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d UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, Ifremer, INRAE, Rennes, France 
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A B S T R A C T   

Differences in diet quality and quantity may influence trophodynamic processes in small pelagic fish. Yet, we 
currently lack direct and comprehensive information on how large-scale areas differ in dietary resources and the 
degree to which these differences influence fish physiological performances (i.e., growth), ultimately influencing 
entire fish stocks. Fatty acid composition is one of the bioindicator that can provide insights on how dietary 
provisions of essential lipids influence the structure of the membrane fatty acids and subsequently fish growth 
among contrasted habitats. To address this issue, we conducted a large-scale sampling of European sardine 
(Sardina pilchardus) a species with major socio-economic importance that plays a key role as an energy pathway 
linking lower and upper trophic levels in pelagic ecosystems. We sampled individuals from the Gulf of Lions 
(Mediterranean Sea), the Bay of Biscay, and the English Channel (Atlantic Ocean) of age-0 to − 3 + and found 
clear spatial differences in the quantity and quality of dietary lipids. Sardines from the Gulf of Lions fed on 
trophic food web based on dinoflagellates, with greater proportions of DHA (22:6n-3; docosahexaenoic acid) in 
reserve lipids. Sardines’ reserve lipids had important proportions of zooplankton biomarkers in the English 
Channel (e.g., 20:1n-9 and 20:1n-11), and diatoms biomarkers such as 16C fatty acids and EPA (20:5n-3; 
eicosapentaenoic acid) in the Bay of Biscay. The relationship between sardines’ membrane fatty acid composition 
and individuals’ length changed progressively with individuals’ age, a result consistent across areas, indicating 
ontogenetic abilities between largest and smallest individuals. Before maturity, largest sardines had higher DHA 
proportions, followed after maturity by higher proportions of ARA (20:4n-6; arachidonic acid), EPA and DPA 
(22:5n-3; docosapentaenoic acid). Finally, the study highlights the importance of considering the quality and 
diversity of dietary resources to better understand how individuals cope with their physiological needs. It is thus 
important to consider combined aspects (e.g., diet quality and diversity, influence of particular nutrients on 
length) to better understand the underlying mechanistic processes influencing fish physiology, likely cascading to 
different expression of their life history traits and affecting fisheries stocks.   

1. Introduction 

The flow of essential nutrients across trophic levels is a key process 
for the ecosystem functioning and stability. Among these nutrients, 
lipids have important biological roles in growth and reproduction of 
vertebrates (Vassallo-Agius et al., 2001; Fuiman and Ojanguren, 2011). 
More specifically, long-chain polyunsaturated fatty acids (LC-PUFA, ≥
C20), such as ARA (arachidonic acid, 20:4n-6), EPA (eicosapentaenoic 

acid, 20:5n-3), and DHA (docosahexaenoic acid, 22:6n-3) cannot be 
biosynthesized by marine fish, while their deficiency can impair several 
life history traits and other components of performances (Hou and 
Fuiman, 2021; Hulbert et al., 2014; Závorka et al., 2023). Once assim
ilated by animals, dietary fatty acids can either be incorporated in cell 
membrane composition as phospholipids, or be stored in reserve tissues 
mostly as triglycerides (Arts et al., 2001; Hulbert et al., 2014; Martin- 
Creuzburg et al., 2012). In contrast to fatty acids used as energy 
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stores, those incorporated into cell membranes play a crucial role in the 
functioning of organisms by maintaining the integrity of cell membranes 
and metabolic activity (Hochachka and Somero, 2002; Hulbert et al., 
2014). In pelagic fish, multiple experimental studies have shown that 
decreasing quantity and changing composition of dietary LC-PUFA 
caused changed in membrane fatty acid composition (Martin et al., 
2013) later impairing individuals’ growth (teleost fish, Tocher, 2010) 
and reproduction capacities (Common snook, Centropomus undecimalis, 
Yanes-Roca et al., 2009). Therefore, understanding how the variation of 
key dietary molecules influences fish health can help to understand the 
processes underpinning populations, communities, and ecosystems 
dynamics. 

Small pelagic fish, such as the European sardine (Sardina pilchardus, 
Walbaum 1792) are important sources of vital dietary molecules in 
pelagic food webs, linking lower and upper trophic levels (Coll et al., 
2006; Cury et al., 2000). They also present health benefits for human 
consumption by providing essential trace elements and LC-PUFA 
(Mathieu-Resuge et al., 2023), as such, play important roles in both 
economic and food security sectors. In the last decades, multiple studies 
have shown contrasted sardine population status among French coastal 
shelf areas. In the Bay of Biscay and the Gulf of Lions, the body condi
tion, growth rate, and size-at-ages of sardines have decreased substan
tially (Boëns et al., 2021; Saraux et al., 2019; Véron et al., 2020). In 
addition to the high mortality of older individuals (Duhamel et al., 
2016), these processes led to a fall in populations’ biomass and hence 
exploitable stocks, especially in the Bay of Biscay (Véron et al., 2020). 
Boëns et al. (2021) recently shown that there is high selective mortality 
in sardines of the Bay of Biscay, with individuals growing fast in their 
first year having shorter lifespans than slower growing individuals. In 
the English Channel, the monitoring of the phenotypic characteristics of 
sardine started since the set-up of the PELTIC survey in 2012 (Doray and 
Boyra, 2021) and no signs of morphometric nor biomass decline over 
this relatively short time span has been observed (ICES, 2022; Menu 
et al., 2023). Sardines of the English Channel are generally larger than 
those of the Bay of Biscay, likely due to the greater primary and sec
ondary productivity of the English Channel and/or a selection pressure 
in favor of faster-growing and reserve-building individuals (Gatti et al., 
2018). Overfishing and pathogens are unlikely to play a key role in the 
changes of these phenotypic characteristics because these changes in 
growth were not related to stocks’ harvest rate (Saraux et al., 2019; 
Boëns et al., 2021; Van Beveren et al., 2016), but bottom-up processes 
are largely expected to be an important driver of these declines (Biton- 
Porsmoguer et al., 2020; Brosset et al., 2016; Menu et al., 2023; Thoral 
et al., 2021). More specifically, the variability in growth across regions is 
consistent with dietary differences in these respective environments, 
with the effect of zooplankton dominating the effect of temperature 
(Menu et al., 2023). Changes in the taxonomic composition or pheno
typic characteristics of the resources that fish feed on, such as observed 
in the Mediterranean Sea (Brosset et al., 2016) and the Bay of Biscay 
(Grandremy et al., 2023), may result in a fluctuation in lipid quality (i.e., 
in term of LC-PUFA contents, (Pethybridge et al., 2014, Hixson et al., 
2015)). Therefore, the alteration in quantity (i.e., in terms of lipid 
contents) and more importantly in quality (i.e., in term of LC-PUFA 
composition) of food resources available to sardines among areas are 
likely part of the explanation to the changes in sardine life history traits 
(Biton-Porsmoguer et al., 2020; Grandremy et al., 2023; Menu et al., 
2023). In the context of contrasting sardine population health status, 
investigating their fatty acids’ compositions should help to elucidate 
dietary and physiologically differences among French coastal shelf 
areas. 

