New investigation of the cyst-motile relationship for Votadinium spinosum reveals a Protoperidinium claudicans species complex (Dinophyceae, Peridiniales)

Mertens Kenneth ^{1, *}, Meyvisch Pjotr ², Gurdebeke Pieter ², Pospelova Vera ³, Matsuoka Kazumi ⁴, Bilien Gwenael ¹, Gu Haifeng ⁵, Yamaguchi Aika ⁶

¹ Ifremer, LITTORAL, F-29900 Concarneau, France

² Department of Geology, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium

³ Department of Earth and Environmental Sciences, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 55455, USA

⁴ C/O Institute for East China Sea Research, Nagasaki 850-2213 Japan

⁵ Department of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

⁶ Faculty of Science, Hokkaido University, Sapporo 060-0810 Japan

* Corresponding author : Kenneth Mertens, email address : kenneth.mertens@ifremer.fr

Abstract :

Protoperidinium claudicans is a planktonic, heterotrophic, bioluminescent dinoflagellate species commonly found in neritic waters. It has long been considered to display phenotypic variation in its second anterior intercalary plate, which could vary between quadra, penta and hexa. The equivalent spinose, cordate cyst goes under the name of Votadinium spinosum. Here we perform cyst incubation experiments from France, Canada, China and Japan, which demonstrate that P. claudicans forms a species complex, with at least two ribotypes with a penta configuration (P. claudicans) and one with a quadra configuration (P. carriae sp. nov.). A fossil-based cyst, V. multispinosum sp. nov., is described as the equivalent of P. carriae. Molecular phylogenetics using Large Subunit ribosomal DNA supports these observations. The cyst-theca relationship for Votadinium psilodora and another, undescribed, cordate, spineless Votadinium species are also reported from China. Macromolecular analyses of the cyst wall of V. multispinosum reveal it is comprised of a protein-rich carbohydrate compound. We show that this compound is not uncommon in dinoflagellate and ciliate cysts and that it is unlikely to preserve very well upon sedimentation and burial.

Keywords : Cysts, cordate, dinoflagellates, pinose, heterotrophic, Protoperidinium carriae, LSU rDNA, molecular phylogenetics, species complex

I

1. Introduction

41	Protoperidinium is a large dinoflagellate genus that currently encompasses 311 heterotrophic
42	species (Guiry in Guiry & Guiry 2023). This genus has been subdivided into several sections
43	based on the structure of the first apical plate $(1^{"}_{-})$ and the second anterior intercalary plate 2a
44	(e.g., Gribble and Anderson 2006). One of these sections is called the Oceanica section,
45	<u>which</u> includes all species with an ortho $1_{-}^{\prime\prime}$ and quadra 2a. Among the species that belong
46	to this section, there are several elongate, slender species such as <u><i>P. claudicans, P.</i></u>
47	oceanicum, <i>P. claudicans, P. paraoblongum, P. quadrioblongum, P. steidingerae</i> , and <i>P.</i>
48	venustum (Lebour 1925; Balech 1974; Sarai et al. 2013).
49	One of such elongate, slender species, Protoperidinium claudicans, was first described
50	morphologically as <i>Peridinium claudicans</i> by Paulsen (1907, reproduced in Paulsen, 1908)

Page 3 of 69

Palynology

from the port of Frederikshavn on the east coast of Jutland (Denmark) (see also Matsuoka and Head, 2013 for a historical review of this species). His description did not include details of the tabulation. It was Barrows (1918) who first provided a typical protoperidinioid tabulation for this species that he observed on specimens from Sausalito, CA, U.S.A, showing a quadrangular 2a but also a penta 2a, the latter he considered aberrant due to ecological stress. A pentagonal 2a has later been observed by Lebour (1923) at Plymouth, U.K. (reproduced in Lebour 1925) and later by Akselman (1987). However, other 2a shapes have been reported for this species: hexa (Lindemann 1924), hexa and quadra (Paulsen 1931), penta and quadra (Balech 1951; Phan-Tan et al. 2017), quadra (Balech 1988). Review papers have considered all three configurations possible (Dodge, 1982, Hoppenrath et al. 2009). This challenges the classification of P. claudicans in the section Oceanica, which only contains species with a quadra 2a. P. claudicans is considered a widespread species commonly occurring in plankton samples (e.g., Dodge 1982, 1985; Hoppenrath et al. 2009), that is known to prey on diatoms (Jacobson and Anderson 1986) and can be bioluminescent (Kelly 1968).

Wall & Dale (1966, 1967, 1968) related the morphology of cordate, spiny cysts from Woods Hole and Bermuda waters to *P. claudicans* with a pentagonal 2a. Later hatching experiments by Dobell (1978), Akselman (1987), and Sonneman and Hill (1997) all observed a pentagonal 2a. Reid (1977) related P. claudicans to a new cyst-defined species, Votadinium spinosum, described from surface sediments from Galway (Ireland) by Reid (1977, re-illustrated in Gurdebeke et al. 2020). V. spinosum is considered a widely distributed species (e.g., Zonneveld et al. 2013). Votadinium is a fossil genus including eight cordate species without processes (V. calvum, V. concavum, V. elongatum, V. nanhaiense, V. pontifossatum, V. psilodora, V. reidii, V. rhomboideum) but only one species with V. spinosum bears processes (e.g., Gurdebeke et al. 2020; Table 1).

76	Later studies have enabled to link the morphology to genetic sequences. Molecular
77	data for Protoperidinium claudicans was first provided by Yamaguchi et al. (2006) from
78	Otaru, Japan, and demonstrated that it belonged to the Oceanica clade, together with
79	Protoperidinium depressum. Later studies showed that other species related to cysts attributed
80	to Votadinium - also grouped in the same clade, and that it included species with a quadra,
81	penta and hexa 2a (Sarai et al. 2013; Gurdebeke et al. 2020; Table 1).
82	P. claudicans is considered a widespread species commonly occurring in plankton
83	samples (e.g., Dodge 1982, 1985; Hoppenrath et al. 2009), that is known to prey on diatoms
84	(Jacobson and Anderson 1986) and can be bioluminescent (Kelly 1968).
85	Here we pursue research on <i>Votadinium</i> reinitiated most recently by Gurdebeke et al.
86	(2020), and unveil the hidden diversity within the P. claudicans association through hatching
87	experiments of cordate spinose cysts from France, Canada, China and Japan, in combination
88	with single-cell PCR of the hatchlings. We demonstrate that <i>P. claudicans</i> forms a species
89	complex and describe one new species and its equivalent cyst. We targeted cysts from France,
90	which is not too far from the type localities of both the cyst- and motile-defined species
91	(Ireland and Denmark respectively). Using infrared spectroscopy, we also compare the
92	macromolecular composition of the wall of this new cyst to-with those of resting stages of
93	other phylogenetically closely related or spectrochemically similar taxa.
94	
95	2. Material and methods
96	2.1. Germination experiments
97	We collected spinose, cordate cysts for incubation studies from surface sediment samples at
98	several locations in four countries: (1) Patricia Bay in Saanich Inlet, Canada, (2) France, (3)
99	China and (4) Japan (Figure 1 and Table 1). All samples were stored in plastic bags and

Page 5 of 69

Palynology

refrigerated at 4 °C. In situ sea-surface salinities (SSSs) and sea-surface temperatures (SSTs)
were measured when collecting the samples at a few sites (Table 2).

Approximately 0.5–1.0 cm³ of wet sediment was immersed in filtered seawater after which it was ultrasonicated in a bath (60 s) and rinsed through a 20 µm nylon mesh using filtered seawater. The cyst fraction was separated from this residue using heavy liquid sodium polytungstate (SPT; density = 1.3 g cm^{-1}) (Bolch 1997). Single cysts were then transferred to Nunclon 0.5 ml microwells subjected to an irradiance of 100 µmol photons m⁻² s⁻¹ and 24 h light, and filled with L1 medium. The wells were kept at room temperature 16°C. For Japanese samples, the sediment sample was ultrasonicated in a bath for 30 s and then sieved through 100 µm and retained on 20 µm sieves using filtered seawater. The cysts were isolated with a micropipette and individually placed in a multiple well plate (TPP, Trasadingen, Switzerland) each containing 1 ml of autoclaved seawater. The plates were kept stored in a culture cabinet at 20 °C with a photon flux density of about approximately 50 µmol photons m⁻² s⁻¹ under a 16 h: 8 h light: dark regime. Cysts were regularly checked for germination, and observations were performed under a Leitz DM inverted light microscope and a BX-50 light microscope (Olympus, Tokyo, Japan). Encysted and excysted cysts and as well as motile cells were photographed and measured using a Leica DM 5000B light microscope equipped with a Leica DFC 490 camera with 100x oil immersion objectives. For each motile cell, the length, width, depth, distance between the tips of the antapical horns, and width of the cingulum were measured, where possible. For each cyst, the same parameters were measured; additionally, the length of three randomly chosen spines per cyst were measured. All measurements in the species descriptions cite, in order: the minimum, average (in parentheses) and maximum values (in μ m). The standard deviation (SD) is also provided where appropriate. Incubation experiments were done by PM and took place at Concarneau (French and Canadian samples)

and by HG (Chinese samples) and by AY (Japanese samples). All measurements were done by KNM.

2.2. Single-cell PCR amplification and sequencing of the hatchlings.

Surface sediment samples containing spinose, cordate cyst were used from France and Canada (Figure 1 and Table 2). Cysts from France were isolated from the sediment using the heavy liquid separation described above. Hatched motile cells identified through light microscopy were rinsed several times in sterilized distilled water, and then transferred into a PCR tube. The single cell was used as the template to amplify approximately 3300 bp of the nuclear-encoded SSU-ITS-LSU rDNA, using the primers 18SFW (Grzebyk et al. 1998) and D3B (Nunn et al. 1996). A 20µl PCR cocktail containing 0.5 µM primers, 0.8U of KOD Hot Start Master mix (Novagen, Darmstadt, Germany) was subjected to 35 cycles using a thermocycler PCR Biometra TOne (Analytic Jena, Germany). The PCR protocol was: initial denaturation for 2 min at 95 °C, followed by 35 cycles of 20 s denaturation at 95 °C, 50 s annealing at 62 °C, and 1 min extension at 70 °C. From the PCR product obtained previously, 1µl is taken to carry out a new PCR. The PCR Master Mix kit (Promega, Madison, USA) is used according to the manufacturer recommendations. Different pairs of primers are used, D1R-D3B to obtain the LSU, ITSFW-364R for the ITS and 18SFW-18SRV for the SSU. The amplified products were run on a 1% agarose gel. Positive amplicons were purified using a DNA extraction kit ExoSAP-IT Cleanup (Affymetrix, Cleveland, Ohio, USA) and sequenced in both directions using the BigDye Terminator v3.1 technique (Applied Biosystems, Foster City, California, USA), according to the manufacturer recommendations. For Japanese samples, cells were isolated using a micropipette from plankton samples

or hatched from cysts using a CK-40 inverted light microscope (Olympus, Tokyo, Japan). The

cells were identified and photographed following the method of Yamaguchi et al. (2006).

Page 7 of 69

Palynology

After the photography, the cell was transferred to a drop of autoclaved and filtered seawater on the clean glass slide several times and then it was transferred to a drop of sterile distilled water and broken by a sharp glass stick. The broken cell was transferred into a PCR tube that contains PCR reaction mixture for the first PCR reaction. The protocols for PCR and sequencing are the same as described by Yamaguchi et al. (2006). LSU rDNA sequences have previously been published (Yamaguchi et al. 2006), but their morphology is treated in more detail here.

Cysts from China were isolated from the sediment using the heavy liquid separation described above. Germinated motile cellHatchlings identified through light microscopy were rinsed several times in sterilized distilled water, and then transferred into a PCR tube. The single cell was used as the template to amplify about 1200 bp of the nuclear-encoded LSU rDNA, using the primers D1R (Scholin et al. 1994) and 28-1483R (Daugbjerg et al. 2000). A 50 µl PCR cocktail containing 0.2 µM primers, PCR buffer, 50 µM dNTP mixture, 1U of Ex Tag DNA polymerase (Takara, Dalian, China) was subjected to 35 cycles using a Mastercycler PCR (Eppendorf, Hamburg, Germany). The PCR protocol was: initial denaturation for 3.5 min at 94 °C, followed by 35 cycles of 50 s denaturation at 94 °C, 50 s annealing at 45 °C, and 80 s extension at 72 °C, plus a final extension of 10 min at 72 °C. The amplified products were run on a 1% agarose gel. Positive bands were excised and purified using a DNA extraction kit (Sangon, Shanghai, China) and sequenced in both directions using the ABI Big-Dye dye-terminator technique (Applied Biosystems, Foster City, California, USA), according to the manufacturer recommendations.

Single-cell PCR was done by PM and took place atin Concarneau for (French and
Canadian samples), by HG for (Chinese samples) and AY for (Japanese samples).

173 2.3. Sequence alignments and phylogenetic analyses

174	Newly obtained sequences were first aligned with those of related species available in
175	GenBank using 'BioEdit' v7.0.0 (Hall 1999), and subsequently using Mafft (Katoh et al.
176	2005) (http://mafft.cbrc.jp/alignment/server/). Akashiwo sanguinea (Hirasaka) G. Hansen &
177	Moestrup was selected as the outgroup. A Bayesian reconstruction of the data matrix was
178	performed with MrBayes 3.0b4 (Ronquist & Huelsenbeck 2003) using a general time
179	reversible model (GTR +G) chosen by_JmodelTest (Posada 2008). Four Markov chain Monte
180	Carlo (MCMC) chains ran for two million generations, sampling every 1,000 generations with
181	a burnin of 10%. A majority rule consensus tree was created in order to examine the posterior
182	probabilities of each clade. Maximum likelihood-based analyses were conducted with RaxML
183	v7.2.6 (Stamatakis 2006) on the T-REX web server (Boc et al. 2012) using the above model.
184	Bootstrap values were determined with 1,000 replicates.
185	
186	2.4. Light microscope and scanning electron microscopePalynological study of
187	palynologically prepared cysts from Canadian and French sediments
188	For light microscopy of type material from Canada, Holotype and paratype cyst specimens
189	were extracted from surface sediments collected at Site 5 (UVic 2008-5) in Esquimalt
190	Harbour (BC, Canada), 44.855°N; -123.44295°W, water depth 8 m) by using a standardized
191	palynological method (see details in Krepakevich and Pospelova 2010). These were
192	
	photographed and measured using a Leica DM 5000B light microscope equipped with a Leica
193	photographed and measured using a Leica DM 5000B light microscope equipped with a Leica DFC 490 camera with 100x oil immersion objectives.
193 194	photographed and measured using a Leica DM 5000B light microscope equipped with a Leica DFC 490 camera with 100x oil immersion objectives. For scanning electron microscopy of material from Canada and France, samples from
193 194 195	photographed and measured using a Leica DM 5000B light microscope equipped with a LeicaDFC 490 camera with 100x oil immersion objectives.For scanning electron microscopy of material from Canada and France, samples fromCanada (Saanich Inlet, Station A of Mertens et al. 2012) and France (Vilaine Bay, sample
193 194 195 196	 photographed and measured using a Leica DM 5000B light microscope equipped with a Leica DFC 490 camera with 100x oil immersion objectives. For scanning electron microscopy of material from Canada and France, samples from Canada (Saanich Inlet, Station A of Mertens et al. 2012) and France (Vilaine Bay, sample BV5 of Mertens et al. (2009) and Estuaire de la Vie, Station 10 of Liu et al. (2015)) were

198 micropipette using an IX51 (Olympus) inverted microscope and transferred onto

Page 9 of 69

1

Palynology

2	
3	
4	
5	
6	
7	
8	
a	
י 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
-0 21	
י∠ רר	
22 22	
∠3	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
33 34	
)4)5	
33 76	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
ر. 47	
-+/ /0	
-10 10	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

209

199	polycarbonate membrane filters (Millipore, Billerica, Massachusetts, USA; GTTP Isopore,
200	<u>0.22 µm pore size), following a method proposed by Chomérat & Couté (2008). After 12–24</u>
201	h of air-drying, the filters were affixed to aluminum stubs with adhesive tabs (Electron
202	Microscopy Sciences, Hatfield, Pennsylvania, USA). Subsequently, the mounted filters were
203	sputter coated with gold using a Cressington Sputter coater 108auto. The samples were
204	observed at the Station of Marine Biology of Concarneau with a Sigma 300 (Zeiss) field-
205	emission SEM equipped with a conventional Everhart-Thornley and in-lens detectors of
206	secondary electrons at 1.5 and 5 kV. Digital images were saved in Tiff format (2048 × 1768
207	pixels). Adobe- Photoshop TM Creative Suite 5 (CS5) software was used to remove the
208	background while maintaining the integrity of the original image.

