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Abstract :   
 
In recent years, innovative naval propulsion systems have been investigated thanks to the growing 
development of unmanned underwater vehicles. Cycloidal propellers are promising alternative concepts 
to the usual screw propellers. As bio-inspired technology, these systems use mechanical energy from 
unsteady hydrodynamic forces generated by blades oscillation like natural marine animal swimmers. As 
an academic platform, the French Naval Academy Research Institute developed a large-scale 
experimental cycloidal propeller with the aim of running various pitch motions to evaluate performances 
of cross-flow propellers. Blades’ pitching is here performed by servo-motors in order to control each blade 
independently. While common cycloidal propellers use mechanical blade actuators which restrain the 
blade motion possibilities, this blade-controlled platform allows new investigations of interesting research 
area in marine propulsion. The platform is widely instrumented with load and torque sensors to measure 
instantaneous hydrodynamic forces during the rotation of the blades. Experiments, performed in a current 
flume tank, first reveal that for classical sinusoidal pitch laws, performances are depending on the 
operating point: the higher the advance parameter, the lower the sinusoidal amplitude must be for a better 
efficiency. These results confirm the requirement of an adaptable pitch control for cycloidal propeller to 
improve their performances regarding the operation mode. To go further, an experimental optimization, 
based on surrogate models (Efficient Global Optimization), is undertaken to surpass the performance of 
the propeller with parameterized pitch laws. This method authorizes a wide range of possible motion 
taking account of the platform speed limits. Multi-objective optimization is performed for total thrust and 
efficiency maximizing for two operating points. Results on the Pareto fronts show that a trade-off is 
necessary between thrust and efficiency concerning. However, optimized pitching laws reveal high 
hydrodynamic performances, with gains respectively from 10% to 20% on the hydrodynamic efficiency 
and the thrust in comparison with classic sinusoidal laws. This confirms the benefit of full electrical blade-
controlled propeller and promises interesting further investigations on the experimental optimization. 
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hydrodynamic forces on cross-flow propeller blades. 
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In recent years, innovative naval propulsion systems have been investigated thanks to the growing12

development of unmanned underwater vehicles. Cycloidal propellers are promising alternative13

concepts to the usual screw propellers. As bio-inspired technology, these systems use mechanical14

energy from unsteady hydrodynamic forces generated by blades oscillation like natural marine15

animal swimmers. As an academic platform, the French Naval Academy Research Institute16

developed a large-scale experimental cycloidal propeller with the aim of running various pitch17

motions to evaluate performances of cross-flow propellers. Blades’ pitching is here performed18

by servo-motors in order to control each blade independently. While common cycloidal pro-19

pellers use mechanical blade actuators which restrain the blade motion possibilities, this blade-20

controlled platform allows new investigations of interesting research area in marine propulsion.21

The platform is widely instrumented with load and torque sensors to measure instantaneous22

hydrodynamic forces during the rotation of the blades. Experiments, performed in a current23

flume tank, first reveal that for classical sinusoidal pitch laws, performances are depending on24

the operating point: the higher the advance parameter, the lower the sinusoidal amplitude must25

be for a better efficiency. These results confirm the requirement of an adaptable pitch control for26

cycloidal propeller to improve their performances regarding the operation mode. To go further,27

an experimental optimization, based on surrogate models (Efficient Global Optimization), is28

undertaken to surpass the performance of the propeller with parameterized pitch laws. This29

method authorizes a wide range of possible motion taking account of the platform speed30

limits. Multi-objective optimization is performed for total thrust and efficiency maximizing for31

two operating points. Results on the Pareto fronts show that a trade-off is necessary between32

thrust and efficiency concerning. However, optimized pitching laws reveal high hydrodynamic33

performances, with gains respectively from 10% to 20% on the hydrodynamic efficiency and34

the thrust in comparison with classic sinusoidal laws. This confirms the benefit of full electrical35

blade-controlled propeller and promises interesting further investigations on the experimental36

optimization.37

38

1. Introduction39

Innovative naval propellers are nowadays widely explored thanks to the growing development of unmanned40

underwater vehicles and new naval needs and constraints like noise and consumption reduction. Reduction of green41

house gas require significantly improving the propulsive efficiency (Theotokatos and Tzelepis, 2015) and specific42

development for optimizing propellers like done in Doijode et al. (2022) for conventional propeller blades. Another43

way is to develop other propulsive architectures and cycloidal propellers are promising alternative concepts to the usual44

screw propellers.45

Cycloidal propellers are characterized by the rotation of several blades around an axis perpendicular to the ship advance46

direction (this type of propulsion is also named cross-flow propeller). This first rotation is called main rotation, given47

by the rotational speed and related to the azimuth angle. Each blade is also rotating around their own axis during the48

main rotation of the whole system (like helicopter’s blades). This secondary rotation is called pitch rotation, related49

to the blade pitch angle. The combination of these two rotations reproduces the motion of natural marine swimmers,50

especially studied by Triantafyllou et al. (2004). This particular motion creates strong unsteady hydrodynamic forces51
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which produce lift and drag during the main rotation. For propulsive purpose, the part of hydrodynamic force in the52

direction of the ship advance produces the thrust force whereas the part in the perpendicular direction is called side53

force. These propellers can easily orientate the thrust over 360◦ by shifting the blade pitch law over the main rotation54

angle.55

For this type of propulsion, two kinematic modes are commonly defined according to the advance parameter 𝜆 which56

is the ratio of the ship advance speed 𝑉𝑎 and the blade peripheral speed 𝑉𝑟:57

𝜆 =
𝑉𝑎
𝑉𝑟

(1)

Epicycloidal mode is defined for 𝜆 <1 (Figure 1). For this mode, peripheral speed is higher than advance speed. This58

mode produces a high thrust and strong maneuverability for low advance speed (limited by the maximal main rotation59

speed). On the other hand, trochoidal mode defined for 𝜆 >1 (Figure 2), is used to reach higher advance speed but with60

a lack of efficiency during starting phases (not adapted when 𝑉𝑎 is near zero). The blade motion is completely different61

between these two modes. Indeed for epicyloidal mode, the blade chord is roughly following the tangent of the main62

rotation (because 𝑉𝑟 is higher than 𝑉𝑎), whereas for trochoidal mode the blade oscillates around the advance direction63

(as illustrated on Figures 1 and 2).64

Figure 1: Epicycloidal path of a blade (from Fasse et al. (2022)).