The study of fatty acid profiles has to date largely been limited to 
single population (e.g., Bertrand et al., 2022) and/or focusing on one 
specific phenotypic variability (e.g. few age classes, few individuals, 
short time span of data collection), leading to a sparse representative
ness at larger spatial scales. Other studies focused on community level 
and often relied on a limited sampling (e.g., Biton-Porsmoguer et al., 

2020), while inter-individuals’ variances in lipid and more specifically 
in fatty acid contents can be important (Herceg Romanić et al., 2021; 
Pethybridge et al., 2014). Moreover, these previous studies described 
the total fatty acid contents of fish (e.g., Pacetti et al., 2013, Brosset 
et al., 2015) while this does not allow the characterisation of the reserve 
vs membrane fatty acid composition. Hence total fatty acid contents may 
reflect the food source available (i.e., fatty acids contained in reserve 
lipids) or the fish physiology (i.e., fatty acids contained in membrane 
lipids) and teasing apart these aspects might be critical if we are to 
understand the processes driving changes in small pelagic fish charac
teristics. These markers are invaluable to examine whether trophic 
bottom-up processes are acting on the phenotype of targeted species. 
Therefore, a broader approach is clearly needed to enable direct com
parisons of reserve and membrane fatty acids’ compositions among 
sardine populations inhabiting contrasted environments. Thus, we 
conducted a large-scale sampling (with individuals from the Gulf of 
Lions, the Bay of Biscay and the English Channel) and included fish of 
different stages of life (from age-0 to − 3 + ). We tested whether the total 
reserve lipid contents and its fatty acid composition, reflecting both 
quantity and quality of the sardines’ diet, differed among the three 
contrasted areas. Then, how the membrane fatty acids’ composition, 
which is a key parameter determining fish physiological processes will 
explain fish total length depending on the different environmental 
conditions and while ageing. 

2. Material and methods 

2.1. Study areas, fish and tissues sampling 

Sardines were collected during scientific surveys in September and 
October 2020 in three areas (Brosset et al., 2023); the Bay of Biscay (n =
70; EVHOE survey https://doi.org/10.18142/8), the English Channel (n 
= 98; CGFS survey https://doi.org/10.18142/11), and in the Gulf of 
Lions (n = 109; PELMED survey https://doi.org/10.18142/19). In each 
area (Fig. 1), fish were sorted and total length, weight, age, sex, and 
sexual maturity stage were estimated when possible (Table 1). Dorsal 
fillets were removed on-board and stored at − 80 ◦C. Once onshore, a 
piece of white muscle was placed into vials to be stored back at − 80 ◦C. 
For each individual, two otoliths sagittae were extracted on board and 
mounted in leukit for age reading. Fish age were estimated under a 
binocular microscope and classified in 4 age categories: age-0, age-1, 
age-2 and age-3 +. The moisture content of white muscle samples 
(expressed in percentage of wet weight) was estimated by weighing 
before and after a 72-hours freeze-drying (Christ Alpha 1–2 LD plus 
lyophilizer). 

2.2. Fatty acids analyses 

After freeze-drying, muscle samples were homogenized with a 
manual potter and stored at − 80 ◦C before lipid extraction. To this end, 
approximately 10 mg of the homogenized powder was placed in pre- 
combusted glass vials to which we added 6 ml of solvent mixture 
(CHCl3:MeOH, 2:1, v:v). As described in Mathieu-Resuge et al. (2023), 
lipid extracts were flushed under nitrogen gas, sonicated, vortexed and 
rested 24 h to ensure complete lipid extraction. Briefly, an aliquot of 
total lipid extract was used to separate neutral lipids (i.e., reserve lipids) 
and polar lipids (i.e., membrane lipids) by solid phase extraction at low 
pressure. Subsequently, after adding C23:0 as internal standard (free 
fatty acid form), both lipid fractions were transesterified, first with KOH 
and then with H2SO4, to form fatty acid methyl ester (FAME) that were 
then recovered with hexane. FAME were analyzed on a TRACE 1300 gas 
chromatograph (Thermo Scientific) programmed in temperature and 
equipped with a splitless injector, a ZB-WAX column (30 m × 0.25 mm 
IDx0.2 μm) and a flame-ionisation detector, using hydrogen as vector 
gas. Obtained chromatograms were processed with Chromelon 7.2 
(Thermo Scientific). Sixty-six FAME were identified by comparing their 
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retention time with references from commercial mixtures (37 compo
nents FAME, PUFA1 and PUFA3, Sigma) and from house-made stan
dards. Quantification of FAME in µg was based on the internal standard 
recovery, and then expressed in mg g− 1 of dry weight. Fatty acids 
relative proportions were expressed as mass percentages (%) of the total 
identified fatty acids. 