210 2.5. Macromolecular characterization of the cyst wall

211 Several visually empty and clean dinoflagellate cysts were isolated onto an Au-coated mirror from filtered (fraction between 150–20 µm) and density-separated (using SPT; 2.1 g cm⁻¹) 212 residues of surface sediment samples (Table 3), this for the macromolecular analysis of their 213 cyst walls via Attenuated Total Reflectance microscope Fourier-transform infrared (ATR 214 215 micro-FTIR) spectroscopy. For a more detailed description of this isolation procedure see 216 Meyvisch et al. (2022). The collection method of the spectra was analogous to that used in Meyvisch et al. (2023). The resulting spectral dataset was further supplemented with 217 previously acquired (in a similar fashion) spectra of other dinoflagellate cysts and one ciliate 218 219 cyst Halodinium verrucatum (Gurdebeke et al. 2018). The spectra in this final dataset were processed in the open-source software Quasar (version 1.7.0; Toplak et al. 2021) using the 220 Preprocess Spectra widget from the Spectroscopy add-on (version 0.6.8) and included (in that 221 order): cutting out the region between 4000–600 cm⁻¹, Rubberband Baseline Correction, 222

Undescribed motile cells, here assigned to Protoperidinium carriae n. sp. nov., emerged from

cordate, spinose cysts isolated from surface sediments from Patricia Bay, Saanich Inlet, BC,

Canada (six specimens identified) (Figure 1 and Table 2). These motile cells germinated from

the cysts after one or two days of incubation. Often, cells died a few days after germination

described below as Protoperidinium carriae. The equivalent cyst is described as Votadinium

Division DINOFLAGELLATA (Bütschli 1885) Fensome et al. 1993, emend. Adl et al. 2005

Class DINOPHYCEAE Pascher 1914

Subclass PERIDINIPHYCIDAE Fensome et al. 1993

Order PERIDINIALES Haeckel 1894

Family PROTOPERIDINIACEAE Balech 1988 nom. cons.

Subfamily PROTOPERIDINIOIDEAE (Autonym)

Genus *Protoperidinium* Bergh 1881

Protoperidinium carriae n. sp. nov.

Plate 1, figures 1–15, Plate 2, figures 1–6

Holotype. Plate 1, figures 4–9. An illustration is selected because of technical difficulties of

specimen preservation (see article 40.5 of the ICN; Turland et al. 2018).

and never divided. The cells and the corresponding cysts from where they hatched are

2 3	223
4 5 6	224
7 8	225
9 10	226
11 12	220
13 14	227
15 16	228
17 18	229
19 20	230
21 22	231
23 24	232
25 26 27	233
27 28 29	234
30 31	235
32 33	226
34 35	230
36 37	237
38 39	238
40 41	239
42 43	240
44 45	241
46 47	242
48 49	243
50 51	244
52 53	245
54 55	245
56 57	246
58 59	247
1111	

1

3. Results

multispinosum **n**. sp. nov.

Savitzky-Golay filtering (Window = 9, Polynomial Order = 2, Derivative Order = 0), and
Vector Normalization.

3.1. Results of germination experiments from Canada

Palynology

3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
27
25
26
27
28
29
30
31
32
33
31
24
35
36
37
38
39
40
41
42
12
4-J 4-A
44
45
46
47
48
49
50
51
51
5∠ 52
53
54
55
56
57
58
50
60

Type locality. Patricia Bay (48° 38.975'N, 123° 28.845'W), Saanich Inlet, B.C., Canada.
249

Diagnosis. A species of relatively large size of the genus *Protoperidinium* with the tabulation 250 formula Po, X, 4', 3a, 7", 3c+t, ?s, 5", 2"". The motile cell is slender and dorsoventrally 251 flattened, with a long apical horn and two long antapical horns. The epitheca is as long as the 252 hypotheca, and both bear strongly concave sides. Plate 1' is ortho-type, 1a and 3a are 253 254 hexagonal, and 2a is quadrangular and isodeltaform planate. Thecal plates display polygonal 255 reticulations. The cyst is cordate and light brown in color, with purplish cell contents as well. The epicyst bears a pronounced apex with slightly concave to straight sides and the hypocyst 256 257 has slightly concave to slightly convex sides with two pronounced antapical lobes, separated 258 by a pronounced antapical depression. The cyst surface appears smooth using a light microscopeunder a LM, bearing numerous nontabular, short, solid, erect or slight curved, and 259 260 non-branching processes with acuminate tips all over the cyst surface. The archeopyle corresponds to the second anterior intercalary plate and is isodeltaform planate, rounded and 261 saphopylic. 262

263

Derivation of name. The specific epithet is in recognition of the artist Emily Carr (1871–
1945), who lived and worked on Vancouver Island.

266

269

Gene sequence. The LSU rDNA gene sequence of the motile stages hatched from the cysts—
GenBank Accession No. <u>OR879798–OR879800XXXXXX</u> (LSU).

Description. Description of motile cell of Protoperidinium carriae (*Plate 1, figures 4–9, 12– 15; Plate 2, figures 4–6*). The excysted motile cells (six observed and not preserved) were
slender and dorsoventrally flattened with a long apical horn and two long antapical horns; the

2		
3		
4		
4		
5		
6		
7		
/		
8		
9		
1	^	
1	0	
1	1	
1	2	
1	2	
1	2	
1	4	
1	5	
1	6	
1	-	
1	/	
1	8	
1	9	
' ~	~	
2	U	
2	1	
2	2	
<u>-</u>	- ว	
2	3	
2	4	
2	5	
5	c	
2	0	
2	7	
2	8	
<u>ີ</u>	0	
_	9	
3	0	
3	1	
2	r	
с -	2	
3	3	
3	4	
2	5	
כ כ	ر د	
3	6	
3	7	
2	Q	
כ כ	0	
3	9	
4	0	
۵	1	
4	1 2	
4	2	
4	3	
4	4	
^	5	
+	2	
4	6	
4	7	
٥	8	
т /	0	
4	9	
5	0	
5	1	
,	' ว	
5	2	
5	3	
5	4	
, ,		
2	5	
5	6	
5	7	
5	Q	
2	0	
5	9	
6	0	
~	-	

1

left one is somewhat shorter than the right one (Plate 1, figures 4–6, Plate 2, figure 4). The
epitheca is as long as the hypotheca, and both bear strongly concave sides. The cell contents
were purplish. The thecal plates displayed polygonal reticulations (Plate 1, figure 12).

The plate arrangement on the epitheca was bilaterally symmetrical. The oval apical 276 pore plate (Po) was surrounded by a low apical collar formed by the raised edges of the apical 277 plates (Plate 2, figure 5). The canal plate (X) was elongate (Plate 2, figure 5). The first apical 278 plate (1') was wide and rhombic (ortho-type) and the sides of plate 1' contacting plates 2' and 279 4' are longer than those contacting plates 1" and 7" (Plate 1, figure 9). Plates 2' and 4' were 280 281 elongated and subpentagonal, whereas 3' was pentagonal (Plate 1, figure 13–14). The first and 282 third anterior intercalary plates (1a, 3a) were hexagonal and equal in size (Plate 1, figure 14). The second anterior intercalary plate (2a) was quadrangular, isodeltaform planate (Plate 1, 283 figure 14). The precingular series consisted of seven plates. Plate 1", 4" and 7" were 284 285 quadrangular (Plate 1, figures 9, 13), and 2", 3", 5" and 6" pentagonal (Plate 1, figures 13-14). The cingulum was slightly left-handed (descending), lined with narrow lists and 286 comprising three cingular plates plus a transitional plate (Plate 1, figure 9). The transitional 287 plate (t) was small. Plate 1c reached the end of plate 1" and 2" (Plate 2, figure 5). Plate 2c 288 was the longest of the series and reached ended before the 6"/7" boundary and the 4"/5" 289 290 boundary (Plate 1, figure 13). Plate 3c was wider in size than Plate 1c.

We were unable to dissect and observe the sulcal plates. Sa intrudes into the epitheca(Plate 1, figure 9).

The plate arrangement of the hypotheca was also symmetrical, featuring five postcingular plates. Plate 5^{'''} was wider than plate 1^{'''}. Plates 1^{'''}, 3^{'''}, and 5^{'''} were pentagonal, and 2^{'''} and 4^{'''} were quadrangular (Plate 1, figures 7, 15). The antapical series comprised two plates, 1^{''''} and 2^{''''}, which formed the antapical horns (Plate 1, figure 8). The plate formula is thus Po, X, 4', 3a, 7'', 3c+t, ?s, 5^{'''}, 2^{''''}. Page 13 of 69

Palynology

298	Description of cyst of Protoperidinium carriae (Plate 1, figures 1–3, 10–11; Plate 2, figures 1–
299	3). The peridinioid cysts were cordate, light brown in color, and bearing numerous short solid
300	spines. Living cysts contained abundant purplish and transparent granules (Plate 1, figure 1).
301	The epicyst bears a pronounced apex with slightly concave to straight sides and the hypocyst
302	has slightly concave to slightly convex sides with two pronounced antapical lobes, separated
303	by a pronounced antapical depression. The central body wall was thin (>0.3 μ m), with an
304	apparent smooth outer and inner surface using a light microscope under LM (Plate 2, figures
305	1–2). The processes were numerous, nontabular, short, solid, erect or slightly curved, and
306	non-branching processes with acuminate tips (Plate 1, figures 1–3, 10–11). The process length
307	was fairly constant for individual specimens, except around antapical horns where they
308	became longer (Plate 1, figure 10). The paracingulum was not visible. The parasulcus was
309	beset with processes and was indented, flagellar scars were not visible. The archeopyle was
310	rounded, intercalary and saphopylic, involving the release of plate 2a, isodeltaform planate.
311	The description is based on cysts used in the incubation experiments.
312	
312 313	<i>Dimensions.</i> Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width,
312 313 314	<i>Dimensions.</i> Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7
312313314315	Dimensions. Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7 (36.9) 46.0 μ m (SD = 18.1, n=4).
 312 313 314 315 316 	Dimensions. Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7 (36.9) 46.0 μ m (SD = 18.1, n=4). Cysts germinated to give identifiable thecae: length, 58.0 (64.0) 69.4 μ m (SD = 4.7, n=4);
 312 313 314 315 316 317 	<i>Dimensions.</i> Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7 (36.9) 46.0 μ m (SD = 18.1, n=4). Cysts germinated to give identifiable thecae: length, 58.0 (64.0) 69.4 μ m (SD = 4.7, n=4); width, 62.6 (67.3) 70.7 μ m (SD = 3.4, n=4); distance between the tips of the antapical horns,
 312 313 314 315 316 317 318 	<i>Dimensions</i> . Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7 (36.9) 46.0 μ m (SD = 18.1, n=4). Cysts germinated to give identifiable thecae: length, 58.0 (64.0) 69.4 μ m (SD = 4.7, n=4); width, 62.6 (67.3) 70.7 μ m (SD = 3.4, n=4); distance between the tips of the antapical horns, 29 (31.1) 32.8 μ m (SD = 1.6, n=4); average length of three spines per cyst, 3.5 (4.9) 5.9 μ m
 312 313 314 315 316 317 318 319 	<i>Dimensions.</i> Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7 (36.9) 46.0 μ m (SD = 18.1, n=4). Cysts germinated to give identifiable thecae: length, 58.0 (64.0) 69.4 μ m (SD = 4.7, n=4); width, 62.6 (67.3) 70.7 μ m (SD = 3.4, n=4); distance between the tips of the antapical horns, 29 (31.1) 32.8 μ m (SD = 1.6, n=4); average length of three spines per cyst, 3.5 (4.9) 5.9 μ m (SD = 1.0, n=4); average number of processes per 10x10 μ m, 19.0 (22.8) 26.7 (SD = 4.4,
 312 313 314 315 316 317 318 319 320 	<i>Dimensions.</i> Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7 (36.9) 46.0 μ m (SD = 18.1, n=4). Cysts germinated to give identifiable thecae: length, 58.0 (64.0) 69.4 μ m (SD = 4.7, n=4); width, 62.6 (67.3) 70.7 μ m (SD = 3.4, n=4); distance between the tips of the antapical horns, 29 (31.1) 32.8 μ m (SD = 1.6, n=4); average length of three spines per cyst, 3.5 (4.9) 5.9 μ m (SD = 1.0, n=4); average number of processes per 10x10 μ m, 19.0 (22.8) 26.7 (SD = 4.4, n=2).
 312 313 314 315 316 317 318 319 320 321 	<i>Dimensions.</i> Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7 (36.9) 46.0 μ m (SD = 18.1, n=4). Cysts germinated to give identifiable thecae: length, 58.0 (64.0) 69.4 μ m (SD = 4.7, n=4); width, 62.6 (67.3) 70.7 μ m (SD = 3.4, n=4); distance between the tips of the antapical horns, 29 (31.1) 32.8 μ m (SD = 1.6, n=4); average length of three spines per cyst, 3.5 (4.9) 5.9 μ m (SD = 1.0, n=4); average number of processes per 10x10 μ m, 19.0 (22.8) 26.7 (SD = 4.4, n=2).
 312 313 314 315 316 317 318 319 320 321 322 	<i>Dimensions.</i> Incubated motile cells: length, 97.0 (109.6) 131.0 μ m (SD = 12.6, n=6); width, 62.0 (53.6) 90.0 μ m (SD = 9.7, n=6); distance between the tips of the antapical horns, 25.7 (36.9) 46.0 μ m (SD = 18.1, n=4). Cysts germinated to give identifiable thecae: length, 58.0 (64.0) 69.4 μ m (SD = 4.7, n=4); width, 62.6 (67.3) 70.7 μ m (SD = 3.4, n=4); distance between the tips of the antapical horns, 29 (31.1) 32.8 μ m (SD = 1.6, n=4); average length of three spines per cyst, 3.5 (4.9) 5.9 μ m (SD = 1.0, n=4); average number of processes per 10x10 μ m, 19.0 (22.8) 26.7 (SD = 4.4, n=2). Genus <i>Votadinium</i> Reid 1977, emend. Gurdebeke et al. 2020

1 2		
3 4	323	<i>Votadinium multispinosum</i> nsp. <u>nov.</u>
5 6 7 8 9	324	Plate 2, figures 7–12
	325	Synonyms.
9 10 11	326	2004 cyst of <i>Protoperidinium claudicans</i> : Orlova et al., 2004, figs. 44–45 (not 46).
12 13	327	2010 Votadinium spinosum: Krepakevich and Pospelova pl. 3f.
14 15	328	2010 Votadinium spinosum: Pospelova et al. 2010, pl. IV, Fig. 4
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	329	2011 Votadinium spinosum: Price and Pospelova, pl. IV, fig. 5.
	330	2016 Votadinium spinosum: Bringué et al., plate III, fig. 6.
	331	2020 Votadinium spinosum: Gurdebeke et al. 2020, pl. 7, figs. 5-12.
	332	2020 Votadinium spinosum: Van Nieuwenhove et al., pl. 26, figs. 4_, 5, 7_, 8.
	333	
	334	<i>Motile stage equivalent</i> . <i>Protoperidinium carriae</i> n. sp. nov., this study.
	335	
	336	Holotype. Surface sediment sample from Esquimalt Harbour (BC, Canada), Site 5 (44.855°N;
	337	-123.44295°W), water depth 8 m, palynological residue mount UVic ID 2008-5, slide 1,
	338	England Finder reference P 56-0 (label on the left); Plate 2, figures 7–9. Kept at the Centre of
	339	Excellence for Dinophyte Taxonomy (CEDiT), Herbarium Senckenbergianum
42 43	340	Wilhelmshaven, Germany with designation CEDiT2023H168 (Otte et al. 2011).
44 45	341	
46 47 48	342	Paratype. Surface sediment sample from Esquimalt Harbour (British Columbia, Canada), Site
49 50	343	5 (44.855°N, -123.44295°W), water depth 8 m, palynological residue mount UVic ID 2008-5,
51 52	344	slide 1, England Finder reference Q 41-2/0 (label on the left); Plate 2, figures 10–12. Kept at
53 54 55	345	the Centre of Excellence for Dinophyte Taxonomy (CEDiT), Herbarium Senckenbergianum
56 57	346	Wilhelmshaven, Germany with designation CEDiT2023P169 (Otte et al. 2011).
58 59 60	347	

l

1 2

Palynology

3			
4			
5			
6			
7			
8			
9			
1	0		
1	1		
1	2		
1	3		
1	4		
1	5		
1	6		
1	7		
1	8		
1	9		
2	0		
2	1		
2	2		
2	3		
2	4		
2	5		
2	6		
2	7		
2	8		
2	9		
3	0		
3	1		
3	2		
3	3		
3	4		
3	5		
3	6		
3	7		
3	8		
3	9		
4	0		
4	1		
4	2		
4	3		
4	4		
4	5		
4	6		
4	7		
4	8		
4	9		
5	0		
5	1		
5	2		
5	3		
5	4		
5	5		
5	6		
5	7		
5	8		
5	9		

60

358

361

Type locality. Esquimalt Harbour (BC, Canada), Site 5 (44.855°N; -123.44295°W), water
depth 8 m, on Vancouver Island, B.C., Canada.

