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1  |  INTRODUC TION

Climate change is an intensifying pressure affecting all marine organ-
isms that may lead to irreversible ecological transformations such 
as biodiversity loss, decreased ocean productivity, and altered food 
webs (Henson et al., 2021; Hoegh- Guldberg & Bruno, 2010; Worm 
& Lotze, 2021). Increasing temperatures are responsible for shifting 

the distribution of marine species to more offshore, deeper, or colder 
waters (Dulvy et al., 2008; Punzón et al., 2016), as well as to higher 
latitudes (Cheung et al., 2013). Furthermore, ocean acidification is 
known to have turned calcified coastal habitats into non- calcified 
ones, reducing benthic complexity and reshaping nursery communi-
ties (Cattano et al., 2020; Zunino et al., 2019). While climate change 
effects on teleost fishes have been extensively documented (Pörtner 
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Abstract
While spatial distribution shifts have been documented in many marine fishes under 
global change, the responses of elasmobranchs have rarely been studied, which may 
have led to an underestimation of their potential additional threats. Given their irre-
placeable role in ecosystems and their high extinction risk, we used a 24- year time se-
ries (1997–2020) of scientific bottom trawl surveys to examine the effects of climate 
change on the spatial distribution of nine elasmobranch species within Northeast 
Atlantic waters. Using a hierarchical modeling of species communities, belonging to 
the joint species distribution models, we found that suitable habitats for four species 
increased on average by a factor of 1.6 and, for six species, shifted north- eastwards 
and/or to deeper waters over the past two decades. By integrating species traits, 
we showed changes in habitat suitability led to changes in the elasmobranchs trait 
composition. Moreover, communities shifted to deeper waters and their mean trophic 
level decreased. We also note an increase in the mean community size at maturity 
concurrent with a decrease in fecundity. Because skates and sharks are functionally 
unique and dangerously vulnerable to both climate change and fishing, we advocate 
for urgent considerations of species traits in management measures. Their use would 
make it better to identify species whose loss could have irreversible impacts in face of 
the myriad of anthropogenic threats.
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& Peck, 2010), fewer studies have been carried out in elasmobranchs 
(sharks, rays, and skates; Rummer et al., 2022), whose lineage in-
cludes more than three times as many species threatened with ex-
tinction (IPBES, 2019; Stein et al., 2018). Since elasmobranchs had 
lived in periods with higher atmospheric CO2 concentrations than 
today, it was thought that they should be able to tolerate such con-
ditions in the future (Rummer & Munday, 2017). However, since the 
late 2010s, a growing number of experimental studies show that elas-
mobranchs are sensitive to ocean acidification and warming (Rummer 
et al., 2022). Population- level changes in response to climate change 
have also been observed in recent decades, such as changes in the 
range and/or migratory timing of the Tiger Shark (Hammerschlag 
et al., 2022), or increased use of breeding habitat by the Bull Shark 
(Bangley et al., 2018) and White Shark (Tanaka et al., 2021). Future 
shifts are also expected for the 21st century, with both gains and 
losses of suitable habitats depending on the species (e.g., Grieve, 
et al., 2020, and requiem and mackerel sharks, Birkmanis et al., 2020; 
Diaz- Carballido et al., 2022; Lezama- Ochoa et al., 2023).

Climate change may equally exacerbate fisheries- related risks by 
increasing the strength and frequency of extreme events (Cheung 
et al., 2021; Yan et al., 2021). For example, the risk of extinction of 
the Short- tailed Nurse Shark (Pseudoginglymostoma brevicaudatum) 
increased in the southwestern Indian Ocean due to the combination 
of overfishing, destructive fishing practices, rising temperatures, 
and increased frequency and severity of coral bleaching (Pollom 
et al., 2022). This is of particular concern in the Northeast Atlantic, 
where the English Channel and North Sea have been identified as 
hot spots for global warming (Dulvy et al., 2008; Simon et al., 2023) 
and where bycatch, habitat loss, and degradation are driving almost 
half of sharks and their relatives to extinction (56 out of 136 spe-
cies, Dulvy et al., 2021; Walls & Dulvy, 2021). Shallow- distributed, 
slow- growing, low reproductive capacity species are the most likely 
to experience a decline in status (Coulon et al., 2023; Pimiento 
et al., 2023; Stein et al., 2018; Walls & Dulvy, 2021).

Elasmobranchs contribute to ecosystem functioning with unique 
combinations of physiological, morphological, reproductive, or be-
havioral traits (Tilman, 2001) that have no functional equivalent (i.e., 
functionally distinct species; Coulon et al., 2023; Leitão et al., 2016; 
Mouillot et al., 2013; Violle et al., 2017). They are known for exerting 
top- down regulation (Barley et al., 2017a, 2017b; Ruppert et al., 2013) 
but they are also linked to other ecosystem functions such as promoting 
energetic connectivity between neritic, oceanic, and deep- sea ecosys-
tems (Shipley et al., 2023). Simulated extinction scenarios within var-
ious taxonomic groups (e.g., vascular plants, mammals, birds, reptiles, 
amphibians, and freshwater fish) revealed extensive changes in spe-
cies trait composition within communities when functionally distinct 
species were lost (Carmona et al., 2021; Colares et al., 2022; McLean 
et al., 2019). Consequently, coupled with the human- induced reduction 
in population size, elasmobranch range shifts in the Northeast Atlantic 
could lead to profound and irreversible ecosystem reorganizations.