2.3. Statistical analyses 

We firstly examined the overall difference in reserve lipid contents 
among sampling areas (i.e., Gulf of Lions, Bay of Biscay, and English 
Channel) using a Kruskal–Wallis tests (KW, as normality distribution and 
homoscedasticity of data were not met) followed by Conover–Iman 
multiple comparisons applying a Bonferroni adjustment method (post- 
hoc tests). To compare overall reserve and membrane fatty acid profiles 
among areas, we used a permutational variance analyses (PERMA
NOVA). Comparison between each individual fatty acid contents 
(expressed in mg g− 1 dw) among areas were ran using Kruskal–Wallis 
tests and post-hoc comparisons as previously described. We then per
formed principal component analyses (PCA) to quantify the overall 
variation in both reserve and membrane fatty acid compositions 
(expressed in %) between sampling areas. We used a similarity of per
centages analysis (SIMPER) to identify the most discriminant fatty acids 
in reserve or membrane fatty acids; fatty acids accounting for more than 
90 % of the dissimilarity were represented on PCA. We then extracted 
the two first principal components (PC1 and PC2) summarizing the 
overall fatty acid composition variability for subsequent analyses. Size 
difference of ellipses containing 95 % of individual, proxy of fatty acid 
composition diversity, were then compared using a betadisper analysis 

followed by an ANOVA. These analyses were performed separately for 
each PCA (individually ran on reserve and membrane fatty acids). 

In a second step, we used linear models (LM) to test the relationship 
between reserve and membrane fatty acid composition (PCs) and the 
total length of sardines. These relationships have been tested for each 
age-group, sex, and sampling area. Total length has been chosen over 
size class to (1) not bias the study by the fact that all size categories are 
not equally represented in each area and (2) not decrease statistical 
power of analyses. Later, to determines whether relationships where 
consistent between sampling areas and ages, we included two-way 
interaction terms for sampling areas and age with PC1 and PC2. We 
selected the best model following a stepwise-backward selection and 
checked that Akaike’s information criterion (AIC) clearly declined at 
each step (i.e., ΔAICc < 2, Anderson and Burnham, 2004). All statistical 
analyses were performed with R v.4.2.2 (R Core Team, 2020). Fatty acid 
values are given as mean ± SE, and statistical tests were considered 
significant at p < 0.05. 

3. Results 

3.1. Sardines’ reserve lipids and their fatty acid composition among areas 

The sampled sardines differed in total length and weight, with 
heavier and larger individuals fished in the English Channel, followed by 
individuals from the Bay of Biscay and from the Gulf of Lions (Table 1). 
The total reserve lipid content (in mg g− 1) of sardines varied among 
sampling areas (KW test: χ2 = 124.6, df = 2, p < 0.001; Fig. 1 and 
Table 2). Reserve lipid contents in sardines from the Bay of Biscay were 
on average 3.3- and 6.4-times higher compared to sardines from the 
English Channel and the Gulf of Lions, respectively (Table 2). 

The fatty acid composition (expressed in %) of sardines’ reserve 
lipids varied significantly among the three areas (PERMANOVA: df = 2, 
F = 217.54, r2 = 0.61, p < 0.001) and these differences are highlighted 
in the PCA, separating the three areas (Bay of Biscay, Gulf of Lions, and 
English Channel, Fig. 2a). In this analysis, the first principal component 
(PC1) explained 23.4 % of the variance in fatty acid proportions and was 
positively related to 16:2n-4, 16:3n-4, 16:4n-1 and C18, C20 and C22 
PUFA such as 18:2n-4,18:4n-3, 20:3n-6, 20:4n-3, EPA, and 22:5n-3 
(DPA, docosapentaenoic acid) (Fig. 2a and contributions of the 

Fig. 1. Geographical distribution of the mean total reserve lipid content (mg g-1 dw) of individual sardines’ white muscle per sampling station. The size of the dots 
represents the mean total reserve lipids and the color their standard deviation associated to each sampling station. 

Table 1 
Physical parameters (mean ± SD) measured on the European sardine (Sardina 
pilchardus) from the three studied facades.   

English Channel Bay of Biscay Gulf of Lions 

Nb of fish 98 70 109 
Age (y) 1.9 ± 0.8a 1.4 ± 0.9b 1.6 ± 0.9b 

Weight (g) 73.5 ± 20a 40.2 ± 13b 13.1 ± 3.7c 

Total length (mm) 204.7 ± 19.8a 170.9 ± 21.4b 121.7 ± 10.7c  
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different reserve lipid fatty acids are described in Table 3). PC1 was also 
related to decreasing proportions of SFA (e.g., 14:0, 15:0 and 17:0), 
16:3n-6, 22:5n-6, and DHA (Table 3). The second principal component 
(PC2) explained 12.4 % of the variance (Fig. 2a) and was related to 
increasing proportions of 17:0, 16:1n-7, 16:2n-4, 16:3n-4 and 
decreasing proportions of 18:0, 22:0, 18:1n-9, 20:1n-9, DPA, and DHA 

(Table 3). The spatial structure in fatty acid proportions was clear in this 
analysis as sardines sampled in the Bay of Biscay had generally positive 
PC1 and PC2 values, sardines sampled in the English Channel had 
generally positive PC1 values and negative PC2 values, and sardines 
sampled in the Gulf of Lions had negative PC1 values (Fig. 2a). 

As marked by the difference in ellipses sizes, representing the 

Table 2 
Reserve and membrane fatty acid composition (mean ± SD; mg g− 1) of the European sardine (Sardina pilchardus) from the three studied facades. Different letters 
indicate significant differences between facades among reserve and membrane lipids, respectively (significant level p < 0.05, tested by Kruskal Wallis, followed by 
followed by Conover–Iman multiple comparisons). Only the FAs accounting for > 1 % of total FA in at least one sample are shown, and mean values below 0.1 are 
reported as 0 ± 0.   