65

Figure 2: Trochoidal path of a blade (from Fasse et al. (2022)).

As an interesting marine propulsion system, cycloidal propeller have been studied by the IRENav with the66

development of a blade-controlled platform (Fasse et al., 2022). Thanks to an electrical blade-command design,67

this platform allows to reproduce blades’ kinematic from all conceivable movements (trochoidal or epicycloidal68

kinematics). This electrical blade-command also allows authors to perform pitch law optimization to improve69

performances of current cycloidal propellers. The aim of this paper is to present an experimental optimization70

using a Gaussian process based method, coded by Sacher et al. (2017a), to maximize both thrust and efficiency71

of cycloidal propellers. The optimization uses experimental measurements collected from the instrumented blade-72

controlled platform. Experiments are performed at the Ifremer current tank. These experimental facilities are described73

in the first section as well as the parameterization of the pitch laws. The second section deals with the optimization74

method overview. Finally results of the optimization for 𝜆=1.2 and 𝜆=0.8 are given and compared to sinusoidal pitch75

laws for which results have previously been determined in Fasse et al. (2022). The gains obtained in terms of both76

thrust and efficiency for optimized pitch laws are discussed thanks to the analysis of experimental local blade force77

measurements.78
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2. Optimization Problem79

2.1. Context80

Cross-flow propeller generates a vectorial thrust which can be adapted in norm and direction. The main control81

parameter of this type of propulsion is the way the blades are moving through the incoming flow which is called the82

pitch law. The pitch law is therefore essential in the design performance of a cycloidal propeller and it is the purpose83

of the optimization process presented in this paper.84

Most of existing cross-flow technologies use a mechanical system to operate the blade pitch motion. It is the case for the85

renowned Voith-Schneider Propeller (Schneider, 1928) for which blades are actuated by a rod/crank mechanism. More86

recently, Roesler et al. (2016) designed an experimental platform with a system of crankshaft and concentric collars87

to generate trochoidal motions and they performed measurements at the UNH testing facility in USA. The mechanical88

system implies a symmetrical blade pitch law to ensure the stability and the load balancing of the propeller. This is89

also the simplest way to design a mechanical cycloidal propeller. But due to the complexity of the flow and the strong90

disturbed wake, the blade behaviour has no reason to be symmetrical between up and downstream flow. Indeed during91

the upstream half-rotation, the flow viewed by the blades is undisturbed, whereas in the downstream half-rotation the92

blades encounter the wake of upstream other blades regularly disturbed by vortexes.93

To deal with this challenge, authors choose to go through an experimental optimization of the cycloidal propeller pitch94

law using a non-symmetrical parameterization and an experimental platform able to operate this kind of laws.95

2.2. Blade-controlled platform96

To perform the optimization, the experimental blade controlled cross-flow propeller, called SHIVA developed by97

the authors, is operating at the Ifremer wave and current flume tank (characteristics of the tank are given by Gaurier98

et al. (2013)). Figure 3 gives an overview of the platform and its positioning at the flume tank. Thanks to a full electrical99

blade-control system, this platform can generate non-standard types of pitch laws.100

SHIVA is composed of a triangular frame [F] in which three blades [I] are mounted. These blades are rotating thanks101

to three independent servo-motors [E] that gives them individual motions.102

The outer frame [D] allows the platform to be elevated above the tank so that the blades are just below the waterline.103

The design of the platform allow users to change the rotor diameter from 0.4 m to 0.8 m. The blade number 𝑁 is fixed104

at 3. Each blade has a chord length 𝑐 = 0.15 m and a span 𝑙 = 1 m with a blade cross section of NACA 0018. For the105

presented measurements the diameter is fixed at 𝐷 = 0.4 m and fiberglass-epoxy shells are used to increase the chord106

to 𝑐 = 0.35 m to generate higher hydrodynamic loads. These dimensions lead to a solidity of the propeller 𝜎 = 2.62107

(where the solidity is given by 𝜎 = 2𝑁𝑐
𝐷 ).108

Figure 3: Blade-controlled platform and its positioning at the current flume tank.

The particularity of this experimental platform lies on the total electric blade pitch command. All the triangular109

frame is driven by the 2.5kW main motor [A] located at the top of the platform. A 50-ratio speed reducer [C] is used110
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to increase the torque and fits the rotational speed for the experiment values (∼ 50 RPM). Each blade is independently111

actuated by a 0.8kW auxiliary motor [E]. The blades rotate around the quarter of their chord, close to the hydrodynamic112

center for the NACA 0018.113

This rotation is called blade pitch and is referred to as the oriented angle 𝜑 between the tank flow direction (X-axis)114

and the blade chord (see Figure 5). The pitch angle can also be defined as the oriented angle 𝛽 between the ortho-radial115

line of the main rotation and the blade chord. These two pitch angles are linked by the relation 𝜃 = 𝜑−𝛽. The azimuth116

position of a blade 𝜃 is the position of its chord quarter on the main rotation disk (𝜃 varies from 0◦ to 360◦), and for117

an arbitrary time 𝑡𝑖, 𝜃 = Ω𝑡𝑖 where Ω is the main rotational speed.118

Expression of the pitch angle as a function of the azimuth position is the blade pitch law. The pitch law for blade119

2 and blade 3 are 2𝜋
3 and 4𝜋

3 offset of those for blade 1. These laws are then tabulated as discrete functions on an120

embedded micro-controller unit which send regulation orders directly to the speed controllers for each blades in order121

to follow the reference pitch law. These laws are loaded on the platform via TCP/IP protocol (Ethernet) from a computer122

located alongside the tank. Pitch law can be loaded even during the rotation which helps to gain precious time during123

optimization procedure.124

125
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Figure 4: Pitch tracking for two different laws: 1) 20-Sinusoidal law in trochoidal mode (𝜆=2.2, 𝑉 =0.8 m/s, Ω=8.68
RPM) and 2) Epicycloidal law (𝜆=0.9, 𝑉 =0.8 m/s, Ω=21.2 RPM). Left axis refers to pitch angle in degrees(𝜑 for trocho
mode and 𝛽 for epi mode) whereas right axis refers to the difference in degrees between real and reference pitch.

