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A B S T R A C T   

The increasing availability of seabed images has created new opportunities and challenges for monitoring and 
better understanding the spatial distribution of fauna and substrata. To date, however, deep-sea substratum 
classification relies mostly on visual interpretation, which is costly, time-consuming, and prone to human bias or 
error. Motivated by the success of convolutional neural networks in learning semantically rich representations 
directly from images, this work investigates the application of state-of-the-art network architectures, originally 
employed in the classification of non-seabed images, for the task of hydrothermal vent substrata image classi-
fication. In assessing their potential, we conduct a study on the generalization, complementarity and human 
interpretability aspects of those architectures. Specifically, we independently trained deep learning models with 
the selected architectures using images obtained from three distinct sites within the Lucky-Strike vent field and 
assessed the models’ performances on-site as well as off-site. To investigate complementarity, we evaluated a 
classification decision committee (CDC) built as an ensemble of networks in which individual predictions were 
fused through a majority voting scheme. The experimental results demonstrated the suitability of the deep 
learning models for deep-sea substratum classification, attaining accuracies reaching up to 80% in terms of F1- 
score. Finally, by further investigating the classification uncertainty computed from the set of individual pre-
dictions of the CDC, we describe a semiautomatic framework for human annotation, which prescribes visual 
inspection of only the images with high uncertainty. Overall, the results demonstrated that high accuracy values 
of over 90% F1-score can be obtained with the framework, with a small amount of human intervention.   

1. Introduction 

The increasing anthropogenic impact in the deep sea imposes an 
urgent need to evaluate the health and status of marine ecosystems via a 
better understanding of their dominant processes (Halpern et al., 2015; 
Levin and Le Bris, 2015). 

For benthic ecosystems, specifically, images of the seabed retrieved 
by underwater sensors have been commonly used to assess the spatial 
distribution of fauna and substrata, e.g., (Marcon et al., 2014; Schoening 
et al., 2018; van den Beld et al., 2017). The latter provides a visual proxy 

for small-scale habitat characteristics, e.g., topographic complexity and 
substratum hardness, that can strongly shape the composition of faunal 
communities (Boulard et al., 2022; Simon-Lledó et al., 2019b). Addi-
tionally, substratum classification based on visual interpretation of 
seabed properties remains essential for calibrating and interpreting the 
acoustic response acquired from multibeam echo sounders (Lucieer 
et al., 2013b). 

Recent developments of underwater platforms and cameras have 
provided images with improved pixel resolution covering increasing 
extents of seafloor surface, surveyed over space and time (Meyer et al., 
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2019; Simon-Lledó et al., 2019a; Taylor et al., 2017). Nevertheless, 
manual annotation of seabed images is costly and biased due to operator 
subjectivity and self-learning when annotating large datasets (Schoen-
ing et al., 2016; Schoening et al., 2017a). Those limitations led to the 
emergence of a scientific community dedicated to devising computer 
tools capable of automatically analyzing the related, ever-increasing 
volume of data. 

To date, several methods have been proposed for automatically 
processing large volumes of data. These methods combine computer 
vision (CV) and machine learning (ML) techniques, some of which are 
used in underwater studies, such as (Achanta et al., 2012; Faillettaz 
et al., 2016; Lucieer et al., 2013a; Osterloff et al., 2016; Schmid et al., 
2016; Schoening et al., 2012). Regardless of their specific objectives, 
such efforts were mainly based on traditional image analysis approaches 
that rely on hand-crafted features and shallow-learning techniques. 
Although many different feature extraction methods have been evalu-
ated in the past, e.g., (Achanta et al., 2012; Hossain and Chen, 2019; 
Sivic and Zisserman, 2003), the reported results are poor, primarily due 
to the deficiency of such methods in representing fundamental image 
properties for proper pattern recognition. 

More recently, deep learning (DL) techniques for image analysis, 
particularly those based on convolutional neural networks (CNNs), have 
evolved in such a way that they now represent the state-of-the-art in 
many application fields, mainly due to their ability to learn discrimi-
native features directly from data (Bengio et al., 2013). 

Following that trend, DL has also been successfully employed in 
deep-sea applications, as seen in several research works, e.g., Villon 
et al. (2018); Song et al. (2019); Durden et al. (2021); Xue et al. (2021); 
Piechaud and Howell (2022); Katija et al. (2022). These studies mainly 
aimed to segment underwater images or detect specific objects within 
them. However, specifically for substrata labeling of marine images, DL- 
based techniques have not yet been widely explored, and most annota-
tion procedures are still supported by visual interpretation (Gerdes et al., 
2019; Neufeld et al., 2022). 

Commonly, when annotating substrata in seafloor images, a cate-
gorical label is assigned to the whole image, considering specific char-
acteristics of features observed within the image space (Althaus et al., 
2013). In such a context, a trained human eye can identify a substratum 
through characteristics related to color, texture, relief, particle gran-
ulometry, or specific shapes and geomorphologies. Those features are 
overly complex for conventional automated recognition procedures, 
which renders the discrimination among different characteristics nearly 
unfeasible (Filippo et al., 2021). 

Due to its success in modeling complex problems, DL, characterized 
by neural networks encompassing more hidden layers and learning pa-
rameters than their predecessors, represents a promising alternative. 
Additionally, the increasing availability of optical imagery datasets 
organized into large-scale temporal habitat maps is very convenient for 
evaluating the performance of DL-based techniques in deep-water 
studies. However, the limited availability of labeled data for properly 
training DL models in that context still remains a major obstacle. 

Motivated by the scenario described above, this work investigates 
deep learning-based techniques for substratum classification in hydro-
thermal vent environments. Hydrothermal vents are high-temperature 
fluid emissions that arise on the seafloor and that sustain unique 
faunal communities. Our main goals are to reduce the human effort 
involved in substratum characterization; alleviate the subjectivity 
inherent to human photo interpretation; and contribute to reduce the 
costs and time involved in monitoring the deep sea. 

With those purposes in mind, we devised a DL-based solution for 
automatically labeling deep-sea images, which employs different CNN 
architectures and allows human photo interpreters to audit the DL-based 
predictions, considering only a small fraction of the complete image 
dataset. 

The proposed solution is designed to be employed in a human-in-the- 
loop approach, in which a learning algorithm can iteratively query a 

user to label some of the test data. The underlying system could then 
proactively select a subset of samples to be manually labeled from the set 
of new unlabeled data by analyzing the uncertainty scores of the pre-
dictions produced by the ensemble of neural networks. 

In summary, the contribution of this work is four-fold: 

• We evaluate six state-of-the-art convolutional neural network ar-
chitectures, namely VGG, ResNet18 V1 & V2, ResNet50 V1 & V2, and 
Xception, in an image classification task for seafloor substratum 
discrimination in hydrothermal vent environments. The study re-
veals the generalization potential of general-purpose architectures 
under visual domain and site change.  

• We assess the accuracy of a classification ensemble comprising all the 
implemented convolutional neural networks combined within a de-
cision committee.  

• We provide an uncertainty analysis conducted over the ensemble of 
the before-mentioned network architectures to assess the feasibility 
of using uncertainty in a semi-automatic image annotation scheme.  

• We provide a visual interpretability analysis that provides insights 
into the decision making of models within the application of interest. 

The DL models were evaluated using three different deep-sea image 
datasets, containing images acquired in different locations at the 1700 m 
deep Lucky Strike vent field region (Langmuir et al., 1993). Addition-
ally, to analyze the generalization capacity of the studied models, a 
cross-evaluation was conducted using one of the three datasets for 
training and the others for testing. 

It is worth mentioning that, considering the aforementioned exper-
imental setup, the use of more recent approaches such as Vision 
Transformers (ViT) (Dosovitskiy et al., 2021) would not be feasible due 
to the scarcity of labeled training data. 

