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Summary paragraph:  44 

 45 

Plankton are essential in marine ecosystems. However, our knowledge of overall community 46 

structure is sparse due to inconsistent sampling across their very large organismal size range. Here 47 

we use diverse imaging methods to establish complete plankton inventories of organisms spanning 48 

five orders of magnitude in size. Plankton community size and trophic structure variation validate 49 

a long-held theoretical link between organism size-spectra and ecosystem trophic structures. We 50 

found that predator/grazer biomass and biovolume unexpectedly exceed that of primary producers 51 

at most (55%) locations, likely due to our better quantification of gelatinous organisms. Bottom-52 

heavy ecosystems (the norm on land) appear to be rare in the ocean. Collectively, gelatinous 53 

organisms represent 30% of the total biovolume (8-9% of carbon) of marine plankton communities 54 

from tropical to polar ecosystems. Communities can be split into three extreme typologies: 55 

diatom/copepod-dominated in eutrophic blooms, rhizarian/chaetognath-dominated in oligotrophic 56 

tropical oceans, and gelatinous-dominated elsewhere. While plankton taxonomic composition 57 

changes with latitude, functional and trophic structures mostly depend on the amount of prey 58 

available for each trophic level. Given future projections of oligotrophication of marine ecosystems, 59 

our findings suggest that rhizarian and gelatinous organisms will increasingly dominate the apex 60 

position of planktonic ecosystems, leading to significant changes in the ocean’s carbon cycle. 61 

 62 

Marine plankton drift with ocean currents, with hundreds of thousands of species from metazoans to 63 

prokaryotes, as well as viruses1–3. Together, plankton constitute the base of pelagic food webs and 64 

modulate global biogeochemistry4. Understanding the mechanisms underpinning plankton ecosystem 65 

structure is a major focus in planetary ecology5,6, however most studies have reported fragmented views 66 

of plankton communities partitioned by size 2,7,8 or taxonomic group9 mostly because of sampling and 67 
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analysis limitations. A global and inclusive view of the full trophic organization of whole plankton 68 

communities is lacking, hampering our understanding of trophic equilibria and dynamics in marine 69 

ecosystems.  70 

 71 

A conventional technique for holistically assessing ecosystem structure and function is the ‘size spectra 72 

approach’, generalising Elton’s pyramid10 of numbers that describes the inverse relationship between the 73 

size of organisms and their abundance. The Elton pyramid has been reformulated into biomass11 and 74 

trophic pyramids12 as well as biomass or biovolume size spectra (BSS13,14) and normalised biomass or 75 

biovolume size spectra (NBSS15). In the plankton, primary producers are small in size and consumed by 76 

grazers and predators of increasing size with trophic level16. Because of this principle, the slope of the 77 

continuously decreasing NBSS (SNBSS) is linked to the balance between consumers and prey17 and 78 

represents a proxy for the slope of the trophic pyramid (STrophic). Thus, SNBSS < -1 is assumed to represent 79 

conventional ‘bottom-heavy’ trophic pyramids (i.e., STrophic < 0), while flatter slopes are associated with 80 

‘top-heavy'’ inverted pyramids (STrophic > 0; Fig. 1b). SNBSS is an essential input to numerous theories and 81 

models of community metabolism, energy use and transfer efficiency, which attempt to uncover the 82 

fundamental mechanisms underlying trophic relationships18. The size-spectra approach integrates the full 83 

size range of organisms as a single ecological object, yet only few studies have used it over the wide 84 

range of plankton19–25 and none have done so at global spatial scale crosslinked with taxonomic or 85 

functional properties (aside from modelling exercises26). 86 

 87 

According to theory10, energy loss between trophic levels should lead to ‘bottom-heavy’ pyramids with 88 

higher biomass of primary producers than consumers. While this pattern is consistently observed in 89 

terrestrial food webs, some rare observations or models27 and references therein have suggested that marine food 90 

webs may instead be structured as inverted pyramids9,28. However, because of energetic and predator-91 

prey size constraints these inverted pyramid structures have been interpreted as being a result of sampling 92 

artefacts16. Even if inverted pyramids may result from high turnover rates of producers compared to 93 

consumers27, the mechanisms generating bottom-heavy versus inverted top-heavy pyramids remain 94 

unclear, together with their consequences on energy transfer in ecosystems. 95 

 96 

Here we integrated six optical and imaging technologies deployed during the Tara Oceans (TO; 2009-97 

2012) and Tara Oceans Polar Circle (TOPC; 2013) expeditions to examine variation in plankton 98 

community structure across global taxonomic and spatial scales (Fig. 1a,b). We used multiple 99 

complementary sampling strategies and devices (inline pumping systems, Niskin bottles, peristaltic 100 

pumps, plankton nets) with diverse quantitative optical/imaging instruments including flow cytometry, 101 
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Imaging Flow Cytobot (IFCB), environmental High-Content Fluorescent Microscopy (eHCFM), 102 

Flowcam, Zooscan, and Underwater Vision Profiler (UVP) (Fig. 1a; see Methods) to estimate the 103 

concentration of plankton across 5 and 15 orders of magnitude in size and biovolume, respectively. The 104 

imaged organisms were sized, sorted taxonomically using semi-automated image classification29, and 105 

aggregated into community-relevant ecological groups related to function, abundance and/or trophic level 106 

(i.e., primary producer, mixotroph, herbivore, omnivore, carnivore; see Methods). Per-organism size 107 

measurements were used to compute NBSS for each instrument at each sampling site, and data were then 108 

combined to obtain a global scale, homogeneous quantification of plankton, hereafter called 109 

‘metaplankton’ (Fig. 1b). The reconstructed metaplankton communities are composed of organisms 110 

ranging in size from 0.8 µm to several cm for the Arctic Ocean (Meta-Plk >0.8 µm, Fig 1d), and from 20 111 

µm to several cm (Meta-Plk >20 µm, Fig 1e) in the rest of the global ocean depending on the variety of 112 

measurements done (Fig. S1). For each metaplankton assemblage, we calculated the SNBSS and STrophic (see 113 

Methods). Sampling occurred mostly during day time but night observations are available for cross 114 

comparison. The results were further compared to 18S rDNA metabarcoding data from the same sites, 115 

and metaplankton products were finally converted to carbon units to assess their ecological and 116 

biogeochemical relevance. 117 
 118 
We found strong correlations between the slopes extracted from the two indicators (SNBSS and STrophic) of 119 

ecosystem size-spectra and trophic structures (Fig. 1c, Fig. S2), confirming for the first time the 120 

theoretical link between them. Since SNBSS is independent of taxonomy and trophic level, this result 121 

provides strong support for our taxonomic and trophic assignment of organisms (Table S4), and indicates 122 

that both proxies of community trophic structure are consistent and interchangeable. Overall, a 123 

predominance of top-heavy, inverted trophic community structures was found at the global scale (68% 124 

and 74% based on biovolume STrophic and SNBSS, respectively; Fig. 2a). Focusing on the 20 Arctic stations, 125 