Reserve lipids Membrane lipids  

English Channel Bay of Biscay Gulf of Lions English Channel Bay of Biscay Gulf of Lions 

14:0 3 ± 2.2 a 16.2 ± 7.2b 3.1 ± 3.2 a 0.1 ± 0 a 0.1 ± 0.1b 0.1 ± 0c 

15:0 0.4 ± 0.3 a 1.5 ± 0.5b 0.4 ± 0.4 a 0 ± 0 0 ± 0 0.1 ± 0 
16:0 12.8 ± 8.4 a 41.9 ± 16.7b 6.6 ± 5c 3.6 ± 0.7 a 4.6 ± 1.1b 4 ± 0.6c 

17:0 0.3 ± 0.2 a 1.3 ± 0.4b 0.3 ± 0.2 a 0 ± 0 0.1 ± 0 0.1 ± 0 
18:0 3.4 ± 2.3 a 9.9 ± 3.9b 1.3 ± 0.9c 0.7 ± 0.2 a 0.9 ± 0.3b 0.7 ± 0.1 a 

20:0 0.4 ± 0.3 a 2.1 ± 1.1b 0.1 ± 0.1c 0 ± 0 a 0.1 ± 0b 0 ± 0c 

Σ SFA 20.6 ± 13.7 a 74 ± 29.1b 12.1 ± 9.7c 4.5 ± 0.8 a 5.9 ± 1.4b 5 ± 0.7c 

16:1n-7 3.2 ± 2.7 a 15.6 ± 8b 2.4 ± 2.1c 0.1 ± 0 a 0.2 ± 0.1b 0.1 ± 0c 

18:1n-7 1.8 ± 1.5 a 6.2 ± 4.8b 0.7 ± 0.5c 0.2 ± 0 a 0.3 ± 0.1b 0.2 ± 0.1c 

18:1n-9 7 ± 5.9 a 17.4 ± 10.4b 1.5 ± 1.1c 0.3 ± 0.1 a 0.5 ± 0.1b 0.3 ± 0.1c 

20:1n-9 1.4 ± 1 a 4.6 ± 3.8b 0.5 ± 0.6c 0 ± 0 0.1 ± 0 0 ± 0 
22:1n-9 0.3 ± 0.2 a 1.5 ± 3.3b 0.1 ± 0.1c 0 ± 0 0 ± 0 0 ± 0 
22:1n-11 0.9 ± 1.2 a 3.1 ± 4.5b 0.6 ± 0.8 a 0 ± 0 0 ± 0 0 ± 0 
24:1n-9 0.5 ± 0.3 a 1.5 ± 0.6b 0.2 ± 0.2c 0 ± 0 0.1 ± 0 0 ± 0 
Σ MUFA 16.4 ± 12 a 53.5 ± 24.6b 6.5 ± 5.3c 0.8 ± 0.2 a 1.3 ± 0.3b 0.8 ± 0.1 a 

16:2n-4 0.2 ± 0.2 a 1.3 ± 0.8b 0.1 ± 0.1c 0 ± 0 0 ± 0 0 ± 0 
16:3n-3 0.1 ± 0.1 a 0.5 ± 0.2b 0.1 ± 0.1c 0 ± 0 0 ± 0 0 ± 0 
16:3n-4 0.2 ± 0.3 a 1.1 ± 0.8b 0.1 ± 0.1c 0 ± 0 0 ± 0 0 ± 0 
16:4n-1 0.3 ± 0.4 a 1.8 ± 1.4b 0.1 ± 0.1c 0 ± 0 a 0.1 ± 0b 0 ± 0c 

18:2n-6 (LIN) 0.5 ± 0.3 a 2.7 ± 1.2b 0.4 ± 0.3 a 0 ± 0 a 0.1 ± 0b 0.1 ± 0b 

18:3n-3 (ALA) 0.6 ± 0.4 a 2.4 ± 1.2b 0.2 ± 0.2c 0 ± 0 a 0.1 ± 0b 0 ± 0c 

18:4n-3 (SDA) 1.2 ± 0.8 a 5.9 ± 3b 0.4 ± 0.3c 0 ± 0 a 0.1 ± 0b 0 ± 0c 

20:4n-3 0.5 ± 0.4 a 1.8 ± 0.8b 0.2 ± 0.1c 0 ± 0 a 0.1 ± 0b 0 ± 0c 

20:4n-6 (ARA) 0.5 ± 0.4 a 1.4 ± 0.6b 0.3 ± 0.2c 0.2 ± 0.1 a 0.2 ± 0.1 ab 0.2 ± 0.1b 

20:5n-3 (EPA) 6.4 ± 4.8 a 25.3 ± 12.5b 2.8 ± 2c 1.2 ± 0.3 a 1.9 ± 0.6b 0.9 ± 0.2c 

21:5n-3 0.2 ± 0.2 a 1 ± 0.5b 0.1 ± 0.1c 0 ± 0 0 ± 0 0 ± 0 
22:5n-3 (DPA) 0.9 ± 0.7 a 2.9 ± 1.3b 0.3 ± 0.2c 0.1 ± 0 a 0.2 ± 0.1b 0.1 ± 0c 

22:6n-3 (DHA) 8.5 ± 4.8 a 28 ± 9.8b 5.2 ± 3.3c 6.6 ± 1.4 a 8.6 ± 2.5b 7.9 ± 0.9b 

Σ PUFA 21.6 ± 14.1 a 82.5 ± 33.4b 11.1 ± 7.5c 8.5 ± 1.6 a 11.5 ± 3.2b 9.7 ± 1.2c 

Σ Branched 0.5 ± 0.4 a 1.8 ± 0.7b 0.3 ± 0.3c 0 ± 0 0 ± 0 0 ± 0 
Total 59.5 ± 40.1 a 213.2 ± 86b 30.1 ± 22.1c 13.9 ± 2.4 a 18.9 ± 4.9b 15.6 ± 2c 

SFA = Saturated fatty acids; MUFA = Monounsaturated fatty acids; PUFA = Polyunsaturated fatty acids; Branched = iso15:0, anteiso15:0, iso16:0, iso17:0 and 
anteiso17:0. 

