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Abstract
During	ontogeny,	the	increase	in	body	size	forces	species	to	make	trade-	offs	between	
their	food	requirements,	the	conditions	necessary	for	growth	and	reproduction	as	well	
as	the	avoidance	of	predators.	Ontogenetic	changes	are	leading	species	to	seek	out	
habitats and food resources that meet their needs. To this end, ontogenetic changes 
in	nocturnal	habitat	 (vertical	use	of	 the	water	 column)	and	 in	 the	 type	of	 food	 re-
sources	(based	on	stable	isotopes	of	nitrogen)	were	investigated	in	12	species	of	deep	
pelagic	 fish	 from	the	Bay	of	Biscay	 in	 the	Northeast	Atlantic.	Our	 results	 revealed	
the existence of major differences in the ontogenetic strategies employed by deep 
pelagic fishes. Some species showed ontogenetic changes in both vertical habitat use 
and	food	resources	(e.g.	Jewel	lanternfish	(Lampanyctus crocodilus)	and	Atlantic	soft	
pout	 (Melanostigma atlanticum)).	 In	 contrast,	 other	 species	 showed	 no	 ontogenetic	
change	 (e.g.	Koefoed's	 searsid	 (Searsia koefoedi)	 and	Lancet	 fish	 (Notoscopelus kroy-
eri)).	Some	species	only	changed	food	resources	(e.g.	Spotted	lanternfish	(Myctophum 
punctatum),	 Spotted	 barracudina	 (Arctozenus risso)	 and	 Stout	 sawpalate	 (Serrivomer 
beanii)), while others seemed to be influenced more by depth than by trophic fea-
tures	 (e.g.	Bluntsnout	smooth-	head	(Xenodermichthys copei)	and	Olfer's	Hatchetfish	
(Argyropelecus olfersii)). These results suggest that to meet their increasing energy 
requirements	during	ontogeny,	some	species	have	adopted	a	strategy	of	shifting	their	
food	resources	(larger	prey	or	prey	with	a	higher	trophic	level),	while	others	seemed	
to	maintain	their	food	resources	but	are	most	 likely	increasing	the	quantity	of	prey	
ingested.	As	fish	species	can	have	different	functional	roles	during	their	development	
within ecosystems, characterising ontogenetic changes in mesopelagic fish species is 
a crucial step to be considered in future research aimed at understanding and model-
ling	the	complexity	of	deep-	pelagic	food	webs.
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1  |  INTRODUC TION

Ontogenetic	 shifts	 in	 marine	 predators	 are	 major	 drivers	 in	 the	
mechanisms underlying ecosystem structure and functioning 
(Nakazawa,	2015; Rudolf & Rasmussen, 2013). They are also consid-
ered a determinant of food web diversity and stability, community 
resilience	and	responses	to	disturbance	(de	Roos	&	Persson,	2013; 
Nakazawa,	2015;	Nilsson	et	al.,	2018).	Although	the	importance	of	
these	ubiquitous	changes	in	ecosystems	is	well	established,	commu-
nity ecology has traditionally been based on species, thereby erasing 
intraspecific	 differences.	 During	 ontogeny,	 individuals	 must	 make	
trade-	offs	 between	 their	 dietary	 needs,	 conditions	 necessary	 for	
reproduction	and	predator	avoidance	(Kimirei	et	al.,	2013;	Sánchez-	
Hernández et al., 2019; Sutherland, 1996).	 All	 these	 needs	 and	
trade-	offs	change	over	the	lifetime	of	species,	requiring	them	to	find	
habitats	that	meet	their	needs	(Ludwig	&	Rowe,	1990;	McNamara	&	
Houston, 1986; Werner & Gilliam, 1984; Werner & Hall, 1988). Thus, 
shifts in diet and habitat use during ontogeny can lead to segregation 
in the niches occupied by individuals of a species and thus reduce 
intraspecific	 competition	within	 a	 population	 (Sánchez-	Hernández	
& Cobo, 2012; Wollrab et al., 2013).	At	the	interspecific	level,	these	
shifts also play an important role in competitive interactions and 
niche	partitioning	(de	Roos	&	Persson,	2013; Woodward et al., 2005; 
Woodward & Hildrew, 2002).

Fish species often show a close relationship between body size, 
which is generally related to the size of the mouth opening, and the 
size	of	the	prey	they	consume	(Dunic	&	Baum,	2017). Therefore, on-
togenetic	shifts	in	resource	use	are	very	common	in	fish	(Werner	&	
Gilliam, 1984).	 In	 general,	 early-	stage	 fish	 feed	on	phytoplankton,	
zooplankton	or	small	 invertebrates	(Nunn	et	al.,	2012).	As	their	vi-
sion and swimming performance improve, fish begin to feed on 
macroinvertebrates	and	fish	(Huss	et	al.,	2013). These shifts in food 
types are often associated with or caused by a shift in habitat use 
(Sánchez-	Hernández	et	al.,	2019; Werner & Gilliam, 1984). For in-
stance,	a	change	in	diet	may	be	the	consequence	of	a	change	in	hab-
itat to cope with new predation risks during ontogeny, or it may be 
caused by the search for more nutritious and/or more abundant prey 
(Sánchez-	Hernández	et	al.,	2019).	An	example	of	the	consequences	
of a change in diet dictated by a change in habitat use is that of small 
individuals of the Gobiidae species Pterogobius elapoides, feeding on 
abundant pelagic copepods in the water column where predation is 
high.	As	the	individuals	grow	larger,	they	limit	the	risk	of	predation	
by feeding only on prey found in the sediments of the sandy bottom 
(Choi	&	Suk,	2012).