45% and 75% of analysed communities were top-heavy based on STrophic or SNBSS, respectively (Fig. 2a). 126 

This top-heavy trophic structure of marine plankton was robust and consistently found regardless of the 127 

particular dataset, including when using carbon biomass conversions, adding bacteria and pico-nano 128 

plankton counts from FACScalibur flow-cytometry measurements, or comparing to trophic assessments 129 

based on taxonomic annotation from DNA metabarcoding data2,7 (Fig.2, Fig. S3-5), with correlation 130 

between SNBSS and STrophic remaining valid (Fig. S2). This top-heavy structure is even reinforced when 131 

based only on night observations, when migrant zooplanktonic grazers and predator migrate to the ocean 132 

surface (Fig. S5). Bottom-heavy ecosystems (the norm on land) were relatively rare (4% and 11% at 133 

global scale when assessed with SNBSS and STrophic, respectively, and only 0 and 30% in the Arctic Ocean). 134 

They appear limited to relatively productive conditions (Fig. 1d,e, S4) from coastal upwelling (e.g., 135 
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Benguela, Panama, and California upwelling systems at, respectively, TO-Stations 67, 140, and 133), or 136 

phytoplankton blooms such as occurring at the sea ice margin (e.g., TOPC-Stations 173, 175 and 188).  137 

 138 

This high proportion of top-heavy trophic structures originates from the relative proportions of certain 139 

planktonic functional groups. The Arctic metaplankton community (Meta-Plk >0.8µm, Fig. 2a, Table S1) 140 

is composed of a high proportion of gelatinous organisms (including carnivorous chaetognaths, gelatinous 141 

predators, and gelatinous herbivorous filter feeders, 35% of the total biovolume), copepods (25%), large 142 

crustaceans (7%), diatoms (8%), and other phytoplankton (8%). This result contrasts with the classical 143 

paradigm of the Arctic plankton food web as being strongly dominated by diatoms, copepods and krill49–144 
51, and could result from our holistic approach which associates classical data from nets with non-145 

destructive in-situ image acquisition. Furthermore, the poor preservation of gelatinous zooplankton in 146 

formaldehyde30, such as ctenophores known to be important in Arctic ecosystems, could have led to the 147 

underestimation of the predominance of gelatinous organisms in previous studies.  148 
 149 
A similar functional compositional pattern in plankton community structure was observed throughout the 150 

global ocean (Meta-Plk >20µm, Fig. 2a), with gelatinous organisms (filter-feeding tunicates and 151 

carnivores including cnidarians, ctenophores and chaetognaths), copepods, large crustaceans, diatoms, 152 

other phytoplankton, and rhizarians representing approximately 29%, 22%, 8%, 5%, 2% and 8% of the 153 

total biovolume, respectively. Global predominance of gelatinous plankton is unexpected since they 154 

typically represent a small fraction in previous global plankton estimates31–33. Conversion from 155 

biovolume to carbon biomass decreases this contribution to 10% (Fig. 2b; Fig. S3, S4c,d), which is still 156 

an order of magnitude greater than previously reported values (<1%34), suggesting that former studies 157 

largely underestimated the content of fragile gelatinous organisms35,36. Though an imperfect quantitative 158 

metric37, metabarcoding data are in agreement with these image-based organismal abundances, albeit with 159 

noticeable deviations for copepods and rhizarians. 160 

 161 

NBSS and trophic slopes show no latitudinal trends (Fig. 1d,e, S3, S4), in agreement with results of a 162 

theoretical modelling framework38. Small differences between polar and tropical environments only 163 

appear when looking at plankton functional groups or trophic levels (Fig. 2b, c). Surprisingly, the Arctic 164 

food web does not strongly differ from the global ocean in terms of functional and trophic structures, 165 

other than an increase in the abundance of rhizarian or mixotrophs in tropical zones, and of copepods in 166 

the Aarctic ecosystems (Fig. 2b, c). While Arctic ecosystems are less diverse7 and structurally simpler39, 167 

our results suggest that energy transfer through Arctic plankton food webs follow the same principles as 168 

elsewhere in the global ocean at the trophic and functional levels. We further investigated this unexpected 169 
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similarity by examining the relationship between the biovolumes of consumers (herbivorous and 170 

carnivorous) and their prey (Fig. 3). Our findings indicate that the biovolume of consumers depends on 171 

that of their prey, yet with no direct proportionality. Rather the biovolume of predators often exceeds that 172 

of prey in low food conditions, and prey biovolume exceeds that of predators only in exceptionally prey-173 

rich environments, thereby generating classical terrestrial-like pyramids, in line with previous 174 

observations in both terrestrial40 and oceanic ecosystems9,41, and even between viruses and their bacterial 175 

prey42. This emergent property of plankton trophic structure holds true from Arctic to global ocean 176 

ecosystems, and across trophic levels, from primary producers to carnivores (Fig. 3). This indicates that 177 

the trophic structure of ecosystems is primarily driven by prey stocks, and not necessarily by their 178 

productivity, as also confirmed by the lack of correlation between trophic structure indices and satellite-179 

derived proxies of ecosystem productivity or chlorophyll (Fig. 4a, b). 180 

 181 

To investigate whether the functional composition of metaplankton communities is associated with 182 

specific environmental conditions, we conducted a Principal Component Analysis (PCA; Fig. 4a) on 183 

which correlations with environmental features were projected (Fig. 4b). Three extreme types of 184 

functional composition emerged, with a direct link to trophic slopes (Fig. 4a and d). The bottom-heavy 185 

communities were associated with low principal component values on axis 1 and 2, while the two other 186 

extremes were strongly top-heavy and characterised by high proportion of gelatinous organisms (Fig. 4d). 187 

Most environmental features are associated with axis 2 characterising the eutrophic (negative values, high 188 

biovolumes correlated with NPP, chlorophyll a, carbon flux and iron concentration) to oligotrophic 189 

gradient (positive values, correlated with greater depth of mixed layer Zmld euphotic zone Zeu and PAR 190 

among others). While the trophic slope is strongly related to axis 1, a few environmental parameters are 191 

weakly associated with it (Martin’s b, and SZeu), further establishing the trophic structure as an ecosystem 192 

emergent property that is largely independent of environmental forcing (Fig. 4b) but significantly 193 

associated with the percentage of gelatinous organisms (Fig. 4c). 194 

 195 

The three extremes in plankton taxo-functional composition could be separated into 4 groups of sampling 196 

sites (Fig. 4a, Table S2) for which the main biotic composition was assessed (Fig. 4e). Group 1 has a high 197 

representation of diatoms (18% biovolume as a mean) and low biovolume of gelatinous organisms 198 