Fig. 2. Principal component analysis and associated ellipses discriminating the Gulf of Lions, Bay of Biscay, and English Channel, based on (a) neutral and (b) 
membrane fatty acid composition (expressed in %) of white muscle of sardine. Only fatty acids that account for >90 % of the dissimilarity between areas are shown 
(Simper test). 
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variation within each sampling area (Fig. 2a), there were significant 
differences in the dispersion of the fatty acid composition of reserve 
lipids among sampling areas (betadisper: df = 2, F = 5.35, p = 0.005; 
ANOVA: df = 2, F = 287.04, r2 = 0.67, p = 0.001). Sardines of the Bay of 
Biscay had a significantly greater heterogeneity of their reserve lipids’ 
fatty acid composition compared to individuals from the English 
Channel (Tukey test: diff = 0.54, p = 0.027) and the Gulf of Lions (Tukey 
test: diff = -0.63, p = 0.006). However, individuals from the English 
Channel and the Gulf of Lions did not present significative differences in 
the dispersion of their fatty acid compositions of reserve lipids (Tukey 
test: diff = -0.09, p = 0.87). 

3.2. Differences in membrane fatty acids among areas 

Overall, sardines from the Bay of Biscay had 1.4- and 1.2-times 
higher contents of membrane fatty acids, compared to sardines from 
the English Channel and the Gulf of Lions, respectively (Table 2). The 
main LC-PUFA in membrane lipids of sardines were EPA and DHA. EPA 
contents were 1.6 and 2.1 times higher in sardines from the Bay of 
Biscay. No significant differences in DHA content were observed with 
sardines from the Gulf of Lions, while the sardines from the English 
Channel had the lowest DHA values observed in membrane lipids 
(Table 2). 

The fatty acid composition of sardines’ membrane lipids varied 
among sampling areas (PERMANOVA: df = 2, F = 38.37, r2 = 0.22, p <
0.001). The differences that we observed in membrane lipids were 
broadly consistent with those of reserve lipids, where the sardines from 
the Bay of Biscay were mainly opposed to sardines from the Gulf of Lions 
on PC1, while sardines from the English Channel were discriminated 
from the two others areas with lower PC2 values (Fig. 2b). PC1, 
explaining 22.2 % of the variance, was primarily related to increasing 
proportions of 16:2n-4, 16:3n-4, 18:1n-9, 18:2n-4, 18:4n-3, 20:1n-7, 
20:3n-6, 20:4n-3, EPA, and DPA (Table 3). PC1 was also related to 
decreasing proportions of 22:1n-7 and DHA (Table 3). PC2 explained 
13.5 % of the variance and was related to increasing proportions of 17:0, 
16:2n-6, 16:3n-6, 18:1n-7DMA, 18:2n-6, and 18:3n-4 (Table 3). 

The length of sardines among different age was significantly related 
with both PC1 and PC2 of the PCA run with membrane fatty acids but 
not with reserve fatty acids (no significant relationship with the reserve 
fatty acids were found; Supplementary Table 1). These relationships 
strongly varied between sardine’s age, an effect consistent across sam
pling areas as shown by the non-significance of the interactions between 
PC1, PC2 and area (Table 4; contributions of the different polar lipid 
fatty acids are described in the Table 3). The model explained 92.3 % of 
the variance in sardines’ length that had a negative relationship with 
PC1 at age-0, and this slope became progressively positive as sardines 
aged (Fig. 3). Thus, the largest individuals at age-0 and smallest in
dividuals at age-3 + had higher 22:1n-7 and DHA proportions, and 
conversely smallest age-0 and larger individuals at age-3 + had greater 
proportions of 16:2n-4, 16:3n-4, 18:1n-9, 18:2n-4, 18:4n-3, 20:1n-7, 
20:3n-6, 20:4n-3, EPA, and DPA (Fig. 3a and d). The length of sardines 
was also positively related to PC2 at age 0 (Fig. 4), indicating that largest 
individuals at age-0 had higher 17:0, 16:2n-6, 16:3n-6, 18:1n-7DMA, 
18:2n-6, 18:3n-4 proportions (Fig. 4a). The magnitude of this relation
ship decreased at age-1 but remained positive (Fig. 4b), and became 
negative in sardines of aged 2 and 3+ (Figs. 4c and d). 

5. Discussion 

Sardines inhabiting the Gulf of Lions, Bay of Biscay, and the English 
Channel had clearly different fat contents highlighting contrasted access 
to food quantity. The quality of their diet also clearly differed, as the 
variation in the composition of LC-PUFA in reserve lipids was substan
tial. Considering the bioindicators studied, membrane fatty acid 
composition was one of the main factors explaining sardines’ length and 
the strength and direction of this relationship changed progressively 
with age, suggesting ontogenetic abilities between largest and smallest 
individuals of a same age. Finally, the relationship between fish length 
and membrane fatty acid composition displays similar patterns across 
areas, suggesting strong specific physiological acclimatation of fish 
independently of environmental conditions. 

5.1. Sardines have different access to food resources depending on their 
habitat 

This study demonstrates spatial variations in lipid reserve contents 
among sardine populations. Sardines from the Bay of Biscay had the 
greatest total reserve lipid contents, followed by sardines from the En
glish Channel, and sardines from the Gulf of Lions. Reserve lipids are the 
principal source of energy mainly stored by organisms after dietary 
assimilation (Tocher, 2003). Therefore, sardines from the different 
studied areas clearly did not have access to the same quantity of food 
resources and/or some sardines started to use their lipidic reserves to 
invest to other tissues, as this could be observed during reproduction 
(Albo-Puigserver et al., 2020; Garrido et al., 2007; McBride et al., 2015). 
The spawning phenology of sardines in these areas differs, peaking in 
January (in the Gulf of Lions), April (in the Bay of Biscay), and June (in 
the English Channel), with a putative second spawning period reported 
in the Bay of Biscay and the English Channel in September-October 

Table 3 
Contributions of the different reserve and membrane lipid fatty acids to the two 
first PCA components. Only the most important fatty acids for each dimension 
(≥0.5) are shown and are the most important fatty acids for each dimension 
(≥0.6) are in bold.   