Because the pitch motion is electric and no more mechanical, a delay of the real blade position can occur when126

the motors can’t follow the reference pitch according to their limits in speed and torque. Figures 4 gives an example127

of the pitch tracking for two laws: a trochoidal law at the left and an epicycloidal law at the right. These pitch tracking128

measurements have been performed during in water experiments with a tank speed 𝑉 =0.8 m/s and a rotational speed129

Ω set for the desired 𝜆 value (Ω=8.68 RPM corresponding to 𝜆=2.2 and Ω=21.2 RPM corresponding to 𝜆=0.9). The130

pitch law for trochoidal mode (left) is given by the 𝜑 angle (pitch around the advance speed direction) whereas the pitch131

is expressed by 𝛽 angle in epicycloidal mode (pitch around the tangent of the main rotation). The left axis (in red) of132

each sub-figure gives the difference between the reference sent to the blade engines and the real pitch experimentally133

measured. These results show that for trochoidal mode a maximal error of 1◦ occurs when the gradient (𝑑𝜑∕𝑑𝜃) is134

the highest. For epicycloidal mode, there is a blade reversal at 𝜃=180◦, which characterizes epicycloid motions. This135

quick motion is not well followed by the motors because of the speed limits (the error reaches almost 100◦). After this136

huge error, the blade keeps a delay which is never caught. A detailed study of the pitch tracking error is given by Fasse137

et al. (2022).138

In the present work, only trochoidal laws are performed on the SHIVA platform during experiments.139

140

In addition, SHIVA is widely instrumented to measure time-dependant hydrodynamic loads and blade angular141

positions. Rotary incremental encoders provide angular position of each blade with a precision of 0.088◦ used142

simultaneously for the control loop as feedback and for loads measurements as projection angle. The azimuth position143

is also recorded by a rotary incremental encoders with a precision of 0.014◦.144
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Figure 5: Representation of angles for an arbitrary position 𝜃 and an arbitrary relative velocity W (from Fasse et al. (2022)).

One blade is instrumented with an embedded 5-components load-cell [G] which measure local hydrodynamic loads in145

the direction of the blade’s chord 𝐓𝐛 (measuring range of 200 N) and normal to the blade 𝐍𝐛 (measuring range of 900146

N). This load-cell also measures the hydrodynamic torque 𝐂𝐛 applied on the blade by hydrodynamic loads (measuring147

range of 60 Nm).148

Four fixed 3-components load-cell [H] located between the outer frame I-beams and the tank I-beams provide global149

solicitations of the propeller in the X,Y and Z directions (measuring range of 5000 N in the X and Y direction and150

7000 N for the Z direction). At least, a torque sensor [B] is installed between the main motor and the speed reducer151

and measures the torque applied on the main driveshaft (measuring range of 20 Nm).152

Due to the wider measuring range of these fixed load-cell, in comparison with the embedded load-cell, post-processing153

of the loads is done with local hydrodynamic loads. The embedded load-cell measures temporal voltages, which154

are highly disturbed by high frequencies of electromagnetic environment. This is mainly due to the Pulse Width155

Modulation of speed controllers. Low-pass filter (35Hz cut-frequency) is thus applied on temporal signals. Then156

voltages are converted into loads thanks to the transfer matrix determined by in-house calibration. Finally, forces in157

blade coordinates (𝐅𝐍𝐛
, 𝐅𝐓𝐛

) are projected into rotor coordinates (𝐅𝐍, 𝐅𝐓) and absolute coordinates (𝐅𝐗, 𝐅𝐘) by Eq.158

(2) and (3) and illustrated in Figure 5.159

(

𝐅𝐓
𝐅𝐍

)

=
(

cos(𝛽) − sin(𝛽)
− sin(𝛽) − cos(𝛽)

)(

𝐅𝐓𝐛
𝐅𝐍𝐛

)

(2)
(

𝐅𝐗
𝐅𝐘

)

=
(

cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

)(

𝐅𝐓
𝐅𝐍

)

(3)

Then instantaneous forces are phase-averaged over one revolution, shifted of 𝜋
3 and 2𝜋

3 , and summed to give the160

total force acting on the three blades. Lastly, total thrust coefficient and hydrodynamic efficiency are calculated as the161

non-dimensional averaged values:162

𝐶𝐹𝑥 =
𝐹𝑥𝑡𝑜𝑡

0.5𝜌𝑆𝑉 2
𝜂 =

𝐹𝑥𝑡𝑜𝑡 𝑉

𝐶𝑡𝑜𝑡 Ω
(4)

Where 𝐹𝑥𝑡𝑜𝑡 and 𝐶𝑡𝑜𝑡 are respectively the mean of total thrust and total torque (measured on the main torque sensor)163

over 360°, 𝑆 is the swept frontal area (𝑆 = 𝐷𝑙) and 𝑉 the flume tank flow velocity.164

These two performance definitions are used during the optimization process to evaluate the multi-objective function.165
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A more detailed description of the platform, its instrumentation and the blade control system, is given by Fasse166

et al. (2022). Only the embedded load-cell has been changed for a finer measuring range in the present paper (range of167

900N and 200N respectively for 𝐹𝑁𝑏
and 𝐹𝑇𝑏 instead of 5000N and 1000N).168

2.3. Parametric model169

To proceed the optimization resolution, the first step is to develop an efficient parameterization. Indeed, Efficient170

Global Optimization methods, used here, allows to decrease the number of optimization evaluations of the objective171

function in comparison with genetic approaches. But the more the number of parameters is high and the more the172

number of optimization evaluations is required. In the present work, the number of parameters is 3.173

The method presented in this paper (inspired from Abbaszadeh et al. (2019)) consists in defining the pitch law by a174

B-spline of degree 3 passing through four control points which are given by the 3 parameters 𝐱𝟐 𝐱𝟐 and 𝐱𝟐. Figure 6175

illustrates the parameterization for two examples of random laws.176
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Figure 6: Parameterization method of the pitching law: red areas correspond to variability domain of parameters and green
lines correspond to limits of maximal amplitude in absolute terms of parameterized laws.