Diagnosis. The cyst is cordate and light to medium brown in color. The epicyst bears a
pronounced apex with slightly concave to straight sides and the hypocyst has slightly concave
to slightly convex sides with two pronounced antapical lobes, separated by a pronounced
antapical depression. The cyst surface appears smooth under a LMusing a light microscope,
bearing numerous nontabular, short, solid, erect or slight curved, and non-branching processes
with acuminate tips all over the cyst surface. The archeopyle is isodeltaform planate, rounded
and saphopylic.

Derivation of name. The specific epithet is in reference to the high number of processes all
over the cyst surface.

Description. The peridinioid cysts were cordate, light to medium brown in color, and bearing 362 bore numerous small solid spines. The epicyst bears a pronounced apex (Plate 1, figure 1) 363 with slightly concave to straight sides and the hypocyst has slightly concave to slightly 364 365 convex sides with two pronounced antapical lobes, separated by a pronounced antapical depression. The central body wall was thin (>0.3 µm), with an apparent smooth outer and 366 inner surface using a light microscope under LM (Plate 2, figure 7). The processes were 367 368 numerous, nontabular, short, solid, erect or slight curved, and non-branching processes with acuminate tips all over the cyst surface (Plate 2, figures 7–12). The process length was fairly 369 constant for individual specimens, except around antapical horns where they became longer 370 (Plate 1, figure 10). The paracingulum was not visible. The parasulcus was beset with 371 processes and was indented, flagellar scars were not visible. The archeopyle was rounded, 372

intercalary and saphopylic, involving the release of plate 2a, isodeltaform planate. The
description is based on cysts extracted from the sediments. <u>SEM observations show that the</u>
<u>outer surface of the cyst wall consists out of very fine fibrils, whilst the inner surface is</u>
smooth (Plate 8, figure 1–2).

Dimensions. Cysts from palynological preparations: length, 58.5 (64.7) 71.1 μ m (SD = 4.1, n=14); width, 56.1 (64.7) 75.1 μ m (SD = 6.3, n=14); distance between the tips of the antapical horns, 25.6 (31.4) 37.5 μ m (SD = 3.5, n=14); average length of three spines per cyst, 2.8 (4.0) 7.7 μ m (SD = 1.2, n=14); average number of processes per 10x10 μ m, 16.7 (22.9) 38.0 (SD = 7.6, n=4).

Comments. The geological preservability of the cysts was demonstrated by their ability to withstand palynological treatment and presence in sediments at least as old as ~41 kyr on the California margin (Pospelova et al., 2015). In the northeastern Pacific Ocean, this species is only occasionally found in the pre-Holocene samples from the California margin, the Santa Barbara Basin, or the Gulf of California (Pospelova et al., 2006, 2015; Price et al., 2013) where it rarely contributes >1% of the cyst assemblages. *Votadinium multispinosum* n. sp. nov. has not been reported from the Last Interglacial in the Santa Barbara Basin (MIS5 & 6; Over and Pospelova 2022) or the entire Middle Pleistocene to Holocene from the Gulf of Alaska (Marret et al., 2001). However, it has been found as far as Alaska, but only in a few recent sediment samples from estuarine waters of Prince William Sound (Pospelova, personal communication observations?). The highest abundances of V. multispinosum n. sp. nov. (~5-8%) were documented in surface sediment samples from Esquimalt Harbour on Vancouver Island where water depth is ~ 10 m, sea-surface temperature ranges from $\sim 7^{\circ}$ C in February to ~12°C in August, sea surface salinity at ~30 psu, and waters can be characterised as nutrient-

Page 17 of 69

Palynology

rich. The precise geographical distribution of V. multispinosum n. sp. nov. is not clear at this stage, as it has been grouped with other similar spiny taxa (e.g., V. spinosum) in all previous publications, but based on those publications that include good cyst illustrations (see in the list of synonyms above) or when the authors of this paper can verify in their palynological slides, we can conclude that this species could be found in coastal waters of the northern Pacific, especially in highly productive estuarine environments (e.g., Pospelova et al. 2008; Radi et al. 2007). The type localities of *P. carriae* and its equivalent *V. multispinosum* are not identical but are both from around Vancouver Island, where both are considered widely distributed. 3.2. Results of germination experiments from France, China and Japan Undescribed motile cells, here assigned to Protoperidinium claudicans, emerged from cordate, spinose cysts isolated from surface sediments from Maresclé, Morbihan, France (six specimens identified). Additionally, one cyst each was obtained from Fangchenggang, Guangxi, China and one cyst from Quanzhou, Taiwan Strait, China and one cyst. Furthermore,, one motile cell hatched from a cyst and one motile <u>cell</u> isolated from plankton were collected infrom Hokkaido, Japan (Figure 1 and Table 2). These motile cells germinated from the cysts after one or two days of incubation. Often, cells died a few days after germination and never divided. The cells and the corresponding cysts from where they hatched are described below as Protoperidinium claudicans. Two other Votadinium-like cysts were hatched from surface sediments from Fangchenggang, Guangxi, China and sequenced and are described below and illustrated here (Votadinium psilodora and Votadinium sp. 1). Genus *Protoperidinium* Bergh 1881 Protoperidinium claudicans (Paulsen) Balech 1974 Plate 3, figures 1–12, Plate 4, figures 1–15 (French specimens)

URL: http://mc.manuscriptcentral.com/tpal

2 3	122	Ploto 5 Figs 1.0 (Agian specimens)
4	423	Plate 5, Figs. 1–9 (Asian specimens)
5 6 7	424	Basionym. Paulsen 1907, p. 16, fig. 22.
/ 8 9	425	
9 10 11	426	Type locality. Port of Frederikshavn, east coast of Jutland (Paulsen 1907).
12 13	427	
14 15 16	428	Diagnosis. A species of relatively large size of the genus Protoperidinium with the tabulation
10 17 18	429	formula Po, X, 4', 3a, 7", 3c+t, ?s, 5", 2"". The motile cell is slender and dorsoventrally
19 20	430	flattened, with a short apical horn and two short antapical horns. The epitheca is as long as the
21 22	431	hypotheca, and both bear slightly convex sides. Plate 1' is <u>of the</u> ortho-type and asymmetrical,
23 24 25	432	1a and 2a are pentagonal, and 3a is hexagonal. 2a is dextrocamerate. Plates display polygonal
26 27	433	reticulations. The cyst is cordate and light brown in color, with orange or transparent cell
28 29	434	contents as well. The epicyst bears an apex with convex sides and the hypocyst has convex
30 31 32	435	sides with two antapical lobes, separated by an antapical depression. The cyst surface appears
33 34	436	smooth using a light microscopeunder a LM, bearing nontabular, short, solid, erect, or slightly
35 36	437	curved, and non-branching processes with acuminate tips. The sulcal area can have a reduced
37 38	438	number of processes. The archeopyle is dextrocamerate, rounded and saphopylic.
39 40 41	439	
42 43	440	Derivation of name. Although not specified by Paulsen (1907), it is likely that the epithet is
44 45	441	derived from Latin claudicans, meaning limping, because of the unequal length of the
46 47 48	442	antapical horns.
49 50	443	
51 52	444	Gene sequence. The LSU rDNA gene sequence of the motile stages hatched from the cysts
53 54 55	445	from France (ribotype 1) —GenBank Accession No. <u>OR879790–OR879792</u> XXXXX (LSU)
56 57	446	and from Asia (ribotype 2) —GenBank Accession No. OR879793-OR879795XXXXXX
58 59	447	(LSU).
60		

Palynology

Description. Description of motile cell of Protoperidinium claudicans (Plate 3, figures 4–6, 10-12, Plate 4, figures 5-9, 12-15). The excysted motile cells (six observed and not preserved) were slender and dorsoventrally flattened with a short apical horn and two short antapical horns; the left one is somewhat shorter than the right one (Plate 3, Figure 3, Plate 4, Figure 5). The epitheca is as long as the hypotheca, and both bear slightly convex sides. The thecal plates displayed polygonal reticulations. The cell contents were orange or transparent in French specimens (Plate 3, figure 3; Plate 4, figure 5), transparent or reddish in Chinese and Japanese specimens (Plate 5, figures 1, 3).

The plate arrangement on the epitheca was bilaterally symmetrical, except for the shape of the anterior intercalary plates and the first apical plate. The oval apical pore plate (Po) was surrounded by a low apical collar formed by the raised edges of the apical plates. The canal plate (X) was elongate. The first apical plate (1') was wide and rhombic (orthotype) and asymmetrical and the sides of plate 1' contacting plates 2' and 4' are longer than those contacting plates 1" and 7" (Plate 3, figures 5-6). Plates 2' and 4' were elongated and subpentagonal, whereas 3' was pentagonal (Plate 4, figure 7). 1a is pentagonal, and 3a is hexagonal (Plate 3, figure 5–6). The second anterior intercalary plate (2a) was pentagonal and, dextrocamerate (Plate 1, figure 5). The precingular series consisted of seven plates. Plate 1", 5" and 7" were quadrangular (Plate 3, figure 4, Plate 4, figure 14), and 2", 3", 4" and 6" pentagonal (Plate 3, figures 5, 6). The cingulum was slightly left-handed (descending), lined with narrow lists and comprising three cingular plates plus a transitional plate. The transitional plate (t) was small (Plate 4, figure 8). Plate 1c reached before the end of plate 1" (Plate 4, figure 7). Plate 2c was the longest of the series and reached ended at the 6''/7''boundary and the 4"'/5" boundary (Plate 4, figure 13). Plate 3c was wider in size than Plate 1c.

We were unable to dissect and observe the sulcal plates. Sa intrudes into the epitheca

(Plate 3, figures 4, 9; Plate 4, figures 8, 13). The plate arrangement of the hypotheca was symmetrical, featuring five postcingular plates. Plate 5" was wider than plate 1". Plates 1", 3", and 5" were pentagonal, and 2" and 4" were quadrangular (Plate 3, figure 11). The antapical series comprised two plates, 1" and 2'''', which formed the antapical horns (Plate 3, figure 11). The plate formula is thus Po, X, 4', 3a, 7", 3c+t, ?s, 5", 2"". Description of cyst of Protoperidinium claudicans (Plate 3, figures 1, 7; Plate 4, figures 1–4; 10-11). The peridinioid cysts were cordate, light brown in color, and bearing small solid spines. Living cysts contained abundant orange and transparent granules. The epicyst bears an apex with convex sides and the hypocyst has convex sides with two antapical lobes, separated by an antapical depression. The central body wall was thin (>0.3 μ m), with an apparent smooth outer and inner surface using a light microscopeunder LM (Plate 4, figure 1). The processes were numerous, nontabular, short, solid, erect, or slight curved, and non-branching processes with acuminate tips (Plate 3, figures 1, 7; Plate 4, figures 1–4). The process length was fairly constant for individual specimens, except around antapical horns where they became longer (Plate 4, figure 1). The paracingulum was not visible. The parasulcus can be beset with processes, although often there are less processes present and was indented,

flagellar scars were not visible. The archeopyle was rounded and saphopylic, involving the
release of plate 2a, dextrocamerate. The description is based on cysts used in the incubation
experiments.

Dimensions. Incubated motile cells from France: length, 49.0 (68.1) 82.0 μ m (SD = 12.9, 496 n=6); width, 34.3 (50.7) 60.8 μ m (SD = 9.5, n=6); distance between the tips of the antapical 497 horns, 16.0 (25.2) 32.1 μ m (SD = 11.6, n=5). Page 21 of 69

Palynology

1	
2 3 4	49
5 6	49
7 8	50
9 10 11	50
12 13	50
14 15	50
16 17	50
18 19 20	50
21 22	50
23 24	50
25 26 27	50
27 28 29	50
30 31	51
32 33	51
34 35 26	51
30 37 38	51
39 40	51
41 42	51
43 44	51
45 46 47	51
48 49	51
50 51	51
52 53	51
54 55 56	52
57 58	52
59 60	52

498	Cysts germinated to give identifiable thecae from France: length, 46.7 (51.4) 56.2 μ m (SD =
499	3.2, n=6); width, 47.3 (52.9) 55.1 μ m (SD = 2.9, n=6); distance between the tips of the
500	antapical horns, 28.4 (29.9) 31.9 μ m (SD = 1.2, n=6); average length of three spines per cyst,
501	$3.9 (5.7) 8.1 \mu m (SD = 1.8, n=6)$; average number of processes per 10x10 μm , 7 (11.4) 15.3
502	(SD = 2.9, n=6).
503	Incubated motile cells from Asia: length, 71.4 (73.5) 75.6 μ m (SD = 2.9, n=2); width, 42.9
504	(47.5) 52.1 μ m (SD = 6.5, n=2); distance between the tips of the antapical horns, 27.6 (28.1)
505	28.6 μ m (SD = 0.7, n=2).
506	Cysts from Asia: length, 43.2 (46.4) 50.2 μ m (SD = 3.6, n=3); width, 40.0 (49.3) 59.4 μ m
507	(SD = 9.7, n=3); distance between the tips of the antapical horns, 26.3 (28.1) 31.0 μ m (SD =
508	2.5, n=3); average length of three spines per cyst, 4.4 (5.1) 6.3 μ m (SD = 1.0, n=3).
509	
510	Comments. The geological preservability of the cysts was demonstrated by their ability to
511	withstand palynological treatment. The equivalent cyst is considered to be Votadinium
512	spinosum. SEM observations of cysts extracted from palynologically treated sediments show
513	that the outer surface of the cyst wall consists out of very fine fibrils, whilst the inner surface
514	is smooth (Plate 8, figure 3–6). There were only small morphological differences between
515	both ribotypes of <i>P. claudicans</i> : the width of the 2a is somewhat smaller in the former than in
516	the latter and the 4" is somewhat higher in the former than in the latter. Between the
517	corresponding cysts, no clear differences could be observed. The genetics did demonstrate a
518	clear separation of both ribotypes.
519	
520	Genus Votadinium Reid 1977, emend. Gurdebeke et al. 2020
521	Votadinium psilodora (Benedek 1972) Gurdebeke et al. 2020
522	Plate 6, figures 1–9

3 4	523	Synonyms.
5 6 7	524	1972 Lejeunecysta psilodora: Benedek, pl. 6, fig. 5.
7 8 9	525	1981 Selenopemphix nephroides, pars: Benedek & Sarjeant, figs 8, 3-4.
10 11	526	1987 Lejeunecysta psuchra: Matsuoka, pl. 9, figs 7–8.
12 13	527	1988 Votadinium calvum Reid: Bint, fig. 3-J.
14 15 16	528	1988 Lejeunecysta psilodora (Benedek) Artzner & Dorhofer: Gruas-Cavagnetto & Barbin, pl.
10 17 18	529	V, figs 12–13.
19 20	530	1989 Cyst of Protoperidinium oblongum: Kojima, fig. 6-2.
21 22 22	531	2000 Protoperidinium sp. 1: Cho, p. 24, pl. 2, fig. 8.
25 24 25	532	2004 Lejeunecysta psuchra: Louwye et al., fig. 10r-s.
26 27	533	2010 Cyst of Protoperidinium spp.: Pospelova et al., pl. 5, fig. 5.
28 29	534	2018 Cysts of Protoperidinum oblongum Li et al., pl. VI, fig. 11 only.
30 31 32	535	2020 Votadinium ?pontifossatum Li et al., pl. III, fig. 11.
33 34	536	2020 Votadinium psilodora Gurdebeke et al., pl. 4, figs. 1–11.
35 36	537	
37 38 39	538	<i>Motile stage equivalent</i> . Unknown <i>Protoperidinium</i> sp. with ortho 1' and quadrangular 2a
40 41	539	(Plate 6, figures 7–9).
42 43	540	
44 45 46	541	<i>Description</i> . The peridinioid cysts were pentagonal in ambitus, light brown in color. The
40 47 48	542	epicyst bears a pronounced apex with slightly convex sides and the hypocyst has slightly
49 50	543	convex sides with two elongated antapical horns, separated by a pronounced antapical
51 52	544	depression. The central body wall was thin (>0.3 μ m), with an apparent smooth outer and
55 55	545	inner surface <u>using a light microscopeunder LM</u> . No ornamentation was visible. The
56 57	546	paracingulum was slightly visible (Plate 6, figures 2, 6). The parasulcus was indented,
58 59 60	547	flagellar scars were not observed. The archeopyle was rounded, intercalary and saphopylic,