Meso-		 and	 bathypelagic	 fish	 communities	 (i.e.	 inhabiting	 the	
mesopelagic	 zone	between	200	and	1000 m,	and	 the	bathypelagic	
zone	 below	 1000 m	 depth)	 are	 believed	 to	 dominate	 the	 fish	 bio-
mass	worldwide	 (Irigoien	et	 al.,	2014). The deep pelagic food web 
is supported solely by phytoplankton primary production, resulting 
in the segregation of deep pelagic fish trophic niches essentially 
along	a	continuum	of	trophic	levels	(Chouvelon	et	al.,	2022; Richards 
et al., 2023; Stowasser et al., 2012;	Valls	et	al.,	2014). Three main food 
guilds are generally described for midwater fishes: zooplanktivores 

(e.g.	Myctophidae),	micronektivores	(e.g.	Stomiidae)	and	generalists	
(e.g.	Eurypharyngidae,	in	which	a	wide	variety	of	prey	even	benthic,	
is	found)	(Drazen	&	Sutton,	2017; Gartner et al., 1997).	In	addition	to	
these guilds, two main foraging strategies are employed by deep pe-
lagic	fishes.	Part	of	the	community	performs	diurnal	vertical	migra-
tions	(DVM)	at	night	from	the	mesopelagic	to	the	epipelagic	zone	to	
feed	(Badcock	&	Merrett,	1976; Clarke, 1963; Watanabe et al., 1999). 
This	migratory	behaviour	is	very	energy-	consuming	but	is	compen-
sated by the high prey density in the epipelagic zone and the re-
duction	of	visual	predation	at	night.	The	non-	migratory	part	of	the	
community	remains	at	depth.	The	non-	migratory	species	thus	live	in	
an	environment	of	low	prey	density	but	have	lower	energy	require-
ments	and	a	low	risk	of	predation	(Herring,	2001;	Marshall,	1979).

Most	 deep	 pelagic	 species,	 particularly	 Myctophidae,	 spend	
their	larval	stage	in	the	productive	epipelagic	zone	(Ahlstrom,	1959; 
Bowlin,	2016; Loeb, 1979;	Moser	&	Smith,	1993; Sassa et al., 2002, 
2004). Within species, individual size generally increases with 
depth,	 indicating	 ontogenetic	 vertical	 migrations	 (Badcock	 &	
Araujo,	1988;	Kawaguchi	&	Mauchline,	1982; Loeb, 1979; Sassa & 
Kawaguchi,	2006). This ontogenetic shift along the vertical habitat 
is	related	to	shifts	in	morphology	and	pigmentation	(i.e.	individuals	
becoming	 darker,	 having	 photophores	 and	well-	developed	muscu-
lature)	(Moser,	1996). Similarly, the adults of several species have a 
different depth distribution according to size, with larger individu-
als	at	deeper	depths	(Auster	et	al.,	1992;	Badcock	&	Merrett,	1976; 
Fanelli et al., 2014; Loeb, 1979; Sassa et al., 2007; Stefanescu & 
Cartes, 1992;	Willis	&	Pearcy,	1980). These ontogenetic shifts in hab-
itat use may be related to shifts in diet, as in the case of Lampanyctus 
crocodilus, where senescent adults stop migrating and adopt bentho-
pelagic	behaviour	by	feeding	on	epibenthic	prey	(Fanelli	et	al.,	2014; 
Stefanescu & Cartes, 1992).

Intraspecific	 trophic	 changes	 can	 be	 monitored	 from	 stable	
isotope	 signatures	 (Hammerschlag-	Peyer	 et	 al.,	 2011; Layman 
et al., 2012).	 For	 decades,	 stable	 isotope	 ratios	 of	 nitrogen	 (δ15N	
values) have been widely used as an indicator of species' tro-
phic	 level	 (Drazen	&	 Sutton,	2017;	 Peterson	&	 Fry,	 1987; Zanden 
& Rasmussen, 2001). This is because nitrogen isotopes undergo a 
significant and relatively predictable level of fractionation during 
trophic transfer between a predator and its prey, leading to a dif-
ference in δ15N	values	(~3‰–5‰)	between	two	theoretical	trophic	
levels and allowing the relative trophic level of species to be inferred 
from their δ15N	values	 (Hussey	et	al.,	2014;	Peterson	&	Fry,	1987; 
Post,	2002). Since the pelagic ecosystem has a wide depth gradi-
ent, microbial degradation of organic matter in suspended parti-
cles also influences δ15N	values,	with	 increasing	values	with	depth	
(Casciotti	 et	 al.,	 2008; Saino & Hattori, 1980).	 An	 enrichment	
in 15N	 is	 thus	 found	 in	 zooplankton	 at	 greater	 depths	 (Hannides	
et al., 2013;	Koppelmann	et	al.,	2009) and in deep benthic communi-
ties	(Bergmann	et	al.,	2009; Trueman et al., 2014).

