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Scientific Significance Statement

Marine microorganisms require major and minor nutrients to thrive in the ocean. The spatial distribution of microorganisms
and their resources is strongly influenced by ocean circulation and therefore the distribution of water masses. Based on a large
dataset collected in the Indian Sector of the Southern Ocean, we performed a statistical co-analysis of the heterotrophic micro-
bial community composition and the distribution of their resources including trace metals. Although the interplay between
microorganisms and nutrients is complex, clear biogeochemical signatures of water masses emerge from this analysis. For the
first time, large-scale covariations of trace metals and microbial taxa are revealed. These allow to mark water masses from a
novel perspective and pave the way for further research into the underlying microbial mechanism.

Abstract
Marine microbes are strongly interrelated to trace metals in the ocean. How the availability of trace metals
selects for prokaryotic taxa and the potential feedback of microbial processes on the trace metal distribution in
the ocean remain poorly understood. We investigate here the potential reciprocal links between diverse pro-
karyotic taxa and iron (Fe), manganese (Mn), copper (Cu), and nickel (Ni) as well as apparent oxygen utilization
(AOU) across 12 well-defined water masses in the Southern Indian Ocean (SWINGS—South West Indian Ocean
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GEOTRACES GS02 Section cruise). Applying partial least square regression (PLSR) analysis, we show that the
water masses are associated with particular latent vectors that are a combination of the spatial distribution of
prokaryotic taxa, trace elements, and AOU. This approach provides novel insights on the potential interactions
between prokaryotic taxa and trace metals in relation to organic matter remineralization in distinct water
masses of the ocean.

The ocean is a dynamical system where hydrological features
shape the seascape at multiple scales (Kavanaugh et al. 2014).
Hydrographically defined water masses can constrain biogeo-
chemical processes, resulting in vertical or horizontal gradients
of major nutrients and trace metals (Jenkins et al. 2015). In par-
allel, the composition of microbial communities that are key
mediators in nutrient cycling varies among ocean basins and
along geographical ranges and depth layers (Galand et al. 2010;
Agogué et al. 2011; Salazar et al. 2016; Raes et al. 2018; Sow
et al. 2022). Frontal systems, upwelling and mesoscale eddies
can structure community composition on a regional scale
(Baltar et al. 2010; Lekunberri et al. 2013; Hernando-Morales
et al. 2017). Specific hydrographic and biogeochemical proper-
ties, such as the concentration of major nutrients, were identi-
fied as factors with potential reciprocal influence on these
biogeographic patterns in the ocean (Hanson et al. 2012).

Trace metals, such as iron (Fe), manganese (Mn), nickel (Ni),
and copper (Cu), play crucial roles in microbial growth and
metabolism (Morel and Price 2003) and are therefore important
micronutrients (Lohan and Tagliabue 2018). In heterotrophic
prokaryotes, Fe is essential in the respiratory chain (Andrews
et al. 2003); thus, Fe availability affects the processing of
organic carbon (Fourquez et al. 2014). Mn (II) serves as a cofac-
tor for various enzymes involved in the central carbon metabo-
lism and in antioxidant activity (Hansel 2017). Ni has been
identified as an indispensable element for nitrogen fixation
(Glass and Dupont 2017) and for chemolithotrophic prokary-
otes (Gikas 2008). Cu acts as a cofactor for numerous proteins
involved in redox reactions, oxidative respiration, denitrifica-
tion, and other processes (Argüello et al. 2013). Cu deficiency
can affect microbial growth, but certain concentrations of dis-
solved Cu can also be toxic to heterotrophic prokaryotes or
phytoplankton in the ocean (Moffett et al. 1997; Debelius
et al. 2011; Posacka et al. 2019).