(4.7%), and is observed in coastal and equatorial (Pacific) upwelling zones (Fig. S6a). Group 2 is 199 

characterised by flat trophic structures and comprises a relatively equilibrated taxo-functional 200 

composition (still including 21% of gelatinous organisms). Group 3 is characterised by a higher rhizarian 201 

(16%) and chaetognath (17%, total gelatinous ornanisms at 29%) biovolume composition, and is observed 202 

mostly in tropical oligotrophic regions. This is consistent with previous findings of high biomass of 203 
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rhizarians, often having adaptations convergent with gelatinous organisms43 in oligotrophic gyres44. 204 

Finally, Group 4 has a large proportion of gelatinous organisms (55% biovolume), both in the form of 205 

filter feeders (12%, e.g., salps appendicularians) and carnivores (32%, e.g., jellyfishes, ctenophores, 206 

chaetognathes), and is observed in coastal areas.  207 

 208 

Using carbon biomass (Fig. S6b) or adding flow cytometry data to include bacteria and pico- nano-209 

plankton in the analysis (Fig. S6c) does not alter our results but decreases the proportion of gelatinous 210 

organisms (e.g., to 5% in Group 2; 16% in Group 4) and increases by a constant proportion the 211 

heterotrophic bacteria (2.5-8.2% biovolume) and cyanobacteria (3.8-7.1%) pools. Likewise, copepods 212 

represent a constant 19-25% biovolume in every ecosystem state (Fig. 4e, S6b). Our findings suggest that, 213 

although copepods and large crustaceans both have carnivorous representatives, the predominance of top-214 

heavy trophic structures observed at global scale is directly connected with gelatinous organisms (Fig. 215 

4c,d). More importantly, top-heavy trophic structures are both observed in oligotrophic (Group 3) and 216 

eutrophic conditions (Group 4), suggesting that other intrinsic ecosystem properties are responsible for 217 

such observations.  218 

 219 

When previously observed, top-heavy ecosystem structures were believed to result from specific 220 

biological and ecosystem properties27,45,46. These properties are however commonly met for planktonic 221 

ecosystems especially when considering gelatinous plankton. Plankton turnover rates are high for 222 

autotrophs with time scale of growth in the range of hours to days47 while their grazers and predators have 223 

life cycles ranging from a few days to months48. Gelatinous plankton are known to have relatively low 224 

metabolic expenses compared to their feeding capacities49, therefore increasing efficiency of energy 225 

transfer to higher trophic levels. They are also able to forage on prey that are several orders of magnitude 226 

smaller than those of similar sized predators50, therefore short-circuiting food web structures but probably 227 

providing lower food quality to higher trophic levels51. Finally, gelatinous plankton also have the capacity 228 

to consume their own biomass and shrink to survive over long starvation periods52, further increasing the 229 

life span difference between predator and prey. It should also be noted that the overall variability in the 230 

biovolume of autotrophs is larger than that of consumers or predators (Fig 3), implying that predators 231 

(more stable) have a larger resilience and buffering capacity against seasonal variations than their prey 232 

(more variable with intense bloom and bust cycles). All of the above favours the emergence of top-heavy 233 

ecosystem structures in the ocean. 234 

 235 

In conclusion, our results show that top-heavy planktonic ecosystems are observed worldwide in the 236 

upper ocean, except in specific conditions (early blooms) when and where the decoupling between 237 
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predator and prey is largest. They are associated with a dominance of gelatinous organisms (>55% of 238 

observations) in both polar and non-polar regions. Inverted-gelatinous dominated ecosystems are 239 

associated with oligotrophy and late blooms, but not with latitudinal gradients, while classical, terrestrial-240 

like pyramids are associated with early bloom eutrophic conditions. Most open ocean plankton 241 

ecosystems appear to be organised along three extreme communities: diatom/copepod dominated (early 242 

bloom eutrophy), rhizarian/chaetognath dominated (warm water oligotrophy), and gelatinous dominated 243 

(late bloom eutrophy). The observed plankton ecosystem structures have consequences for 244 

biogeochemical fluxes (Fig 4b, d). Eutrophic systems dominated by diatoms and copepods transport a 245 

higher proportion of new production to depth, but with lower trophic transfer efficiency. Oligotrophic 246 

rhizarian systems, on the other hand, exhibit higher transfer efficiency but lower vertical export. Systems 247 

dominated by gelatinous organisms are associated with both high vertical flux53 and high trophic transfer. 248 

Current climate change projections highlight the possible ‘tropicalisation’ of the marine environment54, 249 

i.e., an increase of stratification and oligotrophy55. Our results suggest that this will lead to increased 250 

rhizarian and gelatinous plankton-based ecosystems in the ocean. 251 

 252 
 253 
 254 
 255 
  256 
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Methods 257 

Sampling 258 

The complete sampling protocols used in Tara Oceans and Tara Oceans Polar Circle expeditions are 259 

detailed in56. In order to compare as many measurements as possible, we focused on samples collected 260 

from Niskin bottles in the surface layer (0-3m), the ship’s inline water intake located 2 m below sea 261 

surface, and plankton nets deployed at various depths with mesh size of 5µm (0-5m), 20µm (0-5m), 262 

200µm (“WP2 net”, 0-100m), 300µm (“bongo net”; 0-500m), and 680µm with silk mesh (“Regent net”; 263 

0-500m). We also used the Underwater Vision Profiler57 mounted on the Rosette which recorded in-situ 264 

images of > 600 µm plankton. For nets and UVP, we only used day-time samples (defined as when the 265 

sun azimuth was above the horizon with a 2° margin to incorporate dusk conditions) and samples 266 

collected in the upper 200m of the water column. We choose to not include night samples to keep a 267 

conservative bias (potential underestimation of grazers and predators). Similar results were obtained when 268 

substituting night samples to day samples when available (Fig S3, S5), and top-heaviness is even more 269 

present, a pattern coherent with vertical migrations of herbivorous and carnivorous organisms. 270 

 271 

A full set of optical or imaging devices were used to count, qualify and measure plankton. For the full 272 

Tara Oceans cruise (stations up to 154), the different set used includes 1) cells counts using a FACSalibur 273 

flow cytometer 2) environmental High Content Fluorescence Microscopy68 (e-HCFM) using sample 274 

originating from a 5 and 20µm mesh size nets, 3) samples collected with different nets and imaged with 275 

the Zooscan58 and 4) in situ observations done with the Underwater Vision Profiler57 (UVP-5). For the 276 