Only	 a	 few	 studies	 examined	 the	 effect	 of	 species	 size	 and	
depth on δ15N	values	of	deep	pelagic	 fish,	such	as	 in	the	 Iberian	
Peninsula	 (North-	East	 Atlantic)	 and	 the	 Gulf	 of	 Mexico	 (North-	
West,	Atlantic)	(Richards	et	al.,	2023;	Romero-	Romero	et	al.,	2019), 
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but	never	at	the	intraspecific	scale.	Here,	we	aimed	to	quantify	the	
intraspecific influence of body size on nocturnal habitat use and 
trophic ecology for 12 deep pelagic fish belonging to nine genera, 
including	both	migratory	and	non-	migratory	species	from	the	Bay	
of	Biscay,	NE	Atlantic.	Differences	in	nocturnal	body	size	distribu-
tion within each species were deduced from trawling data, while 
trophic shifts were studied using stable isotopes of nitrogen mea-
sured in fish muscle tissues. The first objective was to investigate 
if	a	shift	 in	body	size	with	depth	(i.e.	relationships	between	indi-
vidual size and sampling depth) is observed at both the intraspe-
cific and community level. The second objective was to explore if 
a shift in the trophic ecology is also observed in relation to body 
size	(from	the	measurement	of	δ15N	values).	To	this	end,	the	influ-
ence of individual size and/or sampling depth on δ15N	values	was	
quantified	for	each	species.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling

Organisms	were	collected	by	epi-		to	bathypelagic	trawling	in	can-
yons	of	the	Bay	of	Biscay	continental	slope	(North-	East	Atlantic)	
during	 EVHOE	 scientific	 cruises	 (‘Evaluation	 Halieutique	 de	
l'Ouest	 de	 l'Europe’;	 https://	doi.	org/	10.	18142/		8) that took place 
in autumn between 2002 and 2021. Trawls were conducted at 
night	between	25	and	2000 m	depth	at	25	stations	(Figure 1). The 
trawl	net	was	192 m	long	with	a	headline	of	76 m	and	a	foot	rope	

of	70 m.	The	average	vertical	mean	mouth	opening	was	about	24 m	
and	the	horizontal	opening	of	about	58 m.	The	mesh	size	gradually	
decreased	from	a	very	large	8 m	(stretched	mesh)	at	the	mouth	to	
20 mm	 (stretched	mesh)	 in	 the	 cod-	end.	To	 allow	 the	 capture	of	
very	 small	 specimens,	 the	 trawl	was	 also	 equipped	with	 a	 7.5 m	
long	sock	with	a	12 mm	mesh	size.	Each	trawl	was	performed	at	a	
specifically chosen immersion depth, meaning that only one depth 
was sampled at each station. The choice of trawl depth was de-
termined by the depth of the scattering layer, with the additional 
goal of encompassing a broad depth range across the dataset. 
Consequently,	 some	 trawls	 were	 conducted	 significantly	 above	
or	 below	 the	 deep	 scattering	 layer.	Once	 the	 trawl	 reached	 the	
selected	 depth	 it	 was	 towed	 horizontally	 (i.e.	 constant	 immer-
sion	 depth)	 for	 1 h	 at	 4 kn.	 In	 addition,	 trawling	was	 always	 car-
ried out in complete darkness. The aim was to check whether the 
size distribution of a species remains consistent throughout the 
water column, particularly during the night feeding period when 
most	 species	 are	 active	 feeders	 (Eduardo	 et	 al.,	2021;	 Kinzer	 &	
Schulz, 1985).	Night	sampling	therefore	presented	optimal	condi-
tions for examining ontogenic movements.

2.2  |  Datasets

Two different datasets were used to study ontogenetic changes in 
deep-	sea	 pelagic	 fish	 species	 from	 the	 Bay	 of	 Biscay.	 The	 trawl-
ing	 (https://	doi.	org/	10.	4857/	PRO/	QE2VWQ) dataset included all 
data	collected	by	trawls	 (i.e.	number	of	 individuals	per	species	per	

