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Abstract: The blue crab (BC) Portunus segnis is considered an invasive species colonizing Tunisian
coasts since 2014. This work aims to explore its associated bacteria potential to produce anionic
exopolysaccharides (EPSs) in order to open up new ways of valorization. In this study, different BC
samples were collected from the coastal area of Sfax, Tunisia. First, bacterial DNA was extracted from
seven different fractions (flesh, gills, viscera, carapace scraping water, and three wastewaters from
the production plant) and then sequenced using the metabarcoding approach targeting the V3-V4
region of the 16S rDNA to describe their microbiota composition. Metabarcoding data showed that the
dominant bacterial genera were mainly Psychrobacter, Vagococcus, and Vibrio. In parallel, plate counting
assays were performed on different culture media, and about 250 bacterial strains were isolated and
identified by sequencing the 16S rDNA. EPS production by this new bacterial diversity was assessed to
identify new compounds of biotechnological interest. The identification of the bacterial strains in the
collection confirmed the dominance of Psychrobacter spp. strains. Among them, 43 were identified as EPS
producers, as revealed by Stains-all dye in agarose gel electrophoresis. A Buttiauxella strain produced an
EPS rich in both neutral sugars including rare sugars such as rhamnose and fucose and uronic acids.
This original composition allows us to assume its potential for biotechnological applications and, more
particularly, for developing innovative therapeutics. This study highlights bacterial strains associated
with BC; they are a new untapped source for discovering innovative bioactive compounds for health
and cosmetic applications, such as anionic EPS.

Keywords: Portunus segnis; 16S rDNA sequencing; microbiota; bacteria; exopolysaccharide

1. Introduction

The Mediterranean Sea, one of the most complex marine ecosystems and considered
a marine biodiversity hotspot, is inhabited by a rich and diverse biota, among which
crustaceans constitute the second most represented taxon of non-native species [1]. The blue
swimming crab (BC), Portunus segnis, was the first Lessepsian migrant crustacean that
reached, in 1898, the Mediterranean Sea shortly after the opening of the Suez Canal [2,3].
Its occurrence along the Tunisian coast was first recorded in 2014 in the south-eastern
Tunisian Gulf of Gabes. Since August 2015, there has been a tremendous expansion of this
crustacean which has led to severe ecological and socioeconomic impacts by displacing
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native species and changing the community structure and food webs [4–7]. To overcome
this situation, studies were funded to promote its exploitation and valorization, thus aiming
at turning this threat into an opportunity [8]. Nowadays, BC Portunus segnis represents a
precious fishery resource as a shellfish food product, and its processing co-products have
become a valuable bioresource investigated to develop high-value biochemical compounds
such as chitin, chitosan and chitooligosaccharides [9,10], carotenoids [11], and digestive
enzymes [12,13]. However, so far, to the best of our knowledge, there is no study undertaken
to explore BC microbial communities, although this kind of bacteria are a promising source
for the discovery of molecules of interest.

New bioactive compounds produced by marine bacteria with a large variety of biologi-
cal functions have been described and they present great potential for both biotechnological
and industrial applications [14–16]. Particularly, some marine bacterial species isolated
from various sample sources (clams, oysters, shrimps, polychaete annelids, and hydrother-
mal fluid. . .) and environments (deep-sea hydrothermal vents, Antarctic Sea ice, and
Polynesian microbial mats. . .) have been reported to produce anionic exopolysaccharides
(EPSs) composed of different sugars that can also present non-sugar substituents [17,18].
Marine bacterial EPSs are carbohydrate polymers presenting complex structures endowed
with unique biological activities and functions; they are attractive targets for pharmaceuti-
cal and biomedical fields, including antifreeze, antioxidant, anticancer, anti-inflammation,
immune, and antibacterial activities [19]. In addition, marine EPSs have versatile appli-
cations in bioremediation, wastewater treatment, heavy metal treatment, and marine oil
pollution [20].

Nowadays, molecular taxonomic tools can accurately determine bacterial diversity,
obviating the need for laboratory strain cultivation [21]. Among these tools, next-generation
sequencing (NGS) explores global genetic biodiversity and can uncover new microorgan-
isms [22]. In this work, P. segnis microbiota was determined using metabarcoding targeting
the 16S rRNA gene. In parallel, the characterization and identification of isolated strains
were carried out, along with the screening of anionic EPSs. To the best of our knowledge,
this work is the first one studying the microbiota of this BC species collected from Sfax
Tunisian coasts, and its exploration is crucial to decrypt its bacterial diversity and find
microorganisms of biotechnological interest. We focused our study on bacterial anionic
EPSs and carried out the screening using agarose gel electrophoresis.

2. Results
2.1. Enumeration of the Different Bacterial Groups

In the seven different fractions including crab-related samples like flesh (FL), gills
(GL), viscera (VS), carapace scraping water (CSW), and industry wastewaters (WW1, WW2,
and WW3), cultivable bacteria were enumerated based on selected appropriate culture
media (Figure 1).

Variable amounts of bacterial cells were calculated in the different crab fractions (Figure 1a).
For all crab samples, the main strains found were psychrotrophic flora with concentrations
between 7 Log (CFU g−1) in GL and about 5.5 Log (CFU g−1) in VS. For GL, halophilic flora
and lactic acid bacteria (LAB) reached, respectively, 5.9 Log (CFU g−1) and 5.2 Log (CFU g−1).
FL bacterial concentrations reached a level close to 5.5 for psychrotrophic flora and 4.5 Log
(CFU g−1) in both halophilic flora and LAB. Finally, the VS bacterial concentration reached
values of approximately 5.5 Log (CFU g−1) for halophilic flora and 4.5 Log (CFU g−1) for LAB.
Brochothrix spp. concentrations were quite close for all of the types of samples, reaching about
4 Log (CFU g−1) for GL and about 3 Log (CFU g−1) for FL and VS. Concerning the Enterobac-
teriaceae family, GL was the main bacteria-containing fraction, with a reached concentration of
approximately 4 Log (CFU g−1) followed, respectively, by VS and FL with, respectively, 1.5 and
1.3 Log (CFU g−1) concentrations.
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Figure 1. Bacteria cell numbers of the 3 different samples from blue crab (a), and carapace scraping
water and the 3 washing waters used in the industrial production process (b). GL: gills, FL: flesh, VS:
viscera, and CSW: carapace scraping water. WW: wastewater from different industrial processing
steps; black arrow symbol (
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 GL FL VS CSW WW1 WW2 WW3  

Aeromonas hydrophila/salmonicida       1 1 
Aeromonas salmonicida 1       1 
Aeromonas sp.  1   1   2 
Aeromonas veronii     2   2 
Brochothrix thermosphacta   1     1 
Buttiauxella brennerae   1     1 
Buttiauxella sp. 1       1 
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Enterobacter sp.       1 1 
Enterococcus faecalis    4  1  5 
Enterococcus sp.    1 1   2 
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Jeotgalibaca dankookensis   1   1 2 4 
Jeotgalicoccus nanhaiensis       1 1 
Jeotgalicoccus sp.      2 2 4 
Lactococcus garviae 1 2 2 4 7 4 4 24 
Leclercia adecarboxylata       1 1 
Lelliottia sp.      1  1 
Macrococcus caseolyticus  4   1   5 
Macrococcus sp. 2 1      3 
Morganella morganii   1 1 1   3 
Planococcus citreus   1    1 2 

) represents the results under the limit of plate counting quantification
for 3 replicates. Results are expressed as mean and standard deviation of 3 biological replicates.

For wastewater (WW) and carapace scraping water (CSW) (Figure 1b), the dominating
bacteria were the same as for crab fractions. Psychrotrophic flora, halophilic flora, and
LAB exhibited a similar distribution pattern in CSW, WW1, and WW2, with the highest
concentration close to 7 Log (CFU mL−1) in CSW and WW1, while WW2 and WW3
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reached about 4 Log (CFU mL−1). Halophilic flora and LAB presented almost the same
concentration as psychrotrophic flora for each sample, suggesting that those two bacterial
groups might have a dominant part in the ecosystem. Brochothrix concentration was about
5.6 Log CFU mL−1 for CSW, 5 Log CFU mL−1 for WW1, 1.5 Log CFU mL−1 for WW2, and
under the limit of detection (<1.7 CFU mL−1) for WW3. The Enterobacteriaceae family
was the group present in the lowest amount in the WW. The WW1 concentration was the
highest with nearly 3 Log (CFU mL−1), and lower levels were registered for WW2 and
WW3, which were below the detection limit (< 0.7 Log CFU mL−1). The Enterobacteriaceae
concentration was the lowest present in crab WW. WW1 was the highest level, which was
nearly 3 Log CFU mL−1, followed by CSW with a concentration of about 1.6 Log CFU
mL−1, while the levels for WW2 and WW3 were under the limit of detection.

2.2. Bacterial Identification by 16S rRNA Gene Sequencing

The 247 collected isolates were identified by 16S rRNA gene sequencing (Supplemental Data I).
The results showed a distribution of 27 different genera (Table 1).

Table 1. Identification of the bacterial strains isolated from the 4 blue crab samples (GL, FL, VS, and
CSW) and 3 wastewaters (WW1, WW2, and WW3) from different industrial processing steps. GL:
gills, FL: flesh, VS: viscera, CSW: carapace scraping water, and WW: wastewater.