Tara Oceans Polar Circle, this sampling scheme was complemented by on-board instruments including 5) 277 

Accuri flow cytometer, 6) Imaging FlowCytoBot (IFCB59,60) and 7) FlowCam analyzer61 (See 278 

Supplementary Information for further details on sampling). 279 

 280 

Ecotaxa processing and post-processing 281 

Images from different sources described above were identified by taxonomic experts using the online 282 

software Ecotaxa62. The remaining images were predicted in Evotaxa by machine learning methods. The 283 

different Ecotaxa projects with their total number, percentage of validated objects and the link to them are 284 

given in Table S3. 285 

Depending on the data source inspected, the completion of validation varied (Table S3, Fig. S1), but 286 

was complete for organisms of larger fractions (WP2, Bongo, Regent, UVP) and within the Arctic, when 287 

numerous instruments were deployed simultaneously. Finally, 22,309 and 25,095 images were identified 288 

on the eHCFM 5µm and eHFCM-20µm datasets, with a reasonable prediction of the rest of the dataset63. 289 

In eHFCM-20µm, due to sample preparation, a large number of images corresponds to multiple 290 
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organisms overlapping each other which explains the large biovolume of “other unidentified'' organisms 291 

in this dataset. An extensive quality check of metadata (volumes of water, volume of sample inspected) 292 

was conducted. 293 

All results from Ecotaxa were extracted as individual text files. Taxonomic annotation, morphometric 294 

measurements and essential metadata (volume of water collected, volume of sample inspected) were used 295 

to calculate the biovolume (in mm3) of each particle collected (plain area biovolume, extruded area 296 

biovolume and ellipsoidal equivalent biovolume assuming prolate ellipsoids). While none of these 297 

biovolumes gives perfect results, we choose to use the ellipsoid biovolume for every instrument. 298 

Organisms abundances (ind. m-3) and biovolumes (mm3 m-3) were calculated for each taxonomic 299 

annotation but also with several levels of regrouping: 1) total, 2) living or non-living 3) a functional 300 

annotation and 4) a trophic annotation. We chose to define 23 planktonic functional groups corresponding 301 

to broad taxonomic groups with important ecological functions (e.g. 64). After a preliminary analysis, low 302 

abundance groups with similar functions were grouped mostly under the label “other primary producers” 303 

(for autotrophic/mixotrophic groups) and “others”. Trophic annotations corresponding to each taxon were 304 

used to regroup autotroph taxa as trophic level 1, mixotrophs (1.5), grazers (2), omnivorous (2.5) and 305 

carnivorous (3) based on bibliographic research (e.g.65–68) as well as consultations with taxonomic 306 

experts. Non-living or non-feeding were attributed to the trophic level -1. For uncertain cases, we 307 

followed a conservative approach and allocate the status of grazers (2) for any heterotroph having a non-308 

strict omnivorous or carnivorous behaviour, notably concerning copepod species in which prey switching 309 

may occur or following the recommendation of Flynn et al69 for microplankton organisms. Any 310 

organisms for which the trophic mode could not be attributed were kept as undetermined (noted 3.5). The 311 

full list of functional and trophic annotations linked with their Ecotaxa taxonomic label can be found in 312 

Table S4. 313 

 314 

Normalized biovolume Size Spectra (NBSS) calculation 315 

Following15, biovolume size spectra (BSS) and normalized biovolume size spectra (NBSS) were obtained 316 

under a harmonic scale of biovolume starting from 10-12 to 104 mm3 with biovolume size-class increasing 317 

exponentially with minimal and maximal biovolumes of each size-class (Bvmin and Bvmax) defined such as 318 

Bvmax= 20.25 Bvmin. BSS was obtained by summing the biovolume of each object belonging to each size-319 

class while NBSS was obtained by dividing BSS by the biovolume width of each size-class (i.e. 320 

Bvrange=Bvmax- Bvmin). BSS and NBSS spectra were calculated for initial taxonomical identity and for each 321 

level of regrouping (i.e. functional type and trophic level). 322 

The BSS is roughly comparable to a pyramid of biomass11 while the NBSS is representative of 323 

pyramids of numbers70 with a scaling factor of Bvmean/Bvrange to recover counts within a size range71.  324 
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 325 

Metaplankton assembling 326 

In the lowest size range, each dataset displays an undersampling (Fig S7a) which is symptomatic of either 327 

incorrect detection of objects due to optical or digital limitation of each device (e.g. 72) or, when using 328 

nets, to mesh extrusion of organisms. Therefore, any parts of the NBSS and BSS below the maximal 329 

abundance of each device were discarded before assembling them. For the highest size range of each 330 

dataset, very large organisms correspond to a presence-absence signal rather than quantitative due to 331 

insufficient sampling effort, and were disregarded. Symptoms of such observations are recurrent size bins 332 

with observations corresponding to 1-2 organisms surrounded by multiple empty bins. For this we take 333 

the objective criteria that every NBSS size bin separated by more than 5 empty size bins were 334 

disregarded. 335 

Three different ways of merging all observations were considered. In all cases we considered the 336 

principle that, when represented in logarithmic scale, the intercept of NBSS spectra represents the total 337 

abundance of organisms in the considered ecosystem73,74. Therefore, discrepancies in intercepts only 338 

reflect discrepancies in sampling such as different depths or strategies (discrete vs integrative). 339 

Since WP2 net observations were among the more commonly sampling devices used throughout the 340 

campaign (see Fig. S1), but also cover an intermediate size within observations, we used them as a global 341 

reference. Therefore, without WP2-net observations, no adjustment was performed, and data were not 342 

considered in the analysis. Only NBSS of total living organisms were considered. 343 

 344 

1) intercept-adjustment 345 

The first, and preferred correction method directly relies on the theory: using log transformed 346 

biovolume and NBSS data, we estimated the intercept and slope on WP2 net observations (WP2i and 347 

WP2s respectively). The intercept on other datasets (Dataseti) was calculated by imposing those measured 348 

in the WP2 (Fig S7c) and the NBSS of each dataset is corrected by a factor which corresponds to the 349 

intercept discrepancy observed such as: 350 

NBSScorr= NBSSraw*exp(WP2i-Dataseti) 351 

Such correction was in most cases sufficient to effectively correct for intercept discrepancies. 352 

However, it was inadequate in specific cases such as when multiples bumps were observed either on the 353 

NBSS from the WP2 net or on other datasets, therefore compromising slopes or intercepts estimates, or 354 

when the dataset considered does not span large size ranges (mostly from UVP or IFCB observations). 355 