As a subsidiary contribution, we also provide the code1 used in the 
experiments, thus enabling further research and comparative evalua-
tion. The datasets can also be provided upon request to the authors. 

The remainder of this paper is organized as follows. Section 2 sum-
marizes the previously proposed approaches for substrata classification 
using marine images. Section 3 presents the CNNs architectures inves-
tigated in this work. Section 4 describes the study site locations, the 
datasets used in our experimental analysis, the experimental setup, the 
networks’ implementations, and the adopted performance metrics. 
Section 5 presents the obtained results, and finally, Section 6 presents 
conclusions and directions for future research. 

2. Related works 

Following the increasing availability of image data captured in deep- 
sea environments, many interesting machine learning-based computer 
vision methods have been proposed in the last few decades for marine 
and deep-sea applications. In the sequel, we mention some exemplary 
works in the field of interest. 

Vandromme et al. (2012) made use of the Random Forest (RF) 
(Breiman, 1996) algorithm for the classification of zooplankton at pixel 
level. Schoening et al. (2012) proposed a semi-automatic image analysis 
system for assessing megafaunal densities at the Artic Deep Sea Obser-
vatory. The system comprises an ensemble of Support Vector Machine 
(SVM) classifiers, each associated with a particular species. A Maximum 
Likelihood Classifier (MLC) combined with two decision tree methods – 
Quick Unbiased Efficient Statistical Tree (QUEST) (Loh and Shih, 1997) 
and Classification Rule with Unbiased Interaction Selection and Esti-
mation (CRUISE) (Kim and Loh, 2001) – were employed in Ierodiaconou 
et al. (2011) for detecting benthic biological communities, using video 
imagery among other capturing systems. Also, using different imaging 
systems, Schmid et al. (2016); Faillettaz et al. (2016), employed RF for 

1 https://github.com/pjsoto/IFREMER-ABYSSES.git 
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zooplankton analysis. The spatio-temporal distribution of shrimps was 
the objective of Osterloff et al. (2016). In that work, images were 
automatically pre-processed using a super-pixel segmentation algorithm 
named Simple Linear Iterative Clustering (SLIC) (Achanta et al., 2012), 
and RF was used to classify the super-pixels. Sharma et al. (2010) used 
shallow Artificial Neural Networks (ANN) to estimate deep-sea minerals 
using seafloor images. 

Specifically for substratum studies, Lucieer et al. (2013a) proposed 
an Object-Based Image Analysis (OBIA) (Hossain and Chen, 2019) 
approach which relies on the k-nearest neighbor (kNN) algorithm to 
classify the substratum associated with image segments. Schoening et al. 
(2017b) applied a set of nodule compactness heuristics to delineate the 
polymetallic nodules in deep-sea images. A technique based on Bag of 
Visual Words (BoW) (Sivic and Zisserman, 2003), applied to Local Bi-
nary Pattern (LBP) features (Ojala et al., 2002) extracted from seafloor 
images, was proposed for substratum characterization in Kalmbach et al. 
(2016). Pillay et al. (2020) recently proposed a substrata seafloor 
characterization tool using advanced processing multibeam bathymetry, 
backscatter, and side scan sonar, jointly with Random Forest, Decision 
Trees, and K-means clustering. 

The methods mentioned so far are based on shallow features, most of 
which are hand-crafted and potentially deficient in representing 
fundamental substratum properties, which might limit their perfor-
mances. On the other hand, DL methods can learn complex and 
semantically rich representations of the input data and classes of inter-
est, favoring classification performance. Villon et al. (2018) used (CNNs) 
to identify coral reef fish species, while in Durden et al. (2021) CNNs 

were trained to classify fauna in seabed images. Xue et al. (2021) studied 
the performance of several state-of-the-art DL architectures for identi-
fying deep-sea debris. A method for recognition and tracking deep-sea 
organisms was proposed in Lu et al. (2020) using the YOLO (You Only 
Look Once) model (Redmon et al., 2016) as an object detector. For 
another deep-sea application, i.e., visual monitoring, Gradient Genera-
tion Adversarial Networks (GGAN) were proposed in Ma et al. (2021) to 
restore noisy images from the bottom of the sea. Juliani and Juliani 
(2021) employed a model based on the U-Net architecture (Ronneberger 
et al., 2015) for segmenting seafloor mounts directly over the raw ba-
thymetry data. More recently, Katija and co-authors introduced the 
FathomNet (Katija et al., 2022), which provides annotated and localized 
imagery for developing ML algorithms. They also provide a set of ML 
models trained to detect the fauna present in the image data. 

Considering the substratum characterization problem, McEver et al. 
(2023) introduced the DUSIA (Dataset for Underwater Substrata and 
Invertebrate Analysis) large-scale dataset, which was meant to train, 
validate, and test methods for localizing four underwater substrata and 
59 underwater invertebrate species temporally and spatially. The in-
clusion of different substrata in DUSIA aimed at improving the locali-
zation of invertebrates along videos captured by Remotely Operated 
Vehicles (ROVs). The substrata analysis was accomplished using DL 
techniques based on a ResNet-inspired architecture (He et al., 2016). To 
the best of our knowledge, that was the only previous DL-based method 
proposed for substrata classification from deep-sea images. 

However, regarding the substrata analysis dimension, McEver et al. 
(2023) represents a shallow study since substrata can be characterized 

Table 1 
Summary of related works previously published.  

Papers Comparison fields 

Application Data Features Classifier Task 

Sound Imagery Hand 
crafted 

Deep 
learning 

Sharma et al. (2010) 
Deep-sea minerals estimation × ✓ × × Shallow ANN Image Classification 

Ierodiaconou et al. (2011) 
Benthic communities detection ✓ × ✓ × MLC Semantic 

Segmentation 

Vandromme et al. (2012) 
Zooplankton semantic 
segmentation 

× ✓ ✓ × RF Semantic 
Segmentation 

Schoening et al. (2012) 
Megafaunal densities recognition × ✓ ✓ × SVM Image Classification 

Lucieer et al. (2013b) 
Substratum classification ✓ × ✓ × SVM Image Classification 

Lucieer et al. (2013a) 
Substratum classification × ✓ ✓ × kNN Image Classification 

Schmid et al. (2016) 
Zooplankton analysis × ✓ ✓ × RF Image Classification 

Faillettaz et al. (2016) 
Zooplankton analysis × ✓ ✓ × RF Image Classification 

Osterloff et al. (2016) 
Shrimps distributions analysis × ✓ ✓ × RF Semantic 

Segmentation 

Kalmbach et al. (2016) 
Substratum classification × ✓ ✓ × BoW Image Classification 

Schoening et al. (2017b) 
Deep-sea polymetallic nodules × ✓ ✓ × – Semantic 

Segmentation 

Villon et al. (2018) 
Coral fish species identification × ✓ × ✓ CNN Semantic 

Segmentation 

Pillay et al. (2020) 
Substratum classification ✓ × ✓ × RF, K-means, Decision 

Trees 
Semantic 
Segmentation 

Lu et al. (2020) 
Deep-sea organism tracking × ✓ × ✓ YOLO Object Detection 

Durden et al. (2021) 
Fauna classification × ✓ × ✓ CNN Image Classification 

Xue et al. (2021) 
Deep-sea debris identification × ✓ × ✓ CNN Image Classification 

Ma et al. (2021) 
Noisy image restoration × ✓ × ✓ – Image Restoration 

Juliani and Juliani (2021) 
Mineral mounts segmentation × ✓  ✓ U-Net Semantic 

Segmentation 

Katija et al. (2022) 
Fauna detection × ✓ × ✓ CNN Video Motion Analysis 

McEver et al. (2023) 
Invertebrates detection × ✓ × ✓ CNN Object Detection  
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considering more specific geological variables, such as lithology or 
morphology. Furthermore, no substratum characterization studies have 
been carried out on the evaluation of different DL architectures, 
assessing their generalization capacity considering domain shift prob-
lems. Additionally, no DL-based studies in this application field have 
focused on understanding the learned features, considering interpret-
ability and classification uncertainty. 

