B06	MAY25-HY04-B06	21/09/2023	07:48:00	1500	6700	1499	1	1	1		1	1	1	1		
MAY25	HY04	B07	MAY25-HY04-B07	21/09/2023	07:50:00	1400	6903	1399	1	1	1		1		1			
MAY25	HY04	B08	MAY25-HY04-B08	21/09/2023	07:50:00	1400	6931	1386							1		1	12L filtrés
MAY25	HY04	B09	MAY25-HY04-B09	21/09/2023	07:50:00	1350	7005	1348		1	1		1		1			
MAY25	HY04	B10	MAY25-HY04-B10	21/09/2023	07:52:00	1300	7183	1299	2	1	1		1		1			
MAY25	HY04	B11	MAY25-HY04-B11	21/09/2023	07:54:00	1200	7461	1199		1	1		1	1	1	1		
MAY25	HY04	B12	MAY25-HY04-B12	21/09/2023	07:54:00	1200	7463	1198							1		1	12L filtrés
MAY25	HY04	B13	MAY25-HY04-B13	21/09/2023	07:54:00	1200	7467	1197										BIO
MAY25	HY04	B14	MAY25-HY04-B14	21/09/2023	07:56:00	1100	7711	1100		1	1		1		1			
MAY25	HY04	B15	MAY25-HY04-B15	21/09/2023	07:58:00	1000	7983	1000		1	1		1	1	1	1		
MAY25	HY04	B16	MAY25-HY04-B16	21/09/2023	08:02:00	800	8461	800		1	1		1		1			
MAY25	HY04	B17	MAY25-HY04-B17	21/09/2023	08:08:00	500	9173	500		1	1		1		1			

REV	OSI	MA
-----	-----	----

Cruise	Hydrocast	Bottle	Sample	Date	Time (UT)	Depth aimed (m)	# Scan	Depth (m)	(1) He	(2) Bulb [CH₄]	(3) HeadSpace [CH4, H2, CO2]	(4) H ea d Spa ce ¹³ C CO ₂ , CH ₄	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L	Remarks
						_		MAY25	HY05 : Yoyot	transect FAC	_	_	_	_			_	
MAY25	HY05	B01	MAY25-HY05-B01	22/09/2023	05:48:00	900	5727	900,6		1	1		1		1			
MAY25	HY05	B02	MAY25-HY05-B02	22/09/2023	05:56:00	1000	6659	1000,8		1	1		1		1			
MAY25	HY05	B03	MAY25-HY05-B03	22/09/2023	06:07:00	1150	8006	1150,3		1	1		1		1			
MAY25	HY05	B04	MAY25-HY05-B04	22/09/2023	06:14:00	1250	8923	1250,7		1	1		1		1			
MAY25	HY05	B05	MAY25-HY05-B05	22/09/2023	03:25:00	1150	10185	1149,6		1	1		1		1			
MAY25	HY05	B06	MAY25-HY05-B06	22/09/2023	06:37:00	1000	11663	999,5		1	1		1		1			
MAY25	HY05	B07	MAY25-HY05-B07	22/09/2023	06:46:00	900	16673	900		1	1		1		1			
MAY25	HY05	B08	MAY25-HY05-B08	22/09/2023	06:56:00	1000	13885	1000		1	1		1		1			
MAY25	HY05	B09	MAY25-HY05-B09	22/09/2023	07:07:00	1150	15283	1150,6		1	1		1		1			
MAY25	HY05	B10	MAY25-HY05-B10	22/09/2023	07:15:00	1250	16195	1250,2		1	1		1		1			
MAY25	HY05	B11	MAY25-HY05-B11	22/09/2023	07:24:00	1150	17255	1149,7		1	1		1		1			Silicate repris sur backup BRGM
MAY25	HY05	B12	MAY25-HY05-B12	22/09/2023	07:28:00	1000	17770	1097		1	1		1		1			
MAY25	HY05	B13	MAY25-HY05-B13	22/09/2023	07:45:00	900	19835	900		1	1		1		1			
MAY25	HY05	B14	MAY25-HY05-B14	22/09/2023	07:54:00	1000	20830	1005		1	1		1		1			
MAY25	HY05	B15	MAY25-HY05-B15	22/09/2023	08:04:00	1150	22085	1150		1	1		1		1			
MAY25	HY05	B16	MAY25-HY05-B16	22/09/2023	08:12:00	1250	22971	1250,6		1	1		1		1			
MAY25	HY05	B17	MAY25-HY05-B17	22/09/2023	08:22:00	1150	24203	1150,2		1	1		1		1			
MAY25	HY05	B18	MAY25-HY05-B18	22/09/2023	08:40:00	1000	26406	999,8		1	1		1		1			
MAY25	HY05	B19	MAY25-HY05-B19	22/09/2023	08:48:00	900	27355	900		1	1		1		1			
MAY25	HY05	B20	MAY25-HY05-B20	22/09/2023	09:01:00	1000	28917	999,3		1	1		1		1			
MAY25	HY05	B21	MAY25-HY05-B21	22/09/2023	09:15:00	1150	30597	1150,3		1	1		1		1			
MAY25	HY05	B22	MAY25-HY05-B22	22/09/2023	09:25:00	1250	31729	1249,9		1	1		1		1			
MAY25	HY05	B23	MAY25-HY05-B23	22/09/2023	09:36:00	1150	33110	1150		1	1		1		1			
MAY25	HY05	B24	MAY25-HY05-B24	22/09/2023	10:02:00	900	36301	900		1	1		1		1			Après 900m, virage à 0.4m/s

Cruise	Hydrocast	Bottle	Sample	Date	Time (UT)	Depth aimed (m)	# Scan	Depth (m)	(1) He	(2) Bulb [CH ₄]	(3) HeadSpace [CH ₄ , H ₂ , CO ₂]	(4) HeadSpace ¹³ C CO ₂ , CH ₄	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L	Remarks
								M	AY25-HY06 : :	site KO								-
MAY25	HY06	B01	MAY25-HY06-B01	23/09/2023	14:03:00	1459	7497		2	1	3	1	1	1	1	1		
MAY25	HY06	B02	MAY25-HY06-B02	23/09/2023	14:03:00	1459	7507										1	12L
MAY25	HY06	B03	MAY25-HY06-B03	23/09/2023	14:04:00	1430	7687		1	1	1		1	1	1	1		
MAY25	HY06	B04	MAY25-HY06-B04	23/09/2023	14:06:00	1400	7809		1	1	1	1	1	1	1	1		
MAY25	HY06	B05	MAY25-HY06-B05	23/09/2023	14:06:00	1400	7815										1	12L
MAY25	HY06	B06	MAY25-HY06-B06	23/09/2023	14:07:00	1350	7961		2	1	1		1	1	1	1		
MAY25	HY06	B07	MAY25-HY06-B07	23/09/2023	14:07:00	1350	1967										1	12L
MAY25	HY06	B08	MAY25-HY06-B08	23/09/2023	14:08:00	1300	8153			1	1		1		1			
MAY25	HY06	B09	MAY25-HY06-B09	23/09/2023	14:10:00	1250	8301		1	1	1		1	1	1	1		
MAY25	HY06	B10	MAY25-HY06-B10	23/09/2023	14:10:00	1250	8311											Bio 12L
MAY25	HY06	B11	MAY25-HY06-B11	23/09/2023	14:11:00	1200	8521			1	1		1		1			
MAY25	HY06	B12	MAY25-HY06-B12	23/09/2023	14:12:00	1175	8573			1	1		1		1			
MAY25	HY06	B13	MAY25-HY06-B13	23/09/2023	14:13:00	1130	8665			1	1		1		1			
MAY25	HY06	B14	MAY25-HY06-B14	23/09/2023	14:15:00	1000	9001		1	1	1		1	1	1	1		
MAY25	HY06	B15	MAY25-HY06-B15	23/09/2023	14:18:00	900	9377			1	1		1		1			
MAY25	HY06	B16	MAY25-HY06-B16	23/09/2023	14:31:00	500	10857			1	1		1		1			