 356 

2) Default adjustment 357 
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Secondly, given the overlap in size between instruments, some overlap observations could be present. 358 

An adjustment ratio is computed for each overlapping NBSS size bins from which a median conversion 359 

ratio between each pair of size-overlapping instruments could be calculated. Each of those ratios 360 

corresponds roughly to the intercept correction as mentioned above. All these adjustments between 361 

instruments were accumulated across stations to produce a median ratio of correction which was applied 362 

to sequentially correct each series of observations to a comparable level with WP2 observations (Fig 363 

S7b).  364 

 365 

3) Site-specific adjustment 366 

Finally, a site-specific adjustment was produced, using, if present, the median correction ratio 367 

specifically observed at that given site or the default ratio if no specific correction was present (Fig S7d). 368 

This one was usually preferred to the default adjustment. 369 

 370 

Final adjustment 371 

Results for all adjustments were inspected to detect any slope breaks in the final NBSS (Fig S7f) and 372 

BSS spectra (Fig S7i), these latter being symptomatic of incorrect corrections. If the intercept-adjustment 373 

was qualified as inadequate, other possibilities were tested to obtain the best final adjustment (Fig S7e). In 374 

total, for day observations, we obtained metaplankton assemblages from 11 different dataset sources, 375 

which corresponded to 695 datasets adjusted with 152 WP2 net observations. The intercept adjustment 376 

was adequate for 529 datasets (76.1%) while site-specific and default adjustments were applied on 99 377 

(14.2%) and 52 (7.48%) datasets respectively. For e-HFCM datasets for which neither default nor specific 378 

adjustments were possible (no shared size classes with WP2 nets), the datasets were kept un-corrected, 379 

and this occurred in for 15 cases (2.15%). 380 

 381 

Final corrections were applied to obtain NBSS and BSS for the total living organisms, but also for 382 

combining observations done at the functional and trophic levels (Fig S7g-l). For these ones, at a given 383 

size bin, a mean between the different datasets was performed. No assemblages were performed at the 384 

initial taxonomic identification level because the variations of taxonomic level of identification between 385 

datasets may lead to duplicate counts (e.g. “copepods” identified with UVP correspond to several families 386 

of copepods identified with Zooscan). Finally, biovolumes and numbers of organisms were summed 387 

across sizes to provide an overview of the contribution of the different functional groups and trophic 388 

levels to the full metaplankton assemblage. 389 

The availability of the various data sources (Fig S1) varies across the expedition. Hence, meta-390 

planktonic assemblages were obtained with different granularities:  391 
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1) “Meta-Plk >0.8 µm” spans organisms ranging from 0.8 µm to several cm (including flow-392 

cytometry, IFCB, Flowcam, Zooscan from several nets and UVP and with a complete coverage in 393 

between), it is only available from the Arctic ecosystem and covers 20 sites. 394 

3) “Meta-Plk >20 µm” spans organisms ranging from 20 µm to several cm (using e-HFCM with 20 395 

µm net, Zooscan from WP2 and Regent nets and UVP). It covers both polar and tropical parts of the 396 

expedition and includes 63 stations.  397 

Two other more heterogeneous products were generated for a more complete global geographic 398 

coverage, although these could suffer from higher uncertainties due to their incomplete coverage: “Meta-399 

Plk >0.8 µm incomplete” is similar to the above but miss some observation for particular organism sizes, 400 

notably due to the absence of Flowcam analyses of the 20 µm net fractions. “Meta-Plk heterogeneous” 401 

regroups all observations available at a given site with heterogeneous coverage in size classes but when 402 

compared with more complete datasets (Fig S2, S3), provides an independent confirmation over wider 403 

geographic coverage. 404 

 405 

Carbon biomass calculations 406 

Biovolume estimates were converted to carbon biomass by using conversion factors from several 407 

sources. For most phytoplankton and microzooplankton, we combined conversion factors between 408 

biovolume and carbon biomass75–84 to obtain a single usable relationship to convert biovolume estimates 409 

to carbon biomass (Table S5, Fig. S8) following the relationship: 410 

Biomass (mgC)= a * Biovolume (mm3) ^b. 411 

 412 

For rhizarians including acanthareans, foraminifers, phaeodaria and radiolarians, we used conversions 413 

between biovolume and carbon biomass44,85 except for colonial and solitary collodarians, Spumelarians, 414 

nasselarians and specific genus of phaeodarians (Alaucantha and Protocystis) for which a specific carbon 415 

to biovolume relationships were used instead86. Finally for larger zooplankton we used phylum specific 416 

conversion factors between wet mass and carbon mass87 assuming that biovolume estimates are 417 

comparable to wet mass. All conversion factors for each taxonomic identification are presented in Table 418 

S4. This conversion work allowed us to check if our observations, mostly expressed in biovolume, are 419 

robust even when expressed in carbon (Fig 2, 4, S3, S4). We are however conscious that such conversion 420 

may also introduce biases. It is worth noting that while carbon units are widely representative of the 421 

respiration expenditures of organisms, their wet mass (and biovolume) is a better reflection of their 422 

feeding activity and interactions even when considering gelatinous plankton49, and therefore biovolume is 423 

preferred here in the context of trophic structure. 424 

 425 
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BSS, NBSS and trophic slopes calculations 426 

On metaplanktonic data we calculated three different slopes characterising the ecosystem structure 427 

(Fig. 1). Both BSS and NBSS spectral slopes (SBSS and SNBSS) were calculated on biovolume (mm3 m-3 and 428 

mm3 mm-3 m-3 respectively; Fig. 1 S7) as a function of the median biovolume (mm3) of each size class. 429 

Similar calculations were done in carbon units (mgC mgC-1 m-3) as a function of the median carbon mass 430 

(mgC) of each size class. All data were log transformed and linear adjustments were obtained on log 431 

transformed data. For the trophic slope (STrophic) calculations, total biovolume (mm3 m-3) or carbon mass 432 

(mgC m-3) of each trophic group were summed for each station and attributed respectively to trophic 433 

levels 1, 1.5, 2, 2.5 and 3 (Fig. 1, Fig. S7). Total biovolumes or biomasses were log-transformed and the 434 

trophic slope was calculated as the slope of these log-transformed biovolume/biomass as a function of 435 

trophic level. 436 

For any linear and power relationships used in the manuscript, we used robust linear fitting which is 437 

less sensitive to possible outliers88.  438 

To further analyse the trophic structures of plankton communities worldwide, we classified bottom-439 

heavy, flat, and top-heavy food webs as having trophic slopes STrophic ∈ ( < -0.25, -0.25 to 0.25 and > 440 