The four control points of the spline are the two central red squares and the two extremities black triangles. These177

four control points can move thanks to the three following parameters:178

• 𝐱𝟏 and 𝐱𝟐 parameters give the abscissa and the ordinate of the two central red squares: 𝐱𝟏 is the distance between179

the red square abscissa and the central position 𝜃𝑚𝑒𝑎𝑛, whereas 𝐱𝟐 is directly its ordinate. The second red square180

is constructed by central symmetry from 𝜃𝑚𝑒𝑎𝑛. For the presented results, the central position 𝜃𝑚𝑒𝑎𝑛 is set at 170◦.181

This central position involves a non-symmetrical pitch law which is the intent of this optimization as explained182

previously (the value 170◦ is fixed arbitrary).183

• The third parameter 𝐱𝟑 set the abscissa of the two extremities black triangles (the last black triangle is the 2𝜋-184

offset of the first one). Their ordinates are fixed at zero. This last parameter deals with the offset of the law for185

the 𝜑=0◦ crossing at the beginning and the end of the B-spline.186

Each parameter can vary through the following ranges: Δ𝑥1 = [0.5 ∶ 120], Δ𝑥2 = [0.5 ∶ 80], Δ𝑥3 = [−5 ∶ 40].187

Variations of 𝐱𝟏 and 𝐱𝟐 lead to the shift of the two central red squares within the two red areas, that are shown in188

Figure 6. These variables have two main effects on the pitching law: the amplitude shift and the dissymetrization of the189

law. The variation of the 𝐱𝟑 leads to the shift of the two extremities black triangle and has the effect of controlling the190

pitch angle (possibly non-zero) at the beginning of the law. The three ranges Δ𝑥1,2,3 are also defining the optimization191

domain, also called parametric space.192

This method of parameterization implies a weakness which occurs when two points of the spline are to close, the193

amplitude of the spline can be very high and the slope close to the infinity. Another approach would be to define the194

spline with 4 parameters, in order to directly control in amplitude and azimuthal position the extrema of the spline,195
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where the derivative would be imposed as zero. However, an optimization process of 4 parameters requires more196

evaluations of the objective function and much more solving time considering experimental evaluation.197

In order to be able to dissymmetrize the law, using only 3 variables, a classification method (Sacher et al., 2018b) is198

implemented during the optimization procedure (see details in Section 3.2).199

The classification method consists on defining two limits (high and low) of the spline and classify the parameterized200

spline "doable" if all the points of the spline are between these two limits. These limits are represented in green on201

Figure 6 and fixed at 𝜑 = 50◦ and 𝜑 = −80◦ for the present experiments. These limits have also been chosen to restrict202

the acceleration between the two halves of the pitching law to deal with the auxiliary engine acceleration limits. Indeed,203

if the slope of the pitching curve is to high, the auxiliary engine will not follow correctly the reference because the204

pitch velocity is too high and a large delay will occur. A classification meta-model is initially built from a large number205

(400 in this work) of candidate laws that are not measured in the water tank, but that are tagged with ‘doable’ or ‘not206

doable’ spec. This meta-model then gives access to the prediction that a new law (parameterized by the variables 𝑥1,207

𝑥2 and 𝑥3) belongs to one of these two classes. This prediction is given in the form of a probability 𝑃 (𝒙) ∈ [0,1],208

which has the main advantage of being a continuous function in the space of variables, and avoids the selection of new209

‘not doable’ laws in the optimization process (Sacher et al., 2018b).210

3. Multi-objective Surrogate-based Optimization211

We consider abstract optimization problems, where several objectives have to be minimized simultaneously over212

a design variable Ω ⊂ ℝ𝑑 :213

min
𝒙∈Ω

𝑓1(𝒙),… ,𝑓𝑚(𝒙) s.t. 𝒈(𝒙) ≤ 0 (5)

where 𝒙 =
(

𝑥𝑖
)

1≤𝑖≤𝑑 is a vector of design variables, 𝒇 =
(

𝑓𝑗
)

1≤𝑗≤𝑚 is a vector of objective functions to be minimized214
(

𝑓𝑖 ∶ Ω ↦ ℝ
), and 𝒈 =

(

𝑔𝑘
)

1≤𝑘≤𝑝 is a vector of inequality constraints (

𝑔𝑘 ∶ Ω ↦ ℝ
). The existence of an optimal215

solution, minimizing all objectives at once is usually not granted. This leads to the search for an optimal set of solutions,216

called the Pareto front. According to the Pareto domination rule (Fonseca and Fleming, 1998), 𝒙 ∈ Ω is said dominated217

by 𝒙′ ∈ Ω if for all 1 ≤ 𝑗 ≤ 𝑚, 𝑓𝑗
(

𝒙′
)

≤ 𝑓𝑗(𝒙), and 𝒈
(

𝒙′
)

≤ 0. The set of optimal (non-dominated) design vectors, to218

be determined in Ω, is then called the Pareto set. Evolutionary algorithms (Deb et al., 2002; Coello et al., 2007) have219

been shown to be well-adapted for solving multi-objective problems in real-word applications with moderate objective220

computation cost (Huang et al., 2015; Lim and Kim, 2019).221

In the present work, individual evaluations of the objective functions are assumed to be very expensive. A common222

approach is then to use surrogate models in place of 𝒇 to reduce the computational burden related to the evaluations223

of 𝒇 (Simpson et al., 2001). Gaussian processes (GP) (Rasmussen and Williams, 2006; Kleijnen, 2009) are presently224

considered, which, owing to their statistical nature, provide for each objective function, both a prediction value and225

a measure of the uncertainty (variance) in this prediction. These features are appealing in the optimization context,226

as they can be exploited to derive rigorous optimization strategies, by evaluating sequentially the computer models at227

design vectors that maximize a so-called merit function (Picheny et al., 2013).228

