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 2 

ABSTRACT 26 

Animal movements are typically influenced by multiple environmental factors 27 

simultaneously and individuals vary in their response to this environmental heterogeneity. 28 

Therefore, understanding how environmental aspects, including biotic, abiotic and 29 

anthropogenic factors, influence the movements of wild animals is an important focus of 30 

wildlife research and conservation. We apply exponential random graph models (ERGMs) to 31 

analyse movement networks of a bull shark population in a network of acoustic receivers and 32 

identify the effects of environmental, social or other types of covariates on their movements. 33 

We found that intra- and interspecific factors often had stronger effects on movements than 34 

environmental variables. ERGMs proved to be a potentially useful tool for studying animal 35 

movement network data especially in the context of spatial attribute heterogeneity.  36 

 37 

Keywords: spatial-social interface, acoustic telemetry; Carcharhinus leucas; ERGM; 38 

movement networks; Indian Ocean; Reunion Island; shark.   39 
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 3 

Understanding animal movement is not straightforward, as movement decisions result 40 

from a combination of many factors including the internal state of the individual, its intra- 41 

and interspecific neighbourhood, and spatio‐temporal variation in abiotic environmental 42 

conditions (Nathan et al., 2008). Additionally, the response of individuals to variation in their 43 

surrounding environment can differ across spatial and temporal scales. Daily activities can be 44 

influenced by environmental factors that vary over a diel cycle (e.g., wind or tidal currents), 45 

while seasonal movement can be governed by changes acting at larger temporal scales (e.g., 46 

photoperiod, temperature). Quantifying how heterogeneity in an animal’s surroundings drives 47 

behaviour, and consequently movement patterns, provides insight into how natural and 48 

anthropogenic changes may impact populations and ecosystems.  49 

One potential way to understand the ‘causes, mechanisms and spatiotemporal patterns 50 

of movement and their role in various ecological and evolutionary processes’ (Nathan et al. 51 

2008) is to link observed movement patterns with spatial and temporal variability in the 52 

underlying environmental conditions (Avgar et al., 2013). Movement patterns result from 53 

interactions between organisms and their environments (Johnson et al., 1992; Morales et al., 54 

2010; Schick et al., 2008). For example, movement rates are expected to decrease where 55 

resources are rich and decrease where food availability is low (Kuefler et al., 2012; Pyke et 56 

al., 1977). Understanding movement patterns thus requires consideration of the temporally 57 

dynamic nature of these environments (Avgar et al., 2013; Couriot et al., 2018; Mueller et al., 58 

2011; Riotte-Lambert & Matthiopoulos, 2020; Schick et al., 2008). 59 

In addition to interacting with their physical environment (e.g. habitat features 60 

offering essential resources, conditions or shelter), animals also interact with other 61 

individuals of the same or different species. These spatial encounters with conspecific or 62 

heterospecific individuals may be advantageous or unfavourable. For example, aggregations 63 

form to avoid predation or to forage efficiently (Krause & Ruxton, 2002), although the 64 
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tendency for non-gregarious species to seek or avoid each other is less well known. For all 65 

sexual species, individuals need to encounter conspecifics at least for mating, but avoiding 66 

opposite-sex individuals (sexual segregation) may play a major role in preventing sexual 67 

harassment in some species (Wearmouth & Sims, 2008). Additionally, avoidance strategies 68 

can act at the intra or interspecific level in the context of competition for mates, space or 69 

resources (Giuggioli & Kenkre, 2014), or in the context of predator–prey interactions 70 

(Atwood et al., 2009). Because individuals may select habitats based on exogenous 71 

environmental features (e.g. habitat quality and predation risk), and local population factors 72 

(e.g., mating opportunities, competition or density dependence), we need to quantify the 73 

mechanisms by which dynamic interactions between individuals occur (e.g. movement 74 

towards or away from other individuals). 75 

Therefore, social behaviour is intrinsically connected with spatial behaviour and a 76 

burgeoning literature now addresses the link between spatial and social aspects of behaviour 77 

defined as the “spatial-social interface” (Webber et al., 2023). Indeed, while spatial and social 78 

processes have been predominantly considered independently, because movement behaviour 79 

emerges from social and spatial processes, animal movement studies offer an opportunity to 80 

consider and integrate them (Albery et al., 2021; He et al., 2019; Mourier et al., 2019; 81 

Webber et al., 2023). 82 

Finally, the human footprint has altered the spatial ecology of many species at 83 

different spatial and temporal scales, for example by decreasing animal movements as a 84 

result of behavioural changes, habitat fragmentation and barrier effects (Tucker et al., 2018), 85 

or by modifying activity-timing (Gilbert et al., 2023). COVID-19 lockdowns provided an 86 

empirical experiment where an abrupt reduction in human activity (so called Anthropause) 87 

led to decreases in animal movement rates and avoidance patterns of human footprint (Tucker 88 

et al., 2023). Human disturbance can also fundamentally alter the way that species interact, 89 
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such as by causing a spatiotemporal compression of species co-occurrences in disturbed 90 

landscape which can lead to increases in competition, predation and infectious disease 91 

transmission (Gilbert et al., 2022). As such, incorporating human footprint as a potential 92 

factor affecting animal movements at the spatial-social interface is now more relevant than 93 

ever. 94 

In this study, we explore the connection between seascape attributes and animal 95 

movement patterns for a population of bull shark (Carcharhinus leucas) that inhabit a coastal 96 

zone in Reunion Island (Indian Ocean), which encompasses a variety of environmental 97 

conditions. We evaluate the relative importance of spatiotemporal variables associated with 98 

several main aspects of the seascape (abiotic conditions, social environment, predation risk or 99 

interspecific competition and anthropogenic pressure) as potential drivers of shark movement 100 

patterns. This approach allows us to identify fundamental relationships between local 101 

environmental conditions and animal movement patterns.  102 

To do so, we used a network-based modelling that account for the non-independence 103 

of the data of movements between location. We applied exponential random graph models 104 