0.25) or, alternatively, SNBSS ∈ (<-1,1 ; -1.1 to -0.9 ; > -0.9).  441 

 442 

Genomic data 443 

DNA metabarcoding data, which target the Eukaryota kingdom through the V9 region of the 18S rRNA 444 

gene, were used in this study to assess if the trends observed for eukaryotes with imaging approaches 445 

were consistent with those based on molecular data. A full description of all the steps from sampling to 446 

bioinformatic analysis leading to the OTU table are described in2,7 and available in89,90. The number of 447 

reads associated with each OTU was used as a proxy of abundance for our ecological analysis. The 448 

number of reads in a sample does not reflect total biomass/abundance variations, we therefore 449 

standardized the read counts dividing by the total number of reads in each sample. Mesoplanktonic 450 

subsurface samples (180-2000 µm; the biggest size fraction for metabarcoding in Tara Oceans) from 451 

surface samples were selected for the comparison (136 samples) for their good size overlap with nets used 452 

for imaging samples. We assigned these OTUs to functional and trophic groups compatible with the one 453 

used for imaging datasets. The complete association with the different functional and trophic status of 454 

organisms can be found in Table S6. Additional trophic groups (bacteriophages, parasitic) were also 455 

considered and relative read abundance for each functional and trophic group was calculated at the 456 

sample level but they were not included in the trophic slope calculation. We calculated a trophic slope 457 

over the trophic groups 1-3 (autotrophs to carnivores) by first log-transforming the relative reads and by 458 

calculating the slope of the log-transformed relative counts as a function of trophic level (Fig. S4e). It 459 
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should be noted that the interpretation of metabarcoding-derived slopes is subject to caution due to PCR 460 

biases. Indeed, the correlation of this trophic slope with quantitative imaging methods is not significant 461 

(Fig S1), but it gives relatively similar proportion of top-heavy ecosystems worldwide, with comparable 462 

functional composition (Fig 2a), which both follow the same geographical pattern as imaging 463 

observations (Fig 2b, c, S4).  464 

 465 

 466 

Environmental data 467 

To interpret our observations, we used combined environmental data representative from each station. All 468 

our observations span several samples done during the 1-2 days of sampling of the station. The net tows 469 

and the UVP casts were vertically integrated. We therefore compiled data relying on published datasets56 470 

that correspond to water column features91 and mesoscale features92 that we enriched with data 471 

corresponding to nutrients levels93, carbonate chemistry94 and pigments concentrations95. All these data 472 

correspond to the median of sample values. To combine information relevant to the entire site and water 473 

column, we did restrict the dataset to samples encompassing at least 0-50m depth integration and 474 

generated a single mean for the site. We further enrich this contextual data by calculating carbon fluxes 475 

obtained from the UVP data96 and averaging around 2 specific depths (200 and 500m ±20m). From 476 

pigment composition, we derived chlorophyll a into micro, pico and nanoplankton proportions (micro, 477 

pico and nano) using the Uitz et al97 algorithm. We also calculated and index of nitrate deficiency 478 

relatively to phosphate (N*) using the following formula98:  479 

N*=Nitrate + Nitrite – (16 * Phosphate) 480 

 481 

The environmental parameters ultimately used in our analysis include concentrations and limitations by 482 

different nutrients (N, P, Si, Fe, N*), the amount of photosynthetically available radiations (PAR), some 483 

water column information such as the mixed layer depth (Zmld) and the euphotic depth (Zeu), 484 

temperature and salinity of the euphotic zone (Tzeu and Szeu), mesoscale indices such as the Okubo–485 

Weiss parameter (okubo) that indicates if the station is located within an eddy (negative value) or outside 486 

an eddy (positive value), the Lyapunov exponent correlated with the stability of movements at the 487 

mesoscale level and the residence time which indicates how many days a water mass has spent inside an 488 

eddy. Finally, a certain number of parameters relative to the biological context and productivity of the 489 

ecosystems were also used: the sea-surface chlorophyll a concentration at 10m (chla ss), the net primary 490 

production (NPP), carbon flux at 200 and 500m (flux200, flux500) and the percentage of chlorophyll a 491 

represented by micro-, pico- and nano-plankton (micro, pico, nano). 492 

 493 
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Statistical analysis 494 

To interpret how stations are characterized by their plankton functional types composition, we performed 495 

a principal component analysis (PCA) using the functional groups composition (using Hellinger 496 

transformation). Groups of stations sharing similar compositions were established on the two first axes of 497 

the PCA, using Euclidean distances (i.e. Hellinger distances) and Ward linkage. The association with the 498 

environment was tested by adding environmental variables as supplementary variables in the analysis and 499 

evaluating their correlations to the PCA components.  500 

 501 
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Figure 1 : Tara Oceans multi-imaging framework to assess the trophic structures of open ocean plankton 
ecosystems at global scale. a) Examples of images obtained with the different quantitative imaging devices (e-
HCFM - environmental High Content Fluorescence Microscopy, IFCB - Imaging FlowCytoBot, FlowCam, 
Zooscan and Underwater Vision Profiler (UVP) ; for complete image collection including scale bars see Table 
S1. b) Full normalized biovolume size spectra (NBSS) from station 173, reconstructed by combining the 
different size classes, and plotted as a function of organism size (ESD: equivalent spherical diameter).  
Theoretical links between NBSS slopes (SNBSS) and trophic pyramid structure (STrophic) are also indicated. c) 
Observed relationship between SNBSS and STrophic for the entire meta-plankton community >20µm (Meta-
Plk >20µm) across all  Tara Oceans samples . d) SNBSS for Arctic (Meta-Plk >0.8 µm) and e) world ocean (Meta-
Plk >20µm) plankton ecosystems  
 
 
 
 
 
 
 
 
 

������
���		
�

���
���		
�

�������
�	��		
�

�������
��		
�

���
��		
�

�		 �	� �	�

�		

�	�

�	�	

���� ���� �� �	�� �	�� �	��
��

��
��

	
��

�
�

�

�

�

�

� �

�
����	
� � ������	
 ���	��

����	� �����

���� � !���!" �#$%&$�

#

�
�
�
�

�
�
�

��
�

��

#

�
�
�
��
'�

(�) *
�+ �#�� ��!����%��	
�

�#�� � ��

�#�� � ��

�#�� � ��

 ,��-�./��0� 1�,	��	 ' 2 	�		�

�
3"
�'

4$
�
�
�!
��
�
�%
��

	

�

�������$��
��������#$&%$�
���������	
� ��!
�������	
� ��!
��������5�� ��! �		
�
����������6� ��! �		
�
��������1�6��! ��! ��	
�
����$� &$!7