F I G U R E  1 Trawl	hauls'	spatial	position	
in	the	Bay	of	Biscay.	The	background	
blue colours represent the seabed depth 
(where	lighter	colours	are	shallower).	The	
lines represent 1000, 2000, 3000 and 
4000 m	isobaths.	The	scale	represents	the	
number of kilometres for one degree of 
longitude	(= 82 km).
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sampling depth and total body length of each individual; n = 4165).	
To	study	the	trophic	aspects	of	ontogeny	(see	methodology	below),	
muscle sampling was performed on 12 species of the trawling data-
set to access the δ15N	values	of	individuals	(n = 682).	This	constituted	
the	isotopic	(https://	doi.	org/	10.	48579/		PRO/	O5QHTE) dataset. The 
size measured for the individuals sampled for the isotopic dataset 
was	 the	 standard	 length.	 As	 a	 result,	 size	measurements	 differed	
between the two datasets. Total length was used for all catches 
made on board, as this is the usual measurement on fishing cam-
paigns. However, the measurement used for individuals processed 
in the laboratory for analysis of δ15N	values	was	standard	length,	as	
mesopelagic	fish	often	have	damaged	tails.	Based	on	repeated	meas-
urements of the species studied in the laboratory, we were able to 
compare the two measurements between our datasets. The conver-
sions are available in the R code supplied. The size distribution of the 
individuals composing the species included in the isotopic dataset 
was representative of the size distribution observed in the trawling 
dataset	(see	Figure S1).

2.3  |  Nitrogen stable isotope analysis

A	total	of	682	muscle	samples	belonging	to	12	of	the	most	abundant	
species	 (seven	 migratory	 and	 five	 non-	migratory	 were	 collected)	
(Table 2).	For	each	 individual,	 the	standard	 length	 (cm)	was	meas-
ured on board and a small piece of muscle was collected and fro-
zen	at	−20°C.	To	have	sufficient	material	for	stable	nitrogen	isotope	
analysis, the muscles of the smallest individuals were pooled. Within 
each	of	these	pools,	the	individuals	were	of	equivalent	size	and	were	
sampled	at	the	same	depths.	At	the	laboratory,	muscle	samples	were	
freeze-	dried	(72 h).	To	reduce	the	samples	to	a	fine	powder,	samples	
containing a single individual were manually homogenised, while 
samples containing a pool of individuals were homogenised using 
a	 ball	 mill	 (MM400	 Retsch®)	 with	 zirconium	 oxide-	coated	 bowls	
and	balls.	A	fraction	of	 this	powder	 (0.50 ± 0.05 mg	dry	mass)	was	
weighed	in	tin	cups.	Analyses	were	then	performed	with	an	isotope	
ratio	mass	 spectrometer	 (Delta	V	Advantage	with	 a	Conflo	 IV	 in-
terface,	Thermo	Scientific)	coupled	to	an	elemental	analyser	(Flash	
EA,	2000;	Thermo	Scientific).	Results	are	presented	in	the	usual	δ 
notation relative to the deviation from an international standard 
(atmospheric	nitrogen,	for	δ15N	values),	in	parts	per	thousand	(‰).	
Based	on	repeated	measurements	of	USGS-	61	and	USGS-	62	used	
as laboratory internal standards, the experimental analytical preci-
sion was <0.15‰.

The isotopic dataset included individuals sampled from different 
years	(i.e.	between	2007	and	2021),	which	could	have	affected	our	
data. However, more than 90% of the muscle samples were collected 
between	2019	and	2021	and	nearly	75%	in	2021,	which	reduces	the	
potential	inter-	annual	effect.	An	analysis	was	also	performed	using	
only the years 2019 and 2021 to test the temporal variability and no 
effect	changing	our	conclusions	has	been	detected.	At	the	commu-
nity level, the δ15N-	size	relationship	remained	the	same	(significant	
but weak relationship, R2 < .01,	p = .026).	At	the	specific	level,	when	

the number of samples was sufficient, recalculation of the δ15N-	size	
relationships showed that the relationships remained consistent. 
We	have	therefore	used	all	the	data	(from	2007	to	2021)	for	all	the	
analyses.	In	addition,	as	sampling	was	always	carried	out	during	the	
same	season	(in	autumn,	at	the	end	of	October),	potential	seasonal	
variability bias was also limited. We hypothesise that changes in 
size and depth have a much greater influence on the δ15N	values	
than	does	the	temporal	aspect.	Details	on	the	sampling	by	year	for	
each species are presented in Figure S2.	 In	addition,	our	sampling	
covered stations located at different latitudes within the bay, and 
this variability in the isotopic baseline could potentially affect our 
results.	It	is	indeed	difficult	to	disentangle	the	effects	of	depth,	lat-
itude and individual size on δ15N	values.	However,	it	is	worth	noting	
that all our sampling stations were situated in canyons at relatively 
consistent	distances	from	the	plateau,	ranging	from	9	to	32 km	from	
the	 200 m	 isobath,	 and	 the	 latitudinal	 range	 is	 limited	 (~3°).	 This	
geographical consistency minimises the potential variations in the 
baseline.	Moreover,	 in	 the	Bay	 of	 Biscay,	 differences	 in	 δ15N	 val-
ues were observed between the northern and southern regions for 
coastal species, primarily driven by variations in river discharge, but 
not	for	oceanic	species	(Chouvelon	et	al.,	2012). To test this factor 
in our dataset, we used a variance partitioning analysis of δ15N	val-
ues in relation to depth and latitude across all data. However, we 
did	not	observe	any	significant	effect	(p-	value	depth = .122,	p-	value	
latitude = .619).