(ERGMs; Lusher, Koskinen, & Robins, 2012; Robins, Pattison, Kalish, & Lusher, 2007) to 105 

monthly individual movement networks of bull sharks between listening stations (i.e. 106 

acoustic receivers) deployed along the west coast of Reunion Island (Mourier et al., 2021; 107 

Soria et al., 2019), using varying covariate attributes at these locations. ERGMs are statistical 108 

models of networks that treat the weight of network edges (i.e. number of movements 109 

between two nodes) as the response variable and network node (i.e. acoustic receivers) 110 

attributes as explanatory variables (Robins, Pattison, et al., 2007; Robins, Snijders, et al., 111 

2007; Snijders et al., 2006). These models account for the non-independence of the data 112 

expressed as movements between sites acting as sources or sinks (Silk & Fisher, 2017).  113 
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Bull shark movements are known to be influenced by both biotic and abiotic factors 114 

(Lee et al., 2019; Lubitz et al., 2023; Niella et al., 2022; Werry et al., 2018), and 115 

anthropogenic factors (Hammerschlag et al., 2022; Werry et al., 2012), but less is known 116 

about the importance of con- and heterospecifics in movement decisions. Even if most 117 

studies on the movements of these marine predators have identified environmental factors as 118 

most influential to their movement ecology, we expect that social and competition factors 119 

may be just as important in explaining individual movements. We incorporated swell height, 120 

turbidity and rainfall levels as abiotic predictive variables of movements, turtle densities as a 121 

potential indicator of the presence of sharks as suggested by local people, cumulative number 122 

of sea users as an anthropogenic variable, as well as various intra- and interspecific factors 123 

such as residency times of the opposite sex, abundance of bull sharks and occupancy of tiger 124 

sharks (a larger and likely competitor species). Our analysis was designed to test whether 125 

individual bull sharks move according to the distribution of conspecifics and heterospecifics 126 

in the seascape, and whether these effects were comparable with expected positive effects of 127 

swell height, turbidity and rainfall on shark movements and negative effects of human 128 

densities (with sharks avoiding human presence). While segregation, resource partitioning 129 

and competition processes may all shape bull shark movements, we had no clear directional 130 

predictions of their effect due to the limited previous research on this population on these 131 

aspects.  132 

 133 

METHODS  134 

Study species and local context 135 

The bull shark is a large Carcharhinidae with a wide cosmopolitan distribution along the 136 

continental coasts of all tropical and sub-tropical waters of the world and is known to be 137 

mobile and move across a large range of habitats and environmental conditions 138 
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(Brunnschweiler et al., 2010; Daly et al., 2014; Espinoza et al., 2016; Heupel et al., 2015; Lee 139 

et al., 2019; Niella et al., 2022). Additionally, it is also an euryhaline elasmobranch that uses 140 

a range of salinities throughout its life-cycle (Niella et al., 2022). Its behaviour varies across 141 

spatial and temporal scales, as well as according to size and sex, with a high individual 142 

variability in the tendency to move (Espinoza et al., 2016; Lee et al., 2019; Mourier, Soria, et 143 

al., 2021). However, much remains unclear about adult bull shark movement decisions.  144 

 145 

Reunion Island (21°07’S / 55°32’E) is a volcanic island located 700 km east of Madagascar 146 

in the southwest Indian Ocean. The island is 2512 km2 with 217 km of coastline and 147 

characterized by steep underwater slopes (ca. 10-20%) to a depth of 2,000 m. Fringing reefs 148 

stretch over 25 km along the west and south-west coast (Fig. 1) forming a natural coral 149 

barrier that bounds the reef flats and back-reef depressions and lies no further than 500 m 150 

from the beach.  151 

 152 
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 153 

Figure 1:  Cumulative number of movements across all 44 monthly individual movements 154 

used in the ERGM analyses concentrated on the western part of Reunion Island. Circles 155 

represent acoustic receivers. Inset map represents the location of Reunion Island and the area 156 

where the movements were recorded. 157 

 158 

Acoustic telemetry and movement network 159 

Sharks were captured along the west coast of Reunion Island between September 2012 and 160 

March 2013 (Supplementary material 1 Table S1), using horizontal drifting long-lines 0.2 to 161 

1 km in length and equipped with 20 to 200 baited 16/0 circle hooks (Blaison et al., 2015). 162 

Set times were fixed at a maximum of 3 h to minimize shark and bycatch mortality. Once 163 

captured, a shark was brought alongside the vessel and held still by rubber-encased ropes to 164 

prevent skin lesions and burns and rolled onto its back to induce tonic immobility. The boat 165 
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moved forward slowly throughout the procedure to allow the shark to breathe. Sanitized 166 

transmitters were implanted into the peritoneal cavity through a midventral incision using a 167 

sterile scalpel. A 1cm incision was made, then enlarged with retractors. The muscle was then 168 

gently torn in the direction of the fibers to allow faster muscle tissue repair. Once the tag was 169 

in place, two stitches were done to close the incision and facilitate healing. A sterile, non-170 

absorbable synthetic monofilament suture (polyamide) was used. Absorbable sutures 171 

disintegrate too quickly. Braided sutures were more likely to increase the risk of infection 172 

allowing seawater to enter in the tissue. The shark was then freed by cutting the hook at its 173 

base and removing it, untying the lasso, replacing it on its belly and oxygenating it by 174 

moving it back and forth or slowly forward until the first signs of autonomous movement 175 

appear. Sex and total length (TL) were recorded and transmitters (Vemco V16, transmission 176 

interval 40–80 s, estimated battery life 845 days) were implanted into the peritoneal cavity 177 

through a midventral incision.  178 

 179 

An array of 46 Vemco VR2W acoustic receivers was deployed along the coast with receivers 180 

installed an average of approximately 2 km apart at depths of 10–60 m, comprising 33 (71%) 181 

offshore receivers and 13 (29%) inshore receivers placed less than 300 m from shore (Fig. 1).  182 