��� 8��$9�"�&
� ��"�$9�"�&
��%���

� :7!�!"�'4&
��� �$.�!"�'4&
� ��";$9�"�&

/�	 �

/�	 �

����

��

�	��

�	��

�	��

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579612doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 2: Global predominance of top-heavy trophic pyramids in the world marine plankton.  a) The 
proportion of bottom-heavy, flat and top-heavy trophic community structures was established on the basis of 
NBSS (SNBSS <-1,1 ; -1.1-0.9 ; >-0.9) and Trophic   (STrophic < -0.25, -0.25-0.25 and >0.25) slopes. These were 
calculated for metaplankton datasets from the Arctic (Meta-Plk >0.8µm) and global (Meta-Plk >20µm) Oceans, 
either using biovolume (Biov.) or carbon biomass (Carb.) for computation. The mean metaplankton functional 
composition of each dataset was also extracted. b) Latitudinal variations of the different functional and plankton 
groups (c) trophic levels calculated for the global ocean metaplanktonic datasets (Meta-Plk >20µm;)  using 
either biovolume (Biov.) or carbon biomass (Carb.). Independent calculations from DNA metabarcoding datasets 
from the meso-planktonic size fraction were also included.  
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Figure 3: Biovolume relationships between prey organisms and their predator for the Arctic and global 
Oceans. Prey versus predator biovolume relationships are shown separately for the autotrophs/herbivores 
(deep/light green dots) and herbivores/carnivorous (light green/red dots) couples. Deviation from the 1:1 
relationships are indicators of trophic structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

��� ��� ��� ��� ��� ���

��	
������
�
������������

���

���

���

���

���

���

�

�
	�
�
��
��
�

�

��
�
��
�
�
� �
�
��

��������	
����

�������������������������������

������
��	��� �!
!�
�"	
�#����
��	���������
��	

��� ��� ��� ��� ��� ���

��	
������
�
������������

���

���

���

���

���

���
��������	
����

��$��%������������������&������

� ��������	 
 ����
������ �����

�������	 
 ����
������ �����

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2024. ; https://doi.org/10.1101/2024.02.09.579612doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.09.579612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 4: Link between ecosystem functional composition, trophic structure, and environmental 
properties. a) Principal Component Analysis (PCA) performed on the main taxo-functional groups from Meta-
Plk >20µm, and with correlation of the functional groups with PCA components (arrows) and their associated 
trophic slopes (color scale). Four groups of stations displaying different trophic and functional signatures could 
be detected using Euclidean distances and Ward linkage clustering on PCA coordinates: Group 1 (circles), 2 
(squares), 3 (inverted triangles), 4 (triangles), respectively dominated by (1) diatom and phytoplankton; (2) 
copepod; (3) rhizarian, chaetognath and large crustacean and (4) gelatinous plankton. b) The same PCA analysis 
with correlation of environmental properties (see methods for details on the contextual parameters integrated in 
this analysis) with PCA axes while the colour scale represents total biovolume. c) Relationships between the 
trophic slopes and the percentage of gelatinous plankton (gelatinous carnivores + filter feeders + chaetognaths). 
d) Conceptual scheme of the different ecosystem states observed in terms of trophic and functional structure, 
together with their potential links with the carbon flux in the water column or in the trophic chain. e) Observed 
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taxo-functional groups’ average biovolume (e) and carbon weight (f) proportions for each group of stations 
defined in (a) and corresponding to four ecosystem states. See S6 for the effect of adding microbes to these 
structures. Visualisation obtained from http://bionic-vis.biologie.uni-greifswald.de/.   
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Supplementary information: 1 

This part describes in detail the specificity of each optical or imaging equipment that was used 2 

during the Tara Oceans sampling. 3 

Accuri: 4 

Starting from station 154 (i.e. temperate to polar stations), samples used for flow cytometry were 5 

collected with Niskin bottles (0-3m). Samples were analysed alive on-board using an Accuri flow 6 

cytometer (BD Accuri C6). Each sample was run twice, in fast mode (163.5µl / min; sample size of 7 

327µl) and in slow mode (33µl / min; sample size of 66µl) for optimal detection and counts of large 8 

and small particles. Calibration of fluorescence peaks (BD, 8 & 6 µm validation beads) and counts 9 

(1µm Polyscience yellow beads) were done daily. Size calibrations were done weekly using 10 

calibration beads (1, 2, 4, and 10µm) but also using 13 phytoplankton cultures of known sizes, ranging 11 

from 1-25 µm from which we created a calibration curve to estimate cell sizes of natural 12 

phytoplankton populations (Size (µm)=FSC*0.0000041+0.85). Size of cultures >3 µm were confirmed 13 

by measuring cell size under the microscope.  Blanks of filtered seawater samples were run with each 14 

set of samples and the background signal was gated and removed from each sample to ensure that only 15 

populations of cells were counted. Flow cytometry data were gated and for the sake of simplicity we 16 

chose to only gate out all particles that were considered as not alive without separating the different 17 

populations.  18 

 19 

FACSalibur flow cytometry 20 

Sampling and analysis are described in1. We restricted our analysis to sea-surface samples collected 21 

using Niskin bottles. Available counts are variable within stations notably the the nano-eukaryotes 22 

counts added in the Arctic part of the expedition (Fig S1). Concentration and mean size of the 23 

different cell populations detected were measured and used to derive an equivalent spherical 24 

biovolume. Since the individual size of each cell was not available, the size range (minimal-maximal 25 

size) of each population was not available, it was then not possible to size-normalize those counts and 26 

therefore could not be integrated in the NBSS approach. However, since NBSS results correspond 27 

roughly to concentrations2, we converted raw concentrations by the scaling factor Bvmean/Bvrange to 28 

obtain comparable units with NBSS spectra for gross cross comparison display (Fig S7), but we did 29 

not use them to calculate NBSS slopes. The total biovolume observed by flow cytometry of each 30 

category was also summed to provide an overview of the full (0.2-cm size) composition and trophic 31 

structure of plankton. This estimation was only done when both bacterial and photosynthetic 32 

picoplankton were available. Since this approach cannot be homogenized with other measurements, a 33 

certain bias could have been introduced, however it confirmed that extending the range of observation 34 

from 20 µm down to 0.2 µm did not change most of our observations and findings (Fig S5, S6b) 35 