The biological roles of Fe, Ni, and Cu result in nutrient-like
vertical profiles in the offshore ocean with low concentrations
in surface waters due to biological uptake by autotrophic and
heterotrophic microbes and increases with depth due to
remineralization of sinking material. The magnitude of these
uptake and remineralization processes is tightly linked to the
composition of the microbial community and its metabolic
capabilities. The expected nutrient-like profile is not observed
for Mn due to the photoproduction of the soluble form of Mn
(II) in surface waters and the biologically mediated production
of insoluble MnOx at depth (Sunda et al. 1983). Adding to this
complexity, transport and mixing largely influence the large-
scale distribution of these trace metals (Thi Dieu Vu and

Sohrin 2013; Latour et al. 2021; Chen et al. 2023). The
GEOTRACES program has made major advances in the determi-
nation of the trace metal content of water masses across the
global ocean, but the interplay with the microbial community
remains to date poorly understood. In this context, the main
objective of the present study was to investigate the potential
interactive effect between trace elements and microbes, and
how these could influence chemical and biological water-
mass-specific properties across 12 well-defined water masses in
the Southern Indian Ocean (SWINGS—South West Indian Ocean
Geotraces Section cruise, GEOTRACES GS02 section).

Materials and methods
Environmental context

Samples were collected during the SWINGS cruise between
January 10, 2021 and March 8, 2021. The 23 stations sampled
for the present study (Fig. 1A) were located in the Subtropical
Zone (STZ), Subantarctic Zone (SAZ), the Polar Frontal Zone
(PFZ), and the Antarctic Zone (AAZ). Surface water (20 m)
sampled at each of these stations is assigned to these geo-
graphical zones, and the samples below the mixed layer were
categorized into 12 water masses according to their physico-
chemical properties (Fig. 1B). Water masses were identified at
each station from the vertical profile of physical properties
(Supplementary Fig. S1; Table S1) and geographical consider-
ations. The details are described in the Supplementary
Methods.

All seawater samples dedicated to microbial community
composition were collected using 12-liter Niskin bottles
mounted on a rosette equipped with conductivity, temperature,
and depth (CTD) sensors (SeaBird SBE911plus). Seawater
(6 liters) was sequentially passed through 0.8-μm polycarbonate
(PC) filters (47 mm diameter, Nuclepore, Whatman, Sigma-
Aldrich) and 0.22-μm Sterivex filter units (Sterivex, Millipore,
EMD). The cells concentrated on the 0.8-μm filters were consid-
ered particle attached (PA) and those on the 0.22-μm filters as
free living (FL). The filters were stored at �80�C until returned
to the home laboratory for DNA extraction. Sample collection,
preservation, and analyses of major nutrients, trace elements,
and dissolved oxygen were determined using standard proto-
cols and are described in the Supplementary Methods, and data
are available under doi: https://doi.org/10.17882/99983.

DNA extraction and sequencing
Total DNA was extracted from the 0.8-μm filters and the

0.22-μm Sterivex filter units using the DNeasy PowerWater Kit
(Qiagen) according to the manufacturer’s instructions with a
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few modifications described in the Supplementary Methods.
The V4–V5 region of the 16S rRNA gene was amplified with
primers as described previously (Liu et al. 2020). 16S rRNA
gene amplicons were sequenced with Illumina MiSeq V3
2 � 300 bp chemistry at the platform Biosearch Technologies
(Berlin, Germany). Data are available in the European Nucleo-
tide Archive (ENA) repository at https://www.ebi.ac.uk/ena
under the project ID PRJEB63680.

Data analysis
16S rRNA gene sequences were demultiplexed using the

Illumina bcl2fastq v2.20 at the platform Biosearch Technolo-
gies. The PCR primers and adapters of 16S rRNA gene
sequences were trimmed with cutadapt v1.15 (Martin 2011).
Amplicon sequencing variants (ASVs) were produced in R
using DADA2 package (v1.24) (Callahan et al. 2016) with the
following parameters: truncLen = c(240, 210), maxN = 0,
maxEE = c(3, 5), truncQ = 2. This pipeline includes the fol-
lowing steps: filter and trim, dereplication, sample inference,
merge paired reads, and chimera removal. A total of 12,847
unique amplicon sequence variants (ASVs) were obtained
from the 172 samples collected (FL and PA prokaryotes com-
bined). Taxonomic assignment of ASVs was performed using
the DADA2-formatted SILVA SSU Ref NR99 138 database
(Quast et al. 2012). The number of reads per sample varied
between 2633 and 241,954. Singletons and sequences

belonging to eukaryotes, chloroplasts, and mitochondria were
removed. To obtain the same number of reads for all samples,
the dataset was randomly subsampled to 4493 reads per sam-
ple with the function rarefy_even_depth by the Phyloseq
package (v1.40) (McMurdie and Holmes 2013) in R. After
subsampling 10,138 ASVs were obtained in total, of which
5847 ASVs from the FL fraction (n = 76) and 6461 ASVs from
the PA fraction (n = 80).