 183 

For each shark visit at a receiver, we used detection records to calculate a continuous 184 

residency time (CRT) corresponding to the duration within which a tagged shark was 185 

continuously monitored at a specific receiver without one hour-scale (> 1h) absences 186 

(Capello et al., 2015; Ohta & Kakuma, 2005). All detections of the same shark at one 187 

receiver separated by less than a predefined period, called the maximum blanking period 188 

(1 h), were grouped into one CRT and defined as a visit. Each time a tagged shark was 189 
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detected at a different receiver, a new visit started - ending the visit at the previous receiver - 190 

even if the interval between detections was less than the maximum blanking period. 191 

 192 

We then built monthly movement networks of each shark with each node representing a 193 

receiver along the coast of Reunion Island and each weighted, directed edge represented the 194 

number of movements of the individual (deduced from CRT) from node A to node B (Fig. 1) 195 

within a given month. 196 

 197 

Ethical Note 198 

All the fieldwork and protocols of handling and tagging of sharks were approved by the 199 

Ethics Committee (n° 114) for the CYROI (Cyclotron Réunion Océan Indien). Procedures 200 

were adapted to minimize stress on animals and avoid mortality. The use of circular hooks 201 

prevented the shark from swallowing them. All sharks swam away in good condition after 202 

being released. The procedure usually lasted less than 30 min. Most sharks were detected and 203 

therefore remained alive during the experiment (mean days of detections 88.3 ± 79.4; min = 204 

1, max = 285). Two sharks were caught and removed by local fishermen and two others were 205 

never detected after being released. All operations were carried out or supervised by 206 

scientists with a certificate in animal experimentation and a certificate in experimental 207 

surgery (Oniris, Ecole Nationale Vétérinaire de Nantes). 208 

 209 

Explanatory variables 210 

We gathered data of different nature (i.e. biological, abiotic, anthropogenic and spatial) that 211 

were accessible in the study area. Although non exhaustive, explanatory variables recorded 212 

included a number of environmental, biological and anthropogenic factors (Table 1; a 213 

detailed description of how they were recorded can be found in Supplementary material 1) as 214 
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well as the geographical distances between receivers. As all data were not available at the 215 

same spatial and temporal scale, we chose to standardize all available candidate explanatory 216 

data at the scale of one month for each receiver. This choice of resolution of the data is a 217 

compromise to keep a valuable temporal scale of the variability of site conditions and in the 218 

same time having enough movements to construct individual networks that represent 219 

biologically meaningful variations. For some environmental variables such as rainfall, 220 

multiple nearby receivers shared values as data were available for a specific zone including 221 

several receivers. All explanatory variables were standardized to have a mean of 0 and a 222 

standard deviation of 1. 223 

 224 

Table 1: Predictor parameters included in the ERGMs. 225 

Variables Category Description Range Source 

Occupancy Tiger 

sharks 
Biological Frequency of days at least a tiger shark was detected at the receiver for each month (%) [0-0.409] 

Current acoustic 

telemetry data 

Same sex CRT Biological Total CRT of bull sharks of the same sex for each month (hour) 
[0.033-

118.425] 

Current acoustic 

telemetry data 

Opposite sex CRT Biological Total CRT of bull sharks of the opposite sex for each month (hour) 
[0.033-

118.425] 

Current acoustic 

telemetry data 

Bull Shark 

abundance 
Biological 

Number of bull sharks present at the listening station divided by the number of bull shark with an 

active tag for each month 
[0-1.24] 

Current acoustic 

telemetry data 

Turtle density Biological Mean density of turtles in the area of the receiver from aerial survey (nb/km2) [0-15.873] Aerial surveys 

Turbidity Environmental Average monthly reflectance for each zone over the multiple images (%) [4.101-8.886] 
Satellite SPOT 4 & 

5 

Rain Environmental Mean rain fall for each watershed for each month (mm) 
[0.008-

25.460] 
METEO-France 

Swell Environmental Height of the swell near the listening station for each month (m) [0.557-2.636] 

AVISO portal, 
CANDHIS & 

METEOLAMER 

platform 

Human activities Anthropogenic Cumulated number of human activities (boats, swimmers, nautical activities) for each month  [0-1276.5] Aerial surveys 

Geodist Spatial Distance between stations (km) [0.9-120] 
Current acoustic 
telemetry data 

 226 

 227 

Exponential Random Graph Models 228 

As care is required when conducting statistical analysis of network data because of issues 229 

related to potential non-independence among neighbouring nodes and edges (Croft et al., 230 

2011), we used Exponential Random Graph Models (ERGMs). ERGMs are statistical models 231 

of networks that treat the weight of network edges as the response variable and network node 232 
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and edge attributes as explanatory variables (Robins, Pattison, et al., 2007; Robins, Snijders, 233 

et al., 2007; Snijders et al., 2006). Such models are analogical to Generalized Linear Models 234 

(GLMs) except that they enable hypothesis testing about the processes driving network 235 

structure and link formation. These models have been mostly applied in social science, but 236 

their properties also make them useful for answering questions related to how and why 237 

animals move between locations in the context of movement networks (Fletcher et al., 2011; 238 