Bacterial Species Type of Samples Total Number

GL FL VS CSW WW1 WW2 WW3
Aeromonas hydrophila/salmonicida 1 1
Aeromonas salmonicida 1 1
Aeromonas sp. 1 1 2
Aeromonas veronii 2 2
Brochothrix thermosphacta 1 1
Buttiauxella brennerae 1 1
Buttiauxella sp. 1 1
Carnobacterium divergens 1 1
Carnobacterium maltaromaticum 1 1
Enterobacter sp. 1 1
Enterococcus faecalis 4 1 5
Enterococcus sp. 1 1 2
Escherichia coli 1 1
Jeotgalibaca dankookensis 1 1 2 4
Jeotgalicoccus nanhaiensis 1 1
Jeotgalicoccus sp. 2 2 4
Lactococcus garviae 1 2 2 4 7 4 4 24
Leclercia adecarboxylata 1 1
Lelliottia sp. 1 1
Macrococcus caseolyticus 4 1 5
Macrococcus sp. 2 1 3
Morganella morganii 1 1 1 3
Planococcus citreus 1 1 2
Planococcus rifietoensis 1 1 2
Planococcus sp. 1 1
Proteus hauseri 1 1 2
Proteus mirabilis 1 1
Proteus vulgaris 1 1 2
Pseudomonas shahriarae 1 1
Psychrobacter alimentarius 1 1
Psychrobacter arenosus 2 2
Psychrobacter celer 2 3 1 2 3 6 4 21
Psychrobacter cibarius 1 1
Psychrobacter cryohalolentis 1 1
Psychrobacter faecalis 2 2 4
Psychrobacter faecalis/pulmonis 1 1 2
Psychrobacter fozii 3 3
Psychrobacter glacincola 1 2 1 1 1 6
Psychrobacter halodurans 2 2
Psychrobacter marincola 1 1 2 1 2 2 9
Psychrobacter marincola/submarinus 1 1 1 2 1 6
Psychrobacter maritimus 1 2 1 1 1 1 7
Psychrobacter pulmonis 1 1 1 3
Psychrobacter sp. 3 3 5 1 6 5 23
Psychrobacter submarinus 1 1 1 1 4
Raoultella terrigena 1 1
Salinicoccus jeotgali/salsiraiae 2 2
Salinicoccus salsiraiae 1 1
Salinicoccus sp. 1 2 3
Serratia grimesii 1 1 2
Serratia liquefaciens 3 2 1 1 7
Serratia sp. 1 1 2
Shewanella algae 2 2
Shewanella indica 1 1 2
Shewanella sp. 1 1 2
Shigella sonnei 1 1
Staphylococcus pasteuri 1 1
Staphylococcus sp. 1 1 2
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Table 1. Cont.

Bacterial Species Type of Samples Total Number

GL FL VS CSW WW1 WW2 WW3
Streptococcus parauberis 1 1 2
Vagococcus fluvialis 1 2 1 1 5
Vagococcus sp. 1 2 3 1 1 8
Vibrio alginolyticus 4 1 2 2 2 7 4 22
Vibrio diabolicus/neonatus 1 1
Vibrio furnissii 1 3 3 1 8
Vibrio parahaemolyticus 1 1

Total number of isolates per
sample 33 30 33 31 35 40 45 247

Only two bacterial classes were represented in the collection (Supplemental Data I): Bacilli
(phylum Bacillota; n = 80) and Gammaproteobacteria (phylum Pseudomonadota, n = 167).
Two orders of Bacilli with three families in each of them were found: Listeriaceae, Planococ-
caceae, and Staphylococcaceae in 28 Bacillales; Carnobacteriaceae, Enterococcaceae, and Strep-
tococcaceae in 52 Lactobacillales. Gammaproteobacteria were more diverse since they were dis-
tributed into six families: 6 Aeromonadales (Aeromonadaceae), 6 Alteromonadales (Shewanel-
laceae), 26 Enterobacterales (Enterobacteriaceae, Morganellaceae, Yersinaceae), 96 Moraxellales
(all Moraxellaceae, including Psychrobacter genus), 1 Pseudomonadale (Pseudomonadaceae),
and 32 Vibrionales (all Vibrionaceae family and Vibrio genus) were identified. Therefore, a
core community of Gammaproteobacteria was described for this bacterial strain collection of
crab-associated microbiota.

More than 50 different species (n = 51) were identified in all samples. The 247 bacterial
strains represented 27 distinct genera, each including between 1 and 15 identified species,
with the highest number for Psychrobacter genus. However, identification at the species
level was not always possible since no species could be assigned to 55 strains in 14 different
genera (sp. identifications). The most abundant genus was Psychrobacter with 95 isolates,
followed by Vibrio (n = 32), Lactococcus (n = 24), Vagococcus (n = 13), and Serratia (n = 11).
There were common strains shared between all samples, such as Lactococcus garviae (n = 24),
Vibrio alginolyticus (n = 22), and Psychrobacter celer (n = 21). Three genera (Vibrio, Psychrobacter,
and Lactococcus) were distributed in all crab fractions and water samples, while Vagococcus,
Enterococcus, Jeotgalibaca and Jeotgalicoccus genera were mainly found in carapace scraping
water (CSW) and wastewaters (WW1, WW2, and WW3). Strains of Macrococcus genus were
also present in BC, particularly in the flesh part (FL).

Surprisingly, the third BC wastewater (WW3) displayed the highest number of distinct
genera and species (14 different); in addition, the highest number of isolates was also obtained
from this sample (n = 45). Viscera (VS) also exhibited a large diversity, with 14 different
genera, while flesh (FL) was the least rich sample (9 distinct genera). Also, through analyzing
the results of 16S according to the isolation media, a large number of isolated strains on
Elliker were identified as Psychrobacter sp., representing 50% of the total number of isolated
colonies which were also observed on Zobell and LH media. These results may be explained
by the significant existence of Psychrobacter bacterial strains in the marine environment [23].
Moreover, most Psychrobacter sp. grow more at an optimum temperature between 20 and 30 ◦C
and with the presence of ≥10% (w/v) NaCl. Psychrobacter sanguinis is the least halotolerant,
for which the upper NaCl level in the growth media is 2% [24].

2.3. Bacterial Diversity Using Metabarcoding Analysis

The 16S rRNA amplicon sequencing of the 21 samples resulted in 3,121,586 reads,
of which 25% were successfully merged. During the analysis of metabarcoding data by
SAMBA, 520 ASVs (amplicon sequence variants) were assigned. For the diversity analysis,
VS, FL, and GL as well as CSW were grouped as BC samples, while WW1, WW2, and
WW3 were grouped as wastewater samples. Repartition of the ASVs among these samples
showed that 265 and 112 ASVs were specific for the WW and BC matrix samples (FL, GL,
VS, and CSW), respectively, with 143 shared common ASVs. The alpha diversity based on
the Shannon diversity index for the BC samples presented lower values of, respectively,
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2.5 (FL), 2.55 (GL), 2.72 (VS), and 2.29 (CSW). Water samples collected from the factory
process showed slightly higher index values of 3.43 (WW1), 3.37 (WW2), and 2.9 (WW3).

The results of the amplicon sequencing illustrated how each sample fraction had its
own diversity (Figure 2). For each type of sample, the triplicate was mostly homogeneous:
they contained the same bacterial genera except for the first replica of flesh and gills, as well
as for the second replicate of WW1. Psychrobacter sp. was the main genus in all samples
(between 30 and 80% of relative abundance) except for CSW and VS, which both were
enriched with Vagococcus sp. (30–70% of relative abundance). Uncultured bacteria also
displayed an important proportion in VS samples (30%) as well as in two flesh samples
(30–50%). In some WW samples, Vibrio can represent 10–30%. Also, WW1 was found to
be relatively heterogeneous with Vagococcus sp., present both in first and third replicates,
while Vibrio sp. was present in the second replicate, similarly to WW2 and WW3.
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Figure 2. Relative abundance of the ten dominant bacterial genera associated with the microbiota of
Portunus segnis and the microbiota of BC wastewaters recovered from different industrial processing steps.

In addition to the Psychrobacter, Vagococcus, and Vibrio main genera, other species, such
as Planococcus, Enterococcus, Photobacterium, and Lactococcus sp., were also identified in the
samples. Halodesulfovibrio sp. was specifically identified in the viscera. This resulted in a
decrease in Planococcus ASV relative abundance in both FL and GL, and an increase in the
uncultured group and Photobacterium in FL and Vagococcus sp. in GL.

2.4. EPS-Producing Strains

Two hundred and forty seven (247) strains isolated from the crab microbiota were
screened for the production of EPSs; they were grown in 1 mL of Zobell–glucose medium
and incubated for 48 h at 20 ◦C. After concentration, the supernatant was analyzed by
agarose gel electrophoresis using Stains-all, which stains anionic molecules.

In total, 43 bands corresponding to anionic molecules were observed on agarose gel,
suggesting that 43 among the 247 bacterial strains could produce EPSs under the chosen
screening conditions (Supplemental Data I). A total of 24 strains were isolated on Zobell
medium, 7 on PCA, 5 on BHI-S, 4 on LH, and 3 on Elliker.

The majority of the 43 EPS-producing bacteria were Gammaproteobacteria (n = 43); no
bacterial strain belonging to the Bacilli family was shown to produce an anionic compound,
nor the sole Pseudomonadaceae strain. Positive strain diversity was similar to the strain
collection: 3 Aeromonadaceae (genus Aeromonas), 9 Enterobacteriaceae (genera Buttiauxella,
Enterobacter, Escherichia, Morganella, Proteus, and Raoultella,), 14 Moraxellaceae (genus
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Psychrobacter), 4 Shewanellaceae (genus Shewanella), and 13 Vibrionaceae (genus Vibrio).
Eight EPS-producing strains were isolated from viscera, seven from gills and the third
wastewater WW3, and six from flesh, WW1, and WW2. Among these 43 strains, 12 were
selected for further investigation. Their identification was confirmed by 16S rRNA gene
sequencing (Table 2). The selection of the most interesting presumed anionic EPS-producing
strains was based on migration pattern in the electrophoresis gel, diversity of the genera,
and origin, while avoiding the recognized human–pathogenic genus.