Using	24 years	(1997–2020)	of	scientific	bottom	trawl	surveys	in	the	
Northeast Atlantic, we first evaluated the sensitivity of five skate and four 
shark species to pH and temperature gradients. Then, we investigated 

whether the habitat suitability of these populations has been altered by 
ongoing climate change. Lastly, we studied how the trait composition of 
the elasmobranch community has changed over the last three decades.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and bottom trawl surveys

The study area covers the Greater North Sea, Celtic Seas, and Bay of 
Biscay (Figure 1).	Spanning	24 years	(1997–2020),	the	dataset	is	part	
of the time series of scientific bottom trawl surveys collated by the 
International Council for the Exploration of the Sea (ICES) expert 
groups conducted to examine changes in fish stock abundance and 
distribution (Appendix S1—Table S1). Species abundance data were 
downloaded from ICES Database on Trawl Surveys (DATRAS), 2023, 
ICES, Copenhagen, Denmark.

Only fishing gear types with homogeneous spatiotemporal cov-
erage	and	hauls	made	in	the	first	200 m	depth	were	used	to	reduce	
spatiotemporal capture bias. All abundance data were converted to 
presence–absence to reduce biases of gear catchability. Only spe-
cies present in more than 2% of the total number of trawls were 

F I G U R E  1 Map	of	the	available	bottom	trawl	surveys	of	
elasmobranch communities across northwest European continental 
shelf seas obtained from the International Council for the 
Exploration of the Sea data portal (https:// datras. ices. dk/ Data_ 
produ cts/ Downl oad/ Downl oad_ Data_ public. aspx). Colored 
dots locate the individual hauls, with one color per survey. ICES 
rectangles	(1° × 0.5°	grid	cells)	are	represented.	Table S1 for detailed 
information about bottom trawl surveys and their acronyms. Map 
lines delineate study areas and do not necessarily depict accepted 
national boundaries.
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selected (minimal thresholds defined according to model prediction 
accuracy). This was to reduce the imbalance between presence and 
absence data that can limit the model's ability to effectively learn 
the characteristics of the minority class (i.e., the class of presences), 
leading to biased predictions and reduced accuracy in identify-
ing suitable habitats (Appendix S1—Table S1 and Appendix S2—
Figures S1–S4). Some parts of our study area (e.g., the North Sea) 
are sampled at multiple seasons (i.e., quarters) within a year which 
implies a greater number of presences per year in these subareas. 
Therefore,	the	study	area	was	gridded	with	cells	of	0.111° × 0.134°	
in which only one species occurrence per year was kept to limit bias 
model training (Feng et al., 2019; Appendix S2—Figure S5).

The final selected community is composed of four sharks 
(Spurdog, Squalus acanthias; Large- spotted Dogfish, Scyliorhinus 
stellaris; Small- spotted Catshark, Scyliorhinus canicula; Starry 
Smooth- hound, Mustelus asterias) and five skates (Spotted Ray, Raja 
montagui; Thornback Ray, Raja clavata; Blonde Ray, Raja brachyura; 
Cuckoo Ray, Leucoraja naevus; Thorny Ray, Amblyraja radiata).

2.2  |  Environmental drivers

Depth (positive values) and slope, descriptors of relief and complex-
ity were obtained from GEBCO Bathymetric Compilation Group 
(2020) and “MARSPEC: ocean climate layers for marine spatial 
ecology” (Sbrocco & Barber, 2013), respectively (Appendix S2—
Figure S6). Habitat types were obtained from the EUSeaMap 2021–
EUNIS 2019 habitat types (European Marine Observation and Data 
Network) and grouped into seven broader categories based on their 
grain size composition (Appendix S1—Table S2), then used to calcu-
late a Shannon substrate diversity index, reflecting habitat diversity.

A wide range of parameters may be affected by climate forcing 
and are likely to restrict sharks and skates distribution (e.g., tempera-
ture, dissolved oxygen, chlorophyll a, pH; Rummer et al., 2022; Schlaff 
et al., 2014). To correctly estimate species' responses to environmen-
tal variables, we built the most parsimonious model possible (Merow 
et al., 2014). We retained only temperature and pH that were not highly 
correlated with all the other variables (i.e., were unique in terms of sig-
nal; R2 < .75).	For	example,	we	did	not	include	dissolved	oxygen	because	
it was strongly correlated with temperature, meaning that the oxygen 
signal was already included in the temperature variable. While tempera-
ture influences key metabolic and physiological processes in ectother-
mic species and drives seasonal (Dunbrack & Zielinski, 2003; Hopkins 
& Cech, 2003; Vaudo & Heithaus, 2013) and diurnal movements 
(Matern et al., 2000; Papastamatiou et al., 2015; Vaudo et al., 2016), 
pH can markedly affect organismal physiology and behavior (Green & 
Jutfelt,	2014; Rummer et al., 2020) and enhanced temperature- induced 
effects (Rummer et al., 2022). Moreover, the effects of pH on the dis-
tribution of species remain unclear. Surface parameters were used in 
preference to bottom parameters, as bottom pH data were not available 
and most of the study area is relatively shallow, resulting in a close rela-
tionship between surface and bottom parameters (Young & Holt, 2007). 
Similarly, the monthly summer maximum of sea surface temperature 