Palynology

2 3	548	possibly involving the release of plate 2a. The description is based on cysts used in hatching
4 5	549	experiments
6 7	515	experiments.
8 9	550	
10 11	551	Gene sequence. The LSU rDNA gene sequence of the motile stages hatched from the cysts
12 13 14	552	from China —GenBank Accession No. OR879796–OR879797XXXXXX (LSU).
15 16	553	
17 18	554	<i>Dimensions.</i> Cysts extracted from Chinese sediments: length, 69.0 (71.6) 76 μ m (SD = 3.8,
19 20	555	n=3); width, 60.0 (60.3) 61.0 μ m (SD = 0.6, n=3); depth, 43.0 μ m (n=1).
21 22	556	Incubated motile cells from China: length, 80.0 (82.5) 85.0 μ m (SD = 3.5, n=2); width, 55.0
23 24 25	557	$(57.5) 60.0 \ \mu m \ (SD = 3.5, n=2); \ depth, 45.0 \ (45.0) \ 45.0 \ \mu m \ (SD = 0.0, n=2).$
26 27	558	
28 29 30 31 32	559	Comments. Although the cell was hatched from the cyst, we consider that there was not
	560	enough information to fully describe the species.
33 34	561	
35 36	562	Votadinium sp. 1
37 38 39 40 41	563	Plate 7, figures 1–9
	564	Synonyms. None.
42 43	565	
44 45	566	<i>Motile stage equivalent</i> . Unknown <i>Protoperidinium</i> sp. with ortho 1' and quadrangular 2a
46 47 48 49 50 51 52	567	(Plate 7, figures 4–9).
	568	
	569	Description. The cordate cysts were light to medium brown in color. The epicyst is shorter
53 54	570	than the hypocyst and bears an apex with slightly convex sides and the hypocyst has slightly
55 56 57	571	convex sides with two pronounced, elongated antapical lobes, separated by an antapical
58 59 60	572	depression. The central body wall was thin (>0.3 μ m), with an apparent smooth outer and

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21 22	
22 22	
23 24	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
20	
59 60	
υυ	

573	inner surface <u>using a light microscopeunder LM</u> . No ornamentation was visible. The
574	paracingulum was not visible. The parasulcus was indented, flagellar scars were not observed.
575	The archeopyle was rounded, intercalary, and saphopylic, involving the release of plate 2a,
576	isodeltaform planate. The description is based on cysts used in hatching experiments.
577	
578	Gene sequence. The LSU rDNA gene sequence of the motile stages hatched from the cysts
579 580	from China —GenBank Accession No. <u>OR879789XXXXXX</u> (LSU).
581	<i>Dimensions.</i> Cysts extracted from sediments: length, 51.7 (59.2) 75.0 μ m (SD = 10.6, n=4);
582	width, 50.0 (60.0) 70.0 μ m (SD = 8.8, n=4).
583	Incubated motile cells from China: length, 77.9 (81.3) 85.0 μ m (SD = 2.9, n=4); width, 55.0
584	$(59.1) 65.0 \ \mu m \ (SD = 4.6, n=4).$
585	
586	<i>Comments.</i> Although the cell was hatched from the cyst, we consider that there was not
587	enough information to fully describe the species.
588	
589	3.3. Phylogenetics
590	The LSU rDNA based phylogeny (Figure 4) demonstrates that <i>P. carriae</i> forms a separate
591	clade, far from the clade containing P. claudicans from France, China and Japan. Votadinium
592	psilodora is basal to the clade containing P. carriae, and Votadinium sp. 1 is basal to the clade
593	containing <i>P. claudicans</i> . The <i>P. claudicans</i> species form two separate clades: one with <i>P</i> .
594	claudicans from China and Japan (ribotype 1), and another one with French specimens
595	(ribotype 2).
596	
597	3.4 Results of macromolecular analyses of cyst walls

Page 25 of 69

1

Palynology

3	598
4 5	500
6 7	555
8	600
9 10 11	601
12 13	602
14 15	603
16 17	604
18 19 20	605
20 21 22	606
23 24	607
25 26	608
27 28	609
29 30 31	610
32	010
33 34	611
35 36	612
37 38	613
39 40	614
41 42	615
43 44	64 6
45 46	616
47	617
40 49 50	618
50 51 52	619
53 54	620
55 56	C2 4
57	621
58 50	
59 60	

A total of 32 processed ATR micro-FTIR spectra of an equal number of individual cysts 598 599 covering seven taxa were used for comparison (Table 3). Average spectra for each taxon were calculated (Figure 5) and these reveal the presence of a range of functional groups previously 600 identified in the macromolecules comprising dinoflagellate and ciliate cyst walls (Meyvisch et 601 602 al. 2023; Gurdebeke et al. 2018, Gurdebeke et al. 2023).

4. Discussion 604

Although for the species descriptions only few specimens were hatched and few cells 605 sequenced, we consider these sufficient to describe the species, since the morphological 606 607 observations and sequences were reproducible. Sequencing heterotrophic species has a low 608 success rate (e.g. Mertens et al. 2023, p. 16).

4.1. Comparative morphology of the motile stage of P. carriae within the Oceanica group 610

Among the species that are elongate and have a quadrangular 2a, there is *P. oceanicum*, *P.* 611 quadrioblongum, P. venustum and Peridinium oblongum var. inaequipes. P. oceanicum is 612 much longer and more elongate, having a size of 129-210 µm, and a width of 68-128 µm 613 (Balech 1988). Protoperidinium quadrioblongum has similar size (100-105 µm, width 65-80 614 615 μm and thickness 40 μm (Sarai et al. 2013), but P. carriae has a more elongate shape and more concave sides. Protoperidinium venustum is somewhat longer (110–120 µm) and wider 616 (75–80 µm) and has antapical horns that are more diverging (Matzenauer 1933). Peridinium 617 618 oblongum var. inaequipes is most closely similar but has antapical horns that are more widely diverging (Mangin 1930). P. claudicans has a pentagonal 2a. P. claudicans and P. carriae can 619 also be separated based on size (Figure 2). 620

4.2. Comparative morphology of the cyst of V. multispinosum within the Votadinium group V. spinosum and V. multispinosum were both previously identified as V. spinosum, but this study demonstrates that they are two different species and can be distinguished using morphological criteria. Next to the obvious difference in body size between the larger V. *multispinosum* and V. spinosum (Figure 3), there is a significant difference in process density (Figures 2–3Plate 8). In addition, there are often much less fewer processes on the sulcal area of V. spinosum. There is also the difference in archeopyle shape (isodeltaform planate vs. dextrocamerate), but this is much more difficult to observe. Evitt (1985) expressed doubt about the archeopyle of P. claudicans and P. oblongum as being 2a, and suggested that they could be apical. Our observations suggest that the archeopyle shape corresponds well to the 2a. Sonneman and Hill (1997, p. 161, figs. 18a-c) displayed a similar pentagonal archeopyle for a cyst identified as V. spinosum / P. claudicans. The difference in color of cell contents (purple, reddish, orange or transparent) does

not seem to be species specific, as within the Asian ribotype of P. claudicans, cysts with a reddish and transparent cell content have been observed.

4.3. The identification of P. claudicans and relation to Votadinium spinosum

P. claudicans was described by Paulsen (1907) from the port of Frederikshavn, Denmark. Since then, the species has not been redescribed from Danish waters, and has for example not been seen by Hansen and Larsen (1992). Paulsen (1907) did not specify the shape of the 2a in the original description, so uncertainty remains about whether the type specimen did indeed have a pentagonal 2a. Later, he describes specimens from the Alboran Sea with hexa and quadra configuration (Paulsen 1931), and in Paulsen (1949) he suggests that quadra, penta and hexa are possible. Throndsen et al. (2007, p. 96) describe P. claudicans with both hexa and

Page 27 of 69

Palynology

penta 2a from the North Sea, whilst Hoppenrath et al. (2009, p. 149) describe P. claudicans from the German bight as penta and rarely hexa or quadra. Paulsen's specimen was 96 um in length, which is significantly longer than specimens observed here (49.0–82.0 µm). Given the lack of further information on specimens from the type locality, and for convenience sake, we have chosen to use Lebour (1923) as species concept for P. claudicans; this concept uses a penta 2a, relatively small cells (51–96 µm). This corresponds quite well to the morphology of the cells that we observed, except for a more rectangular 2a in our specimens, which mayight as well-be due to an inaccuracy in Lebour's drawing (Lebour 1925, plate XXV, fig. 1).

Protoperidinium claudicans has been related to its cyst equivalent Votadinium spinosum by Reid (1977). Votadinium spinosum has been described by Reid (1977) from Galway, Ireland. Reid (1977) related his new species to P. claudicans based on cyst-theca experiments by Wall and Dale from Woods Hole and Bermuda, who described cells exclusively with a pentagonal 2a. The cysts that we observed correspond very well to V. spinosum as described by Reid (1977), which has a similar shape, size $(49x51-54x63 \mu m)$, similar density and length of processes $(3-7 \mu m)$ and archeopyle. Similar cysts have been observed by Nehring (1997) from the German Bight. In conclusion, in absence from evidence from the type locality of P. claudicans, we identify our taxon as P. claudicans with as cyst-equivalent V. spinosum.

P. claudicans, as used here, displays some similarities to other Protoperidinium
species with an ortho-penta configuration. P. paraoblongum has similar shapes of the anterior
intercalary plates, but is larger and more slender. There is also superficial similarity with *Peridinium oceanicum* var. *inaequipes* L.A.Mangin 1930, but the latter is much larger (165
µm in length).

670 There were only minor morphological differences between French and Asian671 specimens, despite that there was a genetic separation between French and Asian specimens

when comparing the LSU rDNA sequences. <u>In our view, the morphological distinctions</u>
<u>between them are insufficient to warrant classification as distinct species.</u> <u>In our opinion, there</u>
is not enough morphological difference to describe them as different species. Further hatching
experiments that include other genes should be done in the future.

677 4.4. Identification of V. psilodora within the Votadinium group and Votadinium sp. 1

The identified *V. psilodora* corresponds well with *L. psilodora* as described by Benedek (1972) specifically the body shape and archeopyle, although they are somewhat smaller and less rounded than Benedek's specimens (69.0–76 μ m as compared to 90–96 μ m). The motile stage of *V. psilodora* is similar to *P. larsenii*, but does not have an asymmetrical 1', (Phan-Tan et al. 2017).

Votadinium sp. 1 is closely similar to *V. rhomboideum*, but has a less deeply incised sulcus and no flagellar scar was observed. The motile stage is similar to *P. quadrioblongum* but does not have an elongated apical horn and no antapical horns that are directed outwards.

A detailed description of the corresponding motile stages is foreseen planned in a future study.

689 4.5. Phylogenetics and implications for the Oceanica group

On a species level, the phylogenetic tree (Fig. 4) separates well <u>all-the</u> discussed species from
each other. Furthermore, *P. claudicans* and *P. carriae* do not cluster together in the
phylogenetic diagram, suggesting that cordate, process bearing cysts are not a monophyletic
trait. It seems that the presence of processes on the cysts have evolved at different times, and
could have led to an evolutionary advantage (e.g., Mertens et al., 2009, p. 67). This implies
that the presence or absence of processes can be used to separate species, but not on a higher
taxonomic level. The first occurrence of *V. spinosum* in the fossil record is considered to be

Page 29 of 69

Palynology

the Lower Pleistocene (Bujak and Matsuoka, 1986; Powell et al., 1990), but unfortunately both records do not illustrate nor describe the taxon, which makes the first occurrence for both species currently unknown and in need of restudy. Both Votadinium psilodora and *Votadinium* sp. 1 are genetically sufficiently distant from other species in the group. On a group level, the phylogeny demonstrates also that species that have been assigned to the *Oceanica* group cluster together in a monophyletic group, despite some of them having a pentagonal or hexagonal 2a. There does not seem to be any clear logic in the positions of species that have a quadra, penta or hexa configuration. In addition, for each species in this group that has a cyst-based equivalent, it can be assigned to the cyst-based genus Votadinium, which is coherent with what is was previously observed by Gurdebeke et al. (2020). The long biostratigraphical range of V. psilodora suggests that its phylogenetic position is ancestral for the group or that it has wall that is more resistant to degradation. 4.6. Biogeography and ecology of P. claudicans and P. carriae Biogeographical ranges of *P. claudicans* have previously been recorded for the Atlantic by Dale (1996). The apparent presence of multiple species within this species complex suggests a necessary revision of their distribution ranges. The apparent existence of several species in this species complex, suggests a revision is needed. For the time being, we only have verified occurrences of *P. carriae* in B.C. waters (Canada). *P. claudicans* ribotype 1 occurs in European waters and *P. claudicans* ribotype 2 in Japanese and Chinese waters. More sequences are needed to understand their larger distribution. It is not clear whether P. claudicans co-occurs with P. carriae in the Canadian Pacific. Protoperidinium claudicans with a pentagonal 2a was described previously by Wailes (1939, Fig. 109) but the cells of 100–120 μ m x 68–85 μ m are much larger than the typical P. *claudicans*. The shape of the 2a is also more elongated than the 2a shapes that are recorded

here from European waters. Dobell (1978) also recorded hatched smaller, pentagonal *P*. *claudicans* that were somewhat smaller (70–125 μ m x 50–70 μ m), that she hatched from cordate, spinose cysts. Although we were unable to confirm the presence of *P. claudicans* in these Canadian Pacific waters, these records suggest that the possibility of its presence remains, these records indicate that its presence remains thus possible. Corroborating evidence for this is the large variability in size and shape of cordate, spinose cysts we have noted in these waters.

Protoperidinium carriae, with cyst equivalent *V. multispinosum*, occurs in higher
 abundances in summer in Saanich Inlet, which could be related to a higher diatom production
 (Price and Pospelova 2011, then identified as *V. spinosum*). Further investigations are needed
 to determine if this species is confined to temperate waters or exhibits a broader range of
 tolerance.More records should investigate whether this species is restricted to temperate
 waters or has a wider tolerance.

4.7. Macromolecular comparison of the cyst of *V. multispinosum* with other cysts

The macromolecule in the cyst wall of V. multispinosum is strongly enriched in proteinaceous moieties as is apparent from the strong intensities in absorption bands related to amides, relative to the intensity of the broad band related to hydrogen bond stretching between 3550-3200 cm⁻¹ (Fig. 5). Other than that, it also contains aliphatic moieties and a low amount of carbohydrates. In this way, V. multispinosum's cyst wall is very similar to that of the closely related, smooth walled species V. calvum. Slightly stronger carbohydrate bands in the latter species might reflect systematic compositional differences or might originate from small quantities of optically difficult to detect cellular remnants present within the cysts. Interestingly, distantly-related gymnodinialean cysts of Polykrikos kofoidii and P. schwartzii (both sensu Matsuoka et al. 2009) are also protein-rich, but are more pigmented than those of

Page 31 of 69

Palynology

Votadinium, which is apparent from the higher intensities of secondary amine absorption bands (notably between 1620–1570 cm⁻¹; Fig. 5) thought to originate from— possibly eumelanin —pigments responsible for the typically brown color present mostly inof many cysts produced by heterotrophic dinoflagellates (Meyvisch et al. 2023). The transparent cyst of the ciliate *Halodinium verrucatum* (Gurdebeke et al. 2018) is also comprised of a very proteinaceous and polysaccharide-containing, though non-pigmented (hence the absence of a shoulder between the Amide I and II bands) macromolecule (Fig. 5). Proteins are often quickly depolymerized and further degraded upon sedimentation and burial (de Leeuw and Largeau 1993), which might explain the less frequent occurrence of all the above-mentioned cyst species (and ciliate cysts in general) from in older (sub)fossil samples. In contrast to proteinaceous Votadinium cysts, many other protoperidinioid cysts such as Quinquecuspis concreta and Lejeunecysta sp. are composed of a relatively less protein-rich, more pigmented, sugary and aliphatic macromolecule (Fig. 5). This compound is previously referred to as 'colored dinosporin' (Meyvisch et al. 2023) and is thought to preserve quite well under low-oxidative conditions. Note that in the dataset reported by Meyvisch et al. (2023), protein-rich dinoflagellate cysts belonging to the genera Polykrikos, Qia and Votadinium were included within the 'colored dinosporin' group based on the presence of wall pigments. However, the differences in protein contents and associated preservability which are more explicitly addressed and visualized in this work might advocate for a future erection of an additional spectrochemical group encompassing all such proteinaceous forms. As a final note, it seems that spectra for V. multispinosum reported by Gurdebeke et al. (2020) (as "V. spinosum") and measured in micro-FTIR transflection mode, are fairly

comparable to those presented here and measured in ATR-mode (Fig. 4). As the cavity of the
thin-walled cyst collapses upon drying after picking, greatly reducing geometrical scattering
effects reported by Meyvisch et al. (2022).