Reserve lipids Membrane lipids  

PC1 PC2 PC1 PC2 

iso17:0 0.073 − 0.131 0.578 0.214 
14:0 ¡0.598 0.538 0.529 0.384 
15:0 ¡0.825 0.204 − 0.052 0.516 
17:0 ¡0.781 0.042 0.031 0.687 
18:0 0.173 ¡0.606 0.543 0.103 
19:0 − 0.372 0.124 − 0.059 0.589 
20:0 0.553 0.238 0.573 0.126 
21:0 − 0.342 0,597 0.001 − 0.165 
22:0 − 0.186 ¡0.556 − 0.351 0.028 
24:0 ¡0.598 0.538 0.147 0.533 
16:0DMA ¡0.580 − 0.152 0.279 0.594 
16:1n-5 − 0.456 0.616 − 0.291 0.404 
16:1n-7 − 0.178 0.702 0.549 0.318 
16:1n-9 0.505 − 0.232 0.029 − 0.044 
16:2n-4 0.286 0.685 0.817 0.204 
16:2n-6 − 0.469 0.091 0.544 0.656 
16:3n-4 0.501 0.558 0.726 0.229 
16:3n-6 ¡0.762 0.032 − 0.259 0.692 
16:4n-1 0.708 0.490 0.254 0.390 
18:1n-7DMA NA NA 0.305 0.636 
18:1n-9 0.685 − 0.467 0.667 − 0.272 
18:1n-9DMA NA NA 0.529 0.352 
18:2n-4 0.727 0.260 0.782 − 0.177 
18:2n-6 − 0.508 0.456 − 0.225 0.645 
18:3n-4 − 0.047 0.416 − 0.207 0.627 
18:3n-6 0.128 0.279 0.577 0.373 
18:4n-3 0.617 0.409 0.747 − 0.101 
20:1n-7 0.291 − 0.426 0.656 0.191 
20:2n-9 0.618 0.529 NA NA 
20:3n-6 0.644 − 0.050 0.696 0.087 
20:4n-3 0.763 − 0.007 0.720 − 0.324 
20:5n-3 (EPA) 0.667 0.356 0.708 − 0.451 
21:5n-3 0.846 0.206 0.475 − 0.327 
22:1n-7 0.212 − 0.364 ¡0.605 0.414 
22:4n-6 − 0.064 0.294 0.313 0.541 
22:5n-3 (DPA) 0.573 − 0.316 0.637 − 0.510 
22:5n-6 − 0.701 − 0.175 − 0.574 0.399 
22:6n-3 (DHA) ¡0.664 − 0.175 ¡0.878 0.134 
Variance 15.71 8.48 12.40 7.68 
% of variance 23.81 12.84 22.15 13.71 
Cumulative % of variance 23.81 36.65 22.15 35.86  
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(Menu et al., 2023; Saraux et al., 2019). However, none of the sampled 
fish was reproductively active at the time of sampling; sardines were 
sexually mature but displayed no gonadic development. As sardines 
produce multiple egg batches during the spawning season (i.e. indeter
minate spawning), their vitellogenesis period is relatively short (Garrido 
et al., 2007) making it unlikely that the early onset of egg production in 
the Gulf of Lions had a substantial influence on our results. Therefore, 
the differences in the quantity of reserve lipids more likely reflect dif
ferences in the amount of food resources available in these different 
habitats, which can be themselves subject to seasonal changes (Albo- 
Puigserver et al., 2017). Lower lipid reserve contents can result to va
riety of physiological conditions of fish, likely cascading to a decline in 
the expression of life history traits (e.g., growth and reproduction). 
However, it has been suggested that the reduction in size of small pelagic 
fish is linked to a decline in food quality rather than quantity (Beauvieux 

et al., 2022; Queiros et al., 2019; Thoral et al., 2021). Therefore, there is 
a clear need to better describe differences in food quality among con
trasting areas where fish do not dispose to the same access to food 
resources. 

Sardines appeared to have access to variable proportions of essential 
nutrients (i.e., in term of LC-PUFA composition) depending on their 
habitat. Reserve lipids’ fatty acid profiles reflect baseline food web and 
can reveal dominant food sources (Dalsgaard et al., 2003). We found 
that sardines fished in the Bay of Biscay had reserve lipids primarily 
composed of fatty acid reflecting trophic food webs based on phyto
plankton communities composed of diatoms, as highlighted by the 
important proportions of EPA, and 16C fatty acids (i.e., 16:1n-7, 16:2n- 
4, 16:2n-7, 16:3n-4, 16:4n-1; Cañavate, 2019). Diatoms represent the 
highest abundance and biomass values of total phytoplankton in the Bay 
of Biscay (Muñiz et al., 2018). Previous studies have also shown that 

Table 4 
Identification of the most parsimonious models quantifying the effect of the age, sex, area, and the three first axis of PCA performed on membrane lipid fatty acids on 
the sardines’ total length.  

Response variable Main effects Dropped 
variable 

Retained 
variables 

Parameter estimate 
(SE) 

t-value Deviance F- 
value 

P 

Sardine total 
length 

(PC1 + PC2)*Age+(PC1 + PC2)*Area + Sex Sex  NA NA 506 2.46  0.10  

(PC1 + PC2)*Age+(PC1 + PC2)*Area PC2:Area  NA NA 73 0.35  0.71  
(PC1 + PC2)*Age + PC1:Area + Area PC1:Area  NA NA 108 0.52  0.59  
PC1 þ PC2 þ Age þ Area þ PC1:Age þ
PC2:Age  

PC1 − 2.58 − 2.142 NA NA  0.02    

PC2 7.41 2.90 NA NA  0.004    
Age NA NA 42,191 137  <0.001    
Area NA NA 79,882 389  <0.001    
PC1:Age NA NA 3246 10.6  <0.001    
PC2:Age NA NA 3941 12.8  <0.001  