2.4  |  Relationships between size 
distribution and depth

The different depth layers were defined as follows: the epipelagic 
zone	 between	 25	 and	 175 m,	 the	 upper	 mesopelagic	 zone	 be-
tween	 175	 and	 700 m,	 the	 lower	mesopelagic	 zone	 between	 700	
and	1000 m	and	the	bathypelagic	zone	below	1000 m.	This	division	
corresponds	to	the	one	used	in	the	literature	(Sutton,	2013) and is 
congruent with the depth structuration observed in the canyons of 
the	Bay	of	Biscay	 (Loutrage	et	 al.,	2023). To study the changes in 
size	distribution	with	depth,	the	trawling	dataset	was	used.	At	both	
community and specific levels, a linear model was performed, the 
sampling depth corresponding to a continuous explanatory variable. 
Results were considered significant when the p-	value	was	≤.05.

2.5  |  Relationships between δ15N values and size

The relationship between δ15N	 values	 and	 individual	 size	was	 ex-
plored with the isotopic dataset at both community and species lev-
els.	In	the	case	of	pooled	samples	for	nitrogen	isotope	analysis,	the	
size data are the mean size of all pooled individuals. Linear models 
were	employed	 for	both	 species-	level	 and	 community-	level	 analy-
ses, ensuring that the models adhered to the underlying assumptions 
of linear regression. Coefficients of variation were also calculated to 
assess the dispersion of values.
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2.6  |  Variance partitioning

Variance	partitioning	was	used	to	calculate	the	variance	explained	
by	the	different	variables	included	in	a	model	(Borcard	et	al.,	1992; 
Legendre & Legendre, 2012). This is done by developing a set of par-
tial	models	(in	a	multivariate	or	univariate	framework)	created	using	
a subset of predictor variables. Here, the objective was to test to 
what extent the individual size and the sampling depth influence the 
δ15N	values	at	the	specific	level.	Due	to	the	restricted	depth	range	at	
which Aphanopus carbo and Stomias boa	were	captured	(≤100 m),	the	
variance partitioning was not performed on these two species. The 
model results are composed of the proportion of δ15N	values	influ-
enced by size and depth separately, and a third fraction represent-
ing the shared fraction of variation explained when both variables 
are	 included	 in	 the	model.	An	ANOVA-	type	permutation	 test	was	
performed for each model to test the significance of the influence of 
each	variable	(depth	and	size)	on	δ15N	values.	Since	the	third	fraction	
is deduced from the sum of variances, it cannot be tested statisti-
cally. The R package vegan	was	used	to	perform	the	tests	(Oksanen	
et al., 2022).	 All	 the	 graphics	were	 performed	with	 the	 ggplot2 R 
package and all statistical analyses were performed in the R environ-
ment	version	4.3	(R	Core	Team,	2023; Wickham et al., 2016).

3  |  RESULTS

3.1  |  Relationships between size distribution and 
depth

We	observed	a	significant	increase	(p-	value < .001)	in	fish	size	(total	
length)	with	depth	at	the	community	level	(Table 1). The median in-
dividual size increased consecutively between the epipelagic, upper 
mesopelagic	and	lower	mesopelagic	depth	layers	(median	individual	
size	 equal	 to	7.0,	 9.0	 and	10.6 cm	 respectively;	Figure 2).	Median	
individual size then decreased slightly between the lower mes-
opelagic and bathypelagic layers, with a median individual size of 
10 cm	in	the	bathypelagic	layer.	Furthermore,	while	the	first	three	
depth layers had an unimodal distribution, the bathypelagic layer 
presented	a	bimodal	distribution	with	a	peak	of	 around	8 cm	and	
another	around	13 cm.

The relationship between size distribution and depth was also an-
alysed	at	the	species	level	(Table 1).	Among	the	12	species	examined,	
only four exhibited a statistically significant linear relationship in the 
models. Melanostigma atlanticum, L. crocodilus and Xenodermichthys 
copei showed a significant increase in individual size with depth. 
Myctophum punctatum was the only species showing a significant 
decrease in the individual size with depth. Lampanyctus crocodilus 
showed an increase in individual size between the upper and lower 
mesopelagic	layers,	from	a	median	size	(total	length)	of	10.0–12.0 cm	
(Figure 3). This was followed by a stabilisation between the lower 
mesopelagic and bathypelagic layers with the same median size of 
12.0 cm.	Melanostigma atlanticum showed a continuous increase in 
the size of individuals with depth, with median individual sizes of 

6.0,	 7.45	 and	 9 cm	 respectively.	 Xenodermichthys copei showed a 
maximum	median	size	in	the	lower	mesopelagic	layer	(= 10.2 cm	total	
length).	Although	M. punctatum showed a significant decrease in the 
size	 of	 its	 individuals	with	 increasing	 depth	 (p-	value = .040),	 there	
appeared to be little variation between depth layers, with a median 
size	of	between	6.6	and	7.0 cm.	Relationships	for	other	species	are	
available in Figure S3.