(SST) and surface pH were selected in preference to winter values or 
annual averages. In addition, summer values are more likely to exert 
pressure on species that reach the upper limit of their thermal niche. 
For example, some oviparous species spawn during summer along the 
coast (e.g., Scyliorhinus canicula, Ellis & Shackley, 1997). Data were ob-
tained from E.U. Copernicus Marine Service Information for each year 
(Appendix S1—Table S2). Monthly Atlantic Multidecadal Oscillation 
(AMO) indexes were obtained from the NOAA- PSL and averaged per 
year (Enfield et al., 2001; Appendix S1—Table S3) to disentangle the ef-
fects of ongoing climate change and the potential effects of long- term 
natural climate oscillations (Edwards et al., 2013; Faillettaz et al., 2019).

All drivers were downloaded at the finest resolution, then 
scaled	 down	 to	 presence–absence	 data	 cells	 (i.e.,	 0.111° × 0.134°)	
and	 kept	 in	 the	 absence	 of	 strong	 correlations	 (threshold = 0.85;	
Appendix S2—Figure S7).

2.3  |  Species traits

We selected six species traits reflecting trophic ecology, life history, 
and ecological versatility that are expected to be implicated in the spe-
cies' response to environmental changes (McLean et al., 2018; Murgier 
et al., 2021) and geographic range shifts (Albouy et al., 2015; Sunday 
et al., 2015; Appendix S1—Table S5 for reasoning). Species traits were 
collected by extracting traits values from Coulon et al. (2023) and 
Ocean Biodiversity Information System (OBIS, 2022). From the OBIS 
data, the geographic range was calculated as the difference between 
the highest and lowest latitudes in the distribution, given the spatial 
extent of the study area and after removing the first and last percen-
tiles of the latitude distribution, to limit false presences due to species 
misidentification. The depth preference was calculated as the mean 
value of the depth distribution (Appendix S1—Table S5).

2.4  |  Joint species distribution modeling

We used an hierarchical modeling of species communities (HMSC; 
Ovaskainen et al., 2017), belonging to the joint species distribu-
tion models (jSDM) class (Warton et al., 2015) to model species- 
specific changes in response to environmental variations and 
capture changes in species trait composition (Maioli et al., 2023; 
Montanyès et al., 2023; Weigel et al., 2023), using the “Hsmc” 
R package (Tikhonov et al., 2020; version 3.0- 1). Each grid cell 
(29,193) was considered as a sampling unit (matrix S). We in-
cluded species occurrence as a response variable in the HMSC 
analysis (matrix Y) and modeled presence–absence with a probit 
link function (Ovaskainen & Abrego, 2020), assuming the default 
prior distributions. Six continuous environmental drivers were 
included (matrix X), estimating a second- order polynomial term 
for sea surface temperature and pH (Appendix S2—Figure S8). 
We also included six species traits (matrix T) and a phylogenetic 
tree of elasmobranch species from VertL ife. org (matrix C; Stein 
et al., 2018). Finally, we included a random effect to account for 

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17157 by IFR

E
M

E
R

 C
entre B

retagne B
L

P, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://vertlife.org


4 of 15  |     COULON et al.

spatially structured samplings (i.e., fishing gears-  types and quar-
ters; matrix Π) and potential year- to- year variation not captured by 
the climatic covariates (i.e., years).

Two Markov Chains Monte Carlo (MCMC) simulations were 
run to generate 1000 posterior samples using a thinning interval 
of	 50	 following	 a	 burn-	in	 period	 of	 25,000	 (Jönsson	 et	 al.,	2022; 
Ovaskainen & Abrego, 2020). The effective sample sizes were very 
close	 to	 the	 actual	 sample	 sizes	 (mean	difference < 6%),	 indicating	
that there is very little autocorrelation between consecutive sam-
ples. The potential scale reduction factors were very close to one 
(mean	difference < 0.3%),	which	indicates	that	the	two	chains	gave	
consistent results, as was also suggested by visual inspection of 
the trace plots (Appendix S3). The model was evaluated using area 
under	the	receiver	operating	curve	(ROC)	score	(AUC = 0.83 ± 0.05;	
Appendix S1—Table S6), and examining the positive predictive value 
(PPV = 0.98 ± 0.04;	Appendix	S1—Table S6) and negative predictive 
value	 (NPV = 0.04 ± 0.07;	 Appendix	 S1—Table S6) using a random 
subset of 75% of the dataset used for parameter estimation and the 
remaining 25% of observations for validation (Elliott, Carpentier, 
et al., 2020). Thresholds were defined per species to maximize the 
Percentage of Correct Classification (PCC) using the R function 
“optimal. threshold” in the “PresenceAbsence” R package (Cantor 
et al., 1999; Manel et al., 2001; Wilson et al., 2004).