REVOSIMA	
----------	--

Cruise	Hydrocast	Bottle	Sample	Date	Time (UT)	Depth aimed (m)	# Scan	Depth (m)	(1) He	(2) Bulb [CH₄]	(3) HeadSpace [CH., H., CO.]	(4) Head Space ¹³ C.CO ₂₁ , CH	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L	Remarks
	1 1							MA	Y25-HY07 : ré	éférence	[[[[]]]]]	0002,0114		incus	(incorody			
MAY25	HY07	B01	MAY25-HY07-B01	24/09/2023	16:37:00	3485			2	1	1		1	1	1	1		
MAY25	HY07	B02	MAY25-HY07-B02	24/09/2023	16:37:00	3485											1	12L
MAY25	HY07	B03	MAY25-HY07-B03	24/09/2023	16:41:00	3300			1	1	1		1	1	1	1	-	
MAY25	HY07	B04	MAY25-HY07-B04	24/09/2023	16:41:00	3300											1	12L
MAY25	HY07	B05	MAY25-HY07-B05	24/09/2023	16:52:00	2700			1	1	1		1	1	1	1		
MAY25	HY07	B06	MAY25-HY07-B06	24/09/2023	17:05:00	2000				1	1		1		1			
MAY25	HY07	B07	MAY25-HY07-B07	24/09/2023	17:10:00	1700				1	1		1		1			
MAY25	HY07	B08	MAY25-HY07-B08	24/09/2023	17:12:00	1600				1	1		1		1			
MAY25	HY07	B09	MAY25-HY07-B09	24/09/2023	17:14:00	1500				1	1		1		1			
MAY25	HY07	B10	MAY25-HY07-B10	24/09/2023	17:15:00	1450				1	1		1		1			
MAY25	HY07	B11	MAY25-HY07-B11	24/09/2023	17:16:00	1400			1	1	1		1	1	1	1		
MAY25	HY07	B12	MAY25-HY07-B12	24/09/2023	17:17:00	1350				1	1		1		1			
MAY25	HY07	B13	MAY25-HY07-B13	24/09/2023	17:24:00	1300			2	1	1		1	1	1	1		
MAY25	HY07	B14	MAY25-HY07-B14	24/09/2023	17:25:00	1250												BIO
MAY25	HY07	B15	MAY25-HY07-B15	24/09/2023	17:25:00	1250				1	1		1		1			
MAY25	HY07	B16	MAY25-HY07-B16	24/09/2023	17:25:00	1250				1	1		1		1			
MAY25	HY07	B17	MAY25-HY07-B17	24/09/2023	17:26:00	1200				1	1		1		1			
MAY25	HY07	B18	MAY25-HY07-B18	24/09/2023	17:27:00	1150				1	1		1		1			
MAY25	HY07	B19	MAY25-HY07-B19	24/09/2023	17:28:00	1100				1	1		1		1			
MAY25	HY07	B20	MAY25-HY07-B20	24/09/2023	17:30:00	1000											1	12L
MAY25	HY07	B21	MAY25-HY07-B21	24/09/2023	17:30:00	1000			1	1	1		1	1	1	1		
MAY25	HY07	B22	MAY25-HY07-B22	24/09/2023	17:32:00	900				1	1		1		1			
MAY25	HY07	B23	MAY25-HY07-B23	24/09/2023	17:41:00	500				1	1		1		1			
Cruise	Hydrocast	Bottle	Sample	Date	Time (UT)	Depth aimed (m)	# Scan	Depth (m)	(1) He	(2) Bulb [CH ₄]	(3) HeadSpace [CH ₄ , H ₂ , CO ₂]	(4) HeadSpace ¹³ C CO ₂ , CH ₄	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L	Remarks
									BLANC									
		17	MAY25-BLANC	26/09/2023										3		3		eau milli-Q

	(1) He	(2) Bulb [CH ₄]	(3) HeadSpace [CH ₄ , H ₂ , CO ₂]	(4) HeadSpace ¹³ C CO ₂ , CH ₄	(5) pH, Alk, DIC	(6) Dissolved metals	(7) Silicates (filtered)	(8) Total metals	Sterivex & 1L
ΤΟΤΑUΧ	38	106	108	9	106	32	109	32	13

Type d'analyses	ا écl	Nature des nantillons	Analyses
	Eau brute	Eau filtrée	Nombres
GAZ	x		25
CH4	х		25
CO ₂	х		25
H ₂	Х		25
Eléments majeurs (et certains éléments en trace)		x x	34
ISOTOPES			
Carbone		Х	34
TOTAL			168

Annexe 6 : Synthèse des analyses réalisées par le BRGM dans le cadre du transfert de compétences IFREMER/BRGM.