In mono-objective problems, GP-based approaches are globally referred to as Efficient Global Optimization (EGO)229

(Jones et al., 1998), where the merit function is based on an Expected Improvement (EI) criterion, expressing a trade-off230

between sampling in promising regions and exploring in unsampled regions. EGO has been successfully applied to231

complex optimization problems, such as non-linear fluid-structure interaction problems (Sacher et al., 2017b, 2018a)232

or RANS computations (Meliani et al., 2019).233

Over the last few years, surrogate-based approaches have also been proposed to address the multi-objective234

problem. Indeed, several GP-based multi-objective optimization strategies propose to extend the EI infilling criterion235

of Jones et al. (1998). The definition of the improvement can then be considered over the Pareto front (Wagner et al.,236

2010), using for instance, Maximin distance (Svenson and Santner, 2010), Euclidean distance (Keane, 2006), or the237

well-known Hypervolume infilling criterion (Emmerich et al., 2006, 2011; Luo et al., 2014). Recently, merit functions238

aimed at computing and reducing uncertainty of the predicted Pareto front have been developed (Picheny, 2015; Binois239

et al., 2015; Passos and Luersen, 2018). In particular, Passos and Luersen (2018) have proposed and validated, on a240

real-word composite panel application, the efficiency of a new merit function: Minimization of the Variance of the241

Predicted Front (MVPF).242
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In the present work, the MVPF approach is applied in combination with the Expected Improvement Matrix243

Hypervolume (EIMH) (Zhan et al., 2017) criterion, to solve the blade pitch law optimization problem.244

In Section 3.1, we summarize the construction of a GP model for an objective function 𝑓𝑗 . Definitions of multi-245

objective surrogate-based merit functions, that are used in the present optimization under non-doable observations, are246

then provided in Section 3.2.247

3.1. GP surrogate construction248

In the present Section 3.1, the GP surrogate construction of an objective function 𝑓𝑗 is provided. The method is249

exactly the same for the GP surrogate construction of an inequality constraint function 𝑔𝑘.250

We consider a set of 𝑛 training points  =
(

𝒙1,… ,𝒙𝑛
), each in Ω. The training points are associated to the vector251

 (𝑗) = (𝑦(𝑗)1 ,… ,𝑦(𝑗)𝑛 ) of noisy observations of the objective function 𝑓𝑗 . It is assumed that 𝑦(𝑗)𝑖 = 𝑓𝑗(𝒙𝑖) + 𝜖(𝑗)𝑖 , where252

the 𝜖(𝑗)𝑖 are independent and identically distributed Gaussian random variables having zero-mean and variance 𝜎2𝜖𝑗 .253

The GP construction considers that 𝑓𝑗(𝒙) is a realization of a zero-mean multivariate Gaussian process with254

covariance function 𝐶𝑗 . We consider here the multidimensional squared exponential covariance functions defined by255

𝐶𝑗
(

𝒙,𝒙′; Θ𝑗
)

≐ 𝜃1
𝑑
∏

𝑖=1
exp

⎛

⎜

⎜

⎝

−
(

𝑥𝑖 − 𝑥′𝑖
)2

2𝑙2𝑖

⎞

⎟

⎟

⎠

+ 𝜃2 (6)

where Θ𝑗 =
(

𝜃(𝑗)1 , 𝜃(𝑗)2 , 𝑙(𝑗)1 ,… ,𝑙(𝑗)𝑑

)

is the vector of covariance hyper-parameters to be inferred from the  (𝑗)
256

observations. From the conditional rules of joint Gaussian distributions (Rasmussen and Williams, 2006), the best257

prediction 𝑓𝑗(𝒙) of 𝑓𝑗(𝒙), i.e. the mean of 𝑦(𝑗), and the prediction variance 𝜎𝑗
2(𝒙) are given by,258

𝑓𝑗(𝒙) = 𝒌T
𝑗 (𝒙)

(

𝑪𝑗
(

Θ𝑗
)

+ 𝜎2𝜖𝑗𝑰
)−1

 (𝑗) (7)

𝜎𝑗
2(𝒙) = 𝜅𝑗(𝒙) + 𝜎2𝜖𝑗 − 𝒌T

𝑗 (𝒙)
(

𝑪𝑗
(

Θ𝑗
)

+ 𝜎2𝜖𝑗𝑰
)−1

𝒌𝑗(𝒙) (8)

In (7) and (8) we have denoted𝑪𝑗 ∈ ℝ𝑛×𝑛 the symmetric covariance matrix of the training points, 𝜅𝑗(𝒙) ≐ 𝐶𝑗
(

𝒙,𝒙; Θ𝑗
),259

𝒌𝑗(𝒙) ≐
(

𝐶𝑗
(

𝒙,𝒙1; Θ𝑗
)

⋯𝐶𝑗
(

𝒙,𝒙𝑛; Θ𝑗
))T the covariance vector between the observations in  and 𝒙, and 𝑰 the260

identity matrix of ℝ𝑛. The hyper-parameters Θ𝑗 and noise variance 𝜎2𝜖𝑗 can be determined by maximizing the log-261

marginal likelihood (see Rasmussen and Williams (2006) for more details).262

3.2. Merit functions under non-doable design vectors263

Surrogate-based optimization methods rely on the sequential construction of statistical surrogate models, using264

training sets of computed objective and constraint function values, that are refined according to a prescribed infilling265

strategy (i.e. merit functions (Picheny et al., 2013)). At each iteration of the iterative surrogate-based optimization, a266

new design vector 𝒙𝑛+1 is thus added to  , and finally 𝒇 and 𝒈 are computed. A new iteration can then start by updating267

surrogate models, and the iterative process is repeated until a stopping criterion is satisfied or the resources allocated268

to the optimization have been exhausted.269

In real world applications, however, this sequential optimization procedure may stop prematurely if an objective270

function cannot be computed at a proposed𝒙𝑛+1. Indeed, such a situation may occur when the search space encompasses271

design points corresponding to a non-physical configuration or an ill-posed problem, for example. Sacher et al. (2018b)272

have proposed to use a classification model to learn non-doable design vector areas alongside the surrogate-based273

optimization and adapt the infilling strategy accordingly. In short, a probabilistic classification model is built using the274

union of doable and non-doable training sets. The classifier is then incorporated in the surrogate-based optimization275

procedure to avoid proposing new design vectors in the non-doable domain while improving the classification276

uncertainty if needed.277

In the present work, two new design vectors are determined under the constraint to be in the doable domain and278

added to  at each new iteration of the iterative surrogate-based optimization. Specifically, the MVPF and EIMH279

criteria are considered (see next Sections 3.2.1 and 3.2.2) to allow respectively, the reduction of the uncertainty of the280

predicted Pareto front and the improvement of the computed Pareto front.281
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3.2.1. Minimization of the Variance of the Predicted Front (MVPF)282

