SUPPLEMENT TO

NEOGENE AND PLEISTOCENE GEODYNAMIC : THE PALEOSEISMIC EVOLUTION OF ARMORICA

Van Vliet-Lanoë B., Authemayou C., Le Roy P., Renouf J., Combes P., Ego F.

COMPLEMENTS (Millières) Annotated pictures of the field data

(author of the pictures: B. Van Vliet-Lanoe)

Millières stratigraphical reappraisal

Millières stratigraphical reappraisal

The "Gelasian" base of the Millières Formation was reached by coring in the basin (Figs 12-14 in this supplement) Its stratigraphic attribution to the Gelasian (Baize 1998; Dugué et al. 2012) resulted from the occurrence, in the lower cored unit, of the cold-water foraminifera *Elphidium* or *Elphidiella hannai* (Margerel in Baize 1998). This unit was considered by these authors to be eroding the "St Vigor Formation", considered as early Quaternary (Dugué et al. 2012) but dated by ESR at 3.7 Ma (Van Vliet-Lanoë et al. 2002; Fig.11).

Elphidiella hannai is not a clear marker for a Gelasian age. It evolved during the Oligocene in Alaska (Lagoe et al. 1989), today inhabiting the inner shelf of the NE Pacific margin, from southern California to Alaska, and being found at shallow depths in the Scoresby Sund Fjord (East Greenland) (Resig 1964; Madsen and Knudsen 1994) or south of 53°N in the southern North Sea (Resig 1964). Marine diatom biostratigraphy has suggested that the first opening of the Bering Strait took place just after 7.4–7.3 Ma (Marincovich and Gladenkov 1999). Pacific faunas were thus able to reach the central Atlantic before the second major glacial event, dated at ~ 6.7 Ma (Herbert et al. 2013), such as at Pénestin (Fig.6) (Van Vliet-Lanoë et al. 2009). The occurrence of ice-rafted blocks in the lower Millières Formation supports this hypothesis (Figs. 12 -14).

In addition, from a palynological point of view, the lower Millères Formation has been attributed to the Gelasian (Clet in Baize 1998) due to the presence of boreal pollen. Boreal genera, such as *Alnus, Betula, Salix, Ulmus, Abies, Pinus*, and *Pterocarya*, have existed since the Oligocene (Turgaï flora) (Meyen 1987). During the Tortonian–Messinian, the climate was mild-temperate and humid (indicated by *Ulmus, Castanea, Ilex, Pinus,* and *Ericaceae*) in Western Europe (Gardère and Pais 2007; Utescher et al. 2007; Quan et al. 2014), but interrupted by major glaciations (11.8, 9.0, 6.7, and 5.4 Ma) (Table 1). This "interglacial" vegetation

2 NEOGENE AND PLEISTOCENE GEODYNAMIC : THE PALEOSEISMIC EVOLUTION OF ARMORICA

This "interglacial" vegetation allowed the development of podzolic soils containing orstein (due to the high water table) to evolve in more arid locations to the south. This was the case for the Lessay Basin, which was imprinted by sand wedges (permafrost) on tidal sands, and were capped by an orstein containing boreal pollen. It is further truncated by a late conglomerate, which was initially attributed to the middle Quaternary (Coutard et al. 1991).

(references in the main bibliography)aphy)