2 3 4	772	
5 6	773	5. Conclusions
7 8	774	Throughout its history, P. claudicans has been recognized for showcasing distinct variations
9 10 11	775	in its second anterior intercalary plate, which can assume forms ranging from quadra to penta
12 13	776	and hexa. The outcomes of the incubation experiments from France, Canada, China, and
14 15	777	Japan reveal that <i>P. claudicans</i> forms a species complex. Within this complex, there exist at
16 17 18	778	least two ribotypes displaying a penta configuration (P. claudicans) and one with a quadra
19 20	779	configuration (P. carriae sp. nov. with equivalent cyst V. multispinosum sp. nov.). The
21 22	780	validity of these findings is corroborated by molecular phylogenetics. Since a hexa
23 24 25	781	configuration has also been recorded (Matsuoka and Head 2013, Fig. 4e), future sequencing
25 26 27	782	needs to show that this is a third species in this complex. Sequences of two cordate, spineless
28 29	783	cysts demonstrate that several other species remain to be described in this complex.
30 31 22	784	Macromolecular analyses of the cyst wall of V. multispinosum sp. nov. reveal that it is
32 33 34	785	comprised of a poorly preservable, protein-rich compound which is also quite commonly
35 36	786	found in other dinoflagellate and ciliate resting stages.
37 38	787	
39 40 41	788	Acknowledgements
42 43	789	The Regional Council of Brittany, the General Council of Finistère and the urban community
44 45	790	of Concarneau-Cornouaille-Agglomération are acknowledged for the funding of the Sigma
46 47 48	791	300 FE-SEM of the station of Marine Biology in Concarneau.
49 50	792	
51 52	793	Funding
53 54	794	KNM and GB were financially supported by the French National Research Agency (ANR)
55 56 57	795	PhenoMap project, ANR-20-CE02-0025.
58 59 60	796	

2		
3 4	797	References
5 6	798	Akselman R. 1987. Quistas planctonicos de dinoficeas en areas de la plataforma del Atlantico
/ 8 9	799	Sudoccidental. I. Reporte taxonomico de la familia Peridiniaceae Ehrenberg. Boletim
) 10 11	800	do Instituto Oceanográfico, Instituto Oceanográfico da Universidade de São Paulo.
12 13	801	35:17–32.
14 15 16	802	Balech E. 1951. Deuxième Contribution à la Connaissance des Peridinium. Hydrobiologia
17 18	803	<u>III(4):305–330.</u>
19 20	804	Balech E. 1974. El Genero 'Protoperidinium' Bergh, 1881 (Peridinium Ehrenberg, 1831,
21 22 23	805	partim). Revista del Museo Argentino de Ciencias naturales "Bernardino Rivadavia",
23 24 25	806	Hidrobiologia. 4:1–79.
26 27	807	Balech E. 1988. Los dinoflagellados del Atlantico sudoccidental. Publicaciones Especiales
28 29 20	808	Instituto Español de Oceanográfia. 1:1–310.
30 31 32	809	Barrows AL. 1918. The significance of skeletal variations in the genus <i>Peridinium</i> . University of
33 34	810	California Publications in Zoology. 18(15):97–478.
35 36	811	Benedek P. 1972. Phytoplanktonten aus dem Mittel- und Oberoligozän von Tönisberg
37 38 39	812	(Niederrheingebiet). Palaeontographica B. 137:1-71.
40 41	813	Boc A, Diallo AB, Makarenkov V. 2012. T-REX: a web server for inferring, validating and
42 43	814	visualizing phylogenetic trees and networks. Nucleic Acids Research. 40:W573-
44 45 46	815	<u>W579.</u>
40 47 48	816	Bolch C.J.S. 1997. The use of sodium polytungstate for the separation and concentration of
49 50	817	living dinoflagellate cysts from marine sediments. Phycologia. 36:472-478.
51 52 52	818	Bringué M, Pospelova V, Calvert SE, Enkin RJ, Lacourse T, Ivanochko T, 2016. High
55 55	819	resolution dinoflagellate cyst record of environmental change in Effingham Inlet
56 57	820	(British Columbia, Canada) over the last millennium. Palaeogeography,
58 59 60	821	Palaeoclimatology, Palaeoecology. 441:787-810.

1

2 3 4	822	Bujak JP, Matsuoka K. 1986. Late Cenozoic dinoflagellate cyst zonation in the Western and
- 5 6	823	Northern Pacific. In: Wrenn JH, Duffield SL, Stein JA, editors. Papers from the First
7 8 0	824	Symposium on Neogene Dinoflagellate Cyst Biostratigraphy, pp. 7–25 American
9 10 11	825	Association of Stratigraphic Palynologists Contributions Series 17.
12 13	826	Chomérat N, Couté A. 2008. Protoperidinium bolmonense sp. nov. (Peridiniales,
14 15 16	827	Dinophyceae), a small dinoflagellate from a brackish hypereutrophic lagoon (south of
10 17 18	828	France). Phycologia. 47:392–403.
19 20	829	Dale B. 1996. Dinoflagellate cyst ecology: modelling and geological applications. In:
21 22	830	Jansonius J, McGregor DC, editors. Palynology: Principles and Applications, vol 3.
23 24 25	831	AASP Foundation, Dallas, Texas, pp. 1249–75.
25 26 27	832	Daugbjerg N, Hansen G, Larsen J, Moestrup Ø. 2000. Phylogeny of some of the major genera
28 29 30 31 32 33 34	833	of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data,
	834	including the erection of three new genera of unarmoured dinoflagellates. Phycologia.
	835	<u>39:302–317</u>
35 36	836	de Leeuw JW, Largeau C. 1993. A review of macromolecular organic compounds that
37 38	837	comprise living organisms and their role in kerogen, coal, and petroleum
39 40 41	838	formation. In: Engel MH, Macko SA, editors. Organic geochemistry: principles and
42 43	839	applications, Plenum Press, New York, pp. 23-72.
44 45	840	Dobell PER. 1978. A study of dinoflagellate cysts from Recent sediments of British Columbia.
46 47 48 49 50 51 52 53 54 55 56 57	841	Unpublished MSc. thesis, University of British Columbia, Vancouver, B.C., Canada.
	842	Dodge JD. 1982. Marine dinoflagellates of the British IslesHer Majesty's Stationery
	843	Office, London, 303 pp.
	844	Dodge JD. 1985. Atlas of Dinoflagellates. London: Farrand Press. 119 pp.
	845	Evitt WR. 1985. Sporopollenin dinoflagellate cysts: their morphology and interpretation.
58 59 60	846	American Association of Stratigraphic Palynologists, Monograph Series 1, 333 p.

1

Palynology

2 3 4	847	Gribble KE, Anderson DM. 2006. Molecular phylogeny of the heterotrophic dinoflagellates,
5 6	848	Protoperidinium, Diplopsalis and Preperidinium (Dinophyceae), inferred from large
7 8 0	849	subunit rDNA. Journal of Phycology. 42(5):1081–1095.
9 10 11	850	Grzebyk D, Berland B, Sako Y. 1998. Phylogenetic analysis of nine species of Prorocentrum
12 13	851	(Dinophyceae) inferred from 18S ribosomal DNA sequences, morphological
14 15 16	852	comparisons, and description of Prorocentrum panamensis, sp. nov. Journal of
17 18	853	<u>Phycolgy 34:1055–1068.</u>
19 20	854	Guiry MD. in Guiry MD. & Guiry GM. 2023. AlgaeBase. World-wide electronic publication,
21 22 23	855	National University of Ireland, Galway. http://www.algaebase.org; searched on 15
23 24 25	856	June 2023.
26 27	857	Gurdebeke PR, Mertens KN, Takano Y, Yamaguchi A, Bogus K, Dunthorn M, Matsuoka K,
28 29 20	858	Vrielinck H, Louwye S. 2018. The affiliation of Hexasterias problematica and
30 31 32	859	Halodinium verrucatum sp. nov. to ciliate cysts based on molecular phylogeny and
33 34	860	cyst wall composition. European Journal of Protistology. 66:115-135.
35 36	861	Gurdebeke PR, Mertens KN, Pospelova V, Matsuoka K, Li Z, Gribble KE, Gu H, Bogus K,
37 38 39	862	Vrielinck H, Louwye S. 2020. Taxonomic revision, phylogeny, and cyst wall
40 41	863	composition of the dinoflagellate cyst genus Votadinium Reid (Dinophyceae,
42 43	864	Peridiniales, Protoperidiniaceae). Palynology 44:310-335.
44 45 46	865	Gurdebeke PR, Mertens KN, Rajter L, Meyvisch P, Potvin E, Yang EJ, André C, Pospelova
40 47 48	866	V, Louwye S. 2023. The ciliophoran affinity of Radiosperma textum, and its relation
49 50 51 52	867	to other marine ciliate cysts. Marine Micropaleontology. 178:102185.
	868	Hansen G, Larsen J. 1992. Dinoflagellater i danske farvande. In Thomsen HA, editor.
53 54 55	869	Plankton i indre danske farvande. Vol. 11. Miljøstyrelsen. 1992. p. 45-155
56 57 58 59 60	870	(Havforskning fra Miljøstyrelsen, Vol. 11).

2		
5 4	871	Hoppenrath M, Elbrächter M, Drebes G. 2009. Marine Phytoplankton. Selected
5 6	872	microphytoplankton species from the North Sea around Helgoland and Sylt. Kleine
/ 8	873	Senckenberg-Reihe 49, 264 pp.
9 10 11	874	Jacobson DM, Anderson DM. 1986. Thecate heterotrophic dinoflagellates: feeding behavior
12 13	875	and mechanisms. Journal of Phycology. 22(3):249-258.
14 15 16	876	Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of
10 17 18	877	multiple sequence alignment, Nucleic Acids Research 33:511-518.
19 20	878	Kelly MG. 1968. The occurrence of dinoflagellate luminescence at Woods Hole. Biological
21 22	879	Bulletin. 135:279–295.
23 24 25	880	Krepakevich A, Pospelova V. 2010. Tracing the influence of sewage discharge on coastal
25 26 27	881	bays of southern Vancouver Island (BC, Canada) using sedimentary records of
28 29	882	phytoplankton. Continental Shelf Research. 30:1924–1940.
30 31	883	Lebour MV. 1923. Plymouth Peridinians. IV. The plate arrangement of some Peridinium
32 33 34	884	species. Journal of the Marine Biological Association of the United Kingdom. 13:266-
35 36	885	270.
37 38	886	Lebour MV. 1925. The Dinoflagellates of Northern Seas. Marine Biological Association,
39 40 41	887	Plymouth, UK. 250 pp. incl. pls. 1–35.
42 43	888	Lindemann E. 1924. Peridineen aus dem Goldenen Horn und Bosporus. Botanisches Archiv
44 45	889	5(1/2):216–233.
46 47 48	890	Liu T, Mertens KN, Ribeiro S, Ellegaard M, Matsuoka H, Gu H. 2015. Cyst-theca
49 50	891	relationships and phylogenetic positions of Peridiniales (Dinophyceae) with two
51 52	892	anterior intercalary plates, with description of Archaeperidinium bailongense sp. Nov.
53 54	893	and Protoperidinium fuzhouense sp. nov. Phycological Research. 63:134-151.
55 56 57	894	Mangin L. 1930. Sur quelques pêches planctoniques des mers de Chine & du Japon. Archives
58 59 60	895	du Museum National d'Histoire Naturelle (Paris) 34:371-380.

Page 37 of 69

I

Palynology

1		
2 3 4	896	Marret F, de Vernal A, Pedersen TF, McDonald D. 2001. Middle Pleistocene to Holocene
5 6	897	palynostratigraphy of Ocean Drilling Program site 887 in the Gulf of Alaska,
/ 8 0	898	northeastern North Pacific, Can. J. Earth Sci., 38:373-386.
9 10 11	899	Matsuoka K, Head MJ. 2013. Clarifying cyst-motile stage relationships in dinoflagellates. In:
12 13	900	Lewis JM, Marret F, Bradley L, editors. Biological and Geological Perspectives of
14 15	901	Dinoflagellates. London: The Micropaleontological Society Special Publication, p.
16 17 18	902	325–350.
19 20 21	903	Matsuoka K, Kawami H, Nagai S, Iwataki M, Takayama H. 2009. Re-examination of cyst-
22 23	904	motile relationships of Polykrikos kofoidii Chatton and Polykrikos schwartzii Bütschli
24 25	905	(Gymnodiniales, Dinophyceae). Review of Palaeobotany and Palynology. 154(1-
26 27 28	906	4) :79–90.
29 30	907	Matzenauer L. 1933. Die Dinoflagellaten des Indischen Ozeans (Mit Ausnahme der Gattung
31 32	908	Ceratium). Botanisches Archiv. 35:437-510.
33 34 25	909	Mertens KN, Carbonell-Moore MC, Chomérat N, Bilien G, Boulben S, Guillou L, Romac S,
35 36 37	910	Probert I, Ishikawa A, Nézan E. 2023. Morpho-molecular analysis of
38 39	911	podolampadacean dinoflagellates (Dinophyceae), with the description of two new
40 41	912	genera. Phycologia. 62:117–135.
42 43 44	913	Mertens KN, Price AM, Pospelova V. 2012. Determining the absolute abundance of
45 46	914	dinoflagellate cysts in recent marine sediments II: Further tests of the Lycopodium
47 48	915	marker-grain method. Review of Palaeobotany and Palynology. 184:74-81.
49 50	916	Mertens KN, Ribeiro S, Bouimetarhan I, Caner H, Combourieu Nebout N, Dale B, de Vernal
52 53	917	A, Ellegaard M, Filipova M, Godhe A, Goubert E, Grøsfjeld K, Holzwarth U, Kotthoff
54 55	918	U, Leroy SAG, Londeix L, Marret F, Matsuoka K, Mudie, PJ, Naudts L, Peña-
56 57	919	Manjarrez JL, Persson A, Popescu S-M, Pospelova V, Sangiorgi F, van der Meer M,
58 59 60	920	Vink A, Zonneveld KAF, Vercauteren D, Vlassenbroeck J, Louwye S. 2009. Process

1 2

3 4	921	length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in
5 6	922	surface sediments: Investigating its potential as salinity proxy. Marine
7 8 9	923	Micropaleontology. 70:54–69.
10 11	924	Meyvisch P, Gurdebeke PR, Vrielinck H, Mertens KN, Versteegh G, Louwye S. 2022.
12 13	925	Attenuated Total reflection (ATR) micro-Fourier transform infrared (micro-FT-IR)
14 15	926	spectroscopy to enhance repeatability and reproducibility of spectra derived from
16 17 18	927	single specimen organic-walled dinoflagellate cysts. Applied Spectroscopy.
19 20	928	76(2):235–254.
21 22	929	Meyvisch P, Mertens KN, Gurdebeke PR, Sandt C, Pospelova V, Vrielinck H, Borondics F,
23 24 25	930	Louwye S. 2023. Does dinocyst wall composition really reflect trophic affinity? New
26 27	931	evidence from ATR micro-FTIR spectroscopy measurements. Journal of Phycology.
28 29	932	0059:1064-211084. https://doi. org/10.1111/jpy.13382
30 31	933	Nehring S. 1997. Dinoflagellate Resting Cysts from Recent German Coastal Sediments.
32 33 34	934	Botanica Marina. 40:307–324.
35 36	935	Nunn GB, Theisen BF, Christensen B, Arctander P. 1996. Simplicity-Correlated Size Growth
37 38	936	of the Nuclear 28S Ribosomal RNA D3 Expansion Segment in the Crustacean Order
39 40 41	937	Isopoda. Journal of Molecular Evolution. 42:211–223.
42 43	938	Orlova TY, Morozova TV, Gribble KE, Kulis DM, Anderson DM. 2004. Dinoflagellate cysts
44 45	939	in recent marine sediments from the east coast of Russia. Botanica Marina. 47:184-
46 47 48	940	201.
48 49 50	941	Otte V, Wesche K, Zizka S, Hoppenrath M, Kienast F. 2011. The new Herbarium
51 52	942	Senckenbergianum: old institutions under a new common roof. Taxon. 60:617–618.
53 54	943	Over J-S, Pospelova V. 2022. Last Interglacial (MIS 5e) sea surface hydrographic conditions
55 56 57	944	in coastal southern California based on dinoflagellate cysts. Palaeogeography,
58 59 60	945	Palaeoclimatology, Palaeoecology. 591, 110875.