2.5  |  Species responses to pH and temperature

We evaluated the species sensitivity to pH and temperature gradi-
ents by estimating second- order polynomial terms following Antão 
et al. (2022). Species were considered nonresponsive if the calcu-
lated range of probability (referred to as the posterior distribution) 
for a species' response included zero with more than 10% probabil-
ity. Nonzero responses were then classified as positive, negative, 
or bell- shaped, depending on the sign of the derivative. A positive 
response corresponds to a species at the lower end of its niche (i.e., 
occurrences increasing along the environmental gradients), a bell- 
shaped response (derivative is positive or negative over at most 60% 
of the environmental gradient; Antão et al., 2022) corresponds to a 
species at the optimum of its niche (i.e., occurrences peaking within 
the gradients), and a negative response corresponds to a species at 
the upper end of its niche (i.e., occurrences decreasing along the gra-
dients) (Antão et al., 2022).

2.6  |  Shift in habitat suitability

We determined habitat suitability- weighted areas using annual 
jSDM projections from 1997 to 2020, calculating the sum of the 
cell areas weighted by the habitat suitability of each species (from 
0 to 1), subsequently referred to as habitat suitability areas (AHs), 
as follows:

where j is the year considered, aHs;i is the area of the spatial cell i in 
km2 calculated using the “area” function of the “raster” R package, 
Hsi is the habitat suitability in the cell, and N is the total number of 
cells. This weighted calculation limits threshold selection bias and is 
a more conservative approach, given the different range of habitat 
suitability between species (Lezama- Ochoa et al., 2023; Rubenstein 
et al., 2023).

Along the same lines, we calculated habitat suitability- weighted 
centroids (C) and centroids of the first and last decile of the habitat 
suitability based on longitudinal, latitudinal, and depth components 
for each species, subsequently referred to centroids, as follows:

where j is the year considered, Xi is the latitude, longitude, or depth at 
the center of spatial cell i, Hsi is the habitat suitability in the cell i, and N 
is the total number of cells (Weinert et al., 2016).

Then, we looked for trends in changes in habitat suitability- 
weighted areas, centroids, and habitat suitability in each cell for each 
species over time, based on Kendall's tau using the “trend” R package 
(Hipel & McLeod, 1994; Mann, 1945; Sen, 1968).

2.7  |  Temporal change in species traits composition

Community weight mean (CWM) provides information about the 
average value of a species trait within the community, considering 
species abundance. Rather than assigning a weight to each species 
based on its abundance per cell, we assigned a weight to each spe-
cies corresponding to the rate of change in the habitat suitability 
to examine changes in species trait composition for each trait in 
each cell over time. CWM values provide an overview of temporal 
changes but do not allow the strength and direction of the factors 
behind their variation to be quantified. For example, CWM increases 
when (i) the habitat suitability of species with higher species traits 
than the community increases, and (ii) the habitat suitability of spe-
cies with lower species traits than the community decreases, while 
the CWM decreases when the opposite occurs. Therefore, we also 
decomposed the four underlying processes that cause CWMs to 
change (McLean et al., 2021). We calculated the difference between 
each species' traits and the mean of the community, multiplied this 
value by each species' change in habitat suitability, and took the sum 
of the resulting values for all species within each process (McLean 
et al., 2021):

where ST is the mean trait value of the species s, CWM is the 
community- weighted mean of the trait k in the cell i in all years, 
ΔPresence is the species' change in presence (i.e., Sen's slope), and 
N the total number of species. We evaluated the accuracy of this 
approach by comparing the value of the process strengths to the (1)AHs;j =

∑N

i=1
aHs;i × Hsi

(2)CX ,j =

∑N

i=1
Xi × Hsi

∑N

i=1
Hsi

(3)PSk,i =
∑N

s=1

(

STs − CWMk,i

)

× ΔHsi
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    |  5 of 15COULON et al.

rate of change in CWM for each grid cell and for each trait (McLean 
et al., 2021; Appendix S2—Figure S9).

3  |  RESULTS

3.1  |  Species responses and pH & temperature

The three factors having the greatest influence on habitat suit-
ability	according	to	jSDM	are	SST	(mean	variance	explained = 28.7),	
quarters	and	gears	(mean	variance	explained = 24.8),	and	pH	(mean	
variance	 explained = 18.4).	 Seafloor	 parameters	 (Appendix	 S2—
Figure S10), and AMO had the lowest influence (mean variance 
explained = 0.1).	The	 random	effect	of	quarters	and	gears	 is	 spati-
otemporally structured and reflects the different environmental 
conditions in the study area as well as the different distribution of 
species. While temperature explained more than 50% of the vari-
ance in habitat suitability for L. naevus, R. montagui, and S. acanthias, 
pH explained more than 50% in habitat suitability for M. asterias and 
more than 40% for S. stellaris (Appendix S2—Figure S10).