Table 2. EPS-producing strains selected for further investigation. Their origin and identification, EPS
production level, and weight-average molecular weight (Mw) are shown.

Code Number Bacterial Isolate Origin Identification EPS Production (mg L−1) Mw (g mol−1)
1 CB3665 Gills Buttiauxella sp. 44.3 15 × 106

2 CB3564 Gills Psychrobacter sp. 33.6 7.4 × 106

3 CB3530 WW2 Psychrobacter marincola/submarinus 10.5 13 × 106

4 CB3484 Viscera Psychrobacter pulmonis 20 9.7 × 106

5 CB3468 Gills Psychrobacter sp. 17.6 32 × 106

6 CB3464 Gills Psychrobacter halodurans 22.1 11 × 106

7 CB3791 WW3 Shewanella sp. 22.8 62 × 106

8 CB3781 WW2 Vibrio alginolyticus 55.5 17 × 106

9 CB3764 CSW Shewanella algae 89.6 16 × 106

10 CB3755 Viscera Vibrio alginolyticus 85.3 14 × 106

11 CB3765 CSW Vibrio alginolyticus 127.8 81 × 106

12 CB3737 Gills Vibrio furnissii 77 36 × 106

Selected strains were then grown in larger volumes (600 mL of Zobell–glucose medium
in baffled flasks) in order to confirm the EPS production. Produced EPSs were first analyzed
by gel electrophoresis then characterized by their amount produced, their content in
monosaccharides, and their molecular weight (Figure 3 and Table 2).
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Figure 3. Electrophoresis gel showing EPSs produced by the 12 selected isolates. The analysis was
performed by agarose gel electrophoresis using Stains-all as dye; no marker is available for unknown
polysaccharides as they migrate both upon the Mw and the charge.

Staining of the produced EPSs after migration in agarose gel suggested that these
polymers have an anionic charge that could be due to the presence of acidic sugars or
substituents such as sulphate or organic acid groups (e.g., lactate or pyruvate). Different
patterns were observed with distinct colors, as described by Andrade et al. [25], suggesting
different EPS types: a blue broad smear is characteristic of acidic EPS for the strains CB3665,
CB3764, CB3755, CB3765, and CB3737; purple/pink spot or smear is often obtained for
sulphated EPS for CB3564 with a deep color and for CB3530, CB3484, CB3468, CB3464,
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and CB3791 with a light purple band; and the presence of both blue and pink spots is
characteristic for CB3781.

The production and molecular weight of EPSs produced by different strains are pre-
sented in Table 2. The obtained concentration in the culture broth varied from 10.5 mg·L−1

for CB3530 (a Psychrobacter strain close to P. marincola and submarinus) to 127.8 mg·L−1

for CB3765 (V. alginolyticus). This concentration is below the EPS production generally
encountered for marine EPSs, which is around 1 g·L−1 in a bioreactor; however, the
production in shake flasks is usually less efficient than in a bioreactor [26]. For strains
displaying low production of EPSs, we expect that a subsequent optimization of culture
conditions would allow for a much better harvest. The weight-average molecular weight
(Mw) ranged from 74 × 105 g/mol for CB3564 (Psychrobacter sp.) to 81 × 106 g/mol for
CB3765 (V. alginolyticus), exceeding the weight observed usually for bacterial EPSs [20].
Most EPS molecular weights exceeded the fractionation domain of the column; this could
be due to aggregations of polysaccharidic chains in the solution.

The monosaccharide composition of these EPSs showed important diversity (Figure 4).
EPSs produced by Buttiauxella sp. (CB3665) presented the highest content of total sugars
and also the most complex osidic composition, containing both neutral sugars, includ-
ing rhamnose (Rha), fucose (Fuc), galactose (Gal), and glucose (Glc), and uronic acids,
such as glucuronic acid (GlcA) and galacturonic acid (GalA). Only neutral sugars, mainly
mannose (Man) and Glc, were found in EPSs produced by four Psychrobacter sp. strains
(CB3464, CB3468, CB3484, and CB3530), while Psychrobacter strain CB3564 contained, in
addition, acetylated hexosamines such as N-acetyl-galactosamine (GalNAc) and N-acetyl-
glucosamine (GlcNAc). The elemental analysis performed on these EPSs showed a very
low content of sulfur, suggesting that the observed acidic nature in agarose gel could be due
to the presence of other acidic groups such as pyruvate or acetate. In addition to EPSs from
Buttiauxella sp, two other EPSs produced by S. algae (CB3764) and V. furnissii (CB3737) were
particularly rich in uronic acids. EPSs produced by V. alginolyticus (CB3781 and CB3765)
were rich in acetylated hexosamines and contained some uronic acids, the composition
usually described for EPSs secreted by V. alginolyticus strains [27,28].
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glucuronic acid (GlcA); mannose (Man); N-Acetyl-glucosamine (GlcNAc); N-Acetyl-galactosamine
(GalNAc); rhamnose (Rha).
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3. Discussion

In this study, we explored the microbiota of Tunisian blue crab (BC), Portunus seg-
nis, and isolated 247 bacterial strains, which were identified and screened for anionic
EPS production. Bacterial identification using the 16S rRNA gene sequencing of strains
isolated from different media (Elliker, Zobell, LH, PCA, and BHI-S) showed that the domi-
nant genera were mainly Psychrobacter, Vibrio, and the lactic acid bacteria Lactococcus and
Vagococcus. This is consistent with the results of the metabarcoding analysis, which showed
that the dominant genera were Psychrobacter, then Vagococcus, uncultured bacteria, and
Vibrio. Two other marine genera, i.e., Photobacterium and Halodesulfovibrio, were detected by
NGS sequencing but not found by 16 S identification after cultivation of the isolated strains.

Specific microbiotas have been described for crab species [29–32]; these differences
could be due to the geographic origin of crabs rather than the crab species itself. Some bac-
terial genera are noticed to be common between studies. For instance, since 1975, several
investigators have shown the presence of Vibrio spp. associated with tissues of blue crabs
collected in temperate waters [33,34]. This genus was found in our study as the second
prevalent genus and was demonstrated as the most abundant genus in blue crabs Callinectes
sapidus [35]. Vibrio spp. were detected also in the core intestinal microbiota of the mud
crab Scylla paramamosain from the coast of southern China [32]. Psychrobacter spp. was
identified in our study as the first dominant species; it was also identified as one of the most
prevalent genera for other crabs, e.g., Callinectes sapidus [35] and Chionoecetes sp. collected at
a seafood shop at Jukbyeon Harbor, South Korea [36], as well as in the fish Salmo salar [37]
and other shellfish such as Parapenaeus longirostris shrimp [38]. Additionally, other genera
such as Photobacterium and Shewanella recovered in the present study were also present in
horseshoe crabs Tachypleus gigas, Carcinoscorpius rotundicauda collected from Balok Beach,
Malaysia [39], and mud crabs Scylla paramamosain collected from Shantou, China [40].

Some of the bacterial strains isolated from the Tunisian BC samples, i.e., Pseudomonas
spp., lactic acid bacteria, and Enterobacteriaceae, have been described in other studies to
proliferate during the cold storage of fresh and cooked crabs, and could be involved in
the spoilage [41–43]. In our study, fortunately, only a few potentially pathogenic bac-
terial strains of minor concern for human beings were present. Only one species of
Vibrio parahaemolyticus was isolated and identified among the 247 strains This species has
also been found in the blue swimming crab P. pelagicus [44]. In contrast, human pathogens
such as V. cholerae, V. parahaemolyticus, and V. vulnificus have been identified in C. sapidus
gills, viscera, flesh, and hemolymph [31].

Bacteria associated with marine animals have been described to have a symbiotic
relationship with their hosts. The compounds produced by these marine bacteria can have
an important physiological role for the crab or can be necessary for enhancing bacterial
cell-to-crab interaction. Notably, EPS is a component of the biofilm extracellular matrix and
allows bacterial cells to grow as a biofilm adhered to a surface, such as a crab surface.

In our study, the screening of EPS-producing strains was carried out to search specifi-
cally for anionic EPSs. Indeed, anionic EPSs can mimic glycosaminoglycans (GAGs), linear
polysaccharides present on the cell surface and in the extracellular matrix of animal tissues,
where they play a major role in both physiological and pathological processes [45,46].
They interact with a wide variety of proteins, such as cytokines, chemokines, or growth
factors, and therefore regulate multiple cellular responses (e.g., inflammation and wound-
healing processes). Consequently, GAGs are also therapeutically used in the biomedical
field such as for tissue repair, cancer and metastasis inhibition, and Alzheimer’s disease
treatment [47–50]. However, their structure heterogeneity and the complexity of their
extraction and purification protocol, as well as the risk of contamination by viruses and
non-conventional agents, can cause health issues and encourage scientific researchers to
think about mimetic GAGs from other alternative sources [49,51,52].