Table 1 provides an informative summary of the works mentioned 
above. It offers useful insights regarding comparisons in terms of the 
tasks, data types (sound or images), feature types (hand-crafted or 
automatically learned), and classification techniques. An analysis of the 
table allows one to easily identify the main characteristics that differ-
entiate the works and draw useful conclusions for future research. It is 
worth mentioning that although DL has been used in some deep-sea 
applications, the number of these works is low, indicating that DL has 
not been widely explored in this field. 

In this work, we evaluate six different DL architectures in the sub-
strata classification task, considering different characterization criteria, 
namely, morphological, lithological and the number of shells and white 
fragments. Additionally, we evaluate a way to merge predictions from 
multiple DL models (combined into a decision committee) and calculate 
uncertainty scores for each image sample. These scores can then be used 
in an audit scheme, which can substantially increase overall classifica-
tion performance and reduce human effort in the substrata character-
ization process. We also provide an evaluation of the behavior of each 
architecture and of the decision committee considering the domain shift 
problem. Finally, we conduct an interpretability analysis with the aim of 
providing insights into networks’ decision-making. 

3. Methods 

This section outlines the main characteristics of the CNN architec-
tures selected for this study. We note that diverse other image classifi-
cation architectures have been proposed to date, some of which with 
outstanding performance on different applications. To the best of the 
authors’ knowledge, however, no specific architecture has been 
designed so far for the particular application of substratum image clas-
sification. For that reason, we opted to use seminal, general-purpose 
models, extensively used and well-documented, which we believe 
would ease the reproduction of our experiments and results. Notwith-
standing, the underlying processing chain could very well comprise 
alternative architectures. 

The selected CNNs typically contain an encoder stage, often called a 
feature extractor, which reduces the spatial resolution of the input 
through convolution and pooling operations in consecutive layers. The 
encoder is then followed by fully connected layers of neurons that pre-
dict the input image class based on the previously extracted features to 
perform image classification. 

After briefly introducing the chosen CNN architectures, we will 
discuss the decision fusion process. That process is based on a decision 
committee that collects the predictions of the respective CNN-trained 
models. We will also explain uncertainty assessment based on model 
predictions. 

3.1. VGG 

To date, the VGG (Visual Geometry Group) network is one of the 
most popular image classification architectures, and pre-trained VGG 
models are commonly used in transfer learning (e.g., fine-tuning) 
schemes. It was proposed in Simonyan and Zisserman (2015), which 
aimed at investigating the effects of increasing convolutional network 
depth. Evaluated on the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) (Russakovsky et al., 2015) in 2015, the VGG16 
model outperformed all previous participants, which comprised several 
state-of-the-art architectures. 

Variants of the VGG network have demonstrated that increasing 

network depth can improve classification accuracy by enabling the 
learning of semantically enriched features. In the present work, we 
adopted a particular architecture inspired by VGG that has 14 layers (13 
convolutional and one dense layer). A detailed description of the ar-
chitecture implemented in this work can be found in Section 7. 

3.2. ResNet 

Residual Networks (ResNet), introduced by He et al. (2016), aimed at 
improving convergence issues during the training of very deep network 
architectures. ResNet is a deep learning model that aims to alleviate two 
main problems in training neural networks. The first problem is the 
vanishing gradient, which makes it difficult to optimize the model 
during training. The second is the degradation problem, which occurs 
when adding more layers to a deep neural network leads to greater 
training errors. ResNet solved those problems by using residual learning 
blocks between layers of the network, allowing for better optimization 
and higher training accuracy. 

The degradation problem suggested that when the network’s full 
capacity was underused for solving a particular task, the optimization 
process would have difficulties in approximating nonlinear layers into 
identity mappings, which could automatically adjust network depth. 
Then, instead of hoping that every few stacked layers directly fit a 
desired underlying mapping, e.g., identity, ResNet explicitly lets those 
layers fit a residual mapping, which is easier to optimize. In this work, 
we implemented four variants of the ResNet, with 18 and 50 layers, 
using two versions of residual blocks, namely, ResNet18 V1, ResNet18 
V2, ResNet50 V1, and ResNet50 V2. The main difference between the 
residual blocks in the V1 and V2 versions is that in V2 the blocks are not 
followed by a ReLU activation function. 

3.3. Xception 

Proposed by François Collet (Chollet, 2017), Xception is an improved 
version of the InceptionV3 architecture (Szegedy et al., 2015; Szegedy 
et al., 2016). Its main innovation is the use of depth-wise separable 
convolutions instead of regular convolutions. A depth-wise separable 
convolution consists of a depth-wise convolution followed by a point- 
wise convolution (Vanhoucke, 2014). Additionally, Xception’s design 
benefited from several prior efforts, such as the previous innovations 
brought by the Inception family (Szegedy et al., 2015, 2016) and re-
sidual connections (He et al., 2016). Details about the Xception archi-
tecture implemented in this work are shown in the Appendix (see 
Section 7). 

3.4. Classification decision committee 

Besides assessing the performance of DL networks whose architec-
tures were mentioned in the previous sections, we further investigate the 
result of fusing the different models’ decisions, i.e., considering the set of 
classifiers as an ensemble, hereinafter denoted Classification Decision 
Committee (CDC). 

The basic idea is to employ M different classifiers h1,⋯, hM for the 
same task and combine their individual outcomes. In this work, we 
implemented the majority voting scheme for combining the decisions of 
the individual classifiers that comprise the ensemble. Thereby, the final 
prediction is given by the class that achieves the majority of votes of the 
individual classifiers. Fig. 1 shows a schematic representation of that 
strategy. Each image xn is evaluated by each trained classifier hi. Then, 
the majority voting scheme uses each classifier prediction ŷi to release 
the final prediction ŷ of the input image xn. Such a scheme consists of 
computing the mode of the set of predictions as represented in the 
following equation: 

ŷ = mod{ŷ1,…, ŷi,…, ŷM} (1) 
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where M represents the number of networks that compose the ensemble, 
and mod stands for the mode of the classifier predictions. 

As anticipated in previous sections, the number of networks 
considered in this work is M = 6, so the computed mode may have two 
or more values. When that is the case, we take as a final prediction the 
category where the average probability among the networks is 
maximum. 

3.5. Uncertainty estimation 

Uncertainty studies in DL have become an important tool to address 
the lack of expressiveness and transparency of deep neural network 
predictions, the inability to distinguish between in- and out-of-domain 
samples and sensitivity to domain shifts (Abdar et al., 2021). During 
the past years, several metrics have been proposed to quantify uncer-
tainty, among which Predictive Entropy, is widely used. 

Formally, let s =
{
s(i)
}M

i=1 be the set of M probability predictions for 

the image xn for all C classes. Let also, s(i)c be the c-th element of s(i)
corresponding to the prediction for class c of the input image xn. The 
final prediction sc for an image xn and class c is the average overall M 
predictions s(i)c : 

sc =
1
M
∑M

i=1
s(i)c (2) 

Then, the Predicitve Entropy H(s|xn) is obtained by computing the 
entropy of the average prediction over xn: 

H(s|xn) ≈ −
1
C
∑C

c=1
sclog(sc) (3) 

It is worth noting that the majority of uncertainty metrics already 
proposed in the literature consider a set of M predictions about the same 
image. Such a number (M) can be obtained in different ways, depending 
on the method employed for the uncertainty estimation. 