Jacoby & Freeman, 2016; López-Calderón et al., 2023).  Effectively the movement network 239 

becomes the response in a regression model, where the predictors are the propensity for 240 

nodes (i.e. locations) of similar or dissimilar attributes to be linked by movements. 241 

 242 

The general form for an ERGM can be written as: 243 

𝑃(𝑌 = 𝑦;  𝜃, 𝑥) =  
exp(𝜃𝑇𝑔(𝑦,𝑥))

𝜅(𝜃,𝑥)
       (1) 244 

where: 245 

• Y is the random variable for the state of the network (with realization y), 246 

• g(y,x) is a vector of model statistics for network y, 247 

• θ is the vector of coefficients for those statistics, and 248 

• κ(θ) is a normalizing term which ensures that equation (1) is a proper probability 249 

distribution. It represents the quantity in the numerator summed over all possible 250 

networks (typically constrained to be all networks with the same node set as y). 251 

The numerator represents a formula that is linear in the log form: 252 

log(exp(𝜃′𝑔(𝑦))) = 𝜃1𝑔1(𝑦) + 𝜃2𝑔2(𝑦) + ⋯ + 𝜃𝑝𝑔𝑝(𝑦) 253 

where p is the number of terms in the model. From this one can more easily observe the 254 

analogy to a traditional statistical model. The functions g(y) are counts of configurations in 255 

the network y and the parameters θ weight the relative importance of the respective 256 

configurations, effectively the size and direction of the effects of the covariates. Parameter 257 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.26.582077doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582077
http://creativecommons.org/licenses/by-nc/4.0/


 13 

estimation in most specifications of ERGMs uses maximum pseudo-likelihood, an 258 

approximation of maximum likelihood based on Monte Carlo estimation. 259 

All ERGMs were fitted using R packages ergm and ergm.count (Hunter et al., 2008). 260 

 261 

Model-fitting process 262 

Node attributes were varying at the month scale so we built a model for each monthly-263 

individual network. To ensure that it was possible to fit ERGMs to monthly networks and 264 

improve model convergence, we first removed from monthly movement networks all 265 

receivers that were deployed less than 20 days during the month, as well as all individuals 266 

that did not present an active tag for at least 20 days during a month. This empirical choice 267 

was made as a compromise between data loss and data representativity. We also retained only 268 

monthly individual networks containing at least 10 different directed movements between 269 

receivers, as networks including low numbers of movements caused problems with model 270 

convergence and parameter estimation. We also excluded two monthly networks that were 271 

binary (i.e. only contained at most single movements along any particular edge). This left us 272 

with 42 monthly networks of 13 individuals (9 females: 4 males; mean/median/range of 273 

monthly networks per individual = 3.1/3/1-6).  274 

 275 

For each monthly network for each shark, we then fitted two alternative versions of the full 276 

model that each modelled different effects of the environmental variables being studied 277 

(Table 1). The effect estimated for each factor represents the difference from the intercept as 278 

with classical GLMs. All models included the term “non-zero” to control for zero-inflation 279 

generated by the weighted movement networks being sparse and the term “sum”, 280 

corresponding to the sum of all link values, was included as the equivalent to the intercept in 281 

a linear model (Dey & Quinn, 2014). 282 
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 283 

The two model sets differed as follows: 284 

• Model set 1: we tested the association between the current state of the environment at 285 

each receiver location and number of movements towards and away from it (i.e. effect 286 

of an attribute on out- and in-degree). These models used the nodecov term in the 287 

fitted ERGMs. 288 

• Model set 2: we tested the association between the absolute difference in current state 289 

of the environment at dyads (pairs) of receiver locations and number of movements 290 

between them. These models used the absdiff term in the fitted ERGMs. 291 

  292 

We used a nodecov model rather than separate nodeicov and nodeocov models (movements 293 

towards and away from receivers respectively) as simulations indicated the results were 294 

qualitatively identical (see Supplementary material 2). 295 

We fitted the nodecov and absdiff models separately to facilitate model parsimony and 296 

convergence and test the robustness of the movement patterns discovered while controlling 297 

for the full suite of environmental variables. Indeed, incorporating all variables and models 298 

sets combinations would prevent convergence of models and render interpretation of output 299 

complex. To account for the effect of the spatial distribution of nodes in our models, we 300 

included as a covariate the matrix of distances between nodes. 301 

For each model set, we then wrote a model formula including all potential predictors as 302 

follows: 303 

graph~nonzero+sum+term(Variable 1)+term(Variable 2)+… +term(Variable n)+ 304 

edgecov(Geodist,'Geodist') 305 

where term can be replaced by nodecov and absdiff in model sets 1 and 2 respectively. An 306 

edgecov term was added to control for the distance between locations. Models were fitted 307 
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with a Poisson reference distribution for edge weights creating the familiar log-linear effect. 308 

The final coefficient estimates indicate log-linear increase in the weight variable 309 

(movements). MCMLE.Hummel.maxit was set to 1000 and MPLE.type was set to 310 

“penalized” so that the maximum penalized likelihood estimate was calculated using a bias-311 

reduced method. 312 

For each model set for each individual monthly network, we used Aikaike Information 313 

Criterion (AIC) to compare the AIC of 49 candidate models nested within the full model and 314 

keep only the model that most parsimoniously explained the movements of the individual 315 

during the month considered. Any models with convergence issues were discarded. 316 