By estimating a second- order polynomial term for pH and tem-
perature, we were able to state that all species, with the exception 
of S. stellaris, were in the optimal part of their pH niche from 1997 
to 2020 (Figure 2; Appendix S1—Table S7), with no change over 
time. While four species (A. radiata, M. asterias, R. clavata, S. stellaris) 

were in the optimal part of their thermal niche, five (L. naevus,  
R. brachyura, R. montagui, S. canicula, S. acanthias) were at the higher 
end (Figure 2; Appendix S1—Table S7), meaning that during the 
warming period of 1997–2020, these species were present in tem-
perature conditions in which their habitat suitability decreases when 
temperature increases.

3.2  |  Shift in habitat suitability

Four of the nine species habitat suitability area increased with 
an	annual	 rate	of	2620 km2 for M. asterias (p < .001),	 1886 km2 for  
R. clavata (p < .01),	1419 km2 for R. brachyura (p < .001),	and	1410 km2 
for S. stellaris (p < .001)	(Appendix	S1—Table S8). It extended approxi-
mately to 6% of the study area for M. asterias, 4% for R. clavata and  
R. brachyura, and 3% for S. stellaris from 1997 to 2020.

This extension is correlated with a centroids northward shift 
for M. asterias and R. clavata	 (respectively,	0.3 km decade−1; p < .02	
and	 .5 km decade−1; p < .05)	 as	 well	 as	 deepening	 (0.02 m decade−1 
and	 0.03 m decade−1; p < .001)	 (Appendix	 S1—Table S9). While the 
depth range of M. asterias has narrowed, with a deeper upper limit 
and a shallower lower limit, R. clavata upper longitudinal range ex-
tends to the east (Appendix S1—Table S10). Although the habitat 
suitability areas for S. canicula and A. radiata have not changed in 
size over time (Appendix S1—Table S8), their centroids have shifted 

F I G U R E  2 Species	at	the	lower,	optimal,	or	upper	end	of	their	pH	and	thermal	niche	with	at	least	90%	posterior	support	for	the	effect	
of pH in the joint species distribution models between 1997 and 2020. Non- zero responses were classified as “bell- shaped,” “increasing” 
or “decreasing” based on the sign of the derivative of the response over the observed pH gradient. The colors refer to the different species 
studied. Created with BioRe nder. com.
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northward	(0.1 km decade−1; p < .01),	and	in	depth	(0.01 m decade−1; 
p < .03)	 for	 S. canicula	 and	 westward	 (0.5 km decade−1; p < .01)	 for	
A. radiata (Appendix S1—Table S9). Although no change in the cen-
troids for R. brachyura could be detected, the upper and lower lim-
its of its range have shifted eastwards and extended northwards 
(Appendix S1—Table S10). R. montagui has also expanded eastwards 
(Appendix S1—Table S10).

L. naevus occupied the northwestern part of the study area 
to the North Channel (Appendix S4) and its habitat suitability 

decreased in the Irish Sea, English Channel, and the southern North 
Sea (Figure 3). R. montagui habitat suitability increased moderately 
in the Irish Sea, St. George's Channel, Scottish Sea, and around 
the Orkney Isles (+ 9% decade−1 cell−1, Figure 3). A. radiata and 
S. acanthias are closely associated with deeper and cooler waters 
(50–200 m;	Appendix	S4) with increased habitat suitability along 
the Norwegian Deep (+5% and +4% decade−1 cell−1, respectively, 
Figure 3), and along the continental shelf north of the British 
Isles and in the trough of the Firth of Clyde though. The habitat 

F I G U R E  3 Estimates	of	the	habitat	
suitability regression coefficient over 
time	in	each	cell	(0.111° × 0.134°)	based	
on Kendall's tau. Gray cells show no 
trend in the variation of the habitat 
suitability while orange tones indicate 
an increase in habitat suitability, and 
light blue tones a decrease (p < .05).	Each	
map depicts trends for one species. Map 
lines delineate study areas and do not 
necessarily depict accepted national 
boundaries.
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    |  7 of 15COULON et al.

suitability of R. clavata and S. canicula increased in the Western 
Channel, the southern and eastern North Sea reaching a rate of 
+10% and +20% decade−1 cell−1, respectively, and to a lesser ex-
tent in the Irish Sea and the Celtic Sea (Figure 3). In contrast, the 
decrease in their habitat suitability is maximal along the German, 
Dutch,	and	Belgian	coasts	(both	at	a	rate	of	−20%	decade−1 cell−1, 
Figure 3). Habitat suitability of M. asterias and S. stellaris has in-
creased sharply in the Irish Sea, St George's Channel, in the south-
ern and eastern North Sea, reaching rates of +20% decade−1 cell−1 
and +10% decade−1 cell−1, respectively (Figure 3). For R. brachyura, 
habitat suitability increased in the Irish Sea and west of Scotland 
up to 10% decade−1 cell−1 (Figure 3).