In our work, we showed that less than 20% of the bacteria isolated from BC produced
anionic EPSs. They all belonged to Gammaproteobacteria. In the blue crab samples, the
three main genera producing anionic EPSs were Vibrio, Shewanella, and Buttiauxella. Vibrio
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sp. are well known for the production of EPSs exhibiting structural and biological similar-
ities with GAGs [52,53]. V. diabolicus [54], V. furnissii VB0S3 [55], V. harveyi VB23 [56], V.
neocaledonicus [57], V. fischeri [58], V. parahaemolyticus [59], and Vibrio sp. QY101 [60] have
been described to secrete anionic EPSs; for some of them, diverse biological activities and
biotechnological potential applications were identified, including antioxidant and antibac-
terial activities, and potential applications in human health and aquaculture. The chemical
composition of several EPSs from Vibrio strains has been determined. This composition
has been described to be strain-dependent and mainly composed of uronic acids and N-
acetyl-hexosamines. Some of these EPSs were also decorated with amino acids, a property
which was only detected by fine structural analysis [27,28,61]. The composition observed in
our study is consistent with others described in the literature for the same genus, confirm-
ing that the EPS composition can be linked to the bacterial phylogenetic position [52,53].
Alteromonas and Pseudoalteromonas spp. were also described to produce anionic EPSs, but
neither of these two genera were found in this study. Some studies on EPSs from Shewanella
species were also conducted, such as S. oneidensis MR-1 [62] and S. frigidimarina W32–2 [63].
There is still little information reported regarding EPSs from Psychrobacter spp.; it would
be worth studying further those identified in our work which were rich in neutral sug-
ars. Their potential substitution with organic acids, such as pyruvate and acetate, could
explain their migration and staining by Stains-all in agarose gel electrophoresis and their
potential anionic nature. EPSs from Psychrobacter strains isolated from a bivalve Ruditapes
philippinarum, from Antarctic ice samples and brine wastewater collected in a fish canning
plant, were found to be composed of neutral or anionic sugars and to have interesting
biological functions, such as antioxidant activity, macrophages stimulation, and initial
immune response regulation, as well as physicochemical properties such as flocculation
and discoloration, and can be used in high salinity wastewater treatment [64–66]. We also
discovered a Buttiauxella sp. strain producing an interesting EPS rich in neutral sugars,
including rare sugars such as Rha and Fuc, and uronic acids. To the best of our knowledge,
this is the first time that an anionic EPS was reported in a Buttiauxella strain.

4. Materials and Methods
4.1. Blue Crab Sampling and Handling

Sampling was carried out in 2021 within the company Novogel (Sfax, Tunisia), which
is an agri-food company based in the new fishing port of Sfax and specialized in the
preparation, freezing, and export of seafood (Figure 5).

Fresh crab samples (n = 50) were collected, and three different blue crab wastewaters
were recovered from different industrial processing steps. All samples, placed in sterile bags
or bottles, were put in a portable cooler for preservation during transportation to the lab.

Upon arrival at the laboratory and immediately under sterile conditions, seven blue
crab-derived fractions and waters were prepared consisting of homogenized suspensions of
flesh (FL), gills (GL), and viscera (VS), and carapace scraping water samples (CSW), as well
as three crab wastewaters (WW1, WW2, and WW3). Each of the seven blue crab-derived
samples (FL, GL, VS, SCW, WW1, WW2, and WW3) was prepared in triplicate.

To obtain homogenized suspensions of FL, GL, and VS, each 25 g portion of flesh,
gills, or viscera, respectively, was stomached for 2 min with 100 mL of sterile physiological
saline solution (TS solution composed of 0.85% NaCl, 0.1% peptone, and 1% Tween 80).
For these fractions, almost two crabs were used for each of the three replicates. The CSW
was obtained by simply scraping the shells of 7 randomly selected crabs with 30 mL of
TS solution. In addition, the three collected wastewater samples (WW1, WW2, and WW3)
were left to settle down and each upper part was recovered.

Finally, a total of twenty-one stock solutions were obtained corresponding to 7 crab-
derived fractions with 3 replicates. For each sample, ten aliquots of 2 mL were frozen at
−80 ◦C for conservation.
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Figure 5. Sample preparation from blue crabs. Each sample and wastewater were prepared in triplicate.
Image credits: blue crab: image of brgfx from Freepik; tube, tap water, and tanks from BioRender.com.

4.2. Enumeration of Bacterial Groups

Several appropriate serial 10-fold dilutions of each prepared stock solution were car-
ried out in sterile physiological saline solution and 0.1 mL of each was spread-plated. Differ-
ent bacterial populations were enumerated with appropriate media. Total psychrotrophic
viable counts (TPVC) were determined using Long and Hammer agar (LH) supplemented
with 1% NaCl [67] and incubated at 15 ◦C for 7 days. Halophilic heterotrophic flora
was isolated on Zobell medium composed of aquarium salts (33.3 g L−1), yeast extract
(1 g L−1), and tryptone (4 g L−1) and incubated at 27 ◦C for 3 days. Total lactic acid
bacteria (LAB) were numbered on Elliker agar (Biokar Diagnostic, Beauvais, France) at
20 ◦C for 3 days under anaerobic conditions (Anaerocult A; Merck, Darmstadt, Germany).
Brochothrix spp. were enumerated on streptomycin sulphate thallous acetate agar (STAA,
Oxoid, Basingstoke, England) for 3 days at 20 ◦C. Enterobacteriaceae were quantified on a
pour plate of violet red bile glucose agar (VRBGA, Biokar) incubated for 2 days at 30 ◦C.
Bacterial concentrations were expressed as the logarithm (Log) of colony-forming units
(CFU) per gram (CFU g−1) of crab fraction and Log (CFU mL−1) for water samples. Each
type of sample was enumerated in triplicate.

4.3. Collection and Identification of Bacterial Isolates
4.3.1. Bacterial Strain Collection

After plate counting analysis, bacterial strains were isolated from the countable Petri
dishes. In addition to bacterial group enumeration, supplementary heterotrophic strains
were also isolated from the BC samples on BHI-S (brain heart infusion agar (BHI, Biokar
Diagnostics) with 2% NaCl), and plate count agar (PCA, Biokar Diagnostics) and were
included in this collection.

The number of isolated bacterial strains were as follows: 33 isolates from GL, 30 from
FL, 33 from VS, 31 from CSW, and 35, 40, and 45 from WW1, WW2, and WW3, respectively.
Each strain was randomly selected by picking colonies from plates according to their
different morphologies (color, form, and aspect). These 247 strains were isolated from LH
(n = 66), Elliker (n = 58), BHI+ 2% NaCl (BHI-S) (n = 20), PCA (n = 19), and Zobell (n = 84).
Each colony from LH, BHI-S, PCA, and Elliker was placed in 200 µL BHI; each colony
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isolated on Zobell was cultivated in 200 µL Zobell, respectively. The whole collection was
built in 96-well microplates through incubation at 20 ◦C with shaking (150 rpm) to allow for
subsequent medium-throughput identification and screening of EPS production. In parallel,
cryotubes were also prepared for storage of cultures at −80 ◦C with 15% glycerol.

4.3.2. Bacterial Isolate Identification by 16S rRNA Gene Sequencing

From the collection microplates, 50 µL culture broth was taken and placed in tubes
containing 800 µL Zobell medium, then incubated for 24 h at 20 ◦C. A total of 100 µL of
each culture was transferred to microplates with conical wells and centrifuged for 15 min at
4000 rpm and 4 ◦C. Supernatants were withdrawn and each pellet was dissolved in 100 µL
sterile distilled water and heated for 5 min at 95 ◦C.

PCR was used to amplify 16S rDNA with the universal primers 8F
(5′-AGAGTTTGATCATGGCTCAG-3′) and 1489R (5′-GTTACCTTGTTACGACTTCAC-3′),
resulting in 1480 bp long amplicons. For the DNA polymerase, DreamTaq ready-to-use
solution was used as a 2-fold master mix (Thermo Fisher Scientific, Waltham, MA, USA).
In the PCR reaction mixture (23.5 µL), 1 µL of each primer (10 µM) and 1 µL of tem-
plate DNA were added. PCR amplification was performed with My Cycler Thermocycler
(Bio-Rad Laboratories, Marnes-La-Coquette, France) using the following protocol: initial
denaturation (94 ◦C for 5 min), followed by 29 cycles of three steps including denaturation
(94 ◦C for 30 s), primer annealing (55 ◦C for 30 s), and elongation (72 ◦C for 2 min). A final
extension at 72 ◦C for 7 min was performed. PCR products were checked in a 1% (w/v)
agarose gel containing Sybr Safe (Invitrogen, Waltham, MA, USA) and were subsequently
pictured under UV illumination with Gel Doc XR+ imaging system and ImageLab software
Version 3.0 (Bio-Rad Laboratories, Marnes-La-Coquette, France). PCR products were then
purified using a GeneJet purification kit (Ref K0702, Thermo Fisher Scientific, Waltham,
MA, USA) and sent for sequencing by Eurofins company (Köln, Germany).

Sequences were cleaned using Geneious Prime 2022.1.1 software (Biomatters, Auck-
land, New Zealand); the resulting sequences were then submitted to the Basic Local Align-
ment Search Tool program (BLAST) available at the National Center for Biotechnology
Information (NCBI, Bethesda, MD, USA, http://www.ncbi.nlm.nih.gov/) for identification
by similarity searches in the nucleotide collection (nr/nt). Taxonomy was investigated with
the NCBI website accessed on 30 April 2023.

4.4. Blue Crab Microbiota 16S rDNA Gene Metabarcoding Analysis
4.4.1. DNA Extraction

To separate bacterial cells from the crab matrix, 2 mL of the stock solutions was first
centrifuged for 5 min at 400× g at room temperature. The pellet was discarded and the super-
natant transferred into a new tube was centrifuged for 10 min at 13,000× g. The supernatant
was removed and the bacterial cell pellet was used for DNA extraction following the DNeasy
PowerFood Microbial kit procedure (Qiagen, Hilden, Germany.), with slight modification of
the standard procedure as previously described by Jérôme et al. [68].