We then re-fitted all selected ERGMs for each combination of both model sets (nodecov and 317 

absdiff) and individual monthly networks. From these final models we extracted model 318 

estimates and their standard errors, and also MCMC diagnostics (Gewecke’s convergence 319 

diagnostic and �̂�) to ensure convergence.  320 

To summarize the results incorporating each selected models, we extracted parameter 321 

estimates and associated standard errors from selected variables from each selected models, 322 

and followed a meta-analysis procedure in which each sample (monthly-individual 323 

movement network) was treated as a single ‘Study’. Effect sizes were calculated using and 324 

inverse-variance weighting meta-analysis for each sample and grouped by variables using a 325 

sub-grouping analysis. This allows to test if differences in effect sizes exist only due to 326 

sampling error, or because of true differences in the effect sizes. This procedure was made for 327 

the overall samples as well as separating by sex and by season. The meta-analysis was 328 

conducted using the package ‘meta’ in R (Schwarzer, 2007).   329 

 330 
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Simulation methods 331 

To ensure the correct interpretation of our model results and check for potential limitations of 332 

the ERGM methods applied to our dataset we used a simulation approach. In short, we 333 

simulated a series of individual movement trajectories that matched our empirically collected 334 

data. We then fitted ERGMs in the same way we did for the empirical data. 335 

We generated sets of 25 receiver locations (equivalent to the empirical data) positioned in 2D 336 

space and generated three environmental properties for each receiver location termed 337 

factorA, factorB and factorC. We then generated 21 simulation input parameter sets that 338 

varied the effect of factorA on the probability of movements between locations while keeping 339 

factorB and factorC fixed as having no effects on movement (Supplementary material 2 340 

Table S2). We considered scenarios where movements were conducted according to a 341 

gradient in factorA or occurred between similarly high or low factorA locations. For each 342 

simulation input parameter set we simulated the movements of 10 sharks. The number of 343 

movements for each shark was drawn from a Poisson distribution with a mean of 23 344 

(equivalent to the empirical dataset). Detailed methods are in Supplementary materials 2. 345 

 346 

 347 

RESULTS 348 

 349 

Interpretations of model outputs from simulations 350 

Our simulation study revealed ERGMs performed as expected when analysing movement 351 

networks of a similar size and structure to our empirically-measured networks (see 352 

Supplementary Materials 2). Model estimates for the nodecov and absdiff models typically 353 

accurately represented the presence of movements up a gradient or between similar locations 354 

respectively (Fig. 2). The statistical power to detect true effects was limited for individual 355 
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networks, and there were slightly elevated false positive rates for the absdiff models. 356 

However, effect size estimates were largely unbiased (both with and without true simulated 357 

effects), with the only exceptions being that absdiff models underestimated the tendency to 358 

move between similar locations when there was also a gradient effect, and that absdiff models 359 

overestimated the tendency to move between similar locations when sharks tended to start 360 

moving from high value locations and had a strong tendency to move up a gradient (although 361 

the latter would be expected if this resulted in sharks moving only between high value 362 

locations). Collectively these results indicate that collating estimates from multiple models 363 

(as we do in our main analysis) will provide the most informative results. Simulations also 364 

indicated that nodeicov and nodeocov models provided closely correlated results leading to us 365 

using a single nodecov model in our empirical analysis (see above). 366 
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   367 

Figure 2:  Interpretation of the model output for each scenario based on simulations: (a, b, c) 368 

movements up a gradient of Factor A (e.g. swell height), (d, e, f) movements between 369 

locations of low Factor A and (g, h, i) movement up a gradient and between locations of high 370 

Factor A. (a, d, g) Toy examples on the left and movement network for the first shark. (b, e, 371 
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h) model estimates for nodecov and (c, f, i) model estimates for absdiff. The model estimates 372 

are for the three effects (highlighting the one where there is a true effect in red) and then for 373 

each of the 10 sharks simulated. 374 

 375 

Effects of abiotic conditions 376 

 377 

Figure 3: Summary of the outputs from the ERGM models from the 42 selected individual 378 

monthly movement networks. Effect sizes and their 95% confidence intervals pooled over 379 

variables are reported for the parameter estimate of terms nodecov and absdiff. Variables 380 

were grouped in several categories: (1) environmental factors, (2) turtle density, (3) 381 

anthropogenic factors, (4) social or intraspecific interactions, and (5) competitive or 382 

interspecific interactions. The variable “Geodistance” controls for the distance between 383 

receivers. Circle size is proportional to the number of models in which the coefficient of the 384 

term was significant and therefore selected.  385 

 386 

Our models were designed to test whether sharks were moving between locations with 387 

similar values (tested by the absdiff term) and/or towards locations with higher/lower values 388 

(tested by the nodecov term) of an abiotic condition, specifically swell height, degree of 389 

turbidity and level of rainfall. Model results indicated the environmental variables that were 390 
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associated with movement network structure (Fig. 3). While high swell at a location was not 391 

significantly associated with more movements, movements between locations that differed 392 

considerably in swell height were much less frequent than movements between locations with 393 

similar swells as demonstrated by negative values of the absdiff model. Together, these 394 

outputs indicate that sharks move between locations characterized by similar swell and not 395 

across a gradient of swell heights. The nodecov model revealed a statistically negative effect 396 

of turbidity on movements, indicating that more movements occurred through low turbidity 397 

locations. Further, the absdiff model revealed that sharks were also more likely to move 398 

between receiver locations that differed from each other in their turbidity. Collectively these 399 

results suggest that sharks moved down turbidity gradients and then more frequently among 400 

locations with lower turbidity. Sharks also tended to move between receiver locations with 401 

similar and low rainfall levels. 402 

 403 

Effect of turtle densities  404 

Our models could also test whether sharks were moving toward high or low densities of 405 

turtles (tested by the nodecov term) and/or were remaining in habitats with similar densities 406 