3.3  |  Changes in species traits composition

The CWM of trophic level has decreased in the southern North Sea, 
especially in the Dogger Bank due to increased habitat suitability for 

low trophic level species (Figure 4) (e.g., M. asterias; Figure 3). The 
CWM length at maturity increased (+6 cm decade−1 cell−1) due to an in-
crease in the habitat suitability of late maturing species (Figure 4) (e.g.,  
M. asterias, R. brachyura; Figure 3) and this was true up to the southern 
and eastern North Sea. Meanwhile, a decrease in the CWM fecundity 
was also detected in the Eastern English Channel, the Irish Sea and 
St.	Georges	Channel	(up	to	−4	offsprings decade−1 cell−1) due to an in-
crease in the habitat suitability of low fecundity species (Figure 4) (e.g., 
M. asterias, S. stellaris; Figure 3). Finally, the CWM latitudinal range 
around	the	British	Isles	has	decreased	(−0.3° decade−1 cell−1) due to an 
increase in the habitat suitability of species with a narrow latitudinal 
distribution (Figure 4) (e.g., R. montagui; Figure 3). In the North Sea, 
the British Isles, and in the western part of Celtic Sea, the CWM depth 
preference	decreased	(i.e.,	became	shallower)	by	−4 m decade−1 cell−1 
due to an increase in the habitat suitability of shallow water species 
(Figure 4; e.g., M. asterias, R. clavata; Figure 3). These changes mainly 
took place in areas of greater depth, which ultimately translates into a 
shift of shallow communities toward deeper waters.

F I G U R E  4 Rate	of	change	in	community-	weighted	mean	(CWM)	of	trophic	level,	length	at	maturity,	fecundity,	latitudinal	range,	and	
depth	preference	for	the	period	1997–2020	in	each	cell	(0.111° × 0.134°)	and	strengths	of	the	processes	leading	to	changes	in	the	CWMs.	
Gray cells show no trend in the variation of the CWMs (p > .05).	Red	tones	indicate	a	positive	CWM	rate	of	change,	while	dark	blue	tones	
indicate a negative. Yellow tones indicate a process with a positive force, while violet tones indicate a process with a negative force. Map 
lines delineate study areas and do not necessarily depict accepted national boundaries.
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4  |  DISCUSSION

Despite a relatively short period of survey (1997–2020), it appears 
that climate change has contributed to change in elasmobranch 
communities in the Northeast Atlantic. Our results are analogous to 
similar studies conducted in the Northeast Atlantic on teleost fishes 
(Gordó- Vilaseca et al., 2023), cephalopods (Oesterwind et al., 2022), 
zooplankton (Ratnarajah et al., 2023), and diatoms (Edwards 
et al., 2022), demonstrating that the ongoing climate changes are 
affecting all marine organisms without exception. We found that, of 
the nine species of skates and sharks studied, five are at the upper 
limit of their thermal niche. Furthermore, six of the nine species ex-
perienced a change in their habitat suitability through an increase in 
size and/or a shift northward, eastward, or deeper. We found that 
the changes in the species' suitable habitat led to changes in the spe-
cies trait assemblage. We detected a decrease in the mean trophic 
level, as well as an increase in size at maturity, correlated to a lesser 
extent with a decrease in fecundity. Communities have also been 
altered by the shift of species habitat suitability toward deeper wa-
ters. Finally, species with low latitudinal distribution experienced a 
shift in their suitable habitat to tight areas defined by high depths.

Although L. naevus and R. montagui were at their upper thermal 
limit, there was no change in their habitat suitability areas over time, 
despite the measured sea warming. Since L. naevus occupied the 
northwestern part of the European sea shelf and its habitat suitabil-
ity decreased with increasing temperature, it is therefore question-
able whether the species is currently undergoing a shift or whether 
the study area is not suitable for detection, knowing L. naevus has 
previously undergone deep- sea shifts in response to warming (Perry 
et al., 2005; Poulard & Blanchard, 2005). This dataset covers the 
European continental shelf and is not representative of the time 
series available worldwide (Maureaud et al., 2021). This raises con-
cerns about the ability to monitor deep- sea and offshore species and 
justifies the need to adopt a precautionary approach to the exploita-
tion of the ecosystems in which they depend (e.g., deep- sea mining 
and offshore fishing).

Within more coastal areas, we detected increased habitat suit-
ability of R. montagui off the Humber Estuary and Start Bay but 
not throughout the Greater North Sea (Ellis et al., 2004; Sguotti 
et al., 2016). It could be hypothesized that although remaining adults 
could currently withstand the environmental conditions faced in es-
tuaries (Ashcroft, 2010), eggs and juveniles may not have the same 
ability (Di Santo, 2015; Elliott, Bearup, et al., 2020; Musa et al., 2020; 
Rosa et al., 2014), thereby impeding the recolonization process that 
has been underway since the 1990s (Amelot et al., 2021). This also 
highlights the importance of long- term monitoring of spawning and 
nursery sites (Kinney & Simpfendorfer, 2009; McLean et al., 2018).