4.4.2. Metabarcoding Analysis

Extracted DNA samples were sent to Eurofins company (Konstanz, Germany). Library
preparation was performed by the company, targeting the V3-V4 region of the 16S rRNA
gene using the primers 357F (5′-TACGGGAGGCAGCAG-3′) [69] and 800R
(5′-CCAGGGTATCTAATCC-3′) [70] for 16S rRNA amplicon sequencing on the Illumina
platform. The resulting sequences were analyzed using SAMBA (Standardized and Auto-
mated MetaBarcoding Analyses workflow) (https://github.com/ifremer-bioinformatics/
samba, accessed on 21 September 2022). SAMBA is a FAIR scalable workflow integrating
a unique tool verification of the integrity of raw reads and metadata (homemade script),
as well as bioinformatics processing (QIIME 2 [71] and DADA2 [72]); it also consists of
steps based on dbOTU3 [73] and microDecon to build high-quality amplicon sequence
variant (ASV) count tables [74]. The SILVA 138.1 SSU Ref NR 99 database [75] was used to
assign taxonomy to the ASVs using a naïve Bayesian classification. Alpha diversity was

http://www.ncbi.nlm.nih.gov/
https://github.com/ifremer-bioinformatics/samba
https://github.com/ifremer-bioinformatics/samba
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determined by species richness and Shannon diversity. The beta diversity was calculated
with the Bray–Curtis dissimilarity index. Raw sequenced data are available at [76].

4.5. Screening for EPS-Producing Bacteria
4.5.1. EPS Production Screening

Isolated strains were screened for EPS production. The inoculum (20 µL) was seeded
in 1.2 mL transfer tubes containing 1 mL of 30 g L−1 glucose-supplemented medium, then
incubated at 28 ◦C and 150 rpm for 48 h. These standard conditions were applied to all
of the strains without optimization during this screening step [26]. The culture broth was
centrifuged for 15 min at 4000 rpm. The supernatant was recovered and concentrated by
ultrafiltration with NucleoFast 96 PCR plate for PCR clean-up (Macherey-Nagel, Hoerdt,
France), using a vacuum pump.

4.5.2. Agarose Gel Electrophoresis Analysis

Agarose gel (0.7% w/v) was prepared in TAE buffer (0.04 M Tris-acetate; 0.01 M EDTA,
pH 8.5). A total of 30 mL of concentrated EPS samples was mixed with 10 µL of electrophoresis
sample buffer (0.8 mL 10× TAE, 1.6 mL of glycerol, 5.2 mL of distilled water, 80 µL 0.5 M EDTA
(5 mM final concentration), and 0.4 mL 0.5% bromophenol blue) and loaded into gel wells. Mi-
gration was performed at 150 V for 2 h with the TAE buffer using a refrigerated system. After
migration, the gel was fixed with 25% (v/v) isopropanol for 1 h minimum and stained for 4 h or
overnight in the dark with Stains-all (3,3′-Diethyl-9-methyl-4,5,4′,5′-dibenzothiacarbocyanine)
solution prepared as follows: 5 mL Stains-all stock solution (0.1% w/v in dimethylformamide
(DMF)), 5 mL DMF, 25 mL isopropanol, and 5 mL 300 mM Tris HCl pH 8.8; water was then
added to 100 mL of the final solution. Gel was destained for 2 h in water under natural light,
and finally analyzed with the GelDoc XR+ imaging system with ImageLab software Version
3.0 (BioRad, Marnes-la-Coquette, France).

4.6. EPS Characterization
4.6.1. Preparation of the EPS

EPS production by bacterial strains was carried out in 600 mL of Zobell medium
containing 30 g L−1 glucose in 2L Erlenmeyer baffled flasks incubated at 28 ◦C and 150 rpm
for 48 h.

Centrifugation (45 min, 8000× g at 10 ◦C) was carried out and supernatants were
filtered on 2.6 µm and 0.7 µm glass microfiber Whatman membranes (VWR International,
Rosny-sous-Bois, France), then ultrafiltered using a 100 kDa cut-off membrane (Millipore,
Fontenay-sous-Bois, France) and freeze-dried. Prior to analysis, the EPS was gently solubi-
lized in water at 2 mg mL−1.

4.6.2. Osidic Composition

Monosaccharide composition was determined according to the protocol described by
Kamerling et al. [77] and modified by Montreuil et al. [78]. The EPS solution was firstly
hydrolyzed for 4 h at 100 ◦C in methanol/HCl 3 N (Merck, Lyon, France). The obtained
methyl glycosides were then converted to trimethylsilyl derivatives with the use of N,O-
bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosilane (BSTFA: TMCS) (Merck,
Lyon, France) (99:1). Per-O-trimethylsilyl methyl glycosides formed were quantified using
gas chromatography (GC-FID, Agilent Technologies, Les Ulis, France). The myo-inositol
was used as the internal standard, as previously described [52].

4.6.3. Molecular Weight Determination

The EPS weight-average molecular weight (Mw) was determined by size exclusion
chromatography (SEC) (HPSEC Prominence Shimadzu Co., Kyoto, Japan) coupled with
multiangle light scattering (MALS, Dawn Heleos-II, Wyatt Technology, Santa Barbara, CA,
USA) and differential refractive index (RI) (Optilab Wyatt technology, Santa Barbara, CA,
USA) detectors. The sample was prepared at 2 mg mL−1 and 100 µL was eluted on an
Aquagel -OH mixed column (Agilent) that separates in the range 6 × 106–5 × 103 g mol−1.
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The MW was calculated by ASTRA software 6.8 (Wyatt technology Santa Barbara, CA,
USA) using a refractive index increment dn/dc of 0.145 mL g−1 which is characteristic of
polysaccharides [52].

5. Conclusions

This study reported, for the first time, the EPS production potential of bacterial strains
isolated from Portunus segnis. The results clearly indicate the richness and diversity of the
microbiota of the Tunisian blue crab Portunus segnis; it is mainly dominated by Psychrobacter
spp., Lactic acid bacteria, and Vibrio spp.

Less than 20% of these isolated strains have been shown to produce anionic EPSs;
their osidic characterization revealed interesting compositions, showing the presence of
neutral, acidic, or amino sugars depending on the EPS. Among the selected strains, further
investigation will focus on the innovative Buttiauxella strain and its EPS rich in both
neutral and acidic sugars to highlight its biotechnological potential as a new GAG mimetic
compound for the health domain. Further work will consist of (i) the production of selected
EPSs in a bioreactor to assess their biotechnological potential and (ii) the study of their
biological activities especially for biomedical applications. Bacterial EPSs are very attractive
for replacing polysaccharides from animal origin, such as GAG which can result in a high
risk of unknown cross-species contamination. EPSs rich in uronic acids can share some
biological properties with GAG and their production by fermentation presents substantial
advantages over animal extraction technology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29040774/s1, Supplementary Data I: bacterial isolates
identification and EPS production; 2.

Author Contributions: S.B.: investigation. S.C.-J.: funding acquisition, project administration,
and writing—review and editing. C.D.-L.: formal analysis, project administration, supervision,
and writing—review and editing. M.J.: investigation. M.M.: investigation and writing of original
draft. S.M.: formal analysis, supervision, writing of original draft, and writing—review and editing.
H.M.: funding acquisition, resources, and writing—review and editing. R.M.M.: project administra-
tion and supervision. L.M.: investigation. C.N.: data curation and formal analysis. C.S.: investigation
and writing—review and editing. A.Z.: writing—review and editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Valopolymer PHC-Utique project (grant number No. 20G0806)
and by travel grants from ED-SBBS and the Monastir University. Mariem Migaou was a PhD fellow of
Monastir University under the co-supervision of Nantes and Monastir Universities. The authors acknowl-
edge Fatma Njeh, from Novogel Company, for providing the biological samples of blue crab, and the Pôle
de Calcul et de Données Marines (PCDM; https://wwz.ifremer.fr/en/Research-Technology/Research-
Infrastructures/Digital-infrastructures/Computation-Centre, accessed on 23 January 2024) for provid-
ing DATARMOR computing and storage resources.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Ifremer has an institutional website to share its data and publications
https://archimer.ifremer.fr/, accessed on 23 January 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Coll, M.; Piroddi, C.; Steenbeek, J.; Kaschner, K.; Ben Rais Lasram, F.; Aguzzi, J.; Ballesteros, E.; Bianchi, C.N.; Corbera, J.; Dailianis,

T.; et al. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 2010, 5, e11842. [CrossRef]
2. Castriota, L.; Falautano, M.; Maggio, T.; Perzia, P. The Blue Swimming Crab Portunus segnis in the Mediterranean Sea: Invasion

Paths, Impacts and Management Measures. Biology 2022, 11, 1473. [CrossRef]
3. Fox, H.M. The Migration of a Red Sea Crab through the Suez Canal. Nature 1924, 113, 714–715. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules29040774/s1
https://www.mdpi.com/article/10.3390/molecules29040774/s1
https://wwz.ifremer.fr/en/Research-Technology/Research-Infrastructures/Digital-infrastructures/Computation-Centre
https://wwz.ifremer.fr/en/Research-Technology/Research-Infrastructures/Digital-infrastructures/Computation-Centre
https://archimer.ifremer.fr/
https://doi.org/10.1371/journal.pone.0011842
https://doi.org/10.3390/biology11101473
https://doi.org/10.1038/113714b0


Molecules 2024, 29, 774 15 of 17

4. Annabi, A.; Bardelli, R.; Vizzini, S.; Mancinelli, G. Baseline Assessment of Heavy Metals Content and Trophic Position of the
Invasive Blue Swimming Crab Portunus segnis (Forskål, 1775) in the Gulf of Gabès (Tunisia). Mar. Pollut. Bull. 2018, 136, 454–463.
[CrossRef] [PubMed]

5. Crocetta, F.; Agius, D.; Balistreri, P.; Bariche, M.; Bayhan, Y.K.; ÇAkir, M.; Ciriaco, S.; Corsini-Foka, M.; Deidun, A.; El Zrelli, R.;
et al. New Mediterranean Biodiversity Records (October 2015). Mediterr. Mar. Sci. 2015, 16, 682–702. [CrossRef]

6. Rabaoui, L.J.; Arculeo, M.; Mansour, L.; Tlig-Zouari, S.; Fahd, K.; Arabia, S. Occurrence of the Lessepsian Species Portunus segnis
(Crustacea: Decapoda) in the Gulf of Gabes (Tunisia): First Record and New Information on Its Biology and Ecology. Cah. Biol.
Mar. 2015, 56, 169–175.