						mesures	mesures	mesures	mesures	mesures
						"sur-site"	"sur-site"	"sur-site" Conductivit	"sur-site"	"sur-site" températur
n° rosette	n° prelevt	#scan	Prof.	increment flacon	date heure (TU)	рН	Eh brut (mV)	é (mS/cm à 25°C)	Salinité (g/l)	e (°C) sur electrode
MAYOBS25-HY01	B3	8107	900	1	16/09/2023 09:24	7,79	229,3	52,1	33,7	15,3
MAYOBS25-HY01	B14	10987	1246	2	16/09/2023 09:48	7,59	250,8	51,7	33,6	15,1
MAYOBS25-HY01	816	11859	1150	3	16/09/2023 09:56	7,66	244,3	51,6	33,6	15,4
MAYOBS25-HY02	B23 B1	4521	1463	4	19/09/2023 09:25	7,04	232,7	51,5	33,5	10,0
MAYOBS25-HY02	B2	4635	1450		19/09/2023	7,61	258	51,0	33.6	9.7
MAYOBS25-HY02	B3	4743	1400		19/09/2023	7,70	257	52,5	33,6	9,5
MAYOBS25-HY02	B4	4853	1350		19/09/2023	7,68	non mesuré	non mesuré	non mesuré	11,4
MAYOBS25-HY02	B5	4893	1300		19/09/2023					
MAYOBS25-HY02	B6	5093	1250		19/09/2023					
MAYOBS25-HY02	B7	5197	1235		19/09/2023	7,63	197	52,5	33,7	10,4
MAYOBS25-HY02	BS	5299	1200		19/09/2023	7,51	non mesuré	non mesuré	non mesuré	12,0
MAYOBS25-HY02 MAYOBS25-HY02	B10	5507	1100		19/09/2023	7,71	non mesuré	non mesuré	non mesuré	11.6
MAYOBS25-HY02	B11	5747	1000		19/09/2023	7,75	non mesuré	non mesuré	non mesuré	12,8
MAYOBS25-HY02	B12	5871	1000		19/09/2023	7,73	non mesuré	non mesuré	non mesuré	12,9
MAYOBS25-HY02	B13	5871	1000		19/09/2023	7,76	225	51,4	33,2	12,8
MAYOBS25-HY03	B1	5429	527		19/09/2023 03:39	7,59	260	51,8	33,5	15,5
MAYOBS25-HY03	B2	6765	700		19/09/2023 03:50	7,70	254	51,5	33,3	14,3
MAYOBS25-HY03	B3	8323	900		19/09/2023 04:03	7,69	252	52,1	33,7	13,8
MAYOBS25-HY03	B4	9100	998		19/09/2023 04:10	7,74	191	52,1	33,6	13,6
MAYORS25-HYUS	BG	1030/	900		19/09/2023 04:19	7,76	220	52,1	33,/	14,/
MAYOBS25-HY03	B8	12531	500		19/09/2023 04:52	7,74	229	51,4	33,1	10,1
MAYOBS25-HY03	B9	18061	10		19/09/2023 05:24	8,11	220	52.0	34.3	26.4
MAYOBS25-HY04	B1	5931	1739		21/09/2023 07:41	7,42	180	51,9	33,4	13,4
MAYOBS25-HY04	B2	6105	1720		21/09/2023 07:43	7,43	135	51,5	33,0	11,00
MAYOBS25-HY04	B3	6187	1700		21/09/2023 07:44	7,43	196	52,3	33,7	12,1
MAYOBS25-HY04	B5	6424	1600		21/09/2023 07:45	7,56	168	51,5	33,3	12,8
MAYOBS25-HY04	B6	6700	1500		21/09/2023 07:48	7,61	231	52,0	33,5	12,9
MAYOBS25-HY04	B7	6903	1400		21/09/2023 07:50	7,58	198	52,1	33,7	14,7
MAYOBS25-HY04	B13	746/	1195		21/09/2023 07:54	7,6/	169	51,5	33,4	16,1
	D14 D17	0172	200		21/09/2023 07:30	7,07	151	51,7	33,7	10,4
MAYOBS25-HY05	B1/	5727	900.6		22/09/2023 08:08	7,64	214	52,1	34,0	13,7
MAYOBS25-HY05	B2	6659	1000,8		22/09/2023 05:56	7,65	211	52,5	33,8	11,6
MAYOBS25-HY05	B3	8006	1150,3		22/09/2023 06:07	7,72	206	52,7	33,9	11,7
MAYOBS25-HY05	B4	8923	1250,7		22/09/2023 06:14	7,69	202	52,6	33,9	12,4
MAYOBS25-HY05	B5	10185	1149,6		22/09/2023 06:25	7,73	176	52,8	34,0	12,7
MAYOBS25-HY05	B6	11663	999,5		22/09/2023 06:37	7,76	181	52,6	33,9	12,3
MAYOBS25-HY05	B7	12673	900		22/09/2023 06:45	7,74	185	52,5	33,9	13,8
MAYOBS25-HY05	B8	13885	1000		22/09/2023 06:56	7,76	177	52,6	33,9	12,7
MAYORS25-HY05	B9 B10	15265	1250,0		22/09/2023 07:07	7,75	209	52,7	34,1	14,9
MAYOBS25-HY05	B11	17255	1149.7		22/09/2023 07:24	7,73	180	52,4	33.9	15,3
MAYOBS25-HY05	B12	17770	1097		22/09/2023 07:28	7,75	185	52,4	33,9	14,9
MAYOBS25-HY05	B13	19835	900		22/09/2023 07:45	7,78	236	52,4	33,9	14,8
MAYOBS25-HY05	B14	20830	1005		22/09/2023 07:54	7,74	235	52,0	33,8	15,5
MAYOBS25-HY05	B15	22085	1150		22/09/2023 08:04	7,70	illisible	52,1	33,8	16,1
MAYOBS25-HY05	B16	22971	1250,6		22/09/2023 08:12	7,70	illisible	52,3	33,9	16,4
MAYOBS25-HYUS	B1/ D10	24203	1150,2		22/09/2023 08:22	7,72	illisible	52,3 illiciblo	33,9	16,5
MAYOBS25-HY05	B10 B19	27355	900		22/09/2023 08:40	7,74	147	52.2	34,0	17.5
MAYOBS25-HY05	B20	28917	999.3		22/09/2023 09:01	7.72	191	52,2	33.8	16.6
MAYOBS25-HY05	B21	30597	1150,3		22/09/2023 09:15	7,72	219	51,7	33,7	17,2
MAYOBS25-HY05	B22	31729	1249,9		22/09/2023 09:25	7,70	232	52,3	33,9	17,1
MAYOBS25-HY05	B23	33110	1150		22/09/2023 09:36	7,74	227	52,1	33,8	16,3
MAYOBS25-HY05	B24	36301	900		22/09/2023 10:02	7,75	235	52,2	32,1	16,6
MAYOBS25-HY06	B1	7497	1459		23/09/2023 14:03	7,42	249	51,6	33,3	12,0
MAYORS25-HYU6	B3	7687	1430			7,56	241	52,5	33,6	10,7
MAYOBS25-HY06	B6	7961	1350			7,03	243	52,5	33,0	11.0
MAYOBS25-HY06	B8	8153	1300			7,08	240	52,5	33.8	12.5
MAYOBS25-HY06	B10	8311	1250		23/09/2023 14:10	7,69	247	52,6	33,8	11,6
MAYOBS25-HY06	B11	8521	1200			7,72	240	52,0	33,5	13,0
MAYOBS25-HY06	B12	8573	1175			7,73	246	52,1	33,6	13,4
MAYOBS25-HY06	B13	8665	1130			7,72	248	52,3	33,9	14,1
MAYOBS25-HY06	B14	9001	1000			7,74	221	51,5	33,2	14,2
MAYOBS25-HY06	B15	9377	900		22/00/2022 44 22	7,75	211	52,4	33,8	14,6
MAYOBS25-HYUb	B10	10857	500		25/09/2023 14:31	/,90	223	non mesuré	33,8	15,7
MAYORS25-HY07	B1 B3	8923	3485		24/09/2023 16:3/	7,/1	203	51,1	33,3	18,0
MAYOBS25-HY07	B5	10753	2700		24/09/2023 16:52	7,75	199	52,0	33,9	10,0
MAYOBS25-HY07	B6	12287	2000		24/09/2023 17:05	7,76	159	52.2	33.9	17.6
MAYOBS25-HY07	B7	12961	1700		24/09/2023 17:10	7,74	174	52,1	33,9	18,1
MAYOBS25-HY07	B8	13161	1600		24/09/2023 17:12	7,75	174	52,1	33,9	17,8
MAYOBS25-HY07	B9	13415	1500		24/09/2023 17:14	7,73	148	52,0	33,9	18,0
MAYOBS25-HY07	B10	13525	1450		24/09/2023 17:15	7,74	168	52,2	33,8	18,1
MAYOBS25-HY07	B11	13627	1400		24/09/2023 17:16	7,73	192	52,1	33,9	18,4
MAYOBS25-HY07	B12	13747	1350		24/09/2023 17:17	7,72	164	52,1	33,9	18,2
MAYOPS25-HYU/	B13	14595	1300		24/09/2023 17:24	7,72	147	52,1	34,0	18,6
MAYOBS25-HY07	B15	14095	1250		2-105/2023 17:25	7,73	100	52,1	34,0	16,6
MAYOBS25-HY07	B17	14797	1200		24/09/2023 17:26	7.73	181	52 1	34.0	18 1
MAYOBS25-HY07	B18	24151	1200		.,,	1,73	101	52,1	54,0	10,1
MAYOBS25-HY07	B19	15019	1100		24/09/2023 17:28	7,74	163	52,2	34,0	18,1
MAYOBS25-HY07	B21	15349	1000		24/09/2023 17:30	7,75	182	52,1	34,0	19,1
MAYOBS25-HY07	B22	15543	900		24/09/2023 17:32	7,75	181	52,1	33,9	18,5
MAYOBS25-HY07	B23	16623	500		24/09/2023 17:41	7.88	176	52.2	34.0	18.9

Annexe 7 : Synthèse des mesures physico-chimique effectuées à bord par le BRGM dans le cadre des intercomparaisons de données IFREMER/BRGM.