 36 
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eHFCM H5/H20 37 

The environmental High Content Fluorescence Microscopy3 (e-HCFM) is a 3D multichannel imaging 38 

workflow which was applied on samples originating from the 5 and 20µm nets. Protocols for 39 

acquisition were described in3. Briefly, it allows to take confocal images at various focal distance (Z-40 

stacks) using 5 different excitation channels (Bright field, and 4 fluorescence channels looking for 41 

specific stainings such as Hoechst33342-DNA staining; Poly-L-lysine-Alexa Fluor staining for 42 

external membranes, proteins and structures, DiOC6(3) staining internal membranes and for 43 

chlorophyll autofluorescence). For all objects, single layer images were constructed and all 44 

morphological measurements together with associated metadata were imported to EcoTaxa. As with 45 

other instruments, we used the major and minor axis of every image to calculate their ellipsoidal 46 

equivalent biovolume. Since a 5µm or 20µm net was used for each of those datasets, we disregarded 47 

every particle below 3 and 12µm, respectively, which often corresponds to artefacts or fragments 48 

generated during the preparation process. 49 

 50 

IFCB 51 

The Imaging FlowCytoBot (IFCB4,5) was connected to the inline system and imaged approximately a 52 

5mL sample of seawater every 25 minutes. The IFCB was set to record images for all particles above a 53 

Chl a in vivo fluorescence trigger level, therefore ignoring other particles. All images were saved 54 

together with various measurements by the instrument itself. All images were processed with a 55 

publicly available custom MatLab code (https://github.com/hsosik/ifcb-analysis) and exported 56 

together with associated metadata to EcoTaxa6 for taxonomic identification 57 

(https://github.com/OceanOptics/ifcb-tools). We directly used the “summed biovolume” calculated by 58 

the IFCB to extract the biovolume of each organism.  59 

 60 

FlowCam 61 

Samples from Niskin bottles and from the 20µm net were analyzed on-board using the FlowCam 62 

analyzer7 (Fluid Imaging Technologies; model Benchtop B2 Series equipped with a 4X lens). The 63 

FlowCam is an automated microscope taking images while organisms are pumped through a capillary 64 

imaging chamber. Here we used the auto-trigger mode to image the particles in the focal plane at a 65 

constant rate. Raw images were analyzed using Zooprocess software 66 

(https://sites.google.com/view/piqv/zooprocess) which allows to subtract the background, detect and 67 

measure different morphological characteristics of imaged particles and store the vignettes of every 68 

detected object > 20µm. All the images and associated metadata were imported to EcoTaxa for 69 

taxonomic identification. We used the major and minor axis of every imaged object to calculate its 70 

ellipsoidal equivalent biovolume.  71 

 72 

Nets -Zooscan 73 
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All samples originating from nets >200µm were fixed on-board with borax-buffered formaldehyde 74 

(3.5% final volume) and analyzed on land. For the analysis, the sample was gently filtered (100µm 75 

mesh) and transferred to filtered seawater. WP2 and bongo net samples were separated into two size 76 

classes 100-1000µm and >1000µm and only a single fraction was considered for the Regent net. 77 

Fractions were split using a Motoda box8 and a subsample containing approximately 1000 objects was 78 

scanned using a Zooscan system9. This sampling strategy allows to correctly take into account both the 79 

numerous small organisms and the rare large ones. The scans were processed using the Zooprocess 80 

software. All images and associated metadata were imported to EcoTaxa for taxonomic identification. 81 

We used the major and minor axis of every image to calculate their ellipsoidal equivalent biovolume.  82 

 83 

UVP 84 

The Underwater Vision Profiler10 (UVP-5) is an underwater imager mounted on the RVSS. This 85 

system allows to illuminate a precisely calibrated volume of water and capture images at a rate of 20 86 

images s-1 during the descent. The recorded images were treated via the Zooprocess software as 87 

described above and particles >100µm were detected, counted and measured and were considered as 88 

marine snow. Particles >600µm were imported to EcoTaxa as vignettes with associated metadata and 89 

sorted for taxonomic classification. As done with other instruments, we used the major and minor axis 90 

of every image to calculate their ellipsoidal equivalent biovolume. 91 
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Supplementary information 
 
 
 

 
Figure S1: Availability and taxonomic validation state (percentage of predicted 

taxonomical annotation validated by taxonomic expert) of the imaging datasets across the 210 
sampling stations. Note the increased availability of instruments for the TOPC Arctic 
expedition.  
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Figure S2: Correlations between slopes indicating the structure of planktonic ecosystems. a) Spearman’s rank 

correlation coefficients between NB-SS and Trophic slopes calculated from the different levels of aggregation of 
metaplanktonic assemblages. b) Correlation between the NB-SS and Trophic slopes calculated from the 
metaplanktonic assemblage >0.8µm (mostly polar) and b) >20µm (mostly tropical).  
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Figure S3: Slopes of the normalized biomass size spectra (NB-SS) using carbon weight for a) 
the Arctic ecosystem obtained with Meta-Plk >0.8 µm or b) for the Meta-Plk >20µm at the 
global scale. In both cases a large majority of observations have slopes corresponding to top-
heavy trophic structures. NB-SS using biovolumes for incomplete and heterogeneous versions 
of the datasets c) Meta-Plk >0.8 µm incomplete or d) Meta-Plk heterogeneous or e) Meta-
Plk >20 µm at night-time. 
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Figure S4: Trophic pyramids and trophic slopes obtained from the different metaplankton producsa) Total 
biovolume of the Meta-Plk > 0.8µm assemblage split between the different trophic levels and resulting trophic 
slope. b) Same as a) but with Meta-Plk > 20 µm assemblage. c) and d) Same as a & b but expressed in carbon 
units. e) Same as a) but using total reads of meta-barcoding originating from surface nets from size fraction 180-
2000µm. 
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Figure S5: Same as Figure 2 (proportions of biovolume) but testing alternative results with adding FACScalibur 
flow cytometry observations to either global >20µm Metaplankton reconstruction or to the arctic >0.8µm 
Metaplankton or testing results obtained at night time. Latitudinal variations of the different b) functional groups 
or c) trophic groups of plankton obtained with adding the FACScalibur flow cytometry observations to 
global >20µm Meta-plankton reconstruction.  
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Figure S6: a) Position of stations identified as belonging to the different groups of stations based on their 
functional composition (Fig. 4). b) Mean biovolume composition of these groups of stations when adding 
FACScalibur Flow Cytometry observations in the global >20µm Meta-plankton reconstruction. 
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Figure S7: Meta-plankton assemblage example (Station 173). Living organisms raw NB-

SS (a) and the different potential adjustments (b) default, (c) intercept, (d) site specific and (e) 
results of the final adjustment in NB-SS. Final assembled NB-SS (f) and B-SS (i) spectras 
and, size fractionated functional types proportions and trophic levels proportions (g,h) and 
total assemblage proportions as functional types (h) or trophic levels (k,l). 

Examples of all stations separated by day and night can be found as supplementary 
materials, together with version calculated in carbon units. 
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Figure S8: Relationship between cell biovolume and cell carbon in unicellular plankton 

organisms extracted from the bibliography (see Table SI-3). 
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