Stages	EUSTATIC	WESTERN	COTENTIN RECORD	Tectonism &	Tectonism &	BRITTANY RECORD
	CYCLES	ళ		sismicity/Climate	sismicity / Climate	
		EASTERN CHANNEL		NORMANDY	BRITANNY	
	Upper		Raised beaches	Load casts (Genêt)	Drag folds (Quiberon)	Raised beaches, Lower terrace
135 -275 ka	lonian (MIS 9a - MIS 7a)	E. Channel breaching	Raised beaches		Load casts, clay diapirsm	Raised beaches, Lower terrace
275-310 ka			Climate cooling, enhanced erosion,	isostatic uplift, river incision		
310-500 ka	Ionian (MIS 15 -	E. Channel	Raised beaches	-	Load casts, clay diapirsm,	Raised beaches : Trez Rouz, Gwendrez,
	MIS 9 c)	breaching Hurd Deep			water escape	Pen Hat, Penestin Middle Terrace II (Oust, Vilaine)
1000 -700 ka	Upper Calabrian / MTP		Climate cooling , buckling, enhanced	erosion, isostatic uplift, river inci	sion	
1.Ma	Lower Calabrian		Load casting	Subsidence/ relaxation ?	Seismicity, clay diapirism	Menez Dregan platform slightly weathered
			Marchésieux complex	Transtensive folding /(Riedel) on	Transtensive folding	1.2 ±0.16 Ma.
1.8 Ma			St Nicolas de Pierrepont	Eure FZ (HT)	Large loadcasts	Réguigny 1.43 ± 0.18 Ma
			Petit-Port platform slightly weathered	Load casts	Ice rafting	High terrace (Oust, Vilaine)
1.8-	Gelasien-Waalien	Transtensive	Upper Fm Lande de Millières ss	Subsidence/ relaxation	Load casts, faults with offset ,	St Jean-la Poterie Nassa clays
		folding /Riedel	(stratified clay)		clay diapirism, water escape	Landerneau Clays
2.58 Ma		(Confluent,	Bohon Crags		tilting,	2.45 ± 0.35 Frelonnière (Rennes)
		Lague Deep	bosq clay La Londe clay			2.43 ± 0.35 Landerneau 2 3 + 0 3 Reminury
- 10 - 00						
3.3 Ma			Up. Saint Vigor sands, 3.2 ± 0.4 Ma	Major Climate cooling, Erosior	and isostatic uplift, titling	Fm Kadenac 3.05 ± 0.5 & 3.3 ± 0.5 Ma Very high terrace (Oust & Vilaine, 3.2 Ma
	Piacenzian	E. Channel	Upper Lozères sands	Subsidence/ relaxation	Subsidence/ relaxation,	Fm Radenac 3.5 ± 0.7 & 3.8 ± 0.5 Ma
3.6 Ma		opening	Lessay sands	Drag fold	Water escape;	Fm Landerneau base (4.2 Ma) Fm
			Periers	Water escape	Synsedimetary limited co-	SR d'Apigné 5.35 ± 0.8 Ma Penestin
5.3 Ma	 Zanclean		Middle Fm Lande de Millières ss	Recumbent fold	faulting (Le Rhys, Musillac)	Pliocene Lo tidal channel Musillac
6.0- 5.3 Ma	LATE MESSINIAN	Manche River	Marchésieux sandstone	TRANSPRESSION (Buckling), Er	osion and isostatic uplift ?Clin	nate cooling , erosive polished coastal
			Lower Fm Lande	platform, orstein		
			de Millières (gravel) Summit of the Lower Saint Vigor Fm			
6.0 Ma	Lower Messinian		Lower Saint Vigor sands	Transtension	Transtension	Fm Reguigny 6.5 ± 1.0 Ma
			Lower Lozère sands (Rouen Middle Terrace I)	Water escapes, faulting	Water escapes, faulting,	Pénestin LSt(beach)6.7±0,7 Ma Doro Muhu
7.2 Ma				100 101119,	Ice rafting, stone frost jacking	St Malo de Phily Middle terrace 1
7.2-11.6 Ma	Tortonian		Valmont tidalites	Transtension		Fm Bolan 7.0 ±1.0 & 8.7 ± 1.5 Ma
2			Low Lower Fm Lande de Millières			
			(Elphidae)			
		River incision	Major regression / upper PS 6-2 Surfa	tce, Middle Terrace (Oust, Vilaine)		