The MVPF infilling criterion, proposed by Passos and Luersen (2018), aims at improving the fidelity of the283

predicted Pareto front. A Pareto front is generated thanks to a state-of-the-art multi-objective constrained optimization284

algorithm (such as NSGA-II (Deb et al., 2002)) and using GP surrogate predictions (one for each objective and285

constraint function, see Eq. (7)) as input functions. The MVPF criterion then consists of selecting a design vector286

variable 𝒙𝑀𝑉 𝑃𝐹 from the Pareto set 𝑃𝐹 , to be evaluated. This selection is based on the highest predicted variances287

in objective functions (see Eq. (8)), and is written as,288

𝒙𝑀𝑉 𝑃𝐹 ≐ argmax
𝒙∈𝑃𝐹

( 𝑚
∏

𝑗=1
𝜎𝑗

2(𝒙)

)

(9)

where 𝜎𝑗2(𝒙) ∈ [0, 1] is the normalized (from Pareto set) predicted variance. For more details on the MVPF criterion,289

we refer readers to (Passos and Luersen, 2018).290

3.2.2. Expected Improvement Matrix Hypervolume criterion (EIMH)291

Multi-objective EI criteria have usually similar processes, where in first, an improvement function over the Pareto292

front is defined. In second, the expected value of the improvement function is computed by integrating it over the non-293

dominated region. Zhan et al. (2017) have proposed the concept of Expected Improvement Matrix (EIM) to address the294

usage of multi-objective EI criteria in real world applications, especially when dealing with many objective problems.295

This EIM concept uses a combination of 𝑡×𝑚 simple 1-D integrations to compute a cheap-to-evaluate and still efficient296

multi-objective EI (𝑡 is the number of non-dominated design vectors and 𝑚 is the number of objectives). In (Zhan et al.,297

2017), the scalar Expected Improvement function 𝐸𝐼(𝒙) is expanded into a 2-D matrix EIM, in which,298

𝐸𝐼𝑞𝑗 (𝒙) ≐
(

𝑓 𝑞
𝑗 − 𝑓𝑗(𝒙)

)

Φ
⎛

⎜

⎜

⎝

𝑓 𝑞
𝑗 − 𝑓𝑗(𝒙)

𝜎𝑗
2(𝒙)

⎞

⎟

⎟

⎠

+ 𝜎𝑗
2(𝒙)𝜙

⎛

⎜

⎜

⎝

𝑓 𝑞
𝑗 − 𝑓𝑗(𝒙)

𝜎𝑗
2(𝒙)

⎞

⎟

⎟

⎠

(10)

where 𝑗 = 1,… ,𝑚 and 𝑞 = 1,… ,𝑡. The element 𝐸𝐼𝑞𝑗 (𝒙), in EIM, corresponds to the EI of the studying point 𝒙 beyond299

the 𝑞th non-dominated front point in the 𝑗th objective. From the EIM matrix, Zhan et al. (2017) have then proposed300

three infilling criteria (Euclidean distance, Maximin distance and Hypervolume improvement) to aggregate the EIM301

into a scalar value to measure the overall improvement of the studying point compared against the Pareto front. In the302

present work, the Hypervolume-based EIM criterion is applied, leading to the selection of a design vector variable303

𝒙𝐸𝐼𝑀𝐻 . For more details on the EIMH criterion, interested readers are refereed to (Zhan et al., 2017).304

3.2.3. Median Compromise of the Pareto Front (MCPF)305

Solving multi-objective optimization problems leads to the search of the optimal set of solutions (i.e. Pareto front).306

In most real-word applications, a design vector from the Pareto set has to be selected to provide an optimal design307

choice. This selection is thus a compromise choice, which is usually based on the knowledge of the designer. With the308

aim of avoiding this designer compromise selection, the MCPF criterion is used in the present work, and is given by,309

𝒙𝑀𝐶𝑃𝐹 ≐ argmin
𝒙∈𝑃𝐹

( 𝑚
∑

𝑗=1
arg sort

(

𝒇𝑃𝐹𝑗 , 𝑓𝑗(𝒙)
)2

)

(11)

where, arg sort(𝒇 ,𝑓 ) ≐ {

𝑞 ∈ {1,… ,𝑡} ∣ 𝑓 < 𝑓𝑞 ∈ 𝒇
} and 𝒇𝑃𝐹𝑗 is the vector of objective function 𝑗 predictions on310

the Pareto set 𝑃𝐹 , which is composed of 𝑡 non-dominated design vectors. As can be seen in Eq. (11), the median311

trade-off is selected by considering the rank, from the Pareto set, of each objective function prediction. This definition312

allows a design vector compromise to be determined without the need for weights or scaling of objective function.313

4. Results and Discussion314

Two experimental optimizations have been carried out for two different values of 𝜆 for which experimental315

conditions are the following:316
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• 𝜆=1.2, 𝑉 =0.8 m/s, Ω=15.92 RPM317

• 𝜆=0.8, 𝑉 =0.6 m/s, Ω=17.90 RPM318

Approximately 50 optimization steps have been performed during 8 hours of experiments for each optimization cases.319