7. Rifi, M.; Khadija, O.; Jamila, B.S.; Zaouali, J. Première Mention Du Crabe Lessepsien Portunus segnis Dans Les Eaux Marines
Tunisiennes. In Proceedings of the 4ème Congrès Franco-Maghrébin De Zoologie & 5èmes Journées Franco-Tunisiennes De
Zoologie, Korba, Tunisia, 13–17 November 2014.

8. Bejaoui, S.; Ghribi, F.; Hatira, S.; Chetoui, I.; Rebah, I.; Cafsi, M.h.E. First Investigation in the Biochemical Analysis of the Invasive
Crab Portunus segnis from Tunisian Waters. J. Am. Oil Chem. Soc. 2017, 94, 673–682. [CrossRef]

9. Affes, S.; Aranaz, I.; Acosta, N.; Heras, Á.; Nasri, M.; Maalej, H. Chitosan Derivatives-Based Films as pH-Sensitive Drug Delivery
Systems with Enhanced Antioxidant and Antibacterial Properties. Int. J. Biol. Macromol. 2021, 182, 730–742. [CrossRef] [PubMed]

10. Hamdi, M.; Hajji, S.; Affes, S.; Taktak, W.; Maâlej, H.; Nasri, M.; Nasri, R. Development of a Controlled Bioconversion Process for
the Recovery of Chitosan from Blue Crab (Portunus segnis) Exoskeleton. Food Hydrocoll. 2018, 77, 534–548. [CrossRef]

11. Hamdi, M.; Feki, A.; Bardaa, S.; Li, S.; Nagarajan, S.; Mellouli, M.; Boudawara, T.; Sahnoun, Z.; Nasri, M.; Nasri, R. A Novel
Blue Crab Chitosan/Protein Composite Hydrogel Enriched with Carotenoids Endowed with Distinguished Wound Healing
Capability: In Vitro Characterization and In Vivo Assessment. Mater. Sci. Eng. C 2020, 113, 110978. [CrossRef] [PubMed]

12. Affes, S.; Aranaz, I.; Hamdi, M.; Acosta, N.; Ghorbel-Bellaaj, O.; Heras, Á.; Nasri, M.; Maalej, H. Preparation of a Crude
Chitosanase from Blue Crab Viscera as Well as Its Application in the Production of Biologically Active Chito-Oligosaccharides
from Shrimp Shells Chitosan. Int. J. Biol. Macromol. 2019, 139, 558–569. [CrossRef]

13. Maalej, H.; Maalej, A.; Affes, S.; Hmidet, N.; Nasri, M. A Novel Digestive A-Amylase from Blue Crab (Portunus segnis) Viscera:
Purification, Biochemical Characterization and Application for the Improvement of Antioxidant Potential of Oat Flour. Int. J. Mol.
Sci. 2021, 22, 1070. [CrossRef]

14. Ameen, F.; AlNadhari, S.; Al-Homaidan, A.A. Marine Microorganisms as an Untapped Source of Bioactive Compounds. Saudi J.
Biol. Sci. 2021, 28, 224–231. [CrossRef]

15. Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising Bioactive Compounds from the Marine Environment and Their Potential Effects
on Various Diseases. J. Genet. Eng. Biotechnol. 2022, 20, 14. [CrossRef] [PubMed]

16. Suleria, H.A.R.; Gobe, G.; Masci, P.; Osborne, S.A. Marine Bioactive Compounds and Health Promoting Perspectives; Innovation
Pathways for Drug Discovery. Trends Food Sci. Technol. 2016, 50, 44–55. [CrossRef]

17. Concórdio-Reis, P.; Alves, V.D.; Moppert, X.; Guézennec, J.; Freitas, F.; Reis, M.A.M. Characterization and Biotechnological Poten-
tial of Extracellular Polysaccharides Synthesized by Alteromonas Strains Isolated from French Polynesia Marine Environments.
Mar. Drugs 2021, 19, 522. [CrossRef] [PubMed]

18. Benhadda, F.; Zykwinska, A.; Colliec-Jouault, S.; Sinquin, C.; Thollas, B.; Courtois, A.; Fuzzati, N.; Toribio, A.; Delbarre-Ladrat, C.
Marine Versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar. Drugs 2023, 21, 582. [CrossRef]
[PubMed]

19. Parkar, D.; Jadhav, R.; Pimpliskar, D.R.M. Marine Bacterial Extracellular Polysaccharides: A Review. J. Coast. Life Med. 2017, 5, 29–35.
[CrossRef]

20. Qi, M.; Zheng, C.; Wu, W.; Yu, G.; Wang, P. Exopolysaccharides from Marine Microbes: Source, Structure and Application. Mar.
Drugs 2022, 20, 512. [CrossRef] [PubMed]

21. Joint, I.; Mühling, M.; Querellou, J. Culturing Marine Bacteria—An Essential Prerequisite for Biodiscovery. Microb. Biotechnol.
2010, 3, 564–575. [CrossRef] [PubMed]

22. Medlin, L. Mini Review: Molecular Techniques for Identification and Characterization of Marine Biodiversity. Ann. Mar. Biol. Res.
2016, 3, 1015.

23. Bakermans, C. Adaptations to Marine Versus Terrestrial Low Temperature Environments as Revealed by Comparative Genomic
Analyses of the Genus Psychrobacter. FEMS Microbiol. Ecol. 2018, 94, fiy102. [CrossRef]

24. Yang, X. Moraxellaceae. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford,
UK, 2014; pp. 826–833. [CrossRef]

25. Andrade, J.P.S.; Oliveira, C.P.; Tovar, A.M.F.; Mourão, P.A.S.; Vilanova, E. A Color-Code for Glycosaminoglycans Identification by
Means of Polyacrylamide Gel Electrophoresis Stained with the Cationic Carbocyanine Dye Stains-All. Electrophoresis 2018, 39, 666–669.
[CrossRef]

26. Delbarre-Ladrat, C.; Sinquin, C.; Marchand, L.; Bonnetot, S.; Zykwinska, A.; Verrez-Bagnis, V.; Colliec-Jouault, S. Influence of the
Carbon and Nitrogen Sources on Diabolican Production by the Marine Vibrio diabolicus Strain Cncm I-1629. Polymers 2022, 14, 1994.
[CrossRef]

27. Drouillard, S.; Jeacomine, I.; Buon, L.; Boisset, C.; Courtois, A.; Thollas, B.; Morvan, P.Y.; Vallée, R.; Helbert, W. Structure of an
Amino Acid-Decorated Exopolysaccharide Secreted by a Vibrio alginolyticus Strain. Mar. Drugs 2015, 13, 6723–6739. [CrossRef]

https://doi.org/10.1016/j.marpolbul.2018.09.037
https://www.ncbi.nlm.nih.gov/pubmed/30509829
https://doi.org/10.12681/mms.1477
https://doi.org/10.1007/s11746-017-2987-x
https://doi.org/10.1016/j.ijbiomac.2021.04.014
https://www.ncbi.nlm.nih.gov/pubmed/33836191
https://doi.org/10.1016/j.foodhyd.2017.10.031
https://doi.org/10.1016/j.msec.2020.110978
https://www.ncbi.nlm.nih.gov/pubmed/32487393
https://doi.org/10.1016/j.ijbiomac.2019.07.116
https://doi.org/10.3390/ijms22031070
https://doi.org/10.1016/j.sjbs.2020.09.052
https://doi.org/10.1186/s43141-021-00290-4
https://www.ncbi.nlm.nih.gov/pubmed/35080679
https://doi.org/10.1016/j.tifs.2016.01.019
https://doi.org/10.3390/md19090522
https://www.ncbi.nlm.nih.gov/pubmed/34564184
https://doi.org/10.3390/md21110582
https://www.ncbi.nlm.nih.gov/pubmed/37999406
https://doi.org/10.12980/jclm.5.2017J6-207
https://doi.org/10.3390/md20080512
https://www.ncbi.nlm.nih.gov/pubmed/36005515
https://doi.org/10.1111/j.1751-7915.2010.00188.x
https://www.ncbi.nlm.nih.gov/pubmed/21255353
https://doi.org/10.1093/femsec/fiy102
https://doi.org/10.1016/B978-0-12-384730-0.00441-9
https://doi.org/10.1002/elps.201700391
https://doi.org/10.3390/polym14101994
https://doi.org/10.3390/md13116723


Molecules 2024, 29, 774 16 of 17

28. Drouillard, S.; Jeacomine, I.; Buon, L.; Boisset, C.; Courtois, A.; Thollas, B.; Morvan, P.Y.; Vallée, R.; Helbert, W. Structure of the
Exopolysaccharide Secreted by a Marine Strain Vibrio alginolyticus. Mar. Drugs 2018, 16, 164. [CrossRef]

29. El-Saadony, M.T.; Alagawany, M.; Patra, A.K.; Kar, I.; Tiwari, R.; Dawood, M.A.O.; Dhama, K.; Abdel-Latif, H.M.R. The
Functionality of Probiotics in Aquaculture: An Overview. Fish Shellfish Immunol. 2021, 117, 36–52. [CrossRef] [PubMed]

30. Parlapani, F.F.; Michailidou, S.; Anagnostopoulos, D.A.; Koromilas, S.; Kios, K.; Pasentsis, K.; Psomopoulos, F.; Argiriou, A.;
Haroutounian, S.A.; Boziaris, I.S. Bacterial Communities and Potential Spoilage Markers of Whole Blue Crab (Callinectes sapidus)
Stored under Commercial Simulated Conditions. Food Microbiol. 2019, 82, 325–333. [CrossRef] [PubMed]