According to Gawlikowski et al. (2023), uncertainty estimation 
methods can be categorized into four groups, considering the number 
(single or multiple) and the nature (deterministic or stochastic) of the 
deep neural networks (DNNs) used. Bayesian methods cover all kinds of 
stochastic DNNs, where two forward passes for the same sample 
generally lead to different results. Ensemble methods, on the other hand, 
combine the predictions of several different deterministic networks at 
inference time. Test-Time Augmentation methods adopt one single deter-
ministic network to produce a prediction but augment the input data at 
test-time, aiming at generating several predictions to compute the un-
certainty score. Finally, Single Deterministic methods produce the pre-
dictions based on a single forward pass within a deterministic network. 

In this work, we implemented the ensemble-based alternative for 
uncertainty estimation and selected the Predictive Entropy as the uncer-
tainty metric. Considering the classification setting addressed in this 
work, where the output of a model is a conditional probability, we 
computed the Predictive Entropy measure from the set of individual 
predictions of the different DL models. 

3.6. Gradient-weighted class activation mapping (grad-CAM) 

In view of the variety of potential applications and the complexity of 
deep learning models, interpretability techniques have become essential 
for building systems whose decisions can be explainable to human 
experts. 

Among several alternatives, Grad-CAM, introduced by Selvaraju and 
co-authors (Selvaraju et al., 2017), exploits the gradients associated with 
the computation of convolutional features to understand and visualize 
which parts of the input image were the most important for its classi-
fication. The Grad-CAM algorithm computes the importance map by 
taking the derivative of the reduction layer output for a given con-
volutional feature map. 

To obtain a class-discriminative activation map, Lc
Grad− CAM ∈ ℝu×v 

where u and v represent the width and height of activation maps in a 
specific network layer for any class c, Grad-CAM first computes the 
gradient of the score for class c, hc, before applying the softmax function, 
with respect to the k − th feature maps Ak of a convolutional layer, i.e., 
∂hc

∂Ak. Then, the back-propagated gradients are globally average-pooled to 
obtain the neurons’ importance weights wc

k, defined as: 

wc
k =

1
Z

∑u

i

∑v

j

∂hc

∂Ak
ij

(4)  

where Z represents the total number of neurons in the k − th feature 
map. 

According to Selvaraju et al. (2017), the weights wc
k constitute a 

partial linearization of the deep network downstream from Ak and 
capture the importance of feature map k for a target class c. 

Finally, Grad-CAM performs a weighted combination of forwarded 
activation maps, followed by a ReLU activation function as: 

Fig. 1. Representation of the classification decision committee (CDC) evaluated 
in this work. The voting scheme is represented by Eq. (1). 
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Lc
Grad− CAM = ReLU

(
∑

k
wc

kAk

)

(5)  

4. Experimental analysis 

The experiments conducted in this work aimed at verifying the 
effectiveness of DL-based models in the context of a particular image 

classification problem, namely, ridge and hydrothermal vent substrata 
classification. The datasets used in this work comprise images taken 
from three different locations on a particular vent field (Fig. 2). 

We basically performed two sets of experiments: (i) we evaluated the 
DL models individually and as a member of a classification ensemble, 
the so-called classification decision committee (CDC), which combines 
all models in a decision committee; and (ii) we performed cross- 
evaluation experiments in which the models were trained using one 

Fig. 2. Image samples and map of the Lucky Strike vent field (northern Mid-Atlantic Ridge). In the map (a), the color gradient corresponds to the bathymetry. Active 
vent fields are indicated on the map with a triangle (MS), a circle (MS), and a square (ET). Images from Montsegur edifice (MS) are represented in (b) (c) (d); White 
Castle (WC): (e)(f)(g); and Eiffel Tower (ET): (h)(i)(j). Below each image is listed its respective classes regarding lithology, shell and white (S/W) fragments, 
and morphology. 
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dataset and tested on each of the other datasets in turn. 

4.1. Study areas 

The study areas are located at the Lucky Strike (LS) vent field along 
the Mid-Atlantic Ridge (MAR, 37∘17N, 32∘16W). LS is a basalt-hosted 
hydrothermal vent field located near the Azores Triple Junction on the 
slow-spreading MAR at a depth of approximately 1700 m (Langmuir 
et al., 1993). This large hydrothermal field extends over more than 1 
km2 and lies at a seamount’s summit, harboring a central fossilized lava 
lake surrounded by three volcanic cones and faults (Ondréas et al., 
2009). Emissions of hydrothermal vent fluids are distributed all around 
the lava lake (Barreyre et al., 2012). They can occur over vertical vent 
edifices that build up through the accumulation of minerals, including 
sulfides. In the flatter periphery of edifices, the hydrothermal activity 
can expand over a seafloor composed of a slab of basaltic fragments 
indurated by silica and barite (Cooper et al., 2000). 

The ecology of benthic communities at LS has been thoroughly 
investigated since its discovery in 1992, and, more recently, since the 
deployment of the EMSO-Azores observatory (Matabos et al., 2022). 
However, while it is known that Bathymodiolus vent mussels dominate 
the benthic communities of the sulfide edifice of Eiffel Tower (ET) 
(Husson et al., 2017), little is known about the distribution of vent 
specialists and non-vent fauna outside the edifices. This gap in ecolog-
ical knowledge motivated the retrieval of a large set of seabed images 
focusing on edifices and their peripheries at LS. Fig. 2 shows the LS 
localization as well as the positions of the Eiffel Tower (ET), Montsegur 
(MS), and White Castle (WC) vent edifices. 

4.2. Dataset 

The dataset comprises RGB images collected during the MoMARSAT 
2018 cruise (Cannat and Sarradin, 2018) using the Remotely Operated 
Vehicle (ROV) Victor6000 over and around the following edifices (areas 
hereafter called sites): Montsegur (MS, see Marticorena et al. (2021)), 
White Castle (WC) and Eiffel Tower (ET, see Girard et al. (2020)). Each 
image has a dimension of 4000× 6000 pixels with a spatial resolution of 
0.001 m/pixel. Images of the seabed have been acquired at one image 
every three seconds with a downward-looking HD camera OTUS2 with 
navigation tracks. Constant ROV altitude (5 ± 2 m) planned in parallel 
transects spaced 1.8 m apart, to ensure overlap between each captured 
image at a constant speed of 0.5 m.s− 1. Next, the image sets were pre- 
processed in the following order. First, blurred and obscured samples 
were removed. Second, a non-overlapped set of pictures was selected 
using the MATISSE 3D software (Arnaubec et al., 2015) (Ifremer). The 
MATISSE 3D computes image overlaps through geo-referencing, using 
the ROV’s navigation parameters and camera positions. Third, the set of 
non-overlapped images of each site was corrected by attenuating the 
blue color and homogenizing the light conditions, contrast and satura-
tion in MATISSE 3D. 

Fig. 3 shows the categories the experts consider in labeling each 
image based on the substratum type. The manual labeling procedure was 
done at the image scale, i.e., one label for the entire image according to 
three criteria: lithology, morphology, and the amount of mussel shells 
and unidentified white fragments (S/W fragments) contained in the 
image. 

Lithology relates to information on the nature and origin of the 
substrata, associated with mineral composition and hardness, derived 
from image colors and geomorphologic features. The different lithol-
ogies of the rock found at LS are basalts, sulfures, hydrothermal indu-
rated slab, and volcanoclastic sediments (see Fig. 2). Morphology relates 
to the shape of the substrata encompassing categories such as fractured, 
marbled, scree/rubbles, and brecciated/pillow (B/P) lava. Finally, in 
areas where S/W fragments cover the seafloor, the images were anno-
tated based on the percentage of the covered image space: 0–10%, 

10–50%, and 50–100%. Table 2 shows the number of images in each 
category and site. Regarding the number of labels, for lithology and S/W 
fragments, each image is associated with a unique label. However, as 
distinct morphological features can occur within a single image, it can 
be labeled with more than one morphology class. That explains why the 
total number of images provided in the last row of Table 2 is the sum of 
per-class images for lithology and S/W fragments, but not for 
morphology. 