											mesures	mesures	mesures	mesures	mesures	mesures	mesures	mesures
											1000	1800	Conductivit	températur	1800	1000	1800	1800
n° rosette	n° prelevt	# scan	Prof.	increment	n° rosette	n° prelevt	#scan	Prof.	increment	date heure (TU)	рН	Eh brut	é	e	Alcalinité	Alc.	Alc.	Alc.
				flacon					flacon			(mV)	(mS/cm à 25°C)	(°C)	(meq/L)	#198 av	#198 av	#RMD
MAYOBS25-H	B3	8107	900	1	MAYOBS25-HY01	B3	8107	900	1	16/09/2023 09:24	7,66	222	51,6	21,5	2,29	2,18		
MAYOBS25-H	B14	10987	1246	2	MAYOBS25-HY01	B14	10987	1246	2	16/09/2023 09:48	7,58	143	51,9	21,6	2,34			
MAYOBS25-1	B16 B23	8222	915	4	MAYOBS25-HY01	B16 B23	8222	915	4	16/09/2023 09:56	7,64	157	51,9	22,4	2,38			
MAYOBS25-H	B1	4521	1463		MAYOBS25-HY02	B1	4521	1463		19/09/2023	7,45		÷24.		2,37	2,12		
MAYOBS25-H	B2	4635	1450		MAYOBS25-HY02	B2	4635	1450		19/09/2023	7,46				2,34			
MAYOBS25-H	B3	4743	1400		MAYOBS25-HY02	B3	4743	1400		19/09/2023	7,55				2,37			
MAYOBS25-H	B5	4893	1330		MAYOBS25-HY02	B5	4893	1330		19/09/2023	7,62			22,9	2,57			
MAYOBS25-H	B6	5093	1250		MAYOBS25-HY02	B6	5093	1250		19/09/2023	7,56							
MAYOBS25-H	B7	5197	1235		MAYOBS25-HY02	B7	5197	1235		19/09/2023	7,55				2,37		2,17	
MAYOBS25-H	B8	5299	1200		MAYOBS25-HY02	B8	5299	1200		19/09/2023								
MAYOBS25-I	B10	5507	1130		MAYOBS25-HY02	B9 B10	5507	1150		19/09/2023								
MAYOBS25-H	B11	5747	1000		MAYOBS25-HY02	B11	5747	1000		19/09/2023								
MAYOBS25-H	B12	5871	1000		MAYOBS25-HY02	B12	5871	1000		19/09/2023								
MAYOBS25-H	B13 B1	58/1	1000		MAYOBS25-HY02 MAYOBS25-HY03	B13 B1	58/1	1000		19/09/2023	7,73				2,38			
MAYOBS25-I	B2	6765	700		MAYOBS25-HY03	B2	6765	700		19/09/2023 03:50								
MAYOBS25-H	B3	8323	900		MAYOBS25-HY03	B3	8323	900		19/09/2023 04:03	7,52	223	51,7	21,9	2,25			
MAYOBS25-H	B4	9100	998		MAYOBS25-HY03	B4	9100	998		19/09/2023 04:10	7,64	147	51,8	22,3	2,33			
MAYOBS25-1	B5 B6	10307	900		MATOBS25-HT03 MAYORS25-HY03	85 86	1030/	900		19/09/2023 04:19	7,0/	1/4	51,9	21,9	2,29			
MAYOBS25-I	B8	14251	500		MAYOBS25-HY03	B8	14251	500		19/09/2023 04:52	7,82	119	51,8	21,9	2,16			
MAYOBS25-H	B9	18061	10		MAYOBS25-HY03	B9	18061	10		19/09/2023 05:24					2,56			2,31
MAYOBS25-H	B1	5931	1739		MAYOBS25-HY04	B1	5931	1739		21/09/2023 07:41	7,43	159	51,8	21,4				2,33
MAYOBS25-H	B2 B3	6105	1720		MAYOBS25-HY04 MAYOBS25-HY04	B2 B3	6105	1/20		21/09/2023 07:43	7,46	145	51,9	20,8				
MAYOBS25-I	B5	6424	1600		MAYOBS25-HY04	B5	6424	1600		21/09/2023 07:45	7,64	150	51,9	20,6				
MAYOBS25-H	B6	6700	1500		MAYOBS25-HY04	B6	6700	1500		21/09/2023 07:48	7,66	131	51,9	20,3				2,32
MAYOBS25-H	B7	6903	1400		MAYOBS25-HY04	B7	6903	1400		21/09/2023 07:50								
MAYOBS25-F	B14	7407	1195		MAYOBS25-HY04	B15 B14	7407	1195		21/09/2023 07:56								
MAYOBS25-H	B17	9173	800		MAYOBS25-HY04	B17	9173	800		21/09/2023 08:08								
MAYOBS25-H	B1	5727	900,6		MAYOBS25-HY05	B1	5727	900,6		22/09/2023 05:48								
MAYOBS25-	BZ	6659	1000,8		MAYOBS25-HY05	B2	6659	1000,8		22/09/2023 05:56								
MAYOBS25-I	B4	8923	1150,5		MAYOBS25-HY05	B3	8923	1150,5		22/09/2023 06:07								
MAYOBS25-H	B5	10185	1149,6		MAYOBS25-HY05	B5	10185	1149,6		22/09/2023 06:25								
MAYOBS25-H	B6	11663	999,5		MAYOBS25-HY05	B6	11663	999,5		22/09/2023 06:37								
MAYOBS25-I	B7	12673	900		MAYOBS25-HY05	B7	12673	900		22/09/2023 06:45								
MAYOBS25-I	B9	15283	1150,6		MAYOBS25-HY05	B9	15283	1150,6		22/09/2023 07:07								
MAYOBS25-H	B10	16195	1250,2		MAYOBS25-HY05	B10	16195	1250,2		22/09/2023 07:15	7,50	non mesuré	51,8	20,7				
MAYOBS25-H	B11	17255	1149,7		MAYOBS25-HY05	B11	17255	1149,7		22/09/2023 07:24	7,63	non mesuré	51,9	19,6				
MAYOBS25-1	B12 B13	19835	900		MAYOBS25-HY05 MAYOBS25-HY05	B12 B13	19835	900		22/09/2023 07:28								
MAYOBS25-H	B14	20830	1005		MAYOBS25-HY05	B14	20830	1005		22/09/2023 07:54								
MAYOBS25-H	B15	22085	1150		MAYOBS25-HY05	B15	22085	1150		22/09/2023 08:04	7,61	non mesuré	51,9	20,6				
MAYOBS25-I	B16 B17	22971	1250,6		MAYOBS25-HY05 MAYOBS25-HY05	B16 B17	22971	1250,6		22/09/2023 08:12	7,63	non mesuré	51,9	20,3				
MAYOBS25-I	B18	26406	999,8		MAYOBS25-HY05	B18	26406	999,8		22/09/2023 08:22	7,05	non mesure	51,0	20,4				
MAYOBS25-H	B19	27355	900		MAYOBS25-HY05	B19	27355	900		22/09/2023 08:48								
MAYOBS25-H	B20	28917	999,3		MAYOBS25-HY05	B20	28917	999,3		22/09/2023 09:01								
MAYOBS25-F	B21 B22	30597	1150,3		MAYOBS25-HY05 MAYOBS25-HY05	B21 B22	30597	1150,3		22/09/2023 09:15								
MAYOBS25-H	B23	33110	1150		MAYOBS25-HY05	B23	33110	1150		22/09/2023 09:36								
MAYOBS25-H	B24	36301	900		MAYOBS25-HY05	B24	36301	900		22/09/2023 10:02								
MAYORS25-H	83	7497	1459		MAYOBS25-HY06	81	7497	1459		23/09/2023 14:03	7,43	206	51,9	21,6				
MAYOBS25-I	B4	7809	1430		MAYOBS25-HY06	B4	7809	1430			7,48	203	51,9	21,4				
MAYOBS25-H	B6	7961	1350		MAYOBS25-HY06	B6	7961	1350			7,57	224	51,9	21,0				
MAYOBS25-H	B8	8153	1300		MAYOBS25-HY06	B8	8153	1300		22/00/2022 14:40	7.00	202	E1 0	21.2				
MAYOBS25-	B10	8311 8521	1250		MAYOBS25-HY06	B11	8311 8521	1250		23/09/2023 14:10	7,60	202	51,9	21,2				
MAYOBS25-H	B12	8573	1175		MAYOBS25-HY06	B12	8573	1175										
MAYOBS25-I	B13	8665	1130		MAYOBS25-HY06	B13	8665	1130										
MAYOBS25-	B15	9001	1000		MAYOBS25-HY06	B14 B15	9001	1000										
MAYOBS25-	B16	10857	500		MAYOBS25-HY06	B16	10857	500		23/09/2023 14:31								
MAYOBS25-H	B1	8923	3485		MAYOBS25-HY07	B1	8923	3485		24/09/2023 16:37	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-H	B3	9427	3300		MAYOBS25-HY07	B3	9427	3300		24/09/2023 16:41	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-H	B5 B6	10/53	2/00		MAYOBS25-HY07 MAYOBS25-HY07	85 86	10/53	2/00		24/09/2023 16:52	non mesure	non mesure	non mesure	non mesure				
MAYOBS25-H	B7	12961	1700		MAYOBS25-HY07	B7	12961	1700		24/09/2023 17:10	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-H	B8	13161	1600		MAYOBS25-HY07	B8	13161	1600		24/09/2023 17:12	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-H	B9	13415	1500		MAYOBS25-HY07	B9	13415	1500		24/09/2023 17:14	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-H	B10 B11	13525	1450		MAYOBS25-HY07 MAYOBS25-HY07	B10 B11	13525	1450		24/09/2023 17:15	non mesure	non mesure	non mesure	non mesure				
MAYOBS25-H	B12	13747	1350		MAYOBS25-HY07	B12	13747	1350		24/09/2023 17:17	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-I	B13	14595	1300		MAYOBS25-HY07	B13	14595	1300		24/09/2023 17:24	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-H	B15	14695	1250		MAYOBS25-HY07	B14 B15	14695	1250		24/09/2023 17:25	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-	B17	14797	1200		MAYOBS25-HY07	B17	14797	1200		24/09/2023 17:26	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-H	B18				MAYOBS25-HY07	B18												
MAYOBS25-H	B19	15019	1100		MAYOBS25-HY07	B19	15019	1100		24/09/2023 17:28	non mesuré	non mesuré	non mesuré	non mesuré				
MAYOBS25-H	B21 B22	15349	1000		MAYOBS25-HY07	B21 B22	15349	1000		24/09/2023 17:30	non mesuré	non mesuré	non mesuré	non mesuré				
MAYORS25-1	872	16623	500		MAYORS25-HV07	022	16622	500		24/09/2022 17:32	non mosuré	non mocuré	non mocuré	non mosuré				