Fig. 3. Relationship between fish length (mm) and the first principal component (PC1) of PCA built using membrane fatty acids. Plots are separated by sardine ages: 
age 0 (a), age 1 (b), age 2 (c), and age 3+ (d). 
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diatoms can compose part of sardines’ diet (Costalago et al., 2014; Le 
Bourg et al., 2015) and their predominance in sardines’ diet coincides 
with observed autumnal blooms in this area (Lavender et al., 2008). 
Sardines of the Gulf of Lions fed on a trophic food web based on di
noflagellates, as shown by the higher proportions of DHA in their reserve 
lipids (Dalsgaard et al., 2003; Pethybridge et al., 2014). We also found 
that they had nine times lower EPA contents than those found in the Bay 
of Biscay. Previous studies have shown that the diet of Mediterranean 
sardines were based on diatom enriched in EPA in the early 2010′s, some 
studies revealed that a switch to a diet predominantly based on di
noflagellates has occurred (Biton-Porsmoguer et al., 2020). The changes 
of primary producers in diet of sardines is likely due to environmental 
changes (Brosset et al., 2016; Menu et al., 2023), however changes of 
taxa is also cascading to different availability of essential nutrients to the 
entire food chains (Hixson et al., 2015; Hixson and Arts, 2016). EPA 
influences multiple physiological functions, and its dietary deficiency 
could be deleterious for organisms (Sargent et al., 1999). Sardines fished 
in the English Channel were feeding on food webs mainly composed of 
zooplankton and possibly copepods, as suggested by the high pro
portions of 20:1n-9 and 20:1n-11 in their reserve lipids (Falk-Petersen 
et al., 2002). In high latitudes, these fatty acids are often associated to 
copepod communities (Falk-Petersen et al., 2002, 2000), and to cala
noids in the tropical Atlantic (Teuber et al., 2014), which are part of 
sardine feed (Bertrand et al., 2022; Costalago et al., 2014; Le Bourg 
et al., 2015). Marine zooplankton such as copepods present a high en
ergy density (Brett et al., 2009; Falk-Petersen et al., 2002; Sargent and 
Falk-Petersen, 1988) and their deficiency can impact fish recruitment 
cascading to impairment of fish stock (Lomartire et al., 2021). It has 
been demonstrated that changes in prey size can have important bio
energetic consequences on sardines (Thoral et al., 2021), and our results 
demonstrate that sardines inhabiting different areas do not have access 

to the same quantity and quality of food. However, little is known on 
how change on taxa influence the transfer of essential nutrients and 
ultimately how their spatial distribution can subsequently explain dif
ferences of physiological functions, translating into differences in the 
expression of their life history traits among areas. 

The sampling location was an important factor in determining the 
heterogeneity of fish food resources. Even though the fatty acid profiles 
of primary producers are phylogenetically defined (Jónasdóttir, 2019), 
their fatty acid contents may vary greatly by habitat and therefore affect 
omega-3 and omega-6 availability in food webs (Peltomaa et al., 2019). 
This study highlights that sardines from the Bay of Biscay had higher 
total neutral lipid content associated to a larger individual dispersion of 
their neutral fatty acid composition compared to sardines from the two 
others areas. The combination of a higher quantity and heterogeneity of 
food sources may suggest an access to a higher availability of food re
sources and/or larger sardine mobility. Such a high variability in fatty 
acids in sardines of the Bay of Biscay might at least partly be due to the 
strong and consistent spatial differences in zooplankton communities 
(Grandremy et al., 2023), suggesting that sardines in the Bay of Biscay 
may feed on very different preys depending on their location in the bay. 
Little is known on how the transfer of essential nutrients is affected by 
the taxonomic diversity of primary and secondary producers in aquatic 
ecosystem (Marzetz et al., 2017). However, the efficiency of these 
transfers can influence reproduction and offspring development of 
pelagic fish, both key for stock dynamic. Moreover, it is also important 
to consider dietary input variations at finer spatial and seasonal scales. 
Both can result in variations of food resources and quality (e.g., Bertrand 
et al., 2022), ultimately leading to changing individual body condition 
and life history traits energy allocation strategies (Beauvieux et al., 
2022). Given the unprecedented rate of planktonic taxonomical di
versity changes related to ecosystem alterations (Galloway and Winder, 

Fig. 4. Relationship between fish length (mm) and the second principal component (PC2) of PCA built using membrane fatty acids. Plots are separated by sardine 
age: age 0 (a), age 1 (b), age 2 (c), age 3+ (d). 
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2015; Hixson and Arts, 2016), it is essential to assess how the changes in 
diversity of food resources are influencing trophic transfers and the 
resulting supply of essential biomolecules to the entire food chain, 
including humans. 

5.2. Membrane lipids’ fatty acids are related to sardines’ growth 

Our results revealed the consistency of the relationship between 
essential membrane LC-PUFA and sardine length across sampling areas 
(i.e., none of the interaction terms between the PC1, PC2 and the sam
pling area were not significant). Thus, the biological processes under
pinning membrane fatty acid composition and sardine’s length 
relationships within each age are conserved over large spatial scales and 
populations, as the connectivity between the areas from North Atlantic 
and Gulf of Lions is limited (Caballero-Huertas et al., 2022). Membrane 
fatty acids such as the LC-PUFA ARA, EPA, and DHA are essential dietary 
requirements and limiting factors to physiological functions (Hulbert, 
2008; Hulbert et al., 2014), including growth and reproduction (Sargent 
et al., 1993; Tocher, 2010; Závorka et al., 2023). The consistency of this 
relationship observed across areas indicates that membrane fatty acid 
composition might be a central process explaining differences in growth 
between individuals. Pinpointing the actual mechanism underlying this 
relationship is however complicated because multiple membrane fatty 
acid proportions are positively and negatively related to each PC 
(meaning that an increase in PC means greater values of some mem
brane fatty acids while lower values of some others). The sheer 
complexity of fatty acid composition resulting from differences in food 
availability, assimilation, and fatty acids selective incorporation among 
tissues must be considered jointly to fully explain this result. Therefore, 
experimental studies would now be required to better understand the 
biological significance of the membrane fatty acids and how they might 
change over individuals’ lifespan. 