It is worth noting that a homogenization procedure was performed 
during the expert annotation to ensure spatial coherence and reduce 
uncertainties. First, uncertain labels were replaced by the nearest 
neighbor’s corresponding ones, considering the previously calculated 
geographical localization. Second, the subset of images that did not form 
a group of at least three contiguous images underwent a similar pro-
cedure, assigning the dominant surrounding label to the images in the 
subset. Fig. 2 shows some image samples of the three sites. 

Substrata Morphology

Lithology

S/W fragments

Sulfurs

Slab

Basalt

Volcanoclastic

Scree/Rubbles

Marbled

Fractured

Sedimented

BP Lava

10-50%

0-10%

50-100%

Fig. 3. Substratum categories studied in this work for model training. In the 
figure, S/W fragments stand for Shells and White fragments while BP Lava for 
Brecciated-Pillow Lava. 

Table 2 
Number of images in each domain in and class.  

Criteria Classes Sites 

MS WC ET 

S/W fragments 
0–10% 166 170 443 
10–50% 105 47 270 
50–100% 19 3 17 

Lithology 

Basalt – 43 104 
Slab 142 91 384 
Sulfurs 123 42 78 
Volcanoclastic 25 44 164 

Morphology 

Fractured 210 94 236 
Marbled 158 179 534 
Scree/rubbles 24 102 311 
Sedimented 274 220 718 
BP Lava – 43 104 

# of images 290 220 730  
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As shown in Table 2, the site-specific datasets are imbalanced 
regarding the number of samples per class. For instance, MS does not 
contain basalt samples and consequently no B/P lava in lithology and 
morphology, respectively. On the other hand, ET contains more images 
than MS and WC, while 50–100% S/W fragments is the less represented 
class among all categories in all sites. 

At this point, it is important to observe that, if not considered 
explicitly in the training procedure, such a problem (i.e., class imbal-
ance) can introduce undesirable bias that may affect the performance of 
a classifier, as it will be prone to predict the over-represented classes 
more often due to the smaller impact of the errors associated with their 
samples in computing overall accuracy. In the next section we describe 
how we dealt with class imbalance in this work. 

4.3. Experimental setup 

For the accuracy assessment of substratum characterization, we used 
a k-fold scheme with k = 3. More specifically, the set of images from 
each site was divided into three disjoint subsets containing randomly 
chosen image samples from all classes. We used k − 1 folds (two subsets) 
for training and the remaining one for testing. The accuracy metrics 
values reported in Section 5 are then averages across the testing folds. 

Considering the manual labeling process, we adopted similar pro-
tocols for training the networks. First, we created classifiers that char-
acterize the images according to lithology, morphology, and the amount 
of shell and white (S/W) fragments separately. In simple terms, for each 
of the feature extractor plus classifier architecture (mentioned in the 
Appendix section and described in Fig. 9), one network was trained for 
identifying solely the lithology classes; another network was trained to 
identify morphology classes; and another for S/W fragments classes. 
Considering the different ResNet variants (see Section 3.2), networks 
based on six different architectures (i.e., VGG, ResNet18 V1, ResNet50 
V1, ResNet18 V2, ResNet50 V2, and Xception) were trained for each 
substratum type and site. 

Second, we adopted single-label image classification for lithology 
and S/W fragments since, for those substratum categorizations, the 
images in the datasets have been annotated as belonging to a unique 
class. In those cases, the CNNs’ outputs are computed with a Softmax 
function, as represented in Fig. 9, and the class corresponding to the 
neuron the higher activation is selected. Conversely, a multi-label image 
classification approach has been adopted for morphology, as the dataset 
images may have been associated with more than one morphology class. 
For that reason, the output layers of each network use a Sigmoid acti-
vation function instead of the Softmax. That allows more than one 
output neuron to be activated for a given input image. 

To compensate for class imbalance (see Table 2), we adopted a 
weighted cross-entropy cost function to train the networks. The intention 
was to force the CNNs not to be biased towards the over-represented 
classes by assigning larger weights to the underrepresented ones. Eq. 
(6) represents the loss function (L ic) employed in the training of the 
networks for lithology and S/W fragments. Eq. (7) represents the loss 
function (L ml) for training the morphology specialized networks. 

L ic = −
1
N

∑N

n=1

∑C

c=1
wc(ynlog(h(xn) ) ) (6)  

L ml = −
1
N
∑N

n=1

∑C

c=1
wc(ynlog(h(xn) ) )+ (1 − yn)log(1 − h(xn) ) (7) 

In both equations, N stands for the number of training images, xn is 
the n − th training image, while yn represents the true label (or labels) 
codified in a one-hot vector of xn. Furthermore, h(xn) corresponds to a 
vector comprising the predicted likelihood values for each class of xn, 
computed with the learned function h(⋅). Additionally, wc =

N
Nc 

is the 
weight of each class c ∈ C, which comprises Nc images. 

During training, the inputs to the networks were patches with di-

mensions 224× 224× 3, extracted from the original full-resolution 
dataset images. The patches were extracted using a sliding window 
procedure, with an overlap of 25% in each direction. As in applications 
such as those addressed in (Soto et al., 2022; Soto Vega et al., 2021), 
splitting the images into patches functions as a data augmentation 
strategy, and also eases GPU memory handling. Another benefit of 
training the CNNs using image patches is that it contributes to learning 
the frequency of occurrence of particular characteristics of the various 
classes, thus improving the overall understanding of original images. 
During test time, the networks make a prediction by convolving over the 
full-size image. 

During training, the cost function was minimized using the Adam 
optimizer (Kingma, 2017), with an initial learning rate μ0 and mo-
mentum β1 equal to 0.0001 and 0.9, respectively. Aiming at better 
convergence during training, we adopted a learning rate decay pro-
cedure proposed in Ganin et al. (2017) by implementing the following 
equation: 

μe =
μ0

(1 + αp)β (8)  

where p = e
#Epochs, and e is the current training epoch. Following Ganin 

et al. (2017), α and β were set to 10 and 0.75, respectively. 
The batch size was 32, and the early stopping procedure was used to 

avoid over-fitting. The patience parameter, which controls the number 
of epochs without improvements in the validation loss, was set to 10. 
Each network, with a particular architecture and considering a specific 
substratum characterization, was trained and executed three times, each 
time with a different (random) initialization of the trainable parameters 
and with a different data fold. As already mentioned, the results shown 
in the next section are averages of those three executions. Data 
augmentation was applied to all extracted patches: a 90∘ rotation and 
vertical and horizontal flips. 

4.4. Performance metrics 

As already mentioned, the accuracy metrics values reported in Sec-
tion 5 are averages across the testing folds. Therefore, the performance 
of the classifiers in all experiments is expressed in terms of the average 
F1-scores computed for each individual class. Specifically, for each class 
the F1-score is expressed by the harmonic mean of Precision (Pc) and 
Recall (Rc) as follows: 

F1 − scorec =
2 × Pc × Rc

Pc + Rc
, (9)  

where 

Pc =
tp

tp + fp
. (10)  

Rc =
tp

tp + fn
. (11) 

In Eqs. (10) and (11), tp is the number of images correctly assigned to 
the class c (true positives), fp represents the number of images errone-
ously classified as the current class c (false positives). Similarly, fn cor-
responds to the number of images incorrectly classified as non-class c 
(false negatives). 

5. Results and discussion 

In this section, we present the results of the experiments carried out 
in this study. We start by comparing the performances of the DL models 
on each site. We considered in such comparison the outcome of the 
models trained and tested with data from the same site; and the outcome 
of the models trained on a particular site, but tested with data from other 
sites (cross-site evaluation). Next, we present results obtained with the 
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decision committee, which combines the outcomes of the different 
network architectures into a single decision. We then visually assess 
some of the networks’ activation maps, using an explainable artificial 
intelligence (XAI) technique to better understand the inference process. 
Finally, we analyze the classification uncertainty derived from the set of 
individual predictions of the committee members and show how the 
uncertainty measures can be exploited in a semiautomatic decision 
process. 