All statistical analyses were performed using the R 4.2.1
version. Nonmetric dimensional scaling (NMDS) ordinations
were generated based on Bray–Curtis dissimilarity (Legendre
and Gallagher 2001) using the ordinate function in the Phyl-
oseq package. Analysis of similarity (ANOSIM) was performed
via the vegan package (v2.6) (Dixon 2003) to test for signifi-
cant differences in microbial communities between water
masses. To test the association of the FL prokaryotic commu-
nity composition and environmental factors, partial least
squares regression (PLSR) (Guebel and Torres 2013) analysis
with cross-validation was performed using pls v2.8 package
(Mevik and Wehrens 2007) in R with the relative abundance
of abundant ASVs as the Y variables and the environmental
factors as the X variables (data are available under doi: https://
doi.org/10.17882/99983). Scale transformation of the data
matrix was performed to standardize before data input to the
model. The regression coefficients were extracted with
the function coef by the pls package in R. For the

Fig. 1. (A) Map of stations sampled for the present study during the SWINGS cruise in the Indian Sector of the Southern Ocean. Color shading repre-
sents bathymetry and the gray line contours South Africa (25�–35�E) and Madagascar (45�–50�E). Subtropical Zone (STZ) (Stas. 2, 3, 5, 8, and 11), Sub-
antarctic Zone (SAZ) (Stas. 14, 15, 16, 38), the Polar Frontal Zone (PFZ) (Stas. 21, 25, 31, 33, and 36), and the Antarctic Zone (AAZ) (Stas. 29, 30,
42, 44, 45, 46, 58, 63, and 68). (B) A cross-section (inserted map) showing the vertical distribution of some water masses sampled at the stations indi-
cated on the upper x-axis. Lines indicate salinity. The full list of water masses is provided in Fig. 2. AABW, Antarctic Bottom Water; AAIW, Antarctic Inter-
mediate Water; ASW, Antarctic Surface Water; LCDW, Lower Circumpolar Deep Water; LCDW/NADW, Lower Circumpolar Deep Water/ North Atlantic
Deep Water; RSOW, Red Sea Overflow Water; SASW, Sub-Antarctic surface water; STSW, Subtropical Surface Water; UCDW, Upper Circumpolar Deep
Water; WW, Winter Water.
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identification of indicator ASVs for surface waters and deep-
water masses, the IndVal index from the labdsv package (v2.0)
(Roberts 2019) in R was used. This index takes into account
the specificity, fidelity, and relative abundance of the ASVs in
the different water masses and surface waters.

Results and discussion
Structuring of microbial communities by water masses

In surface waters, microbial communities clustered
according to geographical zone and frontal system, and in
the subsurface, the clustering was driven by water mass
(Fig. 2). This spatial structuring was significant for both FL
(ANOSIM, R = 0.8651, p = 0.0001) and PA communities
(ANOSIM, R = 0.714, p = 0.0001). Hierarchical clustering
dendrograms further illustrate a structuring effect of water
masses for FL and PA microbial communities (Supplementary
Fig. S2). For a given water mass, the composition of the micro-
bial communities was, however, significantly different between
size fractions (Supplementary Figs. S3–S5; Supplementary
Results), suggesting that factors that are dependent and inde-
pendent of size fraction together influence the observed biogeo-
graphical patterns. Particles are known to host distinct
communities, and the nature of the particles can shape the
associated prokaryotic assemblages (Baumas and Bizic 2024).
Sinking particles were suggested to act as vectors for microbes

across the water column (Mestre et al. 2018), an idea that is
supported by the about twofold lower number of indicator spe-
cies for a given water mass for the PA (121) as compared to the
FL (213) communities (Supplementary Fig. S6; Tables S2–S3;
Supplementary Results). Taken together, these observations
point to a complex interplay between processes specific to the
particle sphere and habitat-type independent factors, such as
temperature or hydrostatic pressure, to shape the prokaryotic
community composition.