3.2  |  Relationships between δ15N values and size

δ15N	 values	were	 determined	 for	 seven	migratory	 and	 five	 non-	
migratory	or	short	migratory	species,	for	a	total	of	682	individuals	
(= isotopic	dataset).	Mean	δ15N	values	ranged	from	9.49 ± 0.57‰	
for Serrivomer beanii	 to	 12.36 ± 0.33‰	 for	 A. carbo	 (Table 2). 
For this dataset, mean values of standard length ranged from 
6.3 ± 1.7 cm	for	Argyropelecus olfersii	to	77.3 ± 10.8 cm	for	A. carbo, 
with S. beanii	 having	 the	widest	 size	 range	 (45.0 cm	between	 the	
minimum and the maximum length) and Lampanyctus macdonaldi 
the	narrowest	(3.3 cm).

The relationship between δ15N	 values	 and	 individual	 size	 was	
first	investigated	at	the	community	level	(Figure 4). The linear model 
results showed a significant increase in δ15N	values	with	individual	
size. However, the R2	was	very	low	(= .01),	indicating	high	variability	
in the values.

The relationship between δ15N	values	and	size	was	then	inves-
tigated	at	the	species	level	(Figure 5a). The results of the individual 
linear models showed that six species had a significant increase of 
δ15N	values	with	increasing	individual	size:	M. punctatum, M. atlanti-
cum, L. crocodilus, S. boa, S. beanii and A. carbo.	Only	Arctozenus risso 
had a significant decrease of δ15N	 values	 with	 increasing	 size.	 In	
addition, differences in R2	values	were	observed	among	species.	In	
fact, despite the statistical significance of certain relationships, the 
low R2 values may indicate that, from an ecological point of view, 
size explains little of the variation in isotopic values. Stomias boa had 
an R2 of .72, indicating that the relationship between δ15N	and	size	
was	 accurately	 predicted	 by	 linear	 regression.	 In	 contrast,	A. risso 
had a lower R2 of .09, revealing that linear regression less accurately 
predicted the change in δ15N	values	of	 individuals	with	 increasing	
body size for this species. The other five species had no significant 
relationship	between	the	two	variables	(Figure 5b). The δ15N	values	
were stable regardless of the size increase. However, the coefficient 
of variations allowed to distinguish species with low interindividual 
variability	(e.g.	Notoscopelus kroyeri) from species with high interin-
dividual	variability	(X. copei).

3.3  |  Variance partitioning

Results of the variation partitioning analyses showed that five spe-
cies	(the	same	as	above)	had	their	δ15N	values	significantly	influenced	
by	individual	size	(Figure 6 and Table 3,	NB:	S. boa and A. carbo not 
considered in these analyses due to small depth range). L. crocodilus 
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6 of 18  |     LOUTRAGE et al.

had the highest proportion of variation in δ15N	values	explained	by	
size	(25.7%),	followed	by	M. punctatum	(24.7%),	M. atlanticum	(10.1%)	
and S. beanii	(13.2%)	and	A. risso	(5.8%).	Alternatively,	in	A. olfersii and 
X. copei, variations in δ15N	were	significantly	explained	by	depth,	at	a	
proportion	of	5.7%	and	5.5%	respectively.

3.4  |  Summary of relationships at specific and 
community levels

Based	on	 the	 distinct	 relationships	 between	 size-	depth	 and	δ15N-	
size,	 various	 species	 patterns	 are	 described	 (Table 4). Specifically, 

two	species	(L. crocodilus and M. atlanticum) showed body size change 
in both their vertical distribution and their δ15N	values.	Larger	indi-
viduals of these species were caught at greater depth and their δ15N	
values	increased	with	individual	size.	Meanwhile,	four	other	species	
showed a change in their δ15N	values	with	body	size	but	showed	no	
variation	 in	 their	 vertical	 distribution	 (from	 trawling	 data):	A. risso, 
S. beanii, S. boa and A. carbo.	Among	 the	 species	 that	did	not	 show	
any	significant	change	in	their	trophic	ecology	(as	indicated	by	δ15N	
values) with increasing size, variations in the dispersion of δ15N	
values were observed. Some species such as N. kroyeri and L. mac-
donaldi had a restricted range of δ15N	values	whatever	 the	size	of	
individuals	 (i.e.	 variation	 coefficients = 2.15	 and	 2.68	 respectively)	

TA B L E  1 Results	of	the	linear	models	at	both	community	and	species	levels	between	size	distribution	and	depth.