(tested by the absdiff term). Model outputs indicated that movements were more likely 407 

between receiver locations with more similar turtle densities (negative estimate from absdiff 408 

model). However, parameter estimates were small indicating that the biological importance 409 

of turtle distribution densities may be limited.  410 

 411 

Effect of anthropogenic factors 412 

Our models were also set up to test whether sharks were avoiding (tested by the nodecov term 413 

with an expected negative coefficient) and/or remaining in areas of similar human activity 414 

(tested by the absdiff term with an expected negative coefficient). Models indicated that there 415 
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were more movements among locations with high human activities (positive nodecov effect 416 

and negative absdiff effect). However, parameter estimates from the models were close to 417 

zero suggesting that the biological importance of anthropogenic factors such as human 418 

activities on bull shark movements in the monitored area were relatively limited.    419 

 420 

Influence of conspecifics 421 

Our models were also used to test whether sharks moved towards or avoided conspecifics 422 

(tested by the nodecov term) and/or remained within areas with similar populations of 423 

conspecifics (tested by the absdiff term). Receiver locations in which bull sharks were present 424 

or more abundant were more strongly connected in the movement network. Outputs from 425 

absdiff model also indicated that movements tended to occur between locations with similar 426 

bull shark abundance, suggesting individuals were predominantly moving among a subset of 427 

preferred locations. While controlling for the abundance effect, there was (overall) some 428 

evidence for a negative effect of the residency time of sharks of the opposite sex, suggesting 429 

some spatial segregation between the sexes, but this effect varied seasonally (see below). 430 

 431 

Effect of inter-specific competition 432 

We also used our models to test whether the presence of larger tiger sharks was influencing 433 

bull shark movements by moving to/away from areas used by tiger sharks (tested by the 434 

nodecov term) and/or moving between sites with similar numbers of tiger sharks (tested by 435 

the absdiff term). There was weak evidence (due to wide confidence intervals and the small 436 

number of times this parameter was selected in the top model) for the presence of tiger sharks 437 

affecting bull shark movement network structure. Positive effects in absdiff model indicated 438 

individuals tended to move across gradients of tiger shark occupancy, perhaps indicating 439 
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active avoidance of tiger sharks, with some additional weak evidence of reduced movements 440 

through locations with higher occupancy of tiger sharks. 441 

 442 

Sex differences in movement network structure 443 

Analysing movement network structure for the two sexes independently revealed similar 444 

broad trends as the overall movement network, except in the case of social factors and the 445 

tiger shark occupancy (Fig. 4). While females tended to move toward locations with high 446 

residency times for other females, males showed a general pattern of avoiding locations with 447 

high residency times of either sex (while controlling for overall bull shark abundance). The 448 

weak overall evidence for reduced movements through locations with high tiger shark 449 

occupancy was driven by divergent effects between females and males. Female movements 450 

were directed towards locations with low tiger shark occupancy while male movements were 451 

directed towards locations with high tiger shark occupancy, indicating sex differences in how 452 

competitors influenced movement through receiver locations, although these effects have 453 

high uncertainty around them.  454 

 455 

 456 

Figure 4: Summary of the outputs from the ERGM models presented separately for females 457 

and males. Effect sizes and their 95% confidence intervals pooled over variables are reported 458 
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for the coefficient of terms nodecov and absdiff. The variable “Geodistance” controls for the 459 

distance between receivers. Circles represent the number of models in which the coefficient 460 

of the term was significant and therefore selected.  461 

 462 

Seasonal differences in movement network structure 463 

The factors that explained movement network structure remained similar between winter and 464 

summer, with only competition and rainfall changing qualitatively (Fig. 5). While rainfall 465 

levels had effects on movements in both seasons, the pattern was less clear during winter, 466 

which is expected as rainfall is a seasonally-driven factor. It appears there is a shift in 467 

behaviour related to the presence of tiger sharks. While there was no apparent movement 468 

pattern related to tiger shark occupancy during winter, there was a pattern of movements 469 

towards locations with low occupancy of tiger shark in summer as demonstrated by positive 470 

absdiff coefficients and negatives coefficient of nodecov.  471 

  472 

 473 

Figure 5: Summary of the outputs from the ERGM models presented separately for summer 474 

and winter. Effect sizes and their 95% confidence intervals pooled over variables are reported 475 

for the coefficient of terms nodecov and absdiff. The variable “Geodistance” controls for the 476 
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distance between receivers. Circles represent the number of models in which the coefficient 477 

of the term was significant and therefore selected.  478 

 479 

 480 

DISCUSSION 481 

 482 

We predicted that bull sharks would respond specifically to certain environmental factors, 483 

being attracted to high levels of turbidity, rainfall and swell. We also expected that bull shark 484 

movements would be influenced by the distribution of conspecifics and heterospecifics in the 485 

seascape, although we could not predict the direction of these effects. We were thus 486 

interested whether these con- and heterospecific effects were as important as abiotic variables 487 

in explaining movement patterns. Using Exponential random graph models (ERGMs), we 488 

found evidence that abiotic factors, turtle density, anthropogenic factors, intraspecific 489 

interactions, and competitive or interspecific interactions all contribute to bull shark 490 

movement network structure, albeit with varying importance. As we hypothesized, our 491 

models revealed that social factors were at least as important as abiotic parameters. 492 

Additionally, the direction of response to abiotic variables were not always as predicted, 493 

indicating that the role of physical variables in shaping movement network structure may be 494 

context dependent or vary across spatial and temporal scales. 495 

 496 

Effects of abiotic factors on movements 497 

Our results indicate that environmental factors impact the movements of bull sharks, 498 

however, while we expected to find positive effects of swell height, turbidity and rainfall on 499 

shark movements as suggested by previous studies, we found opposite patterns. Bull sharks 500 

were found to be mostly moving through areas with lower rainfall. While bull sharks are 501 
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known to respond to rainfall and freshwater runoff and are able to transit between freshwater 502 

and marine habitats within hours or remain in low salinity areas for days (Niella et al., 2022; 503 