Microbial “biogeo”-gradients
Identifying the factors that select for microbial taxa and

understanding the potential feedback of microbes on the bio-
geochemical properties of the water mass they thrive in
remains challenging. In this context, the role of trace ele-
ments in the ocean interior has, to the best of our knowledge,
never been considered. To explore the potential reciprocal
links between environmental and microbial parameters, we
used PLSR. PLSR is a multivariate regression model based on a
simultaneous PCA on two matrices, which achieves the best
relationships between them (Dunn 2020). An advantage of
PLSR is that it prevents the bias of colinearity, a facet not
taken into consideration by PCA. PLSR has been successfully
applied to determine the ecological vectors associated with
carbon flux or trace metal export (Rembauville et al. 2015;
Blain et al. 2022), to predict the partitioning of carbon among

Fig. 2. Nonmetric multidimensional scaling (NMDS) plots of free-living (FL) and particle-attached (PA) prokaryotic communities based on Bray–Curtis
dissimilarity. ANOSIM statistics: FL, R: 0.8651, significance: 1e-04; PA, R: 0.714, significance: 1e-04. AABW, Antarctic Bottom Water; AAIW, Antarctic Inter-
mediate Water; AAIW + RSOW, Antarctic Intermediate Water mixed with Red Sea Overflow Water; ASLOW, Arabian Sea Low-Oxygen Water; ASW, Ant-
arctic Surface Water; LCDW/UCDW, Lower Circumpolar Deep Water/Upper Circumpolar Deep Water; NADW, North Atlantic Deep Water; LCDW, Lower
Circumpolar Deep Water; NADW/LCDW, North Atlantic Deep Water/Lower Circumpolar Depp Water; PFSW, Polar Frontal Surface water; SASW, Sub-
Antarctic Surface Water; SICW, South Indian Central Water; STMW, Subtropical Mode Water; STSW, Subtropical Surface Water; STUW, Subtropical
Underwater; STSW/STUW, Subtropical Surface Water/Subtropical Underwater; UCDW, Upper Circumpolar Deep Water; WW, Winter Water.
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microbial community members based on bio-optical proper-
ties (Rembauville et al. 2017), or to link biodiversity and car-
bon fluxes (Guidi et al. 2016). We carried out PLSR using only
those available environmental parameters for which a recipro-
cal influence can be expected, which are the concentrations

of the major nutrients nitrate (NO�
3 ) and phosphate (PO3�

4 ),
the trace elements manganese (Mn), iron (Fe), nickel (Ni), and
copper (Cu), and apparent oxygen utilization (AOU). We con-
sidered only ASVs with a relative abundance of ≥5% in at least
one sample (22 ASVs; Table S4) as abundant taxa are expected
to dominate the interplay with nutrients in different water
masses. To confirm this idea, we also performed a PLSR analy-
sis with ASVs with a relative abundance of ≥1%. We carried
out the PLSR analysis with ASVs in the free-living fraction,
because the concentrations of major and trace nutrients were
only available in the dissolved phase.

The PLSR analysis revealed that the three first latent vectors
explained 61%, 16%, and 9% of the covariance (Fig. 3A,B;
Supplementary Fig. S7). Therefore, any sample associated with
a water mass, which was initially described by 29 variables
(7 environmental factors and 22 ASVs), can now be described
in a three-dimensional space. This reduction in complexity