Table A

Annotated pictures of the field data

Figure 1 : Le Rhys-en-Douarnenez (SASZ) paleocliff, possibly tortonnian in age on a shall platform, covered by faulted and consolidated Pliocene sands(A); B &C) periglacial slope deposits and eroded paleocliff (caves) cemented by Fe-Mn orstein

5 NEOGENE AND PLEISTOCENE GEODYNAMIC : THE PALEOSEISMIC EVOLUTION OF ARMORICA

Figure 2: Pors Kubu (Crozon Peninsula, Western Brittany) 1) lower cobble beach including very few ice rafted blocks in a shall sand matrix, and resting on a polished platform, 2) Upper cobble beach, initially openwork, rich in ice rafted flat lying blocks, cemented by goethite. 3) Storm ridge formed by the mixing of slope deposits and beach cobble, cemented by goethite orsteins; 4) slope deposits derived of shales burying a polished cliff, infiltrated by a thick red clay illuviation. This system is not faulted but truncated by a middle quaternary beach (MIS 9 or 11).

Figure 3 : REGUIGNY (Lafarge quarries) : Gelasian and early quaternary at the top of the sequence with load casting probably close to 1.1 Ma from ESR dating.

Figure 4: Saint Jouan de l'Isle (NASZ) : polyphased water escapes on faulted late Messinian (A—C) or very early Zanclean gravel (D)

Figure 5 : Saint Malo de Phily (Vilaine River valley, highest terrace) Transtensive wedges in an upper *Piacenzian terrace.*

Figure 6 : Pénestin North (Vilaine River estuary) Stratigraphy

Figure 7: Trez-Rouz (Elorn fault): co-seismic Shale and peat diapirsm (Msk : 4,5-5), probably around 400 ka . Dragged by periglacial solifluction.

Figure 8 : Herquemoulin (1995): cliff notch parallel with the lithology (metamorphic shales). Probably MIS 9a . Covered by MIS 8 heads (scale: large block in the sun: 30 cm). Abrasion platform in foot cliff position.

Figure 9 Avranches : giant loadcast in truncated paleogene saprolite

Figure 10: Landes de Lessay: sand wedge rupturing a boreal (palynology) upper Tortonian red-yellow podzol with orstein (arrow) in a conglomerate (Late Messinian), truncating a Tortonian- Messinian Tidal sand . Star: location of the palynological analysis (Bh soil horizon). Two sand wedge generation, one before, and one after the orstein formation.

Figure 11: Esquay (St Vigor) water escapes. A) contact with the Lower unit : gravelly sands, probable late Miocene in age, B & C Upper unit dated by ESR at 3.2 \pm 0.4 Ma

Figure 12 Millières quarry (pictures 1995) : Upper Millères formation with re-interpreted ages (see main text)

Figure 13: Millières quarry (1995): Middle (MM) and lower Millères formations (LM). A) Pliocene with co-seismic recubent fold; coarse grained upper Lower Millières Fm (Messinian) C), including frost shattered and rafted erratic blocs (C) low Lower Millières Fm (Tortonian tidalites).

Figure 14 : Millières quarry (1995)*: faulting. Middle (MM) and lower Millères formation (LM)n . A) coarse grained upper Lower Millières Fm (B), including transtentional faulting (B & C), B) hemigraben with drag fold.*

Figure 15: A-B : *Lalonde quarry*: karstic faulting, C: *Valmont quarry* karstic and /or thermokarstic.

Figure 16 : *A*) *True cryoturbation's (Paris basin, on chalk). B) Cryoturbated Middle Pleistocene coastal ridge with frost jacked cobbles (Audierne Bay) ; C) Load casting due to karst activity triggered by an erathquake, Middle Terrace ; la Garenne des Andelys (Seine River); D) Middle Terrace, deformed and fractured pocket, above a known karstic pit. < 5 km of the Seine fault.*

Figure 17 : Saint Michel en Grèves : A) outcroping ductile cadomian crust (subducted; base of B) , disconnected from the onlapping discordant Ordovician (B) with a faulted contact (early Hercynian Orogen)

Α

В