Werry et al., 2018), selection of lower rainfall levels could be due to the spatial and temporal 504 

resolution at which they react to such rapid environmental changes. In addition, bull sharks 505 

may prefer to predominantly remain (at our scale of observation) in the same conditions of 506 

rain, turbidity and salinity as rain levels are often strong and fast in tropical areas. Werry et 507 

al. (2018) suggested that bull sharks are attracted to estuarine and associated nearshore areas 508 

following high rainfall events in part due to increased prey availability while Niella et al. 509 

(2022) suggested a more complex pattern with differences in response between the sexes. 510 

Matich et al., (2020) also highlighted that during exceptional events bull sharks can avoid 511 

high rainfall and high turbidity, moving away from sites with fast and strong perturbations. 512 

The rainfall data entered in our models represent distinct watershed values that can 513 

potentially incorporate multiple receivers, and can potentially explain why our models found 514 

disproportionately strong effect of movements between (nearby) locations with similar levels 515 

of rainfall. In addition, Werry et al. (2018) found a one-week lag in the response of sharks to 516 

rainfall which could reflect changes in food availability and foraging effectiveness with 517 

changes in salinity, a pattern that would be difficult to reveal with our models. Previous 518 

studies that found strong behavioural response of bull sharks to rainfall were conducted in 519 

large estuarine system where rainfall levels and consequences (e.g. induced turbidity) could 520 

contrast with the coral reef coast of Reunion Island. Finally, movements in response to 521 

attractive effects of environmental factors (swell, turbidity and rainfall) that are ephemeral 522 

and irregular may occur over shorter timescales and be difficult to detect with monthly data. 523 

While we expected to find stronger seasonal differences because the variations in these 524 

parameters are more important and persistent in summer than during winter, the lack of such 525 

behavioural differences could be due to bull sharks being resident for less lengthy periods 526 
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during summer (Blaison et al., 2015). It is important to note that other potential factors that 527 

we did not measure could also contribute significantly to movement decisions. For example, 528 

salinity is known to be an important factor affecting movement and distribution of bull sharks 529 

(Dwyer et al., 2020). Our results confirm that considering temporally dynamic environmental 530 

variables in studies of animal movement is important because movement patterns reflect 531 

dynamic interactions between animals and their physical environment, with environmental 532 

heterogeneity driving movements of individuals and allowing them to remain in optimal 533 

environmental conditions (Avgar et al., 2013; Mueller et al., 2011; Schick et al., 2008). 534 

 535 

Effects of turtle density on movements 536 

Our study did not find any effect of turtle density on bull shark movements. While we 537 

used available data on turtle density to investigate its influence on movement patterns of bull 538 

sharks in this study based on local people’s perception, we acknowledge that turtles are not 539 

the main prey of bull sharks and remain opportunistic items (Cliff & Dudley, 1991). Bull 540 

sharks are known to feed mainly on teleost fish (Trystram et al., 2016) and future studies 541 

could integrate dynamic species-specific fishery data or parallel underwater surveys to 542 

investigate the role of abundance and composition of fish communities in driving predator 543 

movements. Indeed, resource availability and heterogeneity are important drivers of animal 544 

movement, especially for predators (i.e. prey abundance and distribution). Finding prey 545 

requires a predator to make adaptive decisions about which movement patterns to adopt to 546 

feed most profitably given a particular prey distribution (Riotte-Lambert & Matthiopoulos, 547 

2020; Sims et al., 2006). Thus, interpreting predator movements within a prey landscape may 548 

provide a clearer picture of why certain habitats are selected over others. 549 

 550 

Effects of human densities on movements 551 
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While we detected a tendency for more movements through locations with high 552 

human use, the effect sizes were small suggesting human activities did not strongly influence 553 

movement patterns. This is not surprising as nautical human activities and density are spread 554 

fairly evenly along the west coast of the island where the network of receivers was deployed. 555 

In addition, it is now recognized that bull sharks can adapt to urbanized areas and do not 556 

especially avoid these high human density areas and their activities (Hammerschlag et al., 557 

2022; Werry et al., 2012). The majority of large-bodied terrestrial carnivores tend avoid high 558 

human densities and activities (Tucker et al., 2018, 2023). As opposed to most predators, it is 559 

possible that human activities are not fundamentally avoided by bull sharks because ocean 560 

landscapes maybe affected differently than terrestrial landscapes. This pattern could be 561 

reinforced by the limited suitable habitat available around the island preventing bull sharks 562 

from avoiding most human activities along the coast. 563 

 564 

Effects of social environment on movements 565 

We found that social factors sometimes had similar effects on movement networks to 566 

environmental variables. While the bull shark has been found to form occasional 567 

aggregations around fish farms (Loiseau et al., 2016) or at artificial provisioning sites 568 

(Bouveroux et al., 2021), it is not recognized as displaying collective behaviours and strong 569 

patterns of spatial segregation have been found in our study population (Mourier et al., 2021). 570 