facilitates the examination of whether water masses are associ-
ated with particular latent vectors, which we propose to call
microbial “biogeo”-gradients (BG). These BGs are a combina-
tion of the spatial distribution of environmental factors and
ASVs. Our results show that BG1 discriminates deep,
cold-water masses (UCDW, LCDW, AAIW) (negative signs)
from warmer and more saline subtropical waters (STSW/
STUW, STMW, ASLOW) (positive signs) (Fig. 3C,D). BG2
mainly discriminates WW (negative sign) (Fig. 3C,E). BG3 pro-
vides a partitioning between NADW/LCDW and WW (posi-
tive sign) and AAIW and UCDW (negative sign) (Fig. 3C,F).
The PLSR analysis performed with ASVs ≥ 1% relative abun-
dance (246 ASVs) confirmed this result, as the ASVs with < 5%
relative abundance are close to the origin of the latent vector
space and thus do not have a strong discriminative power
(Supplementary Fig. S8).

Physical properties of water masses are set by the conditions
at the formation and the subsequent transport and mixing in
the ocean interior. These abiotic processes, together with addi-
tional biotic transformations, contribute to structure on the
one hand the distribution of environmental parameters
(Supplementary Figs. S9–S11; data are available under doi:

Fig. 3. (A) Partial least squares regression (PLSR) analysis linking abundant ASVs (relative abundance ≥ 5% in at least one sample) with environmental
variables. Blue labels describe the environmental variables (AOU, apparent oxygen utilization; P, phosphate; N, nitrate; dMn, dissolved manganese; dFe,
dissolved iron; dNi, dissolved nickel; dCu, dissolved copper), whereas gray labels describe the ASVs (detailed in Fig. 4). Shown are components 1 and
2. (B) Components 2 and 3 of the PLSR analysis. (C) Temperature–salinity diagram and localization of samples collected in different water masses and
used for PLSR. (D) Temperature–salinity diagram and localization of samples. The color coding corresponds to the first component of scores of samples
extracted from PLSR. (E) As for (C), but the color coding corresponds to the second component of scores of samples extracted from PLSR. (F) As for (C),
but the color coding corresponds to the third component of scores of samples extracted from PLSR.
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https://doi.org/10.17882/99983) and on the other hand the dis-
tribution of prokaryotic taxa as discussed above (Supplementary
Figs. S4–S5 and S12). Our observations that BGs are good
descriptors of water masses suggest that they provide clues on
the possible interactions between environmental factors and
prokaryotic taxa that together contribute to the structuring of
latent vectors in the three-dimensional space.

We discuss in the following these possible reciprocal feed-
backs that are the basis of the nature of the BGs. BG1 is domi-
nated by processes linked to remineralization, as indicated by
the contribution of AOU (Fig. 3A). Therefore, the gradients of
the other contributors to BG1 (Fe, Cu, N, P, Ni, and ASVs)
across different water masses could be related to this process.
Our analysis highlights several ASVs (9, 11, 13, 18, 24) as
potential key drivers of remineralization processes (Fig. 3A).
BG2 has a more complex structure because it is defined as a gra-
dient with opposite trends between Fe, AOU, and the related

ASVs (9, 11, 24) and Mn, N, P, and Ni and the related ASVs
(2, 3, 29). BG3 captures contrasted conditions with opposite
gradients between Fe, AOU, and the associated ASVs (9, 11,
13, 18, 24, 94), and Ni and Cu associated with another group
of ASVs (36, 119, 188, 257) (Fig. 3B; Supplementary Fig. S7).

All three BGs are related to remineralization, an observa-
tion that is not surprising as this process occurs in all water
masses. The regression coefficients, which summarize the
information contained in the different BGs, reveal 12 ASVs
with a positive relationship with AOU (Fig. 4). The concur-
rently positive regression coefficients of these ASVs with Fe
could indicate that either this element stimulates their meta-
bolic activity and contribution to remineralization or the
enhanced supply of Fe by these microbial taxa through
remineralization. However, these ASVs could further be par-
titioned into different groups, revealing that Cu is potentially
an important discriminating factor. One group of ASVs

Fig. 4. Heatmap based on the regression coefficients of abundant free-living prokaryotes (relative abundance of ASVs ≥ 5% in at least one sample) and
environmental variables. The regression coefficients are extracted from the PLSR model.
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(11, 13, 18, 24, 38, 94) thrives in low Cu conditions, while
another group of ASVs (ASV 9, 30, 40, 88) accommodates with
high Cu concentrations. This observation could suggest that
the group with negative regressions is either sensitive to the
toxicity of Cu or that these ASVs extensively use
Cu. Consequently, ASVs belonging to this latter group are
potential contributors to the remineralization of Cu.