Annexe 8 : Résultats des analyses d'alcalinité et de pH mesurés à bord par le BRGM dans le cadre des intercomparaisons de données IFREMER/BRGM.

Annexe 9 : Conditionnement des échantillons

Caisse 1 (26 kg)	DR36-05b	Sac taille small, zipp (~40)
DR36-01	DR36-05b2	Sac taille XS pour étiquette,
DR36-02a	DR36-05c2	zipp (~100)
DR36-03	DR36-08a	Sac taille L, zipp (350 x 450
DR36-03b	DR36-08b	mm) (~180)
DR36-04	DR36-08b1	Sac taille L (~20)
DR36-04a	DR37-02a	Sac taille de jute (9)
DR36-04b	DR37-02a1	Tubes (13 petite, 6 plus
DR36-04c	DR37-02c	grands, 4 très petite)
DR36-05c	DR37-03a1	Tubes plats (5)
DR36-06	DR37-03b1	Papier aluminium (1
	DR37-04b2	rouleau)
	DR37-06a	Papier film plastique (1
Caisse 2 (29 kg)	DR38-05a	rouleau)
DR37-by	DR38-08	2 Scotch gris (1 non entamé)
DR37-01		tisse
DR37-02	Caisse 6 - Orsay (23 kg)	Collier de serrage (~60) -
DR37-03		apporter plus
DR37-03a	DR38-05	Marteau (JCK), Masse,
DR37-03b	0138-05	Stylos, Crayon, Markers (noir
DR37-04		gros, rouge gros), Mètre (2)
DR37-04b	Caisse 7 - Orsay (23 kg)	2 paires lunettes de sécurité
DR37-05	DR36-05	Bouchons d'oreille (9)
	DR36-02	Gants protection
Caisse 3 (31 kg)	DR36-02	GSA échelle géologique,
DR36-02		photo scale (JCK)
DR36-05	Caisse 8 - IPGP (36.45 kg)	Pied à coulisse
DR38-05	DR36-03a	Règle plastique
	DR36-04d	Spatule large
	DR36-05	Spatule fine
	DR37-02b	1 burin
	DR37-03	2 crayons à papier 2B, 2x HB
DR38-02	DR38-02b	3 gommes
DR38-03	DR38-03a	3 marqueurs moyens (vert,
DR38-04	DR38-05d	rouge, noir)
DR38-06	DR38-06	1 criterium + 2 boîtes mines
DR38-09		НВ
		1 stylo BIC 4 couleurs
Caisse 5 - UCA (20 kg)	Caisse 9 inventaire (17.3 kg)	Cutter
DR36-02a1	Sac taille medium, zipp	2 taille crayons
DR36-05	(160 x 220 mm) (~100)	Pinceau moyen fin

Pincettes etc binoculaire	Bouchon bac rétention d'eau	DR37-07a
Rapporteur	(sur scie)	DR37-07b
Annorter la prochaine fois :	Clé de démarrage de la scie	DR38-01
Sonalin namer rolls	(sur la scie)	DR38-02a
Viale	Bac de rétention (sous la	DR38-05a1
VIAIS	scie)	DR38-07a
Caisse affaire Scie à roche	Chariot (sous la scie)	DR38-07b
(11 kg)	Avion - Orsav:	DR38-08a
Notice	$DR36_{-022}$	DR38-08b
Lame de rechange	DN30-02a	
Panier filtre toile – Bac		Avion - IPCP
rétention	Avion - UCA	
Panier moteur – Bac	DR36-01	
rétention	DR36-02a2	
Cordon lame scie avec 3	DR36-05c1	
visses	DR36-05b1	
Equerre orientaliste	DR36-08b	DR36-05a
1/2 de liquide de sciage	DR36-07	DR36-05C3
Clé de 13	DR36-07	DR37-02b1
Clé de 36	DR37-01	DR37-02b2
Pieds en caoutchouc	DR37-02a1	DR37-02b3
Pierre à aiguiser	DR37-04a1	DR38-02b1
Support blanc métal pour	DR37-04b1	DR38-02b2
pompe à eau	DR37-06a	DR38-02c
	DR37-06b	DR38-03a1

Annexe 10 : fiches descriptives des observations Mammifères marins, oiseaux, déchets

LES FICHIERS RENSEIGNENT SUR LES:

- TRACES DES EFFORTS D'OBSERVATIONS D'HIER.
- WAYPOINT DES DEBUTS, FINS ET OBSERVATIONS

Le code 1 correspond au debut d'observation et le 8 a la fin d'observation.

LE CODE 3A CORRESPOND A DES OBSERVATIONS D'OISEAUX

G	LC	BIC	E	13/09/2023							0	etacean						Bird			Marine I	itter	1
Nb obs	Post	Hour	WP GPS	Left.	Lon	Visi	Stat	No	Sp Dis d	et Angle	Not	Nbb	Act	form	NB boat	Rena	io i	NIDI	Act	Size	Color	Mat	Comments
	1 1	3 06:1	6	1			2	1			· · · · · · · · · · · · · · · · · · ·	a seren		1		100							
		3 06:4		2			2 3	ia.			-				2						4	4	1Type couvercle
	- 2	3 06:4		2			2 3	12													2	4	lanneau
		3 06:4	2	2	1	1	2 3	la		1		0	Ő.				STEFU	s 1	0	1			()
		3 06:5		3			2 3	a						Č.	1	-	PHALE	P	1	1			
	23	3 06:5	7	3			2 3	i z									STERN VOYAGEUS	e e 2	0	1			2 espèces??
		3 07:0	4	4			2 3	la									STERN		a	1			
	1	3 07:1	4	s			2 3	12	1 Mn	>2km	14h	2	1	2	2	1	3						
		3 07:2	4	6			2 1	a	-		0	-20	-				STEFU	5	2	1	-		
	1 2	3 07:2	-	7			2 3	12					-	-		-	PHALE		1	1			
		3 07:4	-	8	1		2 1	a									PHALE	P	1	1			
		3 07:5	2	9			2 :	a			12						PHALE	-	2	1			
		3 08:1		10			2 3	la		-	-	2		-			PHALE	-	1	1	-		
	1	3 08:1	8	11			2 3	12			_		_				PHALE	P	1	1		-	
		3 08:3	9	12			2 3	a					0	Č.,	1		BOOSP	-	1	1			
		3 08:3	9	13			2 3	la		-	2					10	PHALE	P	1	1	-		
	1	3 08:4	9	14			2	8		_		-32	0	- 2		- 18		_			-		a
	2	3 10:0	5				4	7	2 Mn	150	_	1	0	_						-			2
		3 10:3	3	15			4	1				_		_	_			_		_	-	-	
		3 11:1	5	16			4 1	la	3 Mn	>1km	9h	1 18	D	6	1	1	3	<u> </u>	-	-	-	-	peut être 2
		3 11:3	-	17			4 3	la		_	-	- 35	2	2	0	15	-	<u> </u>	-		4	-	2 Orang
	8	3 11:4		18			4 3	32	4 Mn	>1km	11h	3 10	D	6	3	1	3	<u> </u>		-			
	-	3 11:4		18			4 3	la l	5 Mn	>1 km	11h	2 11	D	6	3	1	3	<u> </u>	-	-	-	-	
	-	3 11:5	5	19			4 1	la la	6 Mn	>1km	14h	2 18	D	6	2	1	3	-	-	-	-	-	
<u> </u>		3 12:0	-	20	1		4 1	la	7 Mn	>1km	10h	1	0	6	-	1	3	-	-	-	-		3
	2	3 12:0	3	21			4 3	i z		_	_	_	_	-		-		-	-		4	2	2 Sachet type emballage poudre
	1 12	3 12:4	2	22			4	8				1											