However, we found that more movements occurred through bull shark hotspots. When 571 

focusing on the behaviour of each sex, we showed that males were less social and tended to 572 

avoid other sharks regardless of their sex. Contrastingly, females’ movements occurred 573 

between locations where other females spent a lot of time but avoided areas heavily used by 574 

males. This confirmed previous findings that females show stronger patterns of residency 575 

providing the opportunity to co-occur with other females, while males favour roaming 576 
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behaviour (Mourier et al., 2021). This gregarious behaviour of females could also suggest the 577 

presence of mating arenas where females gather to choose transient males allowing them to 578 

avoid male harassment during the mating period. Further research investigating the spatio-579 

temporal interactions between bull sharks is required to better understand their aggregative 580 

and avoidance behaviour. Our results thus confirm that an individual’s movements are not 581 

solely driven by environmental features. Individuals share space with other conspecifics, 582 

linking spatial and social processes (Albery et al., 2021; Webber et al., 2023). For example, 583 

the spatial distribution of resources inherently drives the proximity of individuals through 584 

foraging aggregations, influencing many forms of social interaction (Macdonald, 1983). As 585 

such, the distribution of individuals of a species in space generates population structure and 586 

will influence movement decisions at the individual level. In fact, regardless of whether a 587 

species is perceived to be solitary or social, individuals will have to decide whether to join or 588 

avoid other conspecifics distributed unevenly in space. Such decisions will also depend on 589 

social processes driven by individual phenotypes that alter social decisions (e.g. size, sex, or 590 

genetic relatedness).  591 

 592 

Effects of interspecific competition on movements 593 

In our study we tested the influence of another large predator, the tiger shark, on the 594 

movements of bull sharks. Our results indicated the presence of patterns of avoidance 595 

between bull and tiger sharks. Bull shark movements were affected by the presence of tiger 596 

sharks with female bull sharks directing their movements towards locations with lower tiger 597 

shark occupancy while male sharks showed the opposite pattern. The tiger shark is an apex 598 

predator that is larger than the bull shark and potentially dominant. It is therefore plausible 599 

that bull sharks avoid interactions with tiger sharks. Female bull sharks, being larger than 600 

males, could also compete with tiger sharks. Therefore, one plausible explanation to this 601 
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pattern is spatial and foraging niche separation between both species (Niella et al., 2021). We 602 

previously highlighted that male and female bull sharks displayed patterns of spatial 603 

segregation (Mourier et al., 2021; Niella et al., 2022), which could also explain the difference 604 

in interaction opportunities with tiger sharks based on habitat utilization and movement 605 

patterns. Indeed, bull sharks rely more on coastal food sources than tiger sharks which feed 606 

on more coastal-pelagic and deep-water prey (Le Croizier et al., 2020; Trystram et al., 2016), 607 

thus supporting our results and implying local spatial segregation between the two species. 608 

These patterns of interference interactions are relatively common in large sharks, as 609 

competitive species generally show spatial (Papastamatiou et al., 2018), temporal (Lear et al., 610 

2021) and trophic niche (Matich et al., 2017) partitioning to limit the negative effect of 611 

competition and promote co-existence of predators. Similar avoidance strategies are found 612 

between competiting carnivores in terrestrial ecosystems. Indeed, lions (Panthera leo) 613 

usually remain in areas rich in prey, while subordinated carnivores like leopard (P. pardus) 614 

and cheetah (Acinonyx jubatus) overlap with the home range of lions but use fine-scaled 615 

avoidance behaviours, and small species like African wild dog (Lycaon pictus) employ 616 

multiple tactics to avoid all other competitors (Vanak et al., 2013). Coexistence of multiple 617 

carnivore species is typically explained by dietary niche separation as a consequence of 618 

avoiding intraguild competition. Another potential explanation is the avoidance of tiger 619 

sharks by females during summer corresponding to the parturition season (Pirog et al., 2019) 620 

in order to avoid tiger shark predation on bull shark neonates. 621 

Our results thus complement previous studies suggesting that interactions among 622 

large predators involve a complex interplay of competition and predation, as large carnivores 623 

can suppress populations of smaller carnivores through direct predation, resource 624 

competition, or via other forms of interference competition. This may result in spatial and/or 625 

temporal avoidance, reductions in the density of the subordinate species, or even competitive 626 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.26.582077doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582077
http://creativecommons.org/licenses/by-nc/4.0/


 30 

exclusion from certain habitats (Berger & Gese, 2007; Linnell & Strand, 2000; Prugh et al., 627 

2009; Prugh & Sivy, 2020).  628 

 629 

Conclusion 630 

To investigate the drivers of movements of a marine predator, we used a network-631 

based approach of movement between fixed stations and employed Exponential Random 632 

Graph Model in a way that could account for the dynamical nature of site attributes visited by 633 

individual animals within a flexible framework that could be extended to test hypotheses 634 

related to the structure of the network itself (extending beyond what is easily possible using 635 

more conventional statistical approaches). While this modelling framework performed well in 636 

our study, it could be refined further to test similar research questions at different spatial and 637 

temporal scales. For example, one promising model is the separable temporal exponential-638 

family random graph model (tERGM), which treats the formation and dissolution of ties in 639 

parallel at each time step as independent ERGMs (Carnegie et al., 2015; Krivitsky & 640 

Handcock, 2014) and can provide a more realistic view of movement networks (e.g., 641 

including consecutive individual monthly or daily networks). This would make it possible to 642 

better integrate the temporal interdependency of environmental changes in explaining animal 643 

movement patterns. 644 

 Our results fit into a broader picture illustrating that animal movements arise from 645 

complex interactions of individuals with their physical environment as well as with both 646 

surrounding conspecific and heterospecific individuals. By including a diverse set of 647 

variables that may influence bull shark movements within our analyses, we demonstrate that 648 

to fully explain animal movement patterns requires the incorporation of multiple variables 649 

associated with environmental heterogeneity, human footprint and the distribution of 650 

individuals in space, both of the same species and other members of the community. A main 651 
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finding was that, although environmental conditions were important factors influencing 652 

movement of bull sharks, interactions with other individuals in their surroundings was also 653 

important to consider, opening new perspectives at the socio-spatial interface for these 654 

marine predators. 655 

 656 

Data availability 657 

Data and R codes used in this study are available at 658 

SEANOE: https://doi.org/10.17882/99080 659 

 660 
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