We show that A. radiata and S. acanthias are closely associated 
with deeper and cooler waters. While their habitat suitability at the 
southern edge of their distribution decreased, it increased in the 
north and on the continental slope. Although A. radiata shift was 
expected because it is already at the edge of its distribution (Ellis 
et al., 2004; Sguotti et al., 2016; Townhill et al., 2023), changes in 

the habitat suitability of S. acanthias were not expected (Ellis et al., 
2004), suggesting a greater sensitivity to temperature increased 
and potential concomitant factors that have led to a sharp decline 
in its abundance since 1980 in the southern North Sea (Murgier 
et al., 2021; Sguotti et al., 2016). Continental slope can currently 
provide a climate change refuge for these species (Ashcroft, 2010; 
Morelli et al., 2016), but it is a restricted habitat and the dispersal 
capacity and population dynamics of these species limit their ability 
to adapt and colonize new potentially suitable areas.

The habitat suitability of S. canicula and R. clavata increased 
in the western English Channel, southern and eastern North Sea 
while it decreased along the German, Dutch, and Belgian coasts. 
We depicted the continuous northward shift pattern of S. canic-
ula previously stated in several studies (Ellis et al., 2004; Rindorf 
et al., 2020; Sguotti et al., 2016; Townhill et al., 2023), coupled with 
a shift in depth. Before population depletion in the 1990s (Amelot 
et al., 2021), R. clavata was historically widespread around the British 
Isles (Ellis et al., 2004) and across the southern North Sea (Sguotti 
et al., 2016). After the 2000s, abundance increased in the North 
Sea (Rindorf et al., 2020) and in the eastern English Channel (Elliott, 
Bearup, et al., 2020), particularly with the fisheries ban on Undulate 
Ray (Raja undulata; 2009–2015), since R. undulata has a similar 
niche as R. clavata (Elliott, Bearup, et al., 2020; Elliott, Carpentier, 
et al., 2020). Therefore, while the decrease in the R. clavata habitat 
suitability could be mostly attributed to environmental changes, its 
increase could be attributed both to the current suitable environ-
mental conditions and to the beneficial effects of R. undulata fishery 
regulation (Elliott, Bearup, et al., 2020).

Concerning M. asterias, the pH is the first factor explaining the 
variance in its occurrence. The direct effect of acidification on elas-
mobranchs is limited to oviparous species (Rummer et al., 2022) with 
the exception of the Blacktip Reef Shark (Carcharhinus melanopterus) 
neonates (Bouyoucos et al., 2020; Bouyoucos & Rummer, 2020; 
Rummer et al., 2020). Because experimental studies are limited by 
available facilities, we propose studying in situ behavior (e.g., for-
aging, activity levels) or physiological (e.g., hematology, metabolic 
rates, hypoxia tolerance) responses of viviparous sharks with a wide 
distribution (e.g., C. melanopterus), including areas where seawater 
is naturally more acidic due to volcanic carbon dioxide vents (e.g., 
coral studies, Comeau et al., 2022; Hall- Spencer et al., 2008). We 
also stress the need to consider the indirect effects caused by the 
increased sensitivity of calcifying benthic invertebrates on which 
benthivorous species such as M. asterias depend (Ellis et al., 1996; 
Marshall et al., 2017), whose habitat has greatly increased toward 
the northeast of the North Sea. While there were limited historical 
records of Mustelus spp. in the southern North Sea until the 1980s 
(Ellis et al., 2004), their abundance then increased exponentially 
after 2000 in close relation to warming surface (Rindorf et al., 2020).

Finally, we showed an increase in the habitat suitability of 
S. stellaris. This trend can reflect the potential increase in the 
abundance of S. stellaris as reported by Rindorf et al. (2020) and 
ICES (2022) but can also be attributed to improved identification 
of S. stellaris in scientific surveys, as suggested by the increase in 

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17157 by IFR

E
M

E
R

 C
entre B

retagne B
L

P, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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landings that is mainly due to the improved species identification 
in fish markets in recent years (ICES, 2022). We therefore insist on 
eliminating misidentifications that may currently limit studying the 
responses of some species that look similar but have very differ-
ent species traits (e.g., Dipturus spp. complex; Iglésias et al., 2010), 
and the need to be very careful with species identification when 
working with time series. S. stellaris trend can also be explained 
by the colonization of the southwestern part of the North Sea at 
depths	of	20–50 m	while	it	was	very	rare	from	1967	to	2002	(Ellis	
et al., 2004). We found that R. brachyura was at the upper limit 
of its thermal niche, with habitat suitability increasing northward. 
Therefore, the contraction of its habitat to the south could be ex-
pected in the future.