	GLO	BICE		11.09/303		81 3		1		1	30	Catacas			S				Sed.			Marinelis	ar.	
1	100	13300	Sec. 1			15. cr - 3		-	12		1		1.2		iner.	1.000	201						1	2
ALCON.	100		t arears	ur.		1 10		-	~	641, 691	and a	PRAN.	ALC:	1.0	Ports.	No otan	noe.	P.P.	aus.	rat .		Sate		
-	10	5 04:30	1 3		1.9	1						-	8 - 2) 			10 Y			1				×	and an and a second
-		5 UG:40			22 	20 B	2 .34	-	-	-	1	-	8 - S				-					112	20 7 - Ca	Selengenne r
-	3	05:55			G.	5	5 39	-	3		ő i	-	2 8	-		ő s		2	2 8			1	1	
-	3	3 (05):55			<u>(</u> 0	() S	3.	-	3 3		N	-	(2 <u>)</u>)			8 9		2	12 2) 	1 1	1	1	3 31	()
-	3	105:56	6 3		2	5	5 34		3		Q 1	-	8 33	-	1	2 2	-	8	S 33			3		
	3	05:56	s3			. 5	i 3a	-							-							1		
	з	05:56	6 3		1	5	i 3a			_			n n			1					3	1 1		<u></u>
	3	05:56	5 3		8	8 5	5 34	3	3		£ 1		2 2	1		Q 4		2	2 8	i i		1	8	
		06.04	4 3			. 5	i 3a														. 3	2	1 - A	CORD AGE
	з	06.27	4			5	5 3a						1 1			li li			1 1			2	2	SACHETTRANSPARENT
		06.27	4		1	100	5 3a	1		-	8 3		1 8			S 1		1	1 8	1	1	3	2	MOUCHOIR
		06.27	, a				5 3a															1		
		06-27			14 1	1	. 3.				1				-	1				1	-		1 23	CORDE
	1	06-27	4		52	1			8		8 1		8 8	1		8 8		3	8 8	3 5			8	Note that is
-								1				1	<u> </u>			1								
-		5 UB:30	6		<i>C.</i>	10 1	34	-	<u> </u>	-	<u>6</u> 2	<u> </u>		-		<u>6 3</u>	-	10	<u> </u>	-	1		10 D 10	e
-	3	5 07:18			10	1	5 34	-	3		б. — э	<u> </u>	8 8			<u> </u>		8	8 8	1			1 1	
-	3	07: E			76	5	5 34	1	-			<u> </u>	6 8			2 A		2	5			1	3	STATES AND STATES
<u> </u>	3	3 07:23	3 4		22	2 5	5 3a	- C	<u>8</u> 8		8 3	<u> </u>	8 8	-		<u>6 8</u>		8	1 8	-		5	S (1	ANNEAU OR ANGE
	. 3	07:37	9 9		-	. 5	i 3a	-				-		-						-		1		
	3	07:37	9 9			5	i 3a												2	1				NON ID
	3	07:46	5 10		19.	2 5	5 34	15	S		2 3		5 B		1	2 2		5	4	1	()		5	AID
	à	07:46	10		39	0 8	5 3a															в з	2	
	а	07:46	5 10			5	5 3a														3	1	1	
		07:50	1 11		8		34	1			8		12 5			6 8		8	3	2			8	NON ID (SOMB RE)
		08.00	12		20		5 3.		3	>1KM	138	4 50	1	1	2	1		1						A ID LONGLE TAC HETES? 777 POSSIBLE CHASSE
	з	08.00	12			6	3.						1			1			30	2	5		1	A ID IDEM WPT 11
		18.15			23	1			3	5	Ý		8 82		1	Ý 8		8	8 8				1 Ca	S
-	8 6	0.95.00	1.14		Q	0			8	-	8 - 3		Q			8 0	-	6		3			6	0
-		10.0			-	1				-	<u> </u>	-	1 1			1		-	1	-	-		-	
-		112.54	4 43		the second se	10 B		-	2	-	1	-	8 - 6		-	1 1		2	<u>i</u> 22	6	1	annur	1	
-	3 () 5 ()	10:41	1 15		26	10	5 34	1	23 8	_	8 8		6 - 0			8 8		6	6 0	1 2		CHOANGE	1 24	0
-	3 3	5 10:41	1 15		36	8 8	5 34	1 <u>5</u>	3	-	2 3	-	8 8		5	2 3		8	3 8		-	1	S - 31	29
-	3	11:12	15		50 12	20 S	5 34	-		-		-	6 - S	-		4	_		9 8		-	1	2	GOBELET
<u> </u>	3	3 12:00	16		20	5	5 34	-			-	-	2 8	-		2 - 2		5			3	1		
	3	12:00	16		Č.	(s	5 34	1	3		8-3		$\delta = 0$	1		8 - 8		ŝ.	8-5	3		1	S	
-	3	12.13	3 17		30	20 B	5 3a						0 8						40	2	6	_		AID
	а	13.05	3 18			5	5 3a											SULSUL	1	2				
	з	13:08	8 18		2.		3.	1	3		X - 3		§ - 55	-		ų – į		STEFUS	5	2	§		Ş	Steme Fuli
		13.05	18		28	. 5	5 34		2		0. 1					as 18		8			. 3	2	1 2	
	3	13.08	18]	5	i 3a									1					1	2	2	
-	3	13.3	19		52 2	2	3.		2	200	112	500	3 6	2	- 4	1	з	2	9 G	1	2			TACHETÉS avec qualques longs bec s?? Cl video Camille
-	8 8	12-01	20		3	8	2		3 8.00	1104	111			6		8 8		8	g = 0	1	5 S	1	§.	
<u> </u>		1 12.41	30													1		STREETS	40				1	
-		10.00			20	1							9 - X			1		Sunch-						2
		1000			3	8 3			3	1	5 3		3 8			5 5		201301	1		2 B		8	
	17 3	1 12:08	22	1	127	1.2 3	81 SB	1.5	24		14 14		N 82	1 2	1	1.4		12	1× 83	4	E 5	1	12	S7

GLOBICE						1
REDITION 11/09/2023		Cetacean		Bird	Marine litter	
the two parts in the second se		Billion Mad Mide Dat	Prov. Walsont Rea. In	Mark hat here	Eche MA	Someth
3 0303						
3 0404 3	3 53				1 1	
3 0441 4						
5						
3 0558 6					1 1	
3 0501 7				3 3		Photo a ID DCP (Nodel 2)
8 0500						2 Second Roter Roter Statement 1
3 0725 9					2 2	
3 07:35 10						
11				2 2		Diversity (
0752 12					Q	
0752 12						
13						
3 07.55						
3 0914 15						
16						
3 1157 17						Bhoto -
17:10 18					14	Diras
19						France
2 14:17 20						P III DRIKE
3 14.17 20						
20]
20						
2 14.17 20						
3 14:17 20						
20]
1417 20						
3 1421 21						Const Notes
1440 22						- Circle shour
3 1457 23					11	