Depending on sardines’ age, the direction of the relationship be
tween membrane fatty acid compositions and length changed, likely due 
to varying physiological needs over their lifespan (i.e., from growth to 
reproduction). Sardine muscles contain a large amount of membrane 
essential LC-PUFA such as EPA and DHA (Bertrand et al., 2022; Mathieu- 
Resuge et al., 2023). These essential components of cell membranes can 
be used and/or mobilized toward gonads during reproduction (Garrido 
et al., 2007), especially if the diet does not supply them in significant 
amount such as observed in the Gulf of Lions. However, at the time of 
sampling (September/October), sardines aged-0 are not yet mature 
(Silva et al., 2006) and mostly invest in growth and energy reserves 
accumulation before entering their first winter. Sardines with greater 
total length at age-0 had higher proportions of DHA but also lower 
20:4n-3, EPA, and DPA levels in membrane lipids than smaller sardines 
(this result was particularly strong in sardines from the Gulf of Lion). 
DHA in larval fish is essential for the synthesis of physiologically 
important metabolites like prostaglandins, making it more important 
than EPA (Watanabe, 1993). However, an extreme deficiency in EPA 
does not allow to reach the optimal essential fatty acid ratios and might 
also be deleterious to fish larvae (Sargent et al., 1999). There is a clear 
selective mortality of sardines with rapid growth at age-0 in the Bay of 
Biscay (Boëns et al., 2021). Therefore, sardines that grew rapidly at age- 
0 may lack some essential membrane fatty acids such as the EPA, leading 
to poor essential fatty acids’ tissue ratio, which might subsequently 
affect their ability to survive (Boëns et al., 2021; Menu et al., 2023). 

This relationship declined at age-1, probably following the specific 
mobilization of DHA from muscles to gonads in pre-spawning period 
(early spring, gonads quickly develop to reach maturity in April-May), as 
it has been reported in the Japanese sardines (Yasuda et al., 2021). 
Indeed, there is significant variations in essential LC-PUFA contents 
(such as EPA and ARA) of Iberian sardine oocytes were induced by 
maternal effects, with a marked effect on egg quality and quantities of 
fat reserve available to larvae (Garrido et al., 2007). This specific 
accumulation is supported by our results and the fact that muscles of 

larger fish at ages 1 + accumulated more ARA and EPA than larger fish 
at age-0. These fatty acids are essential to gonads’ development in small 
pelagic fish and are jointly accumulated in muscles and gonads during 
maturation (Garrido et al., 2007). Our results are also consistent with 
those of Garrido et al. (2007) who showed that EPA and DHA contents 
are negatively correlated in muscle. Larger fish of ages 1 + also accu
mulate more 20:4n-3 and DPA which are elongation products from the 
18:4n-3 and EPA, respectively. These fatty acids are generally produced 
in low amount by marine plankton, therefore their important contents in 
sardine can suggest an effective elongation activity of fatty acids. This 
elongation activity can either reflect the deficiency in DHA (Bell et al., 
1995), and/or be induced by the high proportions of biosynthetic pre
cursors. However, if some studies revealed the presence of genes sug
gesting fatty acid biosynthetic capability of sardines, further studies are 
still necessary to fully describe the mechanistic processes involved 
(Emami-Khoyi et al., 2021; Machado et al., 2018; Sukumaran et al., 
2023). Such a negative relationship between LC-PUFA could therefore 
point to a specific accumulation, re-allocation and/or biosynthesis of 
physiologically important LC-PUFA depending on the size of in
dividuals. Thus highlighting concomitant changes in essential fatty acid 
proportions of individuals of a same age but differing in size to meet 
their physiological needs. 

Membrane fatty acid composition and the relationship fish length 
varied within each age. This suggests that within each cohort, (i.e., all 
fish of the same age, in years), the physiological requirements of sar
dines for essential LC-PUFA vary according to fish size. The relationships 
between each PC and individual length within each age were broadly 
similar across sampling areas, suggesting that these effects probably 
reflect major differences in physiological needs rather than cohort ef
fects (for which we could have expected the relationships to differ be
tween sampling areas). Changes in morphometric parameters such as 
sardines’ mean body length and weight have been monitored for a long 
time in all studied areas (Gatti et al., 2018; Menu et al., 2023; Saraux 
et al., 2019; Véron et al., 2020). Environmental variability in abiotic 
factors (e.g., Chlorophyll-a, sea surface temperature, salinity) alone 
could not explain the strong observed decrease in length and weight, 
while food quality may be a significant driver of the observed decrease 
in the Bay of Biscay and in the Gulf of Lions (Menu et al., 2023). 
Therefore, through bottom-up processes, the diet available to fish may 
explain differences in size observed within cohorts (Menu et al., 2023; 
Queiros et al., 2019; Thoral et al., 2021). The diet quality, expressed by 
the contents in physiologically relevant LC-PUFA are known to influence 
fish physiological performances (Závorka et al., 2023) and key life his
tory traits such as growth (Vagner et al., 2015, 2014) from earliest life 
stages (Vagner et al., 2009). While these experimental approaches have 
not yet been transposed to sardines, the variation in dietary LC-PUFA 
availability found in our study likely plays a role in the difference in 
sardines’ growth and selective mortality between in the three studied 
areas. Moreover, due to inter-individual variations in metabolism, dif
ferences in nutrients availability and the resulting disparity in the 
relationship between membrane fatty acids and fish size may also lead to 
different survival chances within a same cohort. 

6. Conclusions 

This study shows clear spatial differences in the quantity and quality 
of dietary LC-PUFA available to sardines, and that membrane LC-PUFA 
composition displayed similar age specific relationships with in
dividuals’ length across the three areas. Such a consistency across areas 
indicates common physiological needs to each population, indepen
dently of environmental differences. Moreover, these relationships 
differed at each age, highlighting that physiological requirement in LC- 
PUFA changed depending size and in association to reproductive stages. 
This study brings some possible explanations for sardine size selective 
mortality at large geographical scale by showing disparity in the pro
portions of essential LC-PUFA between largest and smallest fish from a 
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same cohort. However, this work needs to be pursued to fully under
stand which and how much dietary LC-PUFA are involved in physio
logical performances of sardines, and their specific influence on 
different life stages. Such effects are not only concerning sardine pop
ulations but may cascade to the entire food web, as European sardines 
play a key role in the transfer of energy between primary consumers and 
upper trophic levels. Consequently, a reduction in the quantity and 
quality of the energy content of small pelagic fish would not only impact 
the expression of their life history traits, but also threatens fishing and 
all the entire socio-economic activities that depend on these stocks. 
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