5.1. Accuracy of the deep learning networks 

Table 3 shows the F1-scores obtained in the image classification 
experiments. Since the MS dataset does not contain basalt samples in 
lithology nor B/P lava in morphology, for the comparative analysis to be 
fair, such classes were not taken into account during training and 
testing. 

In Table 3, the results obtained with the different DL networks are 
represented as matrices, in which the diagonal contains the results ob-
tained by training and testing with data from the same site. The off- 
diagonal values are associated with the cross-site evaluation scheme. 
The values in bold represent the best results obtained with each network 
for the different configurations of training/testing sites. 

It can be observed by inspecting the values in Table 3 that, in most 
cases, the different networks achieved similar scores when trained and 
tested on the same pair of sites. Indeed, the predictions of the different 
networks are not so dissimilar in terms of F1-scores, regardless of the 
substratum category. There are, however, some site configurations in 
which the accuracy variation is more significant, as in the case of the ET/ 
WC (training/testing) configuration according to S/W fragments cate-
gorization, but those can be considered exceptions. 

It is also interesting to observe that the accuracies obtained when the 
networks were trained and tested with data from the same site were, in 
the majority of cases, higher than those associated with the cross-site 
evaluations. The larger differences in that regard were observed for 
the lithology categorization. The smallest differences, which represent a 
better generalization capacity, occur for the morphology categorization. 

In terms of the cross-site evaluations, the accuracies achieved for the 
shells and white (S/W) fragments categorization were in between those 
obtained for lithology and morphology. Moreover, considering the 
cross-site evaluation results obtained for S/W fragments and 
morphology, it can be verified in Table 3 that the highest accuracies are 
associated with the networks trained on the ET dataset. 

We hypothesize that a classifier trained on ET is more efficient in 

discerning morphology and S/W fragments classes because ET is a larger 
dataset (see Table 2). However, the same behavior was not observed for 
lithology, where the classifiers trained on ET performed similarly to 
those trained on the remaining sites, WC and MS, and vice-versa. Those 
results deserve further investigation. 

5.2. Accuracy of the classification decision committee 

In this section, we present the results of the classifier decision com-
mittee (CDC), composed of the different DL networks, employing the 
majority voting decision fusion strategy explained in Section 3.4 and 
represented in Fig. 1. 

Table 4 shows the CDC results in terms of F1-scores for all substratum 
characterization criteria and sites. The table shows the average F1-score 
of three rounds of experiments as in the previous experiments. Similarly, 
the bold values represent the best results obtained with the committee. 

In general, the ensemble of networks reached similar scores to those 
obtained by each network individually. Specifically, considering eval-
uations in sites where the classifiers were trained, i.e., results described 
in the diagonal of Table 4, CDC reached results that are superior to most 
of those obtained with the individual models. 

Notwithstanding, the CDC substantially improved the classification 
accuracy of cross-site evaluations, notably in S/W fragments, e.g., re-
sults obtained by the CDC when models were trained in ET and evalu-
ated in MS and WC. Regarding the lithology categorization, the 
committee followed the same trend observed in the results of the indi-
vidual networks. The latter reflects that all networks are affected by the 
site/domain shift phenomenon, at least from the lithological point of 

Table 3 
Average F1 (%) for three executions (one per fold) of the DL networks for the substrata characterization.  

Criteria: S/W fragments Lithology Morphology 

Architectures Sites Testing on: 

MS WC ET MS WC ET MS WC ET 

VGG 

Training on: 

MS 61.6 52.5 57.1 68.0 50.9 56.2 67.4 75.5 70.2 
WC 49.8 59.6 57.9 57.0 72.4 48.0 65.2 78.3 70.4 
ET 56.6 67.2 64.9 53.8 51.1 72.0 67.1 78.4 74.5 

ResNet18 V1 
MS 70.2 65.7 62.2 73.2 50.6 51.4 68.3 72.2 64.1 
WC 49.0 64.2 55.2 49.3 64.4 41.8 67.0 78.2 72.7 
ET 63.9 72.1 67.5 50.7 51.5 71.6 66.1 78.5 74.7 

ResNet50 V1 
MS 64.2 66.4 59.3 70.7 51.6 51.1 68.6 75.0 67.5 
WC 41.0 45.1 45.3 43.4 56.9 30.9 67.2 80.0 71.9 
ET 53.3 65.6 69.3 50.1 57.2 70.5 64.9 78.5 75.2 

ResNet18 V2 
MS 67.5 40.0 55.1 66.8 50.7 45.4 68.5 71.5 64.2 
WC 39.5 49.6 52.0 54.0 75.2 42.1 63.9 80.2 68.7 
ET 54.3 54.6 61.9 49.4 49.5 72.4 65.8 79.0 75.0 

ResNet50 V2 
MS 67.8 40.1 51.8 75.3 55.3 55.7 69.4 74.2 66.9 
WC 49.0 46.0 52.1 48.1 71.7 46.4 65.8 79.4 71.5 
ET 64.9 57.2 67.7 54.1 53.4 70.5 65.6 78.3 75.6 

Xception 
MS 66.9 62.7 53.5 66.1 62.7 48.4 68.8 73.0 66.5 
WC 55.0 53.3 54.3 52.6 64.4 42.9 66.0 79.9 70.8 
ET 63.8 74.0 70.1 56.9 59.8 76.5 66.3 78.0 73.6  

Table 4 
Average F1-score (%) for three executions (one per fold) of the DL decision 
committee.  

Criteria Training on: Testing on: 

Sites MS WC ET 

S/W fragments 
MS 69.8 52.8 57.2 
WC 55.5 57.4 54.0 
ET 65.8 75.5 69.2 

Lithology 
MS 76.8 57.3 54.1 
WC 54.2 74.5 46.5 
ET 54.8 54.2 75.4 

Morphology 
MS 69.3 64.5 58.2 
WC 59.4 78.9 66.5 
ET 63.0 76.9 76.4  
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view. That behavior is probably related to the subtlest differences in 
substratum texture among the three sites. Fig. 2 shows examples of 
images from the three sites and representations of each lithology class. 
The figure shows considerable differences among images of the same 
classes belonging to different sites. 

To enrich the current analysis, we present in Fig. 4 the confusion 
matrices associated with the CDC results for all site combinations ac-
cording to the lithology classification, and in Fig. 5 the confusion 
matrices according to S/W fragments classification. Given that 
morphology categorization entails multiple labels, the analysis of 
confusion matrices becomes more complex, as each class requires 
computation separately. That’s why we limited this discussion to the 
lithology and S/W fragments categories. In the figures, the matrices in 
the diagonal show the results obtained for the networks trained and 
tested on the same site. The remaining matrices represent cross-site 
results. 

Specifically, for lithology (see Fig. 4), the CDC had problems 

discerning between slab and sulfurs in all evaluated scenarios. More-
over, the committee predicted a reasonable number of slab images as 
volcanoclastic, mainly when it was trained or evaluated on ET. 

Regarding S/W fragments, the observed misclassifications occurred 
mainly between classes 0–10% and 10–50%, which is unsurprising since 
estimating the amount of shell and white fragments is problematic, 
driven by subjective visual quantification. Additionally, the worst re-
sults were for the 50–100% class. We believe the reason for that 
behavior lies in the under-representation of that category in the training 
dataset. 