Family Species N Slope R2 p- value

Alepocephalidae Xenodermichthys copei	(Bluntsnout	
smooth-	head)

1070 1 × 10−3 .01 <.001

Myctophidae Lampanyctus crocodilus	(Jewel	lanternfish) 1200 2 × 10−3 .05 <.001

Lampanyctus macdonaldi	(Rakery	
beaconlamp)

72 2 × 10−4 <.001 .605

Myctophum punctatum	(Spotted	
lanternfish)

397 3 × 10−4 .01 .040

Notoscopelus kroyeri	(Lancet	fish) 585 3 × 10−5 <.01 .912

Paralepididae Arctozenus risso	(Spotted	barracudina) 246 7 × 10−4 <.01 .226

Platytroctidae Searsia koefoedi	(Koefoed's	searsid) 68 2 × 10−4 <.01 .863

Serrivomeridae Serrivomer beanii	(Stout	sawpalate) 63 6 × 10−4 <.01 .866

Sternophidae Argyropelecus olfersii	(Olfer's	Hatchetfish) 205 1 × 10−4 <.01 .706

Stomiidae Stomias boa	(Boa	dragonfish) 63 2 × 10−4 <.01 .939

Trichiuridae Aphanopus carbo	(Black	scabbardfish) 39 1 × 10−2 .06 .136

Zoarcidae Melanostigma atlanticum	(Atlantic	soft	
pout)

157 5 × 10−3 .15 <.001

Community -	 4165 3 × 10−3 .01 <.001

Note: Significant relationships are shown in bold.
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    |  7 of 18LOUTRAGE et al.

whereas some species such as X. copei showed a high dispersion of 
δ15N	values	 (CV = 6.57).	Finally,	 three	 species	 showed	no	 relation-
ships among the variables tested: N. kroyeri, L. macdonaldi and Searsia 
koefoedi. However, for L. macdonaldi, a particularly low size range 
was	sampled	for	isotopic	analysis	(= 3 cm	between	the	minimum	and	
the	maximum	 individual	 size).	At	 the	community	 level,	an	 increase	
in individual size with depth was observed, as well as an increase in 
δ15N	values	with	increasing	size	(Table 4).

4  |  DISCUSSION

The	present	study	confirms,	for	the	Bay	of	Biscay,	the	global	trend	
towards observing larger fish at greater depth for deep pelagic fish 
communities,	 as	 described	 in	 other	 systems	 (Auster	 et	 al.,	 1992; 
Badcock	 &	 Merrett,	 1976; Gartner et al., 1997; Stefanescu & 
Cartes, 1992;	Willis	&	Pearcy,	1980). The presence or not of ontoge-
netic	shifts	and	their	associated	main	drivers	(trophic	and/or	habitat)	
were	described:	(i)	species	undergoing	both	body	size	shifts	in	verti-
cal	habitat	use	(as	 inferred	from	trawling	data)	and	in	their	trophic	
ecology	(as	inferred	by	δ15N	values):	L. crocodilus and M. atlanticum; 
(ii)	 species	 showing	only	 a	body	 size	 shift	 in	 their	 trophic	 ecology	
(i.e.	 the	significant	 influence	of	size	on	δ15N	values):	M. punctatum, 
A. risso, S. beanii, S. boa and A. carbo;	(iii)	species	for	which	only	depth	
influences their δ15N	values	(X. copei and A. olfersii), although X. copei 
also presented an ontogenetic shift in habitat use from trawling data 

(with	the	smallest	individuals	not	found	in	the	deepest	stations)	and	
(iv)	 species	 showing	no	ontogenetic	 shift:	L. macdonaldi, S. koefoedi 
and N. kroyeri.

When investigating ontogenetic shifts in habitat use and tro-
phic ecology within deep pelagic fish communities, several key 
aspects	 must	 be	 considered.	 One	 primary	 limitation	 is	 the	 re-
stricted depth or size range covered by the isotopic dataset for 
certain	species.	In	fact,	not	all	the	individuals	in	the	trawl	dataset	
could	be	sampled	for	the	analysis	of	stable	isotopes	of	nitrogen.	In	
particular, species like A. carbo and S. boa, which had depth ranges 
of	 685	 and	 1630 m,	 respectively,	 in	 the	 trawl	 dataset,	 had	 their	
sampled	individuals	collected	in	a	depth	range	of	less	than	100 m.	
Alternatively,	 L. macdonaldi was sampled over a small size range 
(≈3 cm),	which	may	 potentially	 explain	 the	 lack	 of	 significant	 re-
lationships found with individual size for this species. Given that 
the	isotopic	sampling	spanned	14 years,	potential	temporal	bias	in	
δ15N	values	cannot	be	excluded.	However,	the	same	analyses	per-
formed exclusively on data from 2019 to 2021 yielded similar re-
sults for the δ15N-	size	relationship	at	the	community	and	specific	
levels, indicating that the temporal variability of δ15N	values	 re-
mains	relatively	low	in	our	dataset	(i.e.	linear	relationships	remain	
unchanged).	Additionally,	 it	 is	 important	 to	note	 that	all	 samples	
were	 collected	during	 the	autumn	season.	 In	 addition,	 the	 influ-
ence of organism physiology on δ15N	values	cannot	be	discounted,	
especially	 for	 fast-	growing	species	 (Vander	Zanden	et	al.,	2015). 
While this parameter was not tested, the lack of significant size 

F I G U R E  2 Size	distribution	(total	
length in cm) of individuals of the deep 
pelagic fish community according to 
the	different	depth	layers	(epipelagic:	
25–175 m,	upper-	mesopelagic:	175–700 m,	
lower-	mesopelagic:	700–1000 m	and	
bathypelagic:	≥1000 m).	The	x-	axis	is	
in log2 for clarity. The median size is 
indicated for each depth layer by a dashed 
line.
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8 of 18  |     LOUTRAGE et al.

changes among several species with varying δ15N	values	suggests	
that growth does not affect these values. We assumed that the 
size and depth parameters have a greater impact on these values.