Page 39 of 69

Palynology

1		
2 3 4	946	Paulsen O. 1907. The Peridiniales of the Danish Waters. Meddelelser fra Kommissionen for
5 6	947	Havundersøgelser Serie: Plankton. 1(5):1–26.
7 8	948	Paulsen O. 1908. XVIII. Peridiniales. pp. 1–124. In: Brandt K, Apstein C, editors. Nordisches
9 10 11	949	Plankton. Botanischer Teil. Lipsius und Tischler, Kiel und Leipzig.
12 13	950	Paulsen O. 1931 '1930'. Études sur le microplancton de la mer d'Alboran. Trabajos Instituto
14 15	951	Español de Oceanografía. 4:[1] –104.
16 17	952	Paulsen O. 1949. Observations on Dinoflagellates. Det Kongelige Danske Videnskabernes
18 19 20	953	Selskab. Biologiske Skrifter. 6:1–67.
21 22	954	Phan-Tan L, Nguyen-Ngoc L, Doan-Nhu H, Raine R, Larsen J. 2017. Species diversity of
23 24	955	Protoperidinium sect. Oceanica (Dinophyceae, Peridiniales) in Vietnamese waters,
25 26 27	956	with description of the new species P. larsenii sp. nov Nordic Journal of Botany.
27 28 29	957	35:129–146.
30 31	958	Posada D. 2008. jModelTest: Phylogenetic Model Averaging. Molecular Biology and
32 33	959	Evolution. 25:1253–1256.
34 35 36	960	Pospelova V, Pedersen TF. 2006. Dinoflagellate cyst evidence for Late Quaternary climate
37 38	961	and marine productivity changes along the California Margin. In: Poulsen NE. (Ed.),
39 40	962	The International Workshop on Dinoflagellates and their Cysts: their Ecology and
41 42 42	963	Databases for Palaeoenvitonmental Reconstructions. Geological Survey of Denmark
45 44 45	964	and Greenland (GEUS), Copenhagen, Denmark, pp. 26–27.
46 47	965	Pospelova V, de Vernal A, Pedersen TF. 2008. Distribution of dinoflagellate cysts in surface
48 49	966	sediments from the northeastern Pacific Ocean (43-25°N) in relation to sea-surface
50 51 52	967	temperature, productivity and coastal upwelling. Marine Micropaleontolology. 68 (1-
52 53 54	968	2), 21–48.
55 56	969	Pospelova V, Esenkulova S, Johannessen SC, O'Brien MC, Macdonald RW. 2010. Organic-
57 58 59 60	970	walled dinoflagellate cyst production, composition and flux from 1996 to 1998 in the

1 2

l

3 4	971	central Strait of Georgia (BC, Canada): A sediment trap study. Marine							
5 6	972	Micropaleontology 75:17–37.							
7 8	973 Pospelova V, Price AM, Pedersen TF. 2015. Palynological evidence for late quater								
9 10 11	974	climate and marine primary productivity changes along the California margin.							
12 13	975	Paleoceanography. 30:877–894.							
14 15 16	976	Powell AJ, Dodge JD, Lewis J. 1990. Late Neogene to Pleistocene palynological facies of the							
10 17 18	977	Peruvian Continental Margin upwelling, Leg 112. In: Suess E, von Huene R, editors.							
19 20	978	Proceedings of the Ocean Drilling Program, Scientific Results, 112. pp. 297–321.							
21 22 22	979	Price AM, Pospelova V. 2011. High-resolution sediment trap study of organic-walled							
23 24 25	980	dinoflagellate cyst production and biogenic silica flux in Saanich Inlet (BC, Canada).							
26 27	981	Marine Micropaleontolology. 80:18–43.							
28 29	982	Price AM, Mertens, KN, Pospelova V, Pedersen TF, Ganeshram RS. 2013. Late Quaternary							
30 31 32	983	climatic and oceanographic changes in the Northeast Pacific as recorded by							
33 34	984	dinoflagellate cysts from Guaymas Basin, Gulf of California (Mexico).							
35 36	985	Paleoceanography. 28, doi:10.1002/palo.20019.							
37 38 39	986	Radi, T, Pospelova, V, de Vernal, A, Barrie JV, 2007. Dinoflagellate cysts as indicators of							
40 41	987	water quality and productivity in British Columbia estuarine environments. Marine							
42 43	988	Micropaleontolology. 62: 269–297.							
44 45 46	989	Reid PC. 1977. Peridiniacean and glenodiniacean dinoflagellate cysts from the British Isles.							
40 47 48	990	Nova Hedwigia. 29:429–463.							
49 50	991	Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed							
51 52	992	models. Bioinformatics 19, 1572–1574.							
53 54 55	993	Sarai C, Yamaguchi A, Kawami H, Matsuoka K. 2013. Two new species formally [sic]							
56 57 58 59 60	994	attributed to <i>Protoperidinium oblongum</i> (Aurivillius) Park [sic] et Dodge (Peridiniales,							

Page 41 of 69

Palynology

1 2									
3 4	995	Dinophyceae): evidence from cyst incubation experiments. Review of Palaeobotany							
5 6	996	and Palynology. 192:103–118.							
7 8 9 10 11 12 13 14 15 16 17 18 19 20	997	Scholin CA, Herzog M, Sogin M, Anderson DM. 1994. Identification of group- and strain-							
	998	specific genetic markers for globally distributed Alexandrium (Dinophyceae). II.							
	999	Sequence analysis of a fragment of the LSU rRNA gene. Journal of Phycology.							
	1000	<u>30:999–1011</u>							
	1001	Sonneman JA, Hill DRA. 1997. A taxonomic survey of cyst-producing dinoflagellates from							
	1002	the coastal waters of Victoria, Australia. Botanica Marina. 40:149-177.							
21 22	1003	Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses							
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	1004	with thousands of taxa and mixed models. Bioinformatics. 22:2688-2690.							
	1005	Throndsen J, Hasle GR, Tangen K. 2007. Phytoplankton of Norwegian coastal waters.							
	1006	Almater Forlag As, Oslo, 343 pp.							
	1007	Toplak M, Read ST, Sandt C, Borondics F. 2021. Quasar: Easy machine learning for							
	1008	biospectroscopy. Cell. 10(9):2300.							
	1009	Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S,							
	1010	Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ,							
	1011	Smith GF. (eds.) 2018. International Code of Nomenclature for algae, fungi, and							
	1012	plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress							
	1013	Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical							
46 47 49	1014	Books. DOI https://doi.org/10.12705/Code.2018.							
40 49 50	1015	Van Nieuwenhove N, Head MJ, Limoges A, Pospelova V, Mertens KN, Matthiessen J, De							
51 52	1016	Schepper S, de Vernal A, Eynaud F, Londeix L, Marret F, Penaud A, Radi T, Rochon							
53 54	1017	A. 2020. An overview and brief description of common marine organic-walled							
55 56 57	1018	dinoflagellate cyst taxa occurring in surface sediments of the Northern Hemisphere.							
58 59 60	1019	Marine Micropaleontology. 159:101814.							

3 4	1020	Wailes GH. 1939. Canadian Pacific Fauna. 1. Protozoa. 1e. Mastigophora Fisheries Research					
5 6 7 8 9 10 11	1021	Board of Canada, University Toronto Press, Toronto, p. 45.					
	1022	Wall D, Dale B. 1966. "Living fossils" in western Atlantic plankton. Nature. 211:1025–1026.					
	1023	Wall D, Dale B. 1967. The resting cysts of modern marine dinoflagellates and their					
12 13	1024	palaeontological significance. Review of Palaeobotany and Palynology. 2:349-354.					
14 15	1025	Wall D, Dale B. 1968. Modern dinoflagellate cysts and evolution of the Peridiniales.					
$\begin{array}{c} 10\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 89\\ 50\\ 51\\ 52\\ \end{array}$	1026	Micropaleontology. 14(3):265-304.					
	1027	Yamaguchi A, Kawamura H, Horiguchi T. 2006. A further phylogenetic study of the					
	1028	heterotrophic dinoflagellate genus, Protoperidinium (Dinophyceae) based on small					
	1029	and large subunit ribosomal RNA gene sequences. Phycological Research. 54(4):317-					
	1030	329.					
	1031	Zonneveld KAF, Marret F, Versteegh GJM, Bonnet S, Bouimetarhan I, Crouch E, de Vernal					
	1032	A, Elshanawany R, Edwards L, Esper O, et al. 2013. Atlas of modern dinoflagellate					
	1033	cyst distribution based on 2405 datapoints. Review of Palaeobotany and Palynology.					
	1034	191:1–197.					
	1035						
	1036	Figure captions					
	1037	Figure 1. Map showing all sampling locations: A. Vancouver Island, BC, Canada (where					
	1038	Patricia Bay in Saanich Inlet and Esquimalt Harbour are located); B. Maresclé, France; C.					
	1039	Fangchenggang, Guangxi, China; D. Quanzhou, Taiwan Strait, China; E. Ishikari, Hokkaido					
	1040	Japan; F. Otaru, Hokkaido, Japan; G. Saroma Lake, Hokkaido, Japan; H. Lianyungang,					
	1041	Jiangshu, China.					
53 54	1042						
55 56 57	1043	Figure 2. Measurements of motile cells (theca) from Canada (squares, V. multispinosum),					
58 59 60	1044	from France, China and Japan (triangles and filled circles respectively, V. spinosum).					

Palynology

2 3	1045	
4 5 6	1 <mark>046</mark>	Figure 3. Measurements of cysts from Canada (squares, V. multispinosum), from France
7 8	1047	(triangles, V. spinosum) and, China and Japan (triangles and filled circles, V. spinosum).
9 10	1048	
12 13	1 <mark>049</mark>	Figure 4. Phylogenetic tree based on LSU rDNA sequences. Molecular phylogeny of
14 15	1050	Protoperidinium claudicans and related species inferred from partial Large Subunit rDNA
16 17 19	1051	(LSU rDNA) sequences based on Bayesian inference (BI). Akashiwo sanguinea was used as
10 19 20	1052	outgroup. Numbers at nodes represent Bayesian posterior probabilities and the ML bootstrap
21 22	1053	values; asterisks indicate the maximal support in BA and ML (1.0 and 100%, respectively).
23 24 25	1054	Bootstrap values > 50% and posterior probabilities above 0.7 are shown. Newly obtained
25 26 27	1055	sequences were indicated as bold. Scale bar = nucleotide substitutions per site.
28 29	1056	
30 31	1057	Figure 5. Average processed ATR micro-FTIR spectra of selected dinoflagellate and ciliate
32 33 34	1058	cyst taxa. Grey rectangles highlight absorption bands discussed in the manuscript. $* =$ sensu
35 36	1059	Matsuoka et al. (2009).
37 38	1060	
39 40 ⊿1	1061	Plate captions
42 43	1062	Plate 1. Two cyst-theca experiments of Protoperidinium carriae sp. nov. from Patricia Bay,
44 45	1063	BC, Canada. <u>1–9. First incubation experiment.</u> 1. Living cyst with purplish cell contents. 2.
46 47 48	1064	High focus of germinated cyst showing operculum. 3. Low focus of germinated cyst with a
40 49 50	1065	focus on the archeopyle. $43-9$. Hatchling from cyst shown in $1-3$. 4 showing pCell showing
51 52	1066	purplish cell contents. <u>5</u> 4. Same hatchling showing pusule (Pu). 6. High focus on two
53 54	1067	antapical horns. 7–9. Fluorescent images showing plate configurations. 7. Focus on third
55 56 57	1068	postcingular plate (3"). 8. Focus on the two antapical horns, positioned on the two antapical
58 59	1069	plates (1"" and 2""). 9. High focus on ventral view, showing the apical plate (1') and contact
60		

1070	with two precingular plates (1" and 7"). 10–15. Second incubation experiment. 10. Living
1071	cyst with purplish cell contents. 11. Hatched cyst with operculum detached. 12-15. Hatchling
1072	from cyst shown in 10-11. 12. Cell showing purplish cell contents. 13. Lateral view of cell
1073	showing plate configuration. 14. Dorsal view showing quadra 2a and surrounding plates. 15.
1074	<u>Ventral view showing sulcus and surrounding postcingular plates (5" and 1")</u> . Scale bar = 10
1075	μm.
1076	
1077	Plate 2. 1–6. Third cyst-theca experiment of <i>Protoperidinium carriae</i> sp. nov. from Patricia
1078	Bay, BC, Canada. 1–3. Hatched cyst. 4–6. Hatched cell. 7–12. Holotype and paratype of
1079	Votadinium multispinosum from palynologically prepared sediment from Site 5 in Esquimalt
1080	Harbour (BC, Canada). 7–9. High to mid focus of holotype (UVic 2008-5-1-CRD). 10–12.
1081	High to mid focus of paratype (UVic 2008-5-1-CRD). Scale bar = $10 \mu m$.
1082	
1083	Plate 3. Two cyst-theca experiments of Protoperidinium claudicans from Maresclé, France
1084	(1-6=CON8F1; 7-12: CON8D6). 1-6. First incubation experiment (CON8F1). 1. Hatched
1085	<u>c</u> Cyst. 2–6. Hatchling from cyst shown in 1. <u>2. High focus of ventral view. 3. Mid focus</u>
1086	showing cell outline and yellowish lipid bodies. 4-6. Fluorescent images. 4. High focus of
1087	ventral view showing first apical plate (1') and contacting plates. 5. High focus of dorsal view
1088	showing penta 2a and contacting plates. 7-12. Second incubation experiment (CON8D6)7.
1089	Hatched Ccyst. 8–12. Hatchling from cyst shown in 7. 8. Mid focus showing cell outline. 9.
1090	Fluorescent image of high focus of ventral view showing first apical plate (1') and contacting
1091	plates. 10. High focus of dorsal view showing penta 2a. 11. Fluorescent image of high focus
1092	of antapical plates and third postcingular plate (3"). Mid focus of lateral view showing cell
1093	<u>outline</u> . Scale bar = $10 \ \mu m$.
ا 1094	

Page 45 of 69

Palynology

1 ว		
2 3 4	1	C
5 6	1	C
7 8	1	C
9 10	1	C
11 12 13	1	C
13 14 15	1	1
16 17	1	1
18 19	1	1
20 21	1	1
22 23	1	1
24 25 26	1	
27 28	1	
29 30	1	1
31 32	1	1
33 34	1	1
35 36	1	1
37 38	1	1
39 40 41	1	1
42 43	1	1
44 45	1	1
46 47	1	1
48 49	1	1
50 51 52	1	1
53 54	1	1
55 56	1	1
57 58	1	1
59 60	4	

095	Plate 4. Living cysts and Ttwo cyst-theca e experiments of Protoperidinium claudicans
096	xperiment from Maresclé, France (4 9=CON9E3; 10 15= MARE CON9B2). 1-2. Living
097	cyst from Maresclé. <u>1. High focus showing process distribution. 2. Mid focus.</u> 3. Living cyst
098	from Concarneau showing yellowish lipid bodies. 4-9. First incubation experiment
099	(CON9E3). 4-9. Maresclé. 4. Hatched cyst. 5-9. Hatchling from cyst shown in 4. 5. Mid focus
100	showing cell outline and yellowish lipid bodies. 6. Mid focus showing different orientation.
101	7. Fluorescent image of high focus of ventro-lateral side. 8. Fluorescent image of high focus
102	of ventral side. 9. Fluorescent image of high focus of dorsal side showing shape of 2a. 10-15.
103	Second incubation experiment (MARE CON9B2). 10-11. Mid and high focus of hatched
104	Ccyst. 12–15. Hatchling from cyst shown in 10–11. <u>12. Mid focus of cell outline. 13.</u>
105	Fluorescent image of high focus of ventral side. 14-15. Fluorescent images of high and mid
106	<u>focus of dorsal side.</u> Scale bar = $10 \ \mu m$.
.107	
.108	Plate 5. 1. Cyst from surface sediment from Fangchenggang, Guangxi province, China
109	(FC16). 2. <u>Hatched Cc</u> yst from surface sediment from Quanzhou, Taiwan Strait. 3. Cyst from
110	surface sediment from Ishikari Bay, Hokkaido (GenBank AB255842), showing purplish lipid
111	bodies. 4–7. Motile cell hatched from a similar cyst as shown in 3, from Saroma Lake, Japan
112	showing purplish lipid bodies. 4. High focus of ventral side. 5. High focus of dorsal side. 6.
113	High focus on dorsal cingulum. 7. High focus of lateral view. 8–9. Mid focus of Mmotile cell
.114	isolated from Plankton from Otaru, Japan (GenBank AB255840). Scale bar = $10 \mu m$.
.115	
.116	Plate 6. Votadinium psilodora from surface sediments from Fangchenggang, Guangxi, China.
117	1. Living cyst <u>showing yellowish lipid bodies</u> . 2–6. Hatched cysts. 2. High focus of dorsal
118	side, showing archeopyle. 3. High focus on archeopyle. 4–5. Mid focus showing cyst outline.
119	6. High focus of dorsal side showing operculum in place. 7–9. Hatchling. 7. High focus of