Since we detected a decrease in the trophic level of the elas-
mobranch communities, which includes some of the highest trophic 
level species in the Northeast Atlantic (Coulon et al., 2023), food 
web dynamics under environmental change, from primary producers 
to top predators, should be investigated to detect potential food web 
imbalances (Albouy et al., 2014; Halouani et al., 2016; Nagelkerken 
et al., 2020; Sagarese et al., 2017). Similarly, the community deepen-
ing, a direct response to climate change (Dulvy et al., 2008; Punzón 
et al., 2016), may have altered ecosystem functioning, particularly in 
the southern North Sea (Murgier et al., 2021) and Celtic Sea. We also 
noted that species redistribution may currently be limited by depths 
beyond	50 m	 in	 the	North	 Sea	 due	 to	 recruitment	 failure	 (Nicolas	
et al., 2014). Although linear trends are currently being observed, a 
threshold could be expected, with an abrupt change in community 
composition (Couce et al., 2020; Monaco & Helmuth, 2011; Townhill 
et al., 2023). Concerning life- history traits, we found an increase 
in size at maturity associated, to a lesser extent, with a decrease in 
fecundity. While in the Irish Sea, this is mainly attributed to the in-
creased habitat suitability of S. stellaris, which is also the main spe-
cies that led to the decrease in the mean latitudinal range of the 
communities, the dynamics are less clear in the Celtic and North Sea, 
where we can however reasonably attribute a strong effect of the 
presence of M. asterias. Since elasmobranchs have a slower pace of 
life compared to most teleost fishes, large- bodied endemic species 
(e.g., D. intermedius, Garbett et al., 2023) are even more vulnerable 
to	climate	change	(Jones	&	Cheung,	2018). Nonetheless, some spe-
cies such as M. asterias may currently benefit from ongoing changes 
(Sguotti et al., 2016). Furthermore, we cannot exclude a time lag be-
tween observed climate changes and their effects on communities, 
given their long lifespan and slow population turnover (Thompson & 
Ollason, 2001). As a result, a decline could occur in the decades to 
come, notably due to a failure of reproduction or recruitment.

The trends currently observed could be found in sympatric 
species and/or species sharing common traits (Barnett et al., 2019; 
Coulon et al., 2023), especially endangered species. This means that 
species found along the continental shelf, such as the Sandy Ray 
(Leucoraja circularis) and the Shagreen Ray (Leucoraja fullonica), can 
respond at least as much as L. naevus and therefore deserve spe-
cial conservation attention. Similarly, it is reasonable to argue that 
coastal species such as the Small- eyed Ray (R. microocellata) and 

R. undulata have also been impacted by ongoing climate change in 
some way because of their lower ecological versatility than most of 
the species studied. It would be interesting to study a larger num-
ber of species, including teleost fishes with numerous and diverse 
traits, to identify the most sensitive combinations of traits to climate 
change. This will allow us to focus our conservation efforts without 
the need for individual species assessments.

We chose pH and temperature to study changes in habitat suit-
ability over time. Additional drivers likely to be affected by climate 
forcing (e.g., dissolved oxygen) were not included in the model be-
cause they were highly correlated with temperature and/or depth. 
We acknowledge that they may have concomitantly contributed to 
the modification of species habitat suitability. For example, some 
studies showed that dissolved oxygen could influence the distri-
bution of elasmobranchs over small spatial and temporal scales 
(Carlisle & Starr, 2009; Coffey et al., 2017; Drymon et al., 2013) and 
be responsible for increased mortality in the S. canicula embryos 
(Musa et al., 2020). Furthermore, we focused on maximum tempera-
tures in summer because we were concerned with the upper limit 
of the species' thermal niche. However, losses of suitable habitat 
in summer could potentially be offset by gains in suitable habitat 
in winter and/or spring. These environmental changes are likely to 
cause phenological changes (e.g., in spawning periods, Rogers & 
Dougherty, 2019). For migratory species (e.g., Mustelus asterias), 
modifications in spatial sex differentiation during circannual migra-
tion could also be expected (Brevé et al., 2016, 2020).

We emphasize caution, since although the habitat suitability of 
species is related to the environmental parameters, it is not synon-
ymous with presence probability. Changes in presence probability 
may be constrained by changes in environmental conditions but also 
by biotic interactions (Elliot et al., 2016; Preston et al., 2008), such 
as prey availability (Aebischer et al., 1990; Frederiksen et al., 2006). 
While we can consciously consider that interspecific relationships 
have been intrinsically taken into account where sampling has been 
conducted, we cannot reject that they may limit the probability of 
species presence where sampling has not. Fishing activity is also one 
of the main concerns in the Northeast Atlantic (Pimiento et al., 2023; 
Walker et al., 2019). In the Greater North Sea, the three main landed 
Rajidae species are R. clavata, L. naevus, and R. montagui (Amelot 
et al., 2021); hence, we cannot neglect an effect of fishing that we 
could not test in this study given the temporal range and spatial 
resolution of the fishing data available. Furthermore, our study did 
not test the possible degradation of essential habitats due to human 
pressures (e.g., the effect of bottom trawling on the productivity of 
marine fish; Collie et al., 2017). We can only stress the potential con-
comitant effects of climate change, fishing and habitat degradation. 
It is crucial to consider this new factor when implementing man-
agement measures, knowing species' sensitivity to both overfishing 
and climate change is higher at their range boundaries (Fredston- 
Hermann et al., 2020; Predragovic et al., 2023; Yan et al., 2021).

Long neglected in environmental matters, a growing number of 
studies, including this one, tend to demonstrate the vulnerability of 
elasmobranchs to climate change in addition to their vulnerability to 
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anthropogenic pressures. As they are keystone species for ecosys-
tem functioning, it is urgent to review our operating modes, from our 
habits to the management measures in place. These changes would 
then allow the necessary rebound of elasmobranchs to converge to-
ward more resilient ecosystems.
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