4.1  |  Community level

A	significant	 increase	in	the	size	of	 individuals	with	depth	was	ob-
served at the community level. This pattern has already been ob-
served for migratory species, with older stages generally found at 
greater depths than younger ones, as individuals that may have re-
duced	their	migratory	range	or	stopped	migrating	with	age	(Auster	
et al., 1992;	 Badcock	 &	 Merrett,	 1976; Clarke & Wagner, 1976; 
Gartner et al., 1997; Lancraft et al., 1988;	 Nafpaktitis,	 1977; 
Stefanescu & Cartes, 1992;	 Willis	 &	 Pearcy,	 1980). This general 
trend	in	the	deep	pelagic	realm	may	be	a	consequence	of	the	trade-	
off between foraging and predation. To satisfy their energetic 

needs, juveniles and adults of some species migrate to the epipelagic 
layer	 to	 feed	 at	 night.	Alternatively,	 at	 the	 senescent	 stage,	 some	
species	undergo	a	reduction	 in	swim	bladder	size	as	they	age	 (e.g.	
L. crocodilus), so that the energetic cost of migration may be greater 
than the benefit provided. Some of these species, therefore, adopt 
a benthopelagic behaviour which allows them to reduce the energy 
expended on foraging by taking advantage of the higher concentra-
tions	of	zooplankton	in	the	benthopelagic	zone	(Angel	&	Baker,	1982; 
Vinogradov,	2005).

At	the	community	level,	a	slight	but	significant	increase	in	δ15N	
values with individual size was also found. However, this relation-
ship	was	very	weak	(R2 = .01).	Indeed,	it	has	previously	been	shown	
that within fish communities, the increase in δ15N	values	as	a	func-
tion of individual size was more strongly linked to ontogenetic 
changes than to the fact that the largest species in the community 
fed	on	higher	trophic-	level	prey	(Jennings	et	al.,	2002; Stowasser 
et al., 2012). There are several possible causes: omnivory, large 

F I G U R E  3 Size	distribution	(total	length	in	cm)	as	a	function	of	depth	layer	for	the	four	species	that	showed	significant	relationships.	The	
x-	axis	is	in	log2 for clarity. The median size is indicated for each depth layer by a dashed line.
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predators feeding on smaller prey, large pelagic suspension feed-
ers feeding on small suspended particulate organic matter and 
morphological adaptations of small predators to feed on larger 
prey	(Bode	et	al.,	2007; Jacob, 2005; Jennings, 2005).	In	particu-
lar, in our study, S. beanii was the second largest species sampled 
(= 55 cm)	but	had	the	lowest	mean	δ15N	values	(= 9.5‰).	This	could	
be partly explained by their serpentine morphology, with a large 
individual size that is not proportionally reflected in the size of the 
mouth opening, limiting their ability to capture large prey com-
pared	 to	 other	 species	 with	 similar	 individual	 sizes.	 Indeed,	 our	
study includes a wide variety of morphology, including lanternfish, 
hatchetfish, dragonfish and eelfish. This diversity in shape is bound 
to	 lead	 to	 large	 differences	 in	 feeding	 strategies.	 Consequently,	
body size may not be the best measure to infer the trophic ecology 
of these species, although it is often correlated with several other 
measures. The analysis was conducted using individual body mass, 
and	the	correlation	exhibited	identical	patterns	(R2 = .04,	p > .001).	
For example, size or shape of the mouth opening may be more 
relevant	to	study	this	relationship	at	the	community	level	(Villéger	
et al., 2017).

4.2  |  Trophic- driven ontogenetic shift

Intraspecific	 shift	 in	 fish	 trophic	 ecology	 with	 body	 size	 (as	 in-
ferred from δ15N	values	variation	with	size)	 is	generally	a	conse-
quence	 of	 the	 ability	 of	 fish	 to	 catch	 larger	 prey.	 This	 ability	 is	
proportional to mouth size, which in turn is proportional to body 
size,	allowing	species	to	feed	on	larger	prey	(Dunic	&	Baum,	2017). 
Such a pattern has already been observed in mesopelagic fish spe-
cies	(Gartner	et	al.,	1997).	In	the	present	study,	half	of	the	studied	
species showed a significant change in their δ15N	values	with	the	
increasing	size	of	individuals.	Of	these