1 2								
3 4 5 6 7	1120	ventral side showing first apical plate and contacting plates. 8. Mid focus showing cell						
	1121	outline. 9. High focus of dorsal side. Scale bar = $10 \ \mu m$.						
/ 8 9	1122							
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 32 33 4 5 5 5 5 5 5 5 5 5 5 5 5 5	1123	Plate 7. Votadinium sp. 1 from surface sediments from Fangchenggang, Guangxi, China. 1.						
	1124	Living cyst with transparent lipid bodies. 2–3. Hatched cysts. 2. High focus of dorsal side						
	1125	showing archeopyle and detaching operculum. 3. High focus of archeopyle and operculum. 4-						
10 17 18	1126	9. Hatchling. <u>4. High focus of ventral side. 5. Fluorescent image of high focus of ventral side</u>						
19 20	1127	of apex. 6. Fluorescent image of high focus of dorsal side of apex. 7. Fluorescent image of						
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	1128	high focus of ventral side of antapex. 8. Fluorescent image of high focus of dorsal side of						
	1129	antapex. 9. Fluorescent image of high focus of lateral view. Scale bar = $10 \mu m$.						
	1130							
	1131	Plate 8. SEM micrographs of Votadinium multispinosum and Votadinium spinosum. 1-2. V.						
	1132	multispinosum from Saanich Inlet (Station A). 1. Complete cyst. 2. Zoom on part of cyst						
	1133	shown in 1, showing the fibrillar nature of the wall surface. 3-4. V. spinosum from Vilaine						
	1134	Bay (BV5). 4. Complete cyst. 3. Zoom on part of cyst shown in 4, showing the fibrillar nature						
	1135	of the wall surface. 5-6. V. spinosum from Estuaire de la Vie (Station 10) showing process						
	1136	distribution. All scale bars = $10 \mu m$, except for 2 and 3 = $1 \mu m$.						
	1137							
49 50								
51 52								
53 54 55 56 57 58 59								
60	1							

60

Figure 2. Measurements of motile cells (theca) from Canada (squares, V. multispinosum), from France and Japan (triangles and filled circles respectively, V. spinosum).

172x115mm (72 x 72 DPI)

Figure 3. Measurements of cysts from Canada (squares, V. multispinosum), from France (triangles, V. spinosum) and China and Japan (filled circles, V. spinosum).

184x115mm (72 x 72 DPI)

185x214mm (300 x 300 DPI)

209x258mm (300 x 300 DPI)

209x207mm (300 x 300 DPI)

58 59

60

209x207mm (300 x 300 DPI)

209x258mm (300 x 300 DPI)

209x154mm (300 x 300 DPI)

209x152mm (300 x 300 DPI)

209x153mm (300 x 300 DPI)

209x297mm (300 x 300 DPI)

Table 1. Biological (non-fossil) and geological (fossil) names of *Votadinium* species, including information about 2a shape and availability of ATR-FTIR data. Species studied in this paper are shown in bold.

		Cell length	Cell width	2a shape	Cyst length	Cyst width	Spine length	GenBank	FTIR	
Motile name	Cyst name	(µm)	(µm)		(µm)	(µm)				Reference
		112(116) 122	70 (72.4) 76	Hexa	45 (52.5) 60	46.5 (52.4)	0	MK499376	Yes	Sarai et al.
						58.5		(LSU),		2013;
Protoperidinium	Votadinium							MK522510.1		Gurdebeke e
latidorsale	calvum							(SSU)		al. 2020
					65-85	65-85	0	MK499375,	No	
	Votadinium							MK499374		Gurdebeke e
Unknown	concavum							(LSU)		al. 2020
	Votadinium				69.9–79.2	40.4–49.8	0	None	No	Gurdebeke e
Unknown	elongatum									al. 2020
	Votadinium				59.7 (72.1)	44.4 (54.4)	0	None		Gurdebeke e
Unknown	nanhaiense				79.4	67.3				al. 2020
		108 (113.2)	60 (67.1) 78	Penta	71.6 (79.2)	61.1 (67.7)	0	AB255857,	Yes	Sarai et al.
		118			86.6	75.7		AB255858		2013;
Protoperidinium	Votadinium							(LSU)		Gurdebeke e
paraoblongum	pontifossatum									al. 2020
		80.0 (82.5)	55.0 (57.5)	Quadra	69.0 (71.6) 76	60.0 (60.3)	0	OR879796-	No	
Protoperidinium	Votadinium	85.0	60.0			61.0		OR879797		
sp.	psilodora							(LSU)		This study
		77.6 (103.6)	45.3 (63.2)	NA	68 (83) 95	48 (59) 68	0	EF152991.	No	Gribble et al
		125.0	82.0					DO444231		2009:
Protoperidinium	Votadinium							(LSU)		Gurdebeke e
steidingerae	reidii							()		al. 2020
Protoperidinium	Votadinium	100 (103) 105	60 (65.6) 72	Ouadra	61 (70) 84	59 (67) 80	0	DO444230	No	Sarai et al.
quadrioblongum	rhomboideum							(LSU)		2013
1 0		97.0 (109.6)	62.0 (53.6)	Ouadra	58.5 (64.7)	56.1 (64.7)	2.8 (4.0) 7.7	OR879798-	Yes	
Protoneridinium	Votadinium	131.0	90.0		71.1	75.1		OR879800		
rotopertuttitum carriao	multispinosum									This study
Dustan suidistan	munispinosum	49.0 (68.1)	34 3 (50 7)	Penta	467(514)	473 (529)	39(57)81	OP 270700	Ves	This study
Protopertainium	Votadinium	82.0	60.8	1 ciita	56.2	55.1	5.7 (5.7) 0.1	OR8/9/90-	105	
<i>claualcans</i>	V otaainium	02.0	00.0		50.2	55.1		UK8/9/92		This study.
ribotype 1	spinosum		42.0 (47.5)	Devite		40.0 (40.2)		(LSU)	N.	I nis study
Protoperidinium		/1.4 (/3.5)	42.9 (47.5)	Penta	43.2 (46.4)	40.0 (49.3)	4.4 (5.1) 6.3	OR879793-	INO	
claudicans	Votadinium	/5.6	52.1		50.2	59.4		OR879795		
ribotype 2	spinosum							(LSU)		This study

Station	Location	Latitude	Longitude	Water depth (m)	Sampling data	Salinity (psu)	Temperature (°C)	Type of core	Sampled by	Species encountered	ON THE MAP
Patricia Bay St. 2	Canada	48° 38.975'N	123° 28.845′W	3	March 8, 2019	28	9	Van Veen Grab	VP	P. carriae	А
Maresclé	France	47° 27' 43" N	2° 30' 2.16" W	5	January 15, 2019	NA	NA	Petite Ponar Grab	KNM	P. claudicans ribotype 1	В
Fangchenggang, Guangxi	China	21°29.97′N	108°13.887′E	15	April 28, 2011	NA	NA	Petite Ponar Grab	HG	<i>P. claudicans</i> ribotype 2	С
Ouanzhou, Taiwan Strait	China	24°42.54′N	118°55.00′E	31	November 18, 2018	NA	NA	Petite Ponar Grab	HG	<i>P. claudicans</i> ribotype 2	D
Ishikari, Hokkaido	Japan	43° 13′N	141° 18′E	surface	July 17, 2004	NA	20.5	Plankton net	AY	P. claudicans ribotype 2	Е
Otaru, Hokkaido	Japan	43° 10′N	141° 01′E	surface	August 13, 2002	NA	21	Plankton net	AY	P. claudicans ribotype 2	F
Saroma Lake, Hokkaido	Japan	44° 07′N	143° 57′E	NA	September 9, 2004	NA	20.5	TFO gravity corer	AY	<i>P. claudicans</i> ribotype 2	G
Fangchenggang, Guangxi	China	21°29.97′N	108°13.887′E	15	April 28, 2011	NA	NA	Petite Ponar Grab	HG	Votadinium psilodora	С
Fangchenggang, Guangxi	China	21°29.97′N	108°13.887′E	15	April 28, 2011	NA	NA	Petite Ponar Grab	HG	Votadinium sp. 1	С
Fangchenggang, Guangxi	China	21°29.97′N	108°13.887′E	15	April 28, 2011	NA	NA	Petite Ponar Grab	HG	Votadinium psilodora	С
Lianyungang, Jiangshu	China	34°48.763′	119°31.627′	15	May 9, 2011	NA	NA	Petite Ponar Grab	HG	<i>P</i> claudicans ribotype 2	Н

Table 3. Specimens that were measured using ATR FTIR. All are dinoflagellate cysts, except for *Halodinium verrucatum*, which is a ciliate cyst.

Number of Taxon Order Family **Sample location** cysts Halodinium verrucatum Diana Lagoon, Corsica, France Prorodontida / Peridiniales Protoperidiniaceae Qinhuangdao, Bohai Sea, China *Lejeunecysta* sp. Olhão Port, Portugal Gymnodiniales Polykrikaceae Gymnodiniales Polykrikaceae Aveiro, Portugal Polykrikos kofoidii* Gymnodiniales Polykrikaceae Ōmura Bay, East China Sea, Japan Gymnodiniales Polykrikaceae Wadden Sea, Germany Gymnodiniales Polykrikaceae Isla San José, Mexico

	1	Gymnodiniales	Polykrikaceae	Gulf of Naples, Italy
	1	Gymnodiniales	Polykrikaceae	Ōmura Bay, East China Sea, Japan
Polykrikos schwartzii*	1	Gymnodiniales	Polykrikaceae	Qinhuangdao, Bohai Sea, China
	2	Gymnodiniales	Polykrikaceae	Isla San José, Mexico
	1	Peridiniales	Peridiniaceae	Qinhuangdao, Bohai Sea, China
Quinquecusnis concrete	4	Peridiniales	Protoperidiniaceae	Aveiro, Portugal
Quinquecuspis concreta	1	Peridiniales	Peridiniaceae	Wadden Sea, Germany
	1	Peridiniales	Protoperidiniaceae	Patricia Bay, Saanich inlet, Vancouver Island, Canada
Votadinium calvum	2	Peridiniales	Protoperidiniaceae	Ōmura Bay, East China Sea, Japan
Votadinium multispinosum	2	Peridiniales	Protoperidiniaceae	Saanich Inlet, Vancouver Island, Canada

2		
3	1	19-Nov-2023
4	2	
5	3	Dear Dr Mertens:
6	4	
7	5	Hi Kenneth
, 8	6	sorry for the delay in getting back to you. I have good news - only minor revisions needed - congratulations
0	7	Lalready sent you a review by email right - let me know you got this please?
9	, 8	The other reviewer also loves your work. He/she commented that one "minus" was that your study is based on
10	a	very faw actual data
11	10	Very rew actual data. I really hope that you agree with me that the feedback you have received is very constructive and extremely
12	11	helpful. This feedback will significently improve your poper. Using the commonts you have been given place
13	12	register ways manuscript using the register extending to graph point that has been made. If you fail the need to
14	12	revise your manuscript using the review, attending to every point that has been made. If you reef the need to
15	13	rebut a reviewer comment, please eloquently justify this to me in your report.
16	14	when you resubmit, please include a comprehensive report to me on now the manuscript has been revised. I
17	15	greatly look forward to receiving your resubmission, which I am sure will be a great credit to this journal.
18	10	Please consider thanking your reviewers in the acknowledgements.
19	1/	As you see, there is an arbitrary timeframe for resubmission, but you can have as many extensions to this as you
20	18	wish. Please take your time; I would rather have an excellent resubmission than a rushed one!
20	19	My best regards to you.
21	20	Jim Riding (Editor)
22	21	
23	22	Dear Editor,
24	23	many thanks for the reviews, which were well received.
25	24	<i>We have made a reply to the comments below.</i>
26	25	Sincerely yours,
27	26	Kenneth Mertens
28	27	
29	28	
30	29	Your manuscript entitled "Revisiting the cyst-theca relationship for Votadinium spinosum: an examination of the
31	30	Protoperidinium claudicans species complex", which you submitted to Palynology, has been reviewed. The
32	31	reviewer comments are included at the bottom of this letter.
32	32	
37	33	The reviews are in general favourable and suggest that, subject to minor revisions, your paper could be suitable
25	34	for publication. Please consider these suggestions, and I look forwards to receiving your revision.
22	35	
20	36	When you revise your manuscript please highlight the changes you make in the manuscript by using the track
3/	37	changes mode in MS Word or by using bold or coloured text
38	38	
39	39	To submit the revision log into https://mc.manuscriptcentral.com/tpal and enter your Author Centre, Click on
40	40	the number (Click here to submit a revision) link to start the revision process. If you have more than one
41	4 0 Л1	manuscript awaiting revision this will take you to a list of those papers and you can click on the Create a
42	41 12	Pavision' link for the paper you want to revise. Your manuscript number has been appended to denote a
43	42	revision. Please enter your responses to the comments made by the reviewer(s) in the space provided. You can
44	43 AA	use this space to document any changes you made to the original manuscript. Please he as specific as possible in
45	44	use this space to document any changes you made to the original manuscript. Thease be as specific as possible in
46	45	your response to the reviewer(s).
47	40	IMPORTANT: Vour original files are quailable to you when you unload your revised manuscript. Places delete
48	47 10	introversed industrip. Flease delete
10	40	any redundant mes before completing the submission.
49 50	49	Descuse un an traine to facilitate timely autilization of monopolista submitted to Delynology, sour revised
50	50	Because we are trying to facilitate timely publication of manuscripts submitted to Palynology, your revised
51	5T 2T	manuscript should be uploaded as soon as possible. If it is not possible for you to submit your revision in a
52	52	reasonable amount of time, we may have to consider your paper as a new submission.
53	55 F /	Our serie that the formula it is a serie state D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
54	54	Once again, thank you for submitting your manuscript to Palynology and I look forward to receiving your
55	55	revision.
56	56	
57	5/	Sincerely,
58	58	Dr Kiding
59	59	Managing Editor, Palynology
60	60	JDTI(@)DgS.ac.uk

- Reviewer(s)' Comments to Author: Reviewer: 1 Comments to the Author Reviewer comments Palynology: Revisiting the cyst-theca relationship for Votadinium spinosum: an examination of the Protoperidinium claudicans species complex." This is work of high standard, applying the full range of modern techniques to a palynological problem. The basic underlying problem is fundamental to dinoflagellate cyst palynology, and therefor meets the aims of the journal: do described fossil cysts represent biological species, and if different species can have morphologically indistinguishable cysts, do they represent different environments that could result in failed paleoenvironmental interpretations? The study is well-targeted on the cyst-theca relationship of living cysts with the cyst-based name Votadinium spinosum, since they previously were linked to motile cells of Protoperidinium claudicans, a species considered to include variations in the cal tabulation that might suggest polyphylogeny. The objective to examine cyst-theca relationships from widely spread global localities (France, Canada, China, and Japan) in search of morphologic variation is well conceived, and including molecular phylogenetics and macromolecular analysis of dinoflagellate cyst walls in addition to the usual incubation experiments sets the bar high for future work. While this study produced interesting and significant results, these are based on very few actual documented observations. The limitations imposed by this, and the need to address this is included in detailed comments later here. If this was a well-funded project specifically designed to address this particular problem, the authors would need to include samples from more localities globally, and to carry out more incubation experiments. However, such a project would be difficult to fund, and the impression given is more of an opportunistic realization that the several authors working on samples from different regions saw the value of "pooling" their results and attempting "a first cut" at this problem arising out of other work? If this is the case, I support their efforts, not least due to the extra difficulties of working with heterotrophs. For me, this justifies a first attempt with otherwise unacceptably few results (e.g. a new species described from observing six specimens) – but it has to be explained in the text. Thanks for the encouraging comments. It is not so easy to get good sequences through hatching cysts, certainly for heterotrophic species, and it often takes many experiments before successful results are obtained, because of contaminations and so forth. Many similar studies have functioned like this, with only few sequences attached to the species description (see for instance Kawami et al. 2009, Phycological research for description of P. tricingulatum, only a few sequences; or Sarai et al. 2013, only a few sequences as well). We have to be very careful to only use the sequenced cysts/cells for the description of the species, otherwise we risk to have a species description that is too broad. We have added a short section at the start of the discussion: "Although for the species descriptions only few specimens were hatched and few cells sequenced, we consider these sufficient to describe the species, since the morphological observations and sequences were reproducible. Sequencing heterotrophic species has a low success rate (e.g. Mertens et al. 2023, p. 16)." The main result reveals a species complex including at least four suggested cyst types and their equivalent motiles. This is similar to other early-described species that proved to represent a species complex, and it improves taxonomy and understanding of phylogeny of the group. I would expect some colleagues to question if V. multispinosum and V. spinosum can be differentiated visually in the microscope (I am not fully convinced from the limited information here). Future attempts to apply the results to "working palynology" will show how far this goes to answering the underlying questions, but it certainly moves the subject forward.
 - *Thanks for the interesting comments.*

112 Specific comments

113
1. Title: We need a standardized term for these sort of experiments that include more than thecal examination of species that sometimes are not even thecate. Suggested alternative "New investigation of the cyst-motile relationship for Votadinium spinosum reveals a Protoperidinium claudicans species complex"
116

- 57 116
 58 117 Thanks for the suggestion, we have followed it.
 50 118
- 59 118
 60 119 2. "dinoflagellate" is missing from Key words, and also could be included in title for non-cyst worker readers?