5.3. Classification visual analysis 

This section presents a visual assessment of internal network repre-
sentations to better understand the criteria or the specific features that 
seem to be taken into account by the deep learning networks in sub-
stratum classification. For that purpose, we used the Gradient-weighted 

Fig. 4. Confusion matrices of the classification decision committee’s predictions according to lithology categorization, in percentage and white to dark blue gradient. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Class Activation Mapping (Grad-CAM)(Selvaraju et al., 2017) technique. 
Fig. 6 shows examples of the activation maps computed by Grad- 

CAM over the VGG network trained and evaluated in the Montsegur 
(MS) site. In the figure, each column represents a substratum categori-
zation, i.e., Fig. 6(a)(d)(g) corresponds to S/W fragments; Fig. 6(b)(e)(h) 
to lithology; and Fig. 6(c)(f)(i) to morphology. Below each image, we 
indicate the true label (TL) and the predicted label (PL). Additionally, 
the importance map is overlaid on the original images. The places where 
the gradients in such a map are strong, i.e., red-colored, represent pre-
cisely the information the network considers more important to make its 
prediction. 

For S/W fragments, Fig. 6(a)(d)(g), it is easy to observe that the 
network focused only on the smaller white spots in the images (high-
lighted in green circles). Note that the network has not considered all the 
white groups of pixels (see Fig. 6(a)), which means that it has acquired a 
proper understanding of that class, e.g., quantifying small shells and 
white fragments, although not doing it with the desired precision in all 

cases, see Fig. 6(g). 
Regarding lithology, the examples shown in Fig. 6(b)(e)(h) indicate 

that the network focuses on certain image regions to predict slab, sulfur, 
and volcanoclastic sediments. Regarding the slab, Fig. 6(b) clearly 
shows how the network looks for small boulders and rubbles notably 
harboring iron oxide deposits commonly found on the slab. Seabed slabs 
may be larger than the image extent, so the model may have looked for 
more detailed features within the images. Regarding sulfides, Fig. 6(e) 
indicates a focus on the spatial distribution of the fauna that usually 
relies on chemosynthetic primary production, permitted by the presence 
of hydrothermal vent emissions in the proximity of that substratum. For 
volcanoclastic sediments, as represented in Fig. 6(h), the network con-
centrates more on the presence of sediment patches harboring different 
colors. The visual representation under consideration reveals distinct 
features that are more conspicuous in certain regions of the image. Red 
circles have been employed to designate those regions. It is postulated 
that these regions are more likely to exhibit the said features compared 

Fig. 5. Confusion matrices of the classification decision committee’s predictions according to S/W fragments categorization, in percentage and white to dark blue 
gradient. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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to other parts of the images. 
Seabed substrata can be intrinsically made up of different morpho-

logical features. While those may be correlated with lithological char-
acteristics, annotating several overlapping classes may prevent the 
model from clearly detecting the key features. While we considered 

geomorphological classes independently, this may not represent the 
whole image variability. The fact that they overlap provides much more 
combination and possible arrangement of critical features within the 
image, which is challenging to analyze in the current experiment. 

Fig. 6. Grad-CAM representations extracted from VGG architecture, on samples from all the studied regions and covering all categories, overlaid on the original 
images. The red-colored areas represent the information the network considers more important to make a prediction. In the figure, TL and PL refer to True Label and 
Predicted Label, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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5.4. Uncertainty analysis 

The current section presents an uncertainty analysis of the substra-
tum classification performed with the CDC. The analysis is based on the 
Predictive Entropy uncertainty measure, H(s|xn), which indicates how 
confident the ensemble is with respect to its predictions. In simple terms, 
if most models in the ensemble agree with a particular prediction, the 

uncertainty associated with the respective sample is low; if most models 
disagree, the uncertainty is high. Furthermore, we hypothesize that 
uncertainty correlates negatively with classification accuracy, i.e., the 
higher the uncertainty, the higher the chance of the CDC decision being 
incorrect. 

In this analysis, we hypothetically investigate a way to use the un-
certainty computed for each sample (image) as part of an audit scheme 

Fig. 7. Uncertainty analysis results. The curves represent the F1-score (solid) and Predictive Entropy (dashed) values versus the Audited Image Rate for the different 
substratum categorizations and site (training/testing) combinations. 
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that could be used within a semiautomatic classification procedure that 
may deliver arbitrarily high accuracy rates (assuming that human clas-
sification is always right). The basic idea is to submit only the samples 
with uncertainty above a specific threshold for the inspection of a 
human expert. We observe that such a procedure can be used to strongly 
reduce the human effort associated with creating an annotated image 
dataset, limiting the manual labeling task to the images with high un-
certainty, according to an arbitrary threshold value. 

In the analysis, we define a so-called Audited Image Rate (AIR), 
which represents the number of images with uncertainties above the 
threshold divided by the total number of images. First, we compute the 
uncertainty for each sample (image), and then we vary the threshold 
value from zero to the highest observed uncertainty value. For each 
uncertainty threshold value, we compute the correspondent AIR and F1- 
score. But note that when computing the F1-score, we consider that the 
samples whose predictions have uncertainties that lie above the uncer-
tainty threshold value, i.e., samples to be audited, are correctly classified 
(once again, assuming that the manual labeling is always correct). 
Therefore, when the threshold value equals zero, all samples are audi-
ted, i.e., AIR equals one, and the corresponding F1-score is 100%. We 
present in Fig. 7 F1-score curves (continuous lines) jointly with the 
Predictive Entropy measures (dashed lines) versus the AIR. 

In the figure, each column contains results for each substratum 
characterization criteria, i.e., the amount of S/W fragments, Fig. 7(a)(d) 
(g)(j)(m)(p); lithology, Fig. 7(b)(e)(h)(k)(n)(q); and morphology, Fig. 7 
(c)(f)(i)(l)(o)(r). Each row represents a different site combination for 
training and testing the CDC, which permits the assessment of the 
generalization capacity of the ensemble in cross-site evaluations. The 
dark blue curves represent the accuracy and uncertainty of the ensemble 
when it was trained and tested using images from the same site. The light 
blue curves represent cross-site combinations in which the CDC was 
trained with data from one site and evaluated with data from a different 
site. 

In general, the CDC achieved F1-score values of about 80% when less 
than 20% of the images needed to be audited, with the ensemble trained 
and tested with data from the same site (dark blue curves in Fig. 7). 
Additionally, in most of those cases, F1-scores of over 90% were ob-
tained with an AIR of 40%. Taking into account the result when no 
images are audited, i.e., the first point in the curve, those numbers 
indicate that the devised auditing scheme can significantly improve the 
overall classification accuracy by visually inspecting relatively small 
groups of the set of images. 

Moreover, considering the cross-evaluation results (light blue 
curves), the classification accuracy also increases considerably as the 
number of audited images increases, reaching over 80% F1-score for an 
audited rate of 50% in almost all cases. The curves also show that the 
poorer generalization across sites occurs for the lithology categorization. 

Specifically about the uncertainty values (dashed line curves in 
Fig. 7), in most cases, lower values were obtained when the classifiers 
were trained and tested in the same site, as expected. However, a 
different behavior was observed when the ensemble was evaluated on 
WC but trained on MS or ET from the lithology and S/W fragments 
points of view (see Fig. 7(a)(b)(p)(q)). Higher uncertainty was obtained 
when training and testing on WC than when training on MS or ET and 
testing on WC. That means the ensemble trained on WC was less 
confident than when trained on MS or ET. We hypothesize that such 
behavior has to do with the number of samples available in WC, which is 
lower than in the other sites. The former is consistent with the results 
presented in Table 4. Furthermore, being WC the most remote site, 
compared with the distance between ET and MS, it may harbor benthic 
substrata that may more strongly differ from those of ET and MS Bar-
reyre et al. (2012). 

Although expected, the ensemble predictions were highly confident 
and strongly correlated to the uncertainty measures, which confirms the 
usefulness of the proposed auditing scheme for efficiently annotating 
large image sets while limiting human intervention. 