31. Ramachandran, P.; Reed, E.; Ottesen, A. Exploring the Microbiome of Callinectes sapidus (Maryland Blue Crab). Genome Announc.
2018, 6, 22. [CrossRef] [PubMed]

32. Wei, H.; Wang, H.; Tang, L.; Mu, C.; Ye, C.; Chen, L.; Wang, C. High-Throughput Sequencing Reveals the Core Gut Microbiota
of the Mud Crab (Scylla paramamosain) in Different Coastal Regions of Southern China. BMC Genom. 2019, 20, 829. [CrossRef]
[PubMed]

33. Davis, J.W.; Sizemore, R.K. Incidence of Vibrio Species Associated with Blue Crabs (Callinectes sapidus) Collected from Galveston
Bay, Texas. Appl. Environ. Microbiol. 1982, 43, 1092–1097. [CrossRef]

34. Tubiash, H.S.; Sizemore, R.K.; Colwell, R.R. Bacterial Flora of the Hemolymph of the Blue Crab, Callinectes sapidus: Most Probable
Numbers. Appl. Microbiol. 1975, 29, 388–392. [CrossRef]

35. Shields, J.D.; Overstreet, R.M. Diseases, Parasites, and Other Symbionts. In The Blue Crab Callinectes sapidus; Kennedy, V., Cronin,
L., Eds.; Maryland Sea Grant: College Park, MD, USA, 2003; Volume 1, pp. 299–417.

36. Kim, M.; Kwon, T.-H.; Jung, S.-M.; Cho, S.-H.; Jin, S.Y.; Park, N.-H.; Kim, C.-G.; Kim, J.-S. Antibiotic Resistance of Bacteria Isolated
from the Internal Organs of Edible Snow Crabs. PLoS ONE 2013, 8, e70887. [CrossRef]

37. McCarthy, Ú.; Stagg, H.; Donald, K.; Garden, A.; Weir, S. Psychrobacter sp. Isolated from the Kidney of Salmonids at a Number of
Aquaculture Sites in Scotland. Bull. Eur. Assoc. Fish. Pathol. 2013, 33, 67–72.

38. Parlapani, F.F.; Ferrocino, I.; Michailidou, S.; Argiriou, A.; Haroutounian, S.A.; Kokokiris, L.; Rantsiou, K.; Boziaris, I.S. Microbiota
and Volatilome Profile of Fresh and Chill-Stored Deepwater Rose Shrimp (Parapenaeus longirostris). Food Res. Int. 2020, 132, 109057.
[CrossRef]

39. Ismail, N.; Faridah, M.; Ahmad, A.; Alia’m, A.A.; Khai, O.S.; Mohd Sofa, M.F.A.; Manca, A. Marine Bacteria Associated with
Horseshoe Crabs, Tachypleus gigas and Carcinoscorpius rotundicauda. In Changing Global Perspectives on Horseshoe Crab Biology,
Conservation and Management; Carmichael, R.H., Botton, M.L., Shin, P.K.S., Cheung, S.J., Eds.; Springer International Publishing:
Cham, Switerland, 2015; pp. 313–320. [CrossRef]

40. Li, S.; Sun, L.; Wu, H.; Hu, Z.; Liu, W.; Li, Y.; Wen, X. The Intestinal Microbial Diversity in Mud Crab (Scylla paramamosain) as
Determined by Pcr-Dgge and Clone Library Analysis. J. Appl. Microbiol. 2012, 113, 1341–1351. [CrossRef]

41. Anacleto, P.; Teixeira, B.; Marques, P.; Pedro, S.; Nunes, M.L.; Marques, A. Shelf-Life of Cooked Edible Crab (Cancer pagurus)
Stored under Refrigerated Conditions. LWT—Food Sci. Technol. 2011, 44, 1376–1382. [CrossRef]

42. Lorentzen, G.; Rotabakk, B.T.; Olsen, S.H.; Skuland, A.V.; Siikavuopio, S.I. Shelf Life of Snow Crab Clusters (Chionoecetes opilio)
Stored at 0 and 4 ◦C. Food Control 2016, 59, 454–460. [CrossRef]

43. McDermott, A.; Whyte, P.; Brunton, N.; Lyng, J.; Fagan, J.; Bolton, D.J. The Effect of Organic Acid and Sodium Chloride Dips on
the Shelf-Life of Refrigerated Irish Brown Crab (Cancer agurus) Meat. LWT-Food Sci. Technol. 2018, 98, 141–147. [CrossRef]

44. Talpur, M.A.D.; Memon, D.A.; Khan, M.I.; Ikhwanuddin, M.; Danish-Daniel, M.; Abol-Munafi, A. A Novel of Gut Pathogenic
Bacteria of Blue Swimming Crab Portunus pelagicus (Linneaus, 1758) and Pathogenicity of Vibrio harveyi a Transmission Agent in
Larval Culture under Hatchery Conditions. Res. J. Appl. Sci. 2011, 6, 116–127. [CrossRef]

45. Afratis, N.; Gialeli, C.; Nikitovic, D.; Tsegenidis, T.; Karousou, E.; Theocharis, A.D.; Pavão, M.S.; Tzanakakis, G.N.; Karamanos,
N.K. Glycosaminoglycans: Key Players in Cancer Cell Biology and Treatment. FEBS J. 2012, 279, 1177–1197. [CrossRef]

46. Köwitsch, A.; Chhalotre, A.; Groth, T. Effect of Thiolated Glycosaminoglycans on the Behavior of Breast Cancer Cells: Toward the
Development of in Vitro Models of Cancer. Int. J. Artif. Organs 2017, 40, 31–39. [CrossRef] [PubMed]

47. Aquino, R.S.; Lee, E.S.; Park, P.W. Diverse Functions of Glycosaminoglycans in Infectious Diseases. Prog. Mol. Biol. Transl. Sci.
2010, 93, 373–394. [CrossRef] [PubMed]

48. Casale, J.; Crane, J. Biochemistry, Glycosaminoglycans. In Statpearls [Internet]; Statpearls Publishing: Treasure Island, FL, USA, 2023.
49. Morla, S. Glycosaminoglycans and Glycosaminoglycan Mimetics in Cancer and Inflammation. Int. J. Mol. Sci. 2019, 20, 63.

[CrossRef] [PubMed]
50. Wang, M.; Liu, X.; Lyu, Z.; Gu, H.; Li, D.; Chen, H. Glycosaminoglycans (Gags) and Gag Mimetics Regulate the Behavior of Stem

Cell Differentiation. Colloids Surf. B Biointerfaces 2017, 150, 175–182. [CrossRef] [PubMed]
51. Colliec Jouault, S.; Chevolot, L.; Helley, D.; Ratiskol, J.; Bros, A.; Sinquin, C.; Roger, O.; Fischer, A.M. Characterization, Chemical

Modifications and in Vitro Anticoagulant Properties of an Exopolysaccharide Produced by Alteromonas infernus. Biochim. Biophys.
Acta 2001, 1528, 141–151. [CrossRef] [PubMed]

52. Zykwinska, A.; Marchand, L.; Bonnetot, S.; Sinquin, C.; Colliec-Jouault, S.; Delbarre-Ladrat, C. Deep-Sea Hydrothermal Vent
Bacteria as a Source of Glycosaminoglycan-Mimetic Exopolysaccharides. Molecules 2019, 24, 1703. [CrossRef]

53. Delbarre-Ladrat, C.; Boursicot, V.; Colliec-Jouault, S. Marine-Derived Exopolysaccharides. In Springer Handbook of Marine
Biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 919–939. [CrossRef]

https://doi.org/10.3390/md16050164
https://doi.org/10.1016/j.fsi.2021.07.007
https://www.ncbi.nlm.nih.gov/pubmed/34274422
https://doi.org/10.1016/j.fm.2019.03.011
https://www.ncbi.nlm.nih.gov/pubmed/31027790
https://doi.org/10.1128/genomeA.00466-18
https://www.ncbi.nlm.nih.gov/pubmed/29853506
https://doi.org/10.1186/s12864-019-6219-7
https://www.ncbi.nlm.nih.gov/pubmed/31703624
https://doi.org/10.1128/aem.43.5.1092-1097.1982
https://doi.org/10.1128/am.29.3.388-392.1975
https://doi.org/10.1371/journal.pone.0070887
https://doi.org/10.1016/j.foodres.2020.109057
https://doi.org/10.1007/978-3-319-19542-1_18
https://doi.org/10.1111/jam.12008
https://doi.org/10.1016/j.lwt.2011.01.010
https://doi.org/10.1016/j.foodcont.2015.06.019
https://doi.org/10.1016/j.lwt.2018.08.039
https://doi.org/10.3923/rjasci.2011.116.127
https://doi.org/10.1111/j.1742-4658.2012.08529.x
https://doi.org/10.5301/ijao.5000551
https://www.ncbi.nlm.nih.gov/pubmed/28222208
https://doi.org/10.1016/s1877-1173(10)93016-0
https://www.ncbi.nlm.nih.gov/pubmed/20807653
https://doi.org/10.3390/ijms20081963
https://www.ncbi.nlm.nih.gov/pubmed/31013618
https://doi.org/10.1016/j.colsurfb.2016.11.022
https://www.ncbi.nlm.nih.gov/pubmed/27914254
https://doi.org/10.1016/S0304-4165(01)00185-4
https://www.ncbi.nlm.nih.gov/pubmed/11687301
https://doi.org/10.3390/molecules24091703
https://doi.org/10.1007/978-3-642-53971-8_39


Molecules 2024, 29, 774 17 of 17

54. Rougeaux, H.; Kervarec, N.; Pichon, R.; Guezennec, J. Structure of the Exopolysaccharide of Vibrio diabolicus Isolated from a
Deep-Sea Hydrothermal Vent. Carbohydr. Res. 1999, 322, 40–45. [CrossRef] [PubMed]

55. Bramhachari, P.V.; Kishor, P.B.; Ramadevi, R.; Kumar, R.; Rao, B.R.; Dubey, S.K. Isolation and Characterization of Mucous
Exopolysaccharide (Eps) Produced by Vibrio furnissii Strain Vb0s3. J. Microbiol. Biotechnol. 2007, 17, 44–51.