2		
3	120	
4	121	"dinoflagellate" has been added to the keywords and we added Dinophyceae, Peridiniales to the title.
5	122	
6	123	3. Introduction. Having shown the problems caused by different authors providing better descriptions for species
7	124	from different localities than type locality – would be a good place to include a point about the particular value
8	125	of targeting incubation experiments like these to the type locality (or nearby region), as with France in this case?
9	126	
10	127	We have added this sentence: "We targeted cysts from France, which is not too far from the
11	128	type localities of both the cyst- and motile-defined species (Ireland and Denmark
12	129	respectively) "
13	130	
14	131	4.97 – "room temperature"?
15	132	
16	133	Corrected to 16°C.
17	134	
18	135	5. 116 – "hatchling" – need to standardize terms within the ms – E.g. 146. – "germinated motile cell". Do you
19	136	think this should replace terms previously used in other publications?
20	137	
21	138	We have now used "hatchling" throughout. No I don't think this needs to be used everywhere.
22	139	
23	140	6. 135-6 – is it clear further in the ms which are from hatched?
24	141	
25	142	Yes, there is no confusion about this.
26	143	
27	144	7. 177 – in this work are cyst measurements from palynology or living material significantly different (possible
28	145	effect of processing increasing size?).
29	146	
30	147	As the reviewer can see, the cyst measurements from palynology (see V. multispinosum) and from incubation
31	148	(see P. carriae) are very similar.
32	149	
33	150	8. 225 – delete "as well" here and elsewhere in ms.
34	151	
35	152	Done.
36	155	0. 277 and alcowhere "beset" - more concentrated processes or optical effect from subal depression "reducing
37	155	9. 277 and elsewhere – beset – more concentrated processes of optical effect from suical depression reducing
38	155	
39	157	No we do not consider to be an optical effect
40	158	tvo we do not consider to be un optical effect.
41	150	10 Results. For each sampled region: should show how many incubation experiments attempted hatched and
42	160	nonduced motiles
43	161	
44	162	This is written in the text: in section 3.1." Undescribed motile cells, here assigned to
45	102	Distance division agencies and an amargad from accideta animaga aveta isolated from surface
46	103	<i>Froioperialinium curriae</i> II. sp., emerged from cordate, spinose cysis isolated from surface
47	164	sediments from Patricia Bay, Saanich Inlet, BC, Canada (six specimens identified)" and in
48	165	section 3.2: "Undescribed motile cells, here assigned to <i>Protoperidinium claudicans</i> , emerged
40	166	from cordate, spinose cysts isolated from surface sediments from Maresclé, Morbihan, France
50	167	(six specimens identified), one cyst from Fangchenggang, Guangxi, China and one cyst from
51	168	Quanzhou Taiwan Strait China and one cyst one motile cell hatched from a cyst and one
52	160	motile isolated from plankton from Heldvaide. Japan (Figure 1 and Table 2) "
52	109	moule isolated nom plankton nom nokkaldo, Japan (Figure 1 and Table 2).
55	170 171	Each maning description: should include relevant comparisons with other maning (how differ) Ideally -1 1d
55	172	Each species description, should include relevant comparisons with other species (now differ). Ideally should also include mershologie verificient (but not well decumented from as few bars)
56	172	also menude morphologic variation (but not wen documented from so few nere).
50	174	The comparison with other species is handled in discussion: $A \mid and \mid A \rangle$
57 50	175	The comparison with other species is number in discussion. 4.1 and 4.2.
50	176	11 258-9 – delete "reached" and replace "to" with "than" (and elsewhere -)
59	177	11.2007 detete reached, and replace to what than (and elsewhere).
00	±,,,	

2		
3	178	Corrected.
4	179	
5	180	12. 267 – description from incubations only, or from sediments after palynology treatment?
б	181	
7	182	This is mentioned at the end of the paragraph: "The description is based on cysts used in the
8	183	incubation experiments.", the description of V, multispinosum is based on palynological
9	184	treatments
10	185	i cuments.
11	186	13 P carriae n sn – Holotype from Saanich Inlet B C (215-18) Its cyst is described from there (267-280) and
12	187	is equivalent to V, multispinosum sp. Nov. (holotype described from different locality. Vancover Island (292-
13	188	347). Two separate names for cyst and motile of one new species described from different type localities in the
14	189	same publication - will really stoke up the fires of those advocating one species name. The two separate names
15	190	are generally accepted by many, but it would be worth including an explanation for why a separate type locality
16	191	was chosen for the cyst.
17	192	
18	193	We follow an approach explained in Head et al. (Palynology in submission) that outlines how dual nomenclature
19	194	can be used. We have added: "The type localities of P. carriae and its equivalent V. multispinosum
20	195	are not identical but are both from around Vancouver Island, where both are considered
21	196	widely distributed "
22	197	wheely distributed.
23	198	The cyst is described twice. Lacking adequate data for morphological variation in size and process density, these
24	199	cyst descriptions are so alike that including both is superfluous – it is sufficient to say the cyst of P carriae
25	200	conforms to V, multispinosum.
26	201	
27	202	We beg to differ. The description in P. carriae is for the cysts of the incubation experiments, and in V.
28	203	multispinosum it is related to the fossil specimens. We consider that both are necessary to document that they
29	204	are similar.
30	205	
31	206	14. 320-21 – pronounced apex not shown in plate.
32	207	
33	208	Yes, but since it is considered equivalent to P. carriae, the cyst of the latter shown in Plate 1, fig. 1, which do
34	209	shows a pronounced apex, does show this feature.
35	210	
36	211	15. 370 onwards- Here too only very few results from incubation experiments (nine specimens from 4 different
37	212	localities in France, China, Taiwan Strait and Japan)
38	213	Although for insubation amoviments, the negative negative durible and therefore considered reliable
39	214	Alinough jew incubation experiments, the results were reproductole and therefore considered reliable.
40	215	116 - delete "processes"
41	210	440 - delete processes :
42	218	Removed
43	219	Temovea.
44	220	478 – on - two further new species were suggested, but not formally proposed since too few specimens - this is
45	221	worth including here as presented, to be followed up in future.
46	222	
4/	223	Thanks for agreeing.
48	224	
49	225	16. Discussion. Section 4.2 Morphologic comparisons between the cysts of four suggested species is limited by
50	226	the lack of sufficient data on morphologic variation, and this should be clearly stated, since it is arguably the
51	227	most important point for palynology. These cysts were included in the one V. spinosum previously, and it
52 52	228	remains to be seen if the differences suggested here allow differentiation when applied to routine palynology or
JJ ⊑4	229	it, in practice, they will stand as examples of different biological species with one cyst-based species. Similarly,
54 57	230	biogeographic work should eventually show any paleoenvironmental significance to conclusions here.
55 56	231	
50 57	232	<i>We have added this to section 4.2: "V. spinosum and V. multispinosum were both previously</i>
57 50	233	identified as V. spinosum, but this study demonstrates that they are two different species and
50 50	234	can be distinguished using morphological criteria." The biogeography is discussed in 4.6.
59	235	
00		

Palynology

2		
3	236	Section 3.4 adds another useful few data to the relatively new "tool" (cyst-wall analysis) for cyst work that offers
4	237	potential for improving our phylogenetic understanding, as do the molecular analysis results here. Indicating that
5	238	the processes on these cysts may have evolved at different times (640) is particularly interesting since fossil cyst
6	239	genera have been erected sometimes according to presence/absence of processes.
/	240	W 1
8 0	241	<i>We have added a note:</i> "This implies that the presence of absence of processes can be used to
9 10	242	separate species, but not on a higher taxonomic level."
11	243	The observation that appoints with portogonal or have gonal 20 plates elector together in a monorhylatic group
12	244 2/15	questions previous significance sometimes placed on plate shape in the cal-based classification
13	245	questions previous significance sometimes placed on place shape in theear-based classification.
14	247	This has been discussed in section 4.5: "On a group level the phylogeny demonstrates also that
15	2/18	species that have been assigned to the Oceanica group cluster together in a monophyletic
16	240	group despite some of them having a pentagonal or hexagonal 2a. There does not seem to be
17	249	group, despite some of them having a pentagonal of nexagonal 24. There does not seem to be
18	250 251	any clear logic in the positions of species that have a quadra, penta or nexa configuration.
19	251	17 Figures: Not clear in all cases which theca or cysts are from which locality in figs 2 and 3 (data points from
20	252	separate countries and from separate localities in a country should be identified by different symbols). Captions
21	254	should indicate that only cysts and theca from incubations are included in these Figs. It is notable that in some
22	255	cases there are not equal numbers of cysts and motiles from experiments?
23	256	
24 25	257	Thanks for spotting this. We have clarified this in the caption.
25	258	
20	259	18. Plates: Captions – Patricia Bay should not be shortened to Pat Bay.
28	260	Connected
29	201	Correctea.
30	262	1.6-15 caption missing
31	264	The re-cuption missing.
32	265	Added.
33	266	
34	267	2.7-12 caption should include locality and that it is from a sediment sample (only number given with no
35	268	indication if palynological prepared or not).
36	269	
37	270	Added.
38	271	PL 3 caption should include that experiments of P claudicans (naming species same as for PL2) and similarly
39	273	for Pl 4 Caption should indicate that only some cysts here are from experiments (4 and 10-11?) Pl 6 Are 2-6
40 41	274	all different cysts? 7-9 are from which cyst? Pl. 7. Are these all from the same cyst?
41	275	Many of the captions fall disappointingly short of the required standard, and must be "cleaned up".
42 43	276	
44	277	We have significantly expanded the captions and tried to be more clear.
45	278	
46	279	19. References have not been checked by me.
47	280	We have checked all references and made corrections where necessary
48	281	we have checked all references and made corrections where necessary.
49	283	Recommendation: acceptance after minor revision (after consideration of these comments)
50	284	
51	285	Thanks for the constructive review.
52	286	
53	287	Reviewer 2
54 55	288	Review of: Martons at al. Deviating the cost these relationship for $V_{i}(x)$ is investigating the cost of the c
55	289 290	vieriens et al. Kevisiting the cyst-theca relationship for <i>Votadinium spinosum</i> : an examination of the
57	290	1 rotoper tuntum etututeuns species complex.
58	292	Revisiting cyst-theca relationships within the cyst defined genus Votadinium with a re-examination of the
59	293	Protoperidinium claudicans species complex
60	294	

3	295	The paper is not just limited to <u>V. spinosum</u> , but also discusses cordate species of <u>Votadinium</u> . I suggest modify
4 r	296	the title - a suggestion above.
5 6	297	We have modified the title according to the augeosticus of the other reviewer. Thanks for the suggestion through
0 7	290	we have modified the title according to the suggestions of the other reviewer. Thanks for the suggestion though.
/ Q	300	Initiate the paper with a comment that the study is an extension to the revision of the genus Votadinium by
9	301	Gurdebeke et al. 2020. I found the paper hard to follow on my first read.
10	302	
11	303	We have added this sentence to the final paragraph on the introduction: "Here we pursue research on
12	304	<i>Votadinium</i> reinitiated most recently by Gurdebeke et al. (2020) and"
13	305	
14	306	It would benefit from a revised Table 1, that summarises the current situation of known species attributed to
15	307	Protoperidinium and Votadinium to include those defined, refered to in this paper in bold and the others in lower
16	308	case. Divide the table into spiny and non spiny species. Use existing Table 1 headings to columns or
17	309	edit/abbreviate to fit the categories included.
18	310	
19	311	SPINY
20	312	Motile Cyst 2a shapeRIB DNA AFT FTIR Ref
21	313 217	1. P. claudicans (V.spinosum Penta X 2. P. convice spinosu V. multicpinosum op pov Quedre V. V.
22	215	<u>2. F. carriac spinov. V. muntspinosum spinov Quaura A A</u> WITHOUT SPINES
23	315	$\frac{1}{3 \text{ P}^2}$ V nsilidora X
24	317	4 P? V. sn. X
25	318	5. P.latidorsale V. calvum X X
26	319	6. P. ? V. concavum X
27 วง	320	5. List the remaining cordate species and relevant information.
20 20	321	
29 30	322	We have modified the table accordingly.
30	323	
32	324	Lines 67 to 69 could then be omitted or shortened.
33	325	Dona
34	320	Done.
35	328	Include a brief background to the table and structure of the paper. Perhaps bringing part or the whole of the last
36	329	paragraph of the introduction to the front (lines 75 to 83). I recognise of course that it is normally the last
37	330	paragraph of the Introduction to a paper that outlines the subsequent content. In this case it was not enough to
38	331	distinguish the separate bits of work which is an amalgam of different studies by the various authors in their
39	332	home labs with not all methods applied in every case.
40	333	
41	334	Thanks for the suggestion. We did not decide to move the final paragraph to the front, but we have tried to make
42	335	the flow better and moved around some of the paragraph.
43	227	Confusion would also be removed if all the taxonomic descriptions (systematics) in the paper were within one
44	338	section at the end and independent of the rest of the text. While important as at present they break up the flow of
45	339	the paper.
40 47	340	
47 10	341	We have looked at recent publications in Palynology (e.g. Lindstrom 2023; Baranyi et al. 2021) and all seems to
40 10	342	keep the systematic section as in our paper, so we have kept it as is.
49 50	343	
50 51	344	The plates are superb.
52	345	
53	346 247	I hank you.
54	34/ 210	Plate 1. The edge of Fig. 0 needs tidying up, and the elignment of the max, here on Figs 7 to 0. Ditte rists 2 Figs
55	240 2/0	7-9 and plate 6 Figs 7-9 although this may be fine in the originals
56	350	/ > and place 0 1 igs /-7, annough this may be fine in the originals.
57	351	Plate 1: The edge of Fig. 9 has been cleaned, and the scale bars have been aligned. The scale bars have been
58	352	aligned on plate 2 and plate 6.
59	353	
60		

1		
2		
3	354	See additional comments on the enclosed manuscript. Funding for a SEM is acknowledged at the end of the
4	355	paper even though there is no mention of work with a SEM. It would have been useful to include some SEM
5	356	imagery of the surface ornamentation of both the spiny and smooth cysts. I understand the reason for including
6	357	the acknowledgement, nevertheless.
7	358	
8	359	We have added an extra plate with SEM micrographs, and included their description in the text.
9	360	
10	361	I enjoyed reading the paper, which maintains progress by the authors in resolving the mysteries of motile/cyst
11	362	relationships. The paper should be published after the author's have taken note of the comments and addressed
12	363	as they and the editor see fit.
13	364	
14	365	Thanks for your encouragement.
15	366	
16	367	Replies to the manuscript annotated by Chris Reid.
17	368	
12	369	We have made the corrections suggested.
10	370	
19	371	* GenBank accession numbers have been added, to the text and the figures.
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
20		
20		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
50		
- - -		
00		