5.5. Uncertainty visual analysis 

The visual analysis of image samples, considering their true and 
predicted labels, along with the associated predictive entropy, can 
provide some information on the features that might lead to wrong 
classification, representing sources of uncertainty. In Fig. 8, the top line 
(Fig. 8(a)(b)(c)) depicts pictures with correct predicted labels and low 
uncertainty, which clearly contain the features used by the CDC are 
highlighted in Fig. 6, such as the presence of small mussels for “sulfurs” 
(Fig. 8(b)). All three images come out as typical of the class they belong 
to. The second line (Fig. 8(d)(e)(f)) depicts images not properly labeled 
with an expected higher uncertainty. Finally, the last line (Fig. 8(g)(h) 
(i)) shows images properly labeled that appear characteristic of their 
class but are, nevertheless, associated with high predictive entropy, 
providing invaluable information on the interpretation of the uncer-
tainty value. 

When considering the S/W fragments category (Fig. 8(a)(d)(g)), 
uncertainty appears related to the size of the fragments and the contrast 
with the background. This contrast can be related to the color of the 
substrate, i.e., white volcanoclastic sediment vs. dark slab (Fig. 8(d)(g)), 
but also illumination. In Fig. 8(d), the sediment color and white frag-
ments are hard to distinguish because of an evident lack of contrast. In 
Fig. 8(g), the strong gradient in colors with the presence of white mi-
crobial patches could explain the high predictive entropy despite a 
reasonable classification and the obvious presence of white fragments 
properly detected. 

Regarding Lithology (Fig. 8(b)(e)(h)), the presence of outcropping 
slab among patches of volcanoclastic sediment supported the volcano-
clastic predicted label with high uncertainty (Fig. 8(e)). Any human 
observer could easily classify this picture out of environmental context 
as volcanoclastic. Only the presence of emerging rocks in some parts of 
the image indicates the possible occurrence of slab. Again, the uncer-
tainty analysis might easily assign this class to a higher predictive en-
tropy because slabs are larger than the image extent. The last image 
(Fig. 8(h)), associated with high Predictive Entropy (PE), is harder to 
interpret, but considering the network concentrates on sediment patches 
of different colors for volcanoclastic sediments (refer to Fig. 6), the 
uncertainty in this case could be related to the size of patches with the 
presence of strong contrast over reduced areas, creating uncommon 
small features for this class. 

Finally, morphology displays higher entropy compared to the two 
other categories ((Fig. 8(c)(f)(i))). This might result from the fact that 
several classes can be attributed to the same image, increasing the 
chances of inaccurate predictions. Fig. 8(f) depicts an old sulfide struc-
ture covered by sediment. The sediment cover could result in less pro-
nounced texture corresponding to rubbles, or alternatively, the absence 
of flat/sedimented patches in the image prevents the CDC from detecting 
rubbles due to a lack of clear textural boundaries. Indeed, variation in 
color contrast and size of clear patches appear to be an important factor 
of certainty and most likely also account for the high PE value in Fig. 8 
(i). In this image, small patches associated with the dark areas, or 
alternatively the presence of brownish spots, might constitute important 
features for the network to consider, leading to high uncertainty despite 
the obvious presence of marbled sediment. 

This result strongly highlights the importance of the human capacity 
to take into account a more general context of the spatial extent and the 
ability to distinguish between an unusual pattern and a characteristic 
feature. We observe that the ROV altitude can strongly affect the lighting 
and contrasts, leading to underexposed or overexposed images. While 
this is easily captured by the human eye, contrast variation in such a 
complex environment with fine/subtle changes between classes can 
strongly affect the networks’ decisions and lead to high uncertainty. In 
addition, the spatial scale of the categories is usually of one order of 
magnitude greater than the size of a single image. Hence, the human 
observer tends to classify an image by taking into account its environ-
mental context. This is most likely the case in Fig. 8(e), which 
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corresponds to a transition zone between bare slab and slab covered by 
volcanoclastic sediments. This environmental surrounding context is 
currently not included in the decision scheme and could be added in the 
future to improve predictions. 

6. Conclusions 

In this work, six state-of-the-art deep learning architectures were 
evaluated for the problem of deep-sea substratum characterization. 
Additionally, a classification decision committee (CDC) constituted by 
an ensemble of networks with those architectures, in which the indi-
vidual predictions are fused through a majority voting mechanism, was 
proposed and evaluated. 

All deep learning models were evaluated on single and multi-label 
classification problems, and three different sites were considered in 
the experiments. Besides the conventional training scheme in which 
data from a single site is used for training and testing the models, we also 
evaluated the models in cross-site scenarios, aiming to assess the 
generalization capacity of the different architectures and that of the 

ensemble. 
The experimental analysis, considering all class categories, demon-

strated the suitability of the deep learning models for deep-sea sub-
stratum classification. Considering the lithology and morphology 
characterization, higher scores were achieved when the models were 
trained and tested on the same site. Regarding the cross-site evaluations, 
all results were impacted negatively by the inversion of the role between 
the training and the testing sets. However, the same trend was not 
observed for the shells and white (S/W) fragments substratum category. 
The issues underlying such behavior demand further investigation, as 
they could arise from a particular site and category characteristics. We 
believe such a generalization problem constitutes the main weakness of 
the proposed model in substrata image classification. 

In this work, we also investigated the uncertainty in the classification 
conducted by the ensemble of networks regarding Predictive Entropy. 
Computed from the set of individual predictions of the CDC components, 
the uncertainty values helped to identify images with a higher chance of 
being misclassified, i.e., for which a high uncertainty value was ob-
tained. Relying on the uncertainty information, we investigated a 

Fig. 8. Visual analysis of uncertainties. In the figure, TL, PL, and PE refer to True Label, Predicted Label, and Predictive Entropy, respectively.  
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possible semiautomatic procedure in which high-uncertainty images 
could be submitted to manual labeling, and after retraining the classi-
fiers, accuracy would be improved. Indeed, the results demonstrated 
that high accuracy values could be obtained with such a procedure, with 
a relatively small amount of human intervention. In practice, the latter 
means that the procedure can assist a deep-sea expert annotator in a way 
that would not be necessary to review a complete amount of unlabeled 
images but only a small set of images with higher uncertainty. 

The experimental results suggest that there might be room to 
improve the generalization capacity of the deep learning classifiers. That 
could be achieved by better exploiting the training data, e.g., with 
additional data augmentation techniques, using recent advances in un-
supervised learning techniques, such as self-supervised methods, or by 
just simplifying the classifiers in terms of the number of parameters, thus 
reducing the risk of overfitting. 

Another direction for continuing this research is to exploit the clas-
sification uncertainty further in an active learning context. The uncer-
tainty measure could be used in interactively training the deep learning 
models, selecting high-uncertainty samples in the datasets, and 
increasing their importance in the computation of the loss function. 
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Appendix A. Network architectures 

The network architectures of the models evaluated in the experiments are described in detail in Fig. 9. The light green areas in that figure represent 
feature extractor modules based on the different architectures, i.e., VGG, ResNet, and Xception. The orange area represents the architecture of the 
classifier module, to which the outputs of each feature extractor are submitted. 

Each rectangle indicates the operations performed at a block of layers. Conv and SConv stand for regular convolution and depth-wise separable 
convolution, respectively. The values that follow such operations indicate the number of filters, filter size, stride, and dilation rate. Regarding the 
maxpooling operation, the values correspond to the kernel dimension and stride. Dropout refers to the number of neurons randomly turned off during 
each training inference. The number of neurons in the dense layer of the classifier module corresponds to the number of classes in the dataset. 

All architectures were modified mainly in the block of fully connected layers, where we opted to use just the output layer after the feature extractor 
instead of two fully connected layers. Additionally, residual blocks were used at the architectures’ stems rather than in the full feature extractor. All 
those modifications were experimentally determined. 
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Fig. 9. Architecture details of the deep learning-based classifiers evaluated in this work. In the figure, each network architecture is represented in the green blocks 
separately. The orange block shows the fully connected layers at the end of all networks. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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