56. Bramhachari, P.V.; Dubey, S.K. Isolation and Characterization of Exopolysaccharide Produced by Vibrio harveyi Strain Vb23. Lett.
Appl. Microbiol. 2006, 43, 571–577. [CrossRef]

57. Chalkiadakis, E.; Dufourcq, R.; Schmitt, S.; Brandily, C.; Kervarec, N.; Coatanea, D.; Amir, H.; Loubersac, L.; Chanteau, S.;
Guezennec, J.; et al. Partial Characterization of an Exopolysaccharide Secreted by a Marine Bacterium, Vibrio neocaledonicus sp.
Nov., from New Caledonia. J. Appl. Microbiol. 2013, 114, 1702–1712. [CrossRef]

58. Rodrigues, C.; Bhosle, N.B. Exopolysaccharide Production by Vibrio fischeri, a Fouling Marine Bacterium. Biofouling 1991, 4, 301–308.
[CrossRef]

59. Enos-Berlage, J.L.; McCarter, L.L. Relation of Capsular Polysaccharide Production and Colonial Cell Organization to Colony
Morphology in Vibrio parahaemolyticus. J. Bacteriol. 2000, 182, 5513–5520. [CrossRef] [PubMed]

60. Jiang, P.; Li, J.; Han, F.; Duan, G.; Lu, X.; Gu, Y.; Yu, W. Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium
Vibrio sp. Qy101. PLoS ONE 2011, 6, e18514. [CrossRef] [PubMed]

61. Delbarre-Ladrat, C.; Salas, M.L.; Sinquin, C.; Zykwinska, A.; Colliec-Jouault, S. Bioprospecting for Exopolysaccharides from Deep-Sea
Hydrothermal Vent Bacteria: Relationship between Bacterial Diversity and Chemical Diversity. Microorganisms 2017, 5, 63. [CrossRef]
[PubMed]

62. Yan, W.; Guo, W.; Wang, L.; Jing, C. Extracellular Polymeric Substances from Shewanella oneidensis Mr-1 Biofilms Mediate the
Transformation of Ferrihydrite. Sci. Total Environ. 2021, 784, 147245. [CrossRef] [PubMed]

63. Chen, Y.; Gao, P.; Tang, X.; Xu, C. Characterisation and Bioactivities of an Exopolysaccharide from an Antarctic Bacterium
Shewanella frigidimarina W32–2. Aquaculture 2021, 530, 735760. [CrossRef]

64. Feng, L.; Qian, T.; Yang, G.; Mu, J. Characteristics of Exopolysaccharides Produced by Isolates from Natural Bioflocculant of
Ruditapes philippinarum Conglutination Mud. Front. Microbiol. 2022, 13, 1068922. [CrossRef] [PubMed]

65. Paulo, A.M.S.; Amorim, C.L.; Castro, P.M.L. Effect of Salt on Eps Production by Halotolerant Bacteria for Aerobic Granular Sludge
Treatment. In Proceedings of the 12th Symposium of the European Society of Biochemical Engineering Sciences (Esbes), Lisbon,
Portugal, 9–12 September 2018.

66. Yu, L.; Sun, G.; Wei, J.; Wang, Y.; Du, C.; Li, J. Activation of Macrophages by an Exopolysaccharide Isolated from Antarctic
Psychrobacter sp. B-3. Chin. J. Oceanol. Limnol. 2016, 34, 1064–1071. [CrossRef]

67. van Spreekens, K.J.A. The Suitability of a Modification of Long and Hammer’s Medium for the Enumeration of More Fastidious
Bacteria from Fresh Fishery Products. Arch. Fur Leb. 1974, 25, 213–219.

68. Jérôme, M.; Passerini, D.; Chevalier, F.; Marchand, L.; Leroi, F.; Macé, S. Development of a Rapid Qpcr Method to Quantify Lactic
Acid Bacteria in Cold-Smoked Salmon. Int. J. Food Microbiol. 2022, 363, 109504. [CrossRef] [PubMed]

69. Turner, S.; Pryer, K.M.; Miao, V.P.W.; Palmer, J.D. Investigating Deep Phylogenetic Relationships among Cyanobacteria and
Plastids by Small Subunit Rrna Sequence Analysis. J. Eukaryot. Microbiol. 1999, 46, 327–338. [CrossRef] [PubMed]

70. Kisand, V.; Cuadros, R.; Wikner, J. Phylogeny of Culturable Estuarine Bacteria Catabolizing Riverine Organic Matter in the
Northern Baltic Sea. Appl. Environ. Microbiol. 2002, 68, 379–388. [CrossRef] [PubMed]

71. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using Qiime 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef]

72. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. Dada2: High-Resolution Sample Inference
from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [CrossRef]

73. Olesen, S.W.; Duvallet, C.; Alm, E.J. Dbotu3: A New Implementation of Distribution-Based Otu Calling. PLoS ONE 2017, 12, e0176335.
[CrossRef]

74. McKnight, D.T.; Huerlimann, R.; Bower, D.S.; Schwarzkopf, L.; Alford, R.A.; Zenger, K.R. Microdecon: A Highly Accurate Read-
Subtraction Tool for the Post-Sequencing Removal of Contamination in Metabarcoding Studies. Environ. DNA 2019, 1, 14–25. [CrossRef]

75. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The Silva Ribosomal Rna Gene
Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [CrossRef] [PubMed]

76. Sabrina, M.; Christine, D.L. Blue Crab Portunis Segnis Microbiome—16S rDNA metabarcoding—Projet VALOPOLYMER, Ifremer,
Scientific Information Systems for the sea. 2022. [CrossRef]

77. Kamerling, J.P.; Gerwig, G.J.; Vliegenthart, J.F.; Clamp, J.R. Characterization by Gas-Liquid Chromatography-Mass Spectrom-
etry and Proton-Magnetic-Resonance Spectroscopy of Pertrimethylsilyl Methyl Glycosides Obtained in the Methanolysis of
Glycoproteins and Glycopeptides. Biochem. J. 1975, 151, 491–495. [CrossRef] [PubMed]

78. Montreuil, J.; Bouquelet, S.; Debray, H.; Fournet, B.; Spik, G.; Strecker, G. Glycoproteins. In Carbohydrate Analysis: A Practical
Approach, 2nd ed.; Chaplin, M.F., Kennedy, J.K., Eds.; Irl Press: Oxford, UK, 1986; pp. 143–204.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0008-6215(99)00214-1
https://www.ncbi.nlm.nih.gov/pubmed/10629947
https://doi.org/10.1111/j.1472-765X.2006.01967.x
https://doi.org/10.1111/jam.12184
https://doi.org/10.1080/08927019109378220
https://doi.org/10.1128/JB.182.19.5513-5520.2000
https://www.ncbi.nlm.nih.gov/pubmed/10986256
https://doi.org/10.1371/journal.pone.0018514
https://www.ncbi.nlm.nih.gov/pubmed/21490923
https://doi.org/10.3390/microorganisms5030063
https://www.ncbi.nlm.nih.gov/pubmed/28930185
https://doi.org/10.1016/j.scitotenv.2021.147245
https://www.ncbi.nlm.nih.gov/pubmed/34088061
https://doi.org/10.1016/j.aquaculture.2020.735760
https://doi.org/10.3389/fmicb.2022.1068922
https://www.ncbi.nlm.nih.gov/pubmed/36713164
https://doi.org/10.1007/s00343-016-4393-x
https://doi.org/10.1016/j.ijfoodmicro.2021.109504
https://www.ncbi.nlm.nih.gov/pubmed/34959088
https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
https://www.ncbi.nlm.nih.gov/pubmed/10461381
https://doi.org/10.1128/AEM.68.1.379-388.2002
https://www.ncbi.nlm.nih.gov/pubmed/11772648
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1371/journal.pone.0176335
https://doi.org/10.1002/edn3.11
https://doi.org/10.1093/nar/gks1219
https://www.ncbi.nlm.nih.gov/pubmed/23193283
https://doi.org/10.12770/bb811ad3-269a-4ff6-82d1-e9e41f3a9534
https://doi.org/10.1042/bj1510491
https://www.ncbi.nlm.nih.gov/pubmed/1218089

	Introduction 
	Results 
	Enumeration of the Different Bacterial Groups 
	Bacterial Identification by 16S rRNA Gene Sequencing 
	Bacterial Diversity Using Metabarcoding Analysis 
	EPS-Producing Strains 

	Discussion 
	Materials and Methods 
	Blue Crab Sampling and Handling 
	Enumeration of Bacterial Groups 
	Collection and Identification of Bacterial Isolates 
	Bacterial Strain Collection 
	Bacterial Isolate Identification by 16S rRNA Gene Sequencing 

	Blue Crab Microbiota 16S rDNA Gene Metabarcoding Analysis 
	DNA Extraction 
	Metabarcoding Analysis 

	Screening for EPS-Producing Bacteria 
	EPS Production Screening 
	Agarose Gel Electrophoresis Analysis 

	EPS Characterization 
	Preparation of the EPS 
	Osidic Composition 
	Molecular Weight Determination 


	Conclusions 
	References