Negative regression coefficients with AOU were observed
with several ASVs, suggesting that their activity is decoupled
from the remineralization of organic matter. Among these,
three ASVs (2, 3, 29) had positive regression coefficients with
Mn and, to a lesser extent, with N, P, and Ni. These ASVs were
highlighted by BG2 that tags WW (Fig. 3E), young water
masses with low AOU, typical of HNLC-type waters with high
concentrations of N, P and low concentrations of Fe. In the
case of Mn, the prokaryotic-mediated oxidation of Mn (II) to
insoluble Mn (IV) can lead to low Mn concentrations, whereas
photoinduced, organically mediated reduction of Mn (IV, III)
can result in high concentrations of this trace element in sur-
face waters (Sunda and Huntsman 1994). This could pinpoint
the ASVs with negative regression coefficients (257, 188, and
119) as potential mediators of this reduction (Jones
et al. 2020). Another group of ASVs (36, 119, 188, 257) rev-
ealed positive regression coefficients with Cu and were signifi-
cant contributors to BG3, a good marker of NADW/LCDW.
The absence of positive regression coefficients with AOU sug-
gests that these ASVs are not Cu remineralizers, but that they
are able to thrive in high Cu concentrations (� 1.7 nM in
NADW and LCDW). This group also contains ASVs that have
high negative regression coefficients with Mn.

Our data provide novel insights on the potential interac-
tions between abundant ASVs and trace metals in relation to
organic matter remineralization. Among these ASVs, only
seven ASVs were detected by the indicator species analysis
(Supplementary Fig. S6), illustrating the potential of PLSR
analysis to identify key microbes if combined with appropri-
ate biogeochemical parameters. Together, these results provide
a new view on the parallel distribution of biogeochemical var-
iables and prokaryotic taxa in distinct water masses. Because
our results are based on the ASV level, the limited functional
knowledge does not allow us to infer the specific pathways
involved in trace element cycling by these prokaryotes. How-
ever, our results provide the opportunity to identify testable
hypotheses on the underlying mechanisms, as illustrated for a
few specific taxa below.

We observed that distinct ASVs belonging to the same
family revealed opposite regression coefficients with trace
elements. This was the case, for example, of ASVs belonging
to Nitrosopumilaceae. Although ASV 11 and 94 had positive
regression coefficients with Fe and negative ones with Cu,
ASV 29 and 119 revealed the opposite patterns.
Nitrosopumilaceae are well-known chemolithoautotrophic
ammonia oxidizers (Qin et al. 2016), but this family also
contains members with heterotrophic metabolism (Pester

et al. 2011; Aylward and Santoro 2020). Fe and Cu availabil-
ity appears to shape the ecological niches of different
strains belonging to this group (Shafiee et al. 2019, 2021). A
similar differentiation was observed for ASVs of the SUP05
cluster (ASV 24 and 38 vs. ASV 3). Strong positive regres-
sions with Cu were further detected for ASV188 (SAR324
clade, Marine Group B), ASV 36 (Pseudoalteromonadaceae),
and ASV 188 (Alteromonadacea). Culture work revealed a
range of physiological responses and consequences on cel-
lular carbon metabolism among diverse bacterial strains to
Cu gradients (Posacka et al. 2019), illustrating that the
requirements of this trace metal or the sensitivities toward
its toxicity are highly variable. Insights on the contrasting
interplays between trace metals and prokaryotic taxa,
including closely related ones, could be gained through the
investigation of the gene inventories of the metabolic path-
ways of interest. Quantifying the genes of the respective
transporters as well as of metabolisms involving trace ele-
ments in the water masses where these taxa are abundant
and describing the gene repertoire of representative MAGs
could be a possible way to further investigate the ecological
niches of ASVs in relation to trace metals in future studies.
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