The tank speed have been reduced for the optimization at 𝜆=0.8 to avoid sensor saturation problems due to the increase320

in main rotational speed.321

Figure 7 gives meta-models representation in 3d parametric space at the end of optimization for 𝜆=1.2 (for 𝜆=0.8,322

the meta-models are close in terms of optimum location and bring no added value). The meta-model for the thrust is323

drawn at the left and those for the efficiency is drawn at the right. Octahedrons are the experimental points located into324

the optimization domain as functions of the parameters which were used to generated the parameterized pitch law. As325

mentioned earlier, all experimental points are inside the front area delimited by the black 50%-probability iso-surface326

of classification. Octahedrons are colored with their objective value (total thrust coefficient at the left and efficiency327

at the right). Slices show the meta-model predictions, colored as functions of the optimization objectives. Lastly, for328

respectively the thrust and the efficiency, the red iso-surface represents the areas of the meta-model where the thrust329

coefficient is higher than 0.75 and respectively higher than 0.63 for the efficiency.330

Results show that depending on the objective function (thrust or efficiency maximizing), the optimums are not located331

on the same area and thus the optimized pitch law is slightly different from one objective to the other one.332

𝝀 = 𝟏.𝟐 𝝀 = 𝟎.𝟖
Pitch laws 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝑪𝑭𝑿 𝜼 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝑪𝑭𝑿 𝜼
𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 49.58 8.08 38.65 0.774 0.524 25.50 8.1 22.43 1.37 0.370
𝜂𝑜𝑝𝑡𝑖𝑚 62.24 20.37 18.02 0.521 0.643 27.84 17.73 9.27 1.10 0.573

Best_compromise 34.58 8.51 22.73 0.728 0.562 27.19 12.26 29.50 1.31 0.439
Sinus10 - - - 0.670 0.485 - - - 1.17 0.267
Sinus20 - - - 0.465 0.570 - - - 1.11 0.398
Sinus30 - - - 0.189 0.465 - - - 0.792 0.420

Table 1
Main experimental results of both optimization and comparison with sinusoidal pitch laws results.

Figure 8 presents the optimized pitch laws obtained at the end of the optimization. For both 𝜆 cases (𝜆=1.2 at the333

left and 𝜆=0.8 at the right), the three following optimized laws are plotted:334

• 𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 which presents the best thrust coefficient335

• 𝜂𝑜𝑝𝑡𝑖𝑚: which presents the best hydrodynamic efficiency336

• 𝐵𝑒𝑠𝑡_𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒: which have the best rank of the MCPF criterion337

The three parameters for these resulting optimized pitch laws are summed up in Table 1. As it can be seen, for both 𝜆338

cases, the law which maximizes the thrust has a lower maximal amplitude (around 10◦) than the law which maximizes339

the efficiency (above 20◦). As might be expected, the law with the best compromise is located just between the two340

others. With the diminution of the 𝜆 parameter, same observations are noticed with yet a 10◦-increase of the maximal341

amplitude. This result is consistent with previous measurements from Fasse et al. (2022) on sinusoidal pitch laws for342

which the more 𝜆 is high the more the maximal amplitude decrease to obtain the best hydrodynamic performances.343

These investigations about the shape of optimized pitch laws lead to look after the Pareto front of the compromise344

thrust/efficiency which is illustrated in the Figure 8 (center). Points are plotted as functions of their thrust coefficient345

values (X coordinate) and efficiency (Y coordinate). Red squares correspond to the optimization done at 𝜆=1.2 whereas346

blue triangles correspond to the 𝜆=0.8 optimization. Small colored triangles and squares are the experimental results347

while single-colored medium ones correspond to predictions of the surrogates. Lastly, sinusoidal results, represented348

with larger lone markers, are given to compare them to the optimized laws. Sinusoidal laws have been performed for349

the same 𝜆 values than for the optimization (𝜆=1.2 for red squares and 𝜆=0.8 for blue triangles) and with the same350

experimental conditions.351

These Pareto fronts clearly show the gain for both efficiency and thrust in comparison with sinusoidal laws. The352

Table 1 summarizes main results of thrust coefficient and efficiency. The gains are mainly explained by the shape of353
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Figure 7: Meta-models for Thrust (left) and Efficiency (right) at the end of multi-objective optimization for 𝜆=1.2.

the optimized pitch law. Optimized laws show a clear horizontal-offset of the law at the beginning which implies a354

negative pitch at 𝜃=0◦ and during the first 30◦ of the rotation. A significant increase of the maximal amplitude during355

the downstream half rotation in comparison with the upstream one may also explain this gain. Lastly, this maximal356

amplitude is slightly shifted to 𝜃=110◦ due to the dissymetry.357

358

Figures 9 and 10 show the experimental blade forces during the whole rotation for the maximal thrust pitch law359

(𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚) and the maximal efficiency pitch law (𝜂𝑜𝑝𝑡𝑖𝑚) for the two 𝜆 optimization cases. Upper sub-figures illustrate360

the experimental hydrodynamic force measured on one blade during one revolution whereas below sub-figures show361

the single-blade thrust coefficient (projection of the hydrodynamic force on the advance direction) and the tangential362

coefficient (projection of the hydrodynamic force on the main rotation tangent, which is an image of the main torque).363

364

For the case 𝜆=1.2, the 𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 pitch law (in red) is compared to the Sinus10 pitch law (in blue) which provides365

the best thrust coefficient for sinusoidal laws at 𝜆=1.2 whereas the 𝜂𝑜𝑝𝑡𝑖𝑚 pitch law (in orange) is compared to the366

Sinus20 pitch law (in navy).367

The horizontal offset of the pitch law (due to the parameter 𝐱𝟑) at the beginning of the rotation (upstream half) has368
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Figure 8: Comparison of the pitch laws obtained after optimization procedure for 𝜆=1.2 (left) and 𝜆=0.8 (right) and their
resulting Pareto fronts (center).

the following effect: it induces an offset of the inversion of the hydrodynamic force direction against the main disk369

which occurs around 𝜃=0◦ for both parameterized pitch law whereas it occurs around 𝜃=30◦ for Sinus10 and 𝜃=45◦ for370