GL	BICE	A14 /2023					Cottor							Bird			Ancine litt	AT.	
	FIGNION -	1011202															and the set		
Bods Post	nu (mens)a		and the second		1	Die det		-		Secta N	test fo			8.00 E	-		Coller		Constants
	04:56			-	-						-								-
	05:16			33	-						-	-		1	-	2			Courit contieu
	05:28			33	+	-	-	-			-+	-	same//			4	9	2	Brique de jsu ou de soupe
	07:08			32	-	-	-	-	-		-	-	PHALEP	- 1	3				
	07:19 5			30	-	-	-	-	-		-+	-	PHALER	-				-	
	07:23 6			3a	-		_	_	_							3	-	3	3
	07:23 6			3a	-			_	_		_		Sterne SP	10	2				
	07:36 7		-	3a									PHALEP	2	3				
3	07:46 8		-	3a												z	1	8	1
	07:46 8			3a								8				4			2
	07:49 9			3.5															
	07:52 10			23															
	08:05 11			23								1	1						6
	08:07 12			33															
	08:12 13			33									_			4			
	08:26 14			30						1 - 2			())				- 2		Olseau blanc A ID
	08:28 15			33												5			a strugge of a strugge a
	09:02 16			8			_								_				
	10:38 17			1															
	12:55 18			3a												4			1
	12:55 18			30						(<u>)</u>						3			3
	13:05 19			33							Γ					3	3		1
	13:20 20			3a									STELFU		2				
	13:24 21			3a												4	2	3	5
3	13:24 21			35												з		2	8
	13:24 21			33									INC		1				
	13:40:00 22			3a									Noddia	50	2.00				
	13:40:00 22			34									ANOSTO	10			· · · · ·		
	14.03.00 23	12		33									21			2		INC	
	14/13/01 22			33									(AUT					-	
	10.42.00												- Inte						
	42/42/24		 	-	_		 	_											

GL	ALUNION 11/09/2023			Ceta	cean			Bird	Marine litter	
900 an 100 an	3 05:00 1	5 1	5. 30.000	5. 60 G	1999 C 199	- 201 - C				i den contribui
1 (b)	3 05:53 2	5 3a	0 A						3 1	1
§	06:44 3	3a		2 - 8	3				4 7	2
1	06:47 3	34	3 - 3						2 1	1
1	07:06 4	34	<u>i – i – i</u>						2 1	1
	07:30 5	3a	a 19 - 1	· · · ·		42 U. 14		a - a	4 1	2
	07:30 5	3a								9
a	07:37 6	3a	81 - 18 - 1				STELF	8	2	
	07:37 6	34							4 2	5
	07:41 7	34					PHALE	P 1	1	
	07:41 7	3a	2 10						3 2	5
	07:43 8	34							3 1	1
Ú – Ú	07:43 8	34	1 D						3 6	2
Î	07:49 9	34					PHALE	P 1	1	
	07:49 9	3a							4 1	1
	07:49 9	34							3 6	2
	07:56 10	3a	84 - 10					3	1	Sterne Non ID
8	08:18 11	3a 1	S 200m	9h 80-100		2 2 1	3			
-	08:18 11	34	10 HZ - 1		10 X		PHALE	P 2	1	
2	08:18 11						STELF	20	1	
1 (j	09:10 12	8	3 - 3							
§	10:18 13	1	2 8				3. 3			
	10:38 14	34	8 - 9						3 7	1
	10:45 15	3a	2. 20 3						3 3	2
	10:45 15	34		· · · · ·	0.00					9
	10:50:00 16	3a	2 N 1		.a. 21		STELF	1	1	
	11:51:00 17	3a							1 1	1
	11:51:00 17	3a							4 1	1
	11:57:00 18	3a					Sterne	30	1	
1	11:57:00 18	30					Fregat	2	2	
	12:19:00 19	8								
	12:36:00 20	1								
	13:01:00 21	8								
S	13:19:00 22	1								
	13:54:00 23	3a	S - 0				Non I	2	1	2
8 98	14:19:00 24	34	S - 3		N 3		PHALE	P 2	1	
	14:26:00 25	34	Q 6		1.1		NON	0 1	1	
8	14:47:00 26	3.	8	2 - 2	3 - 1					

Code Cetaceans

English vernacular name	Latin binomial classification	Code
Striped dolphin	Stenella caeruleaalba	Sc
Spinner dolphin	Stenella longirostris	SI
Pantropical spotted Dolphin	Stenella attenuata	Sa
Dusky dolphin	Lagenarhynchus abscurus	Lo
Hourglass dolphin	Lagenorhynchus cruciger	Lc
Indian Ocean humpback dolphin	Sousa plumbea	Sp
Indo-Pacific bottlenose dolphin	Tursiaps aduncus	Та
Bottlenose Dolphin	Tursiops truncatus	Tt
Rought-toothed dolphin	Stena bredanensis	Sb
Commerson's dolphin	Cephalorhynchus commersonii	Cc
Southern right whale dolphin	Lissodelphis peronii	Lp
Risso's dolphin	Grampus griseus	Gg
Fraser's dolphin	Lagenodelphis hosei	Lh
Melon-headed whale	Peponocephala electra	Pe
Long-finned pilot whale	Globicephala melas	Grne
Short-finned pilot whale	Globicephala macrorynchus	Gma
Pygmy killer whale	Feresa attenuata	Fa
False killer whale	Pseudorca crassidens	Pc
Killer whale	Orcīnus orca	00
9		-8-
	- 1969 (2017) (2017)	

Dwarf sperm whale	Kogia sima	Kg
Pygmy sperm whale	Kagia breviceps	КЪ
Sperm whale	Physeter macrocephalus	Pm

Blainville's beaked whale	Mesopladan densirastris	Md
Cuvier's beaked whale	Ziphius cavirastris	Zc
Gray's beaked whale	Mesopladan grayi	Mg
Longman's beaked whale	Indopacetus pacificus	lp
Southern bottlenose whale	Hyperadan planifrans	Hp

English vernacular name	Latin binomial classification	Code
Southern right whale	Eubalaena australis	Ea
Antarctic blue whale	Balaenoptera musculus intermedia	Bmi
Pygmy blue whale	Balaenoptera musculus brevicauda	Bmb
Common minke whale	Balaenoptera acutorostrata	Ba
Antarctic minke whale	Balaenoptera bonaerensis	Bbon
Fin whale	Balaenoptera physalus	Bp
Omura's whale	Balaenoptera omurai	Во
Bryde's whale	Balaenoptera edeni	Be
Sei whale	Balaenoptera barealis	Bbor
Humpback whale	Megaptera novaeangliae	Mn
Pygmy right whale	Caperea marginata	Ca

Undetermined delphinidae	DSpp
Undetermined blackfish	BkFSpp
Undetermined beaked whale	BkWSpp
Undetermined baleen whale	BaWSpp

English vernacular name	Latin binomial classification	Code
Dugong	Dugong dugong	Dd
Subantarctic fur seal	Arctocephalus tropicalis	At
Antarctic fur seal	Arctocephalus gazella	Ag
Southern elephant seal	Mirounga leonina	MI
Leopard seal	Hydrurga leptanyx	HE

French vernacular name	English vernacular name	Latin binomial classification	Code
Dauphin bleu et blanc	Striped dolphin	Stenella coeruleoalba	Sc
Dauphín à long bec	Spinner dolphin	Stenella longirostris	SI
Dauphin tacheté	Restantial control Dalahia	51	100
pantropical	Pantropical spotted Dolphin	Stenena attenuata	58
Lagénorynque obscur	Dusky dolphin	Lagenarhynchus abscutus	Lo
Dauphin sablier	Hourglass dolphin	Lagenarhynchus cruciger	Lc
Dauphin à bosse de l'Océan Indán	Indian Ocean humpback dolphin	Sausa plumbea	5p
Grand dauphin di l'Indo-Pacifique	Indo-Pacific bottlenose dolphin	Tursiops aduncus	Та
Grand dauphin	Bottlenose Dolphin	Tursiops trancatus	Tt
Sténo rostré	Rought-toothed dolphin	Steno bredanensis	Sb
Dauphin de Commerson	Commerson's dolphin	Cephalarhynchus commersonii	Cc
Dauphin aptère austral	Southern right whale dolphin	Lissadelphis peronii	Lp
Dauphin de Risso	Risso's dolphin	Grampus griseus	Gg
Dauphin de Fraser	Fraser's dolphin	Lagenodelphis hosei	Lh
Dauphin d'Electre	Melon-headed whale	Pepanacephala electra	Pe
Globicéphale noir	Long-finned pilot whale	Glabicephala melas	Gme
Globicéphale tropical	Short-finned pilot whale	Glabicephala macrorynchus	Gma
Orque pygmée	Pygmy killer whale	Feresa attenuata	Fa
Pseudorque	False killer whale	Pseudorca crassidens	Pc
Orque	Killer whale	Orcinus orca	0o
Cachalot nain	Dwarf snerm whale	Koola sima	Ke
Cachalat avené	Poemo snerm whale	Konin brevinens	Kb
Carhalot	Snerm whale	Physeter macrocenhalus	Pm
Baleine à bec de Blainville	Blainville's beaked whale	Mesoplodon densirostris	Md
Balein à her de Cuvier	Cuvier's besked whate	Zinhius cavinostris	70
Baleine, à bec de Grav	Grav's basked whole	Meconladon amui	Ma
Balaina à bac de Gruy	Longman's hasked whole	Indonacetur nacificur	in a
lunaradan austral	Southern hottlenose whale	Hyperodon planifrons	Hn
Raleine franche australe	Southern right whole	Fuhalaena australis	Ea
	Antarctic blue whale	Balaenoptera musculus	Bmi
Baleine bleue antarctique	Dummer islam setting	Balaenoptera musculus	Renh
Baleine bleue pygmée	Pygniy blue what	brevicauda	DITID
Petit rorqual	Common minke whale	Balaenoptera acutorostrata	Ba
Petit rorqual antarctique	Antarctic minke whale	Balaenoptera bonaerensis	Bbon
Rorqual commun	Fin whale	Balaenoptera physalus	Bp
Rorqual d'Omura	Omura's whale	Balaenaptera amurai	Bo
Rorqual de Bryde	Bryde's whale	Balaenaptera edeni	Be
Rorqual boréal	Sei whale	Balaenoptera borealis	Bbor
Baleine à bosse	Humpback whale	Megaptera novaeangliae	Mπ
Baleine franche pygmee	Pygmy right whale	Caperea marginata	Ca
Petit delphinider indéterminé	Small delphinidae	0.0000000000000000000000000000000000000	SDspp
Grand delphinidae indetermine	Large delphinidae		LGspp
Blackfish indéterminé	Undetermined blackfish		BkFspp
			BkWsp
Baleine à bec indéterminée	Undetermined beaked whale		p
	Undersenford before ob the		BaWsp
Balaine indéterminée	undetermined baleen whale		p
buchter indeterminee			

French vernacular name	English vernacular name	Latin binomial classification	Code
Dugong	Dugong	Dugang dugang	Dd
Otarie à foururre subantacrtique	Subantarctic fur seal	Arctacephalus trapicalis	At
Otarie à fourrure antarctique	Antarctic fur seal	Arctocephalus gazella	Ag
Elephant de mer austral	Southern elephant seal	Mirounga leanina	MI
Léopard de mer	Leopard seal	Hydrurga leptonyx	HI

Code Bird

French vernacular name	English vernacular name	Latin binomial classification	Code
Gygis blanche	Angel tern (or White tern)	Gygis alba	GYGALB
Noddi brun	Brown noddy	Anous stolidus	ANOSTO
Noddi marianne	Lesser noddy (or Sooty noddy)	Anous tenuirostris	ANOTEN
Sterne de Dougall	Roseatetern	Sterna dougallii	STEDOU
Sterne bridée	Bridled Tern	Onychoprion anaethetus	ONYANA
Sterne huppée	GreaterCrested Tem	Thalasseus bergii	THABER
Sterne fuligineuse	Sooty tern	Sterna fuscata	STEFUS
Labbe subantarctique	Brown skua	Stercorarius antarcticus	STEANT
Phaéton à bec jaune	White-tailed tropic bird	Phaethon lepturus	PHALEP
Phaéton à brins rouges	Red-tailed tropicbird	Phaethon rubricauda	PHARUB
Océanitefrégate	White-faced storm petrel	Pelagodromamarina	PELMAR
Océanite à ventre blanc	White-bellied storm petrel	Fregatta grallaria	FREGRA
Océanite à ventre noir	Black-bellied storm petrel	Fregetta tropica	FRETRO
Prion de Belcher	Slender-billed Prion	Pachyptilabelcheri	PACHBEL
Pétrel soyeux	Soft-plumaged Petrel	Pterodroma mollis	PTEMOL
Pétrel de Barau	Barau's petrel	Pterodroma baraui	PTEBAR
Puffin de Baillon	Tropical shearwater	Puffinus bailloni	PUFBAI
Puffin du Pacifique	Wedge-tailed shearwater	Ardenna pacificus	ARDPAC
Puffin à pieds pâles	Flesh-footed shearwater	Ardenna carneipes	ARDCAR
Albatrosà cape blanche	Shy Albatross	Thalassarche cauta	THACAU
Albatrosà nezjaune	Atlantic Yellow-nosed Albatros	s Thalassarche chlororhynchos	THACHL
Fou masqué	Masked booby	Sula dactylatra	SULDAC
Fou à pieds rouges	Red-footed booby	Sula sula	SULSUL
Frégate ariel	Lesser frigatebird	Fregata ariel	FREARI

Albatros indéterminé	Undetermined albatross	ALBSPP
Frégate indeterminé	Undetermined frigatebird	FRESPP
Fou indéterminé	Undetermined booby	BOOSPP
Noddi indéterminé	Undetermined noddy	NODSPP
Sterne indéterminée	Undetermined tem	TERSPP
Petrel indéterminé	Undetermined petrel	PETSPP
Puffin indéterminé	Unditermined shearwaters	SHESPP
Océanite indéterminé	Unditermined storm petrel	STPSPP
Prion indéterminé	Undetermined prion	PRISPP

이 집맛이 잘 가지? 것 같아? 것 같아? 것 같아?		50/0 50/0
Frégate ariel	Lesser frigatebird	Freaata ariel

Code

-		
	Code	Statut
Г	1	Début effort
	2	En effort
	3a	Observation en effort
	3b	Observation opportuniste
	5	Fin d'observation
	6	Arrêt du bateau
	7	Transit / hors effort
Γ	8	Fin de l'effort
Γ	9	Début manip MAYOBS
	10	Fin manip MAYOBS
_		

Code	Poste
1	Proue
2	Plateforme ext latérale
3	Plateforme supérieure
4	Passerelle (intérieur)

Code	Visibilité	
1	Pas de visibilité	
2	Faible	
3	Moyenne	
4	Bonne	
5	Excellente	

Code	Formation du groupe
1	Serré
2	Groupé
3	Dispersé
4	Sous-groupe
5	Variable

Code	Activité cétacé	
1	Prédation	
2	Socialisation	
3	Reproduction	
4	Voyage	
5	Repos	
6	Indéterminé	1
		_

Code	Réaction	1
1	Evitement	
2	Approche	
3	Indifférence	

Code	Activité oiseau
1	En vol
2	En chasse
3	Repos

Code	Couleur
1	Blanc
2	Transparent
3	Bleu
4	Vert
5	Rouge
6	Noir
7	Jaune

Code	Taille	
1]1 - 2,5 cm]	
2	2,5 - 5 cm	
3	5 -10 cm	
4	10 - 50 cm	
5	50 - 100 cm	
6	> 100 cm	

Code	Matière
1	Plastique dur
2	Plastique mou
3	Mousse / Polystyrène
4	Engin de pêche
5	Bouteille
6	Vêtement
7	Organique
8	Non plastique
9	Courant déchet