Sinus20. That mainly implies an early generation of the hydrodynamic force in the advance direction for optimized pitch371

law in comparison with sinusoidal laws. This observation is reflected on the thrust coefficient signal which is higher372

for both 𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 and 𝜂𝑜𝑝𝑡𝑖𝑚 pitch laws between 𝜃=30◦ and 𝜃=100◦ than for sinusoidal laws. Thrust performance of373

𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 and 𝜂𝑜𝑝𝑡𝑖𝑚 pitch laws are then higher than for the respective sinusoidal laws. The gain in total thrust coefficient374

of the 𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 law is 13.4% in comparison with the Sinus10 law and 10.7% for the 𝜂𝑜𝑝𝑡𝑖𝑚 law compare to the Sinus20375

law. Lastly, to compare the two optimized law, 𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 shows a higher thrust peak in the downstream half than376

in upstream whereas 𝜂𝑜𝑝𝑡𝑖𝑚 for which the downstream thrust peak is smaller than the upstream peak. But this thrust377

increasing implies a increase of the tangent force coefficient which is negative (opposite to the rotation) so involves378

an higher main torque and so reduce the hydrodynamic effiency. For the 𝜂𝑜𝑝𝑡𝑖𝑚 law, the tangent force coefficient is379

very reduced on the downstream half in comparison with the other laws. That implies a efficiency gain of 11.3% in380

comparison with the Sinus20 law.381

382

Figure 10 presents results for the case 𝜆=0.8. The 𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 and 𝜂𝑜𝑝𝑡𝑖𝑚 pitch laws are respectively compared to the383

Sinus10 and Sinus30 which respectively provide the best thrust coefficient and the maximal efficiency at 𝜆=0.8 for384

sinusoidal pitch laws. The hydrodynamic forces for this case are much larger than for the case 𝜆=1.2, in part because385

of the increase of the relative velocity between 𝜆=1.2 and 𝜆=0.8. As observed for the 𝜆=1.2 case, optimized pitch laws386

(𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 and 𝜂𝑜𝑝𝑡𝑖𝑚) have the horizontal offset of the pitching law at the beginning of the rotation which involve a early387

production of the thrust. The gain in thrust is significant for both upstream and downstream halves. The 𝐶𝐹𝑥𝑜𝑝𝑡𝑖𝑚 law388

for 𝜆=0.8 shows a 14.6% gain on the total thrust coefficient in comparison with the Sinus10 pitch law. For the 𝜂𝑜𝑝𝑡𝑖𝑚 law,389

the gain is remarkable on the efficiency with a gain on the thrust and a decrease of the tangential force in comparison390

with the Sinus30. It leads to a 26.7% gain on the hydrodynamic efficiency.391

The greater gains obtained with parameterized pitch laws at 𝜆=0.8 are explained by the fact that sinusoidal laws392

are adapted for trochoid mode (𝜆>1) and far less adapted for epicycloid mode. Parameterized laws therefore allow to393

exceed sinusoidal law performances in starting phase.394

The two distinct fronts also highlight that for each 𝜆 parameter the compromise is different: for 𝜆=1.2 the best395

compromise leads to a better efficiency whereas for 𝜆=0.8 it leads to a higher thrust. This motivates the generalization396

of the optimization procedure for other 𝜆 values to have a large set of optimized pitch laws for a wide range of advance397

speeds and operation configurations.398

The objective function of the optimization can also be reconsidered. Indeed for propulsion purpose, the search of the399

best efficiency for a given value of thrust is more appropriate. Knowing the hull resistance (depending on the shape400

and dimensions of the hull) as well as the required advance speed, the pitch law which provides the sufficient thrust to401

overcome hull resistance and with the best efficiency can be determined with this optimization procedure.402
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Figure 9: Results of thrust force and tangential force for the law maximizing the thrust (left) and maximizing efficiency
(right) for the case 𝜆=1.2 and comparison with sinusoidal laws.

5. Conclusion403

This paper presents an experimental optimization of a cycloidal propeller blade pitch laws. Indeed, for this specific404

type of propulsion, characterized by the rotation of blades around an axis perpendicular to the ship advance speed,405

the blade motion has a huge impact on the propeller performances. Traditional cycloidal propellers have a mechanical406

system which deals with the blade pitch rotation. These systems, represented by sinusoidal pitch law in trochoidal407

mode (𝜆 >1 systems), show limitations in term of efficiency. A fully electric system, as the SHIVA platform described408

in this paper, can surpass the performances by managing non-symmetrical blade pitch laws.409

By using a suitable parameterization of the pitch laws allowing a wide diversity of pitch motion, the multi-objective410

optimization is performed on experimental measurements of the SHIVA platform at the Ifremer current tank. Results411
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Figure 10: Results of thrust force and tangential force for the law maximizing the thrust (left) and maximizing efficiency
(right) for the case 𝜆=0.8 and comparison with sinusoidal laws.

shows that a trade-off is necessary concerning the pitch law shape to maximize the thrust or the efficiency. A Pareto front412

is thus determined between these two objectives to search for the best compromise law. The results and the comparison413

with sinusoidal results show a significant improvement of both thrust and efficiency with gains of respectively 13.4%414

and 11.3% at 𝜆=1.2 and respectively 14.6% and 26.7% at 𝜆=0.8.415

Finally, because experimental optimization takes time, the procedure have been carried out for only two 𝜆 values. As416

perspectives, it will be interesting to repeat this optimization for a range of 𝜆 values to compare the performances of417

the cycloidal propeller for many operating points. The same optimization procedure could be reproduce for epicycloid418

mode with a parameterization of the pitch angle 𝛽 whereas the pitch angle 𝜑.419

The study of the objective function is also important. For propulsion purpose, the main goal is to maximize the420
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efficiency for a given total thrust force (which surpass the hull resistance). The same optimization could therefore421

be proceed with a constraint on the thrust force for a given hull shape and dimension.422

An other perspective is to upgrade the SHIVA platform with the installation of a Artificial Intelligence to deal with the423

automatizing of the optimization. Indeed, here the optimization is performed step by step during long measurements.424

But thanks to its embedded instrumentation, the platform could process an automatic optimization for various advance425

speeds and adapt the pitching law for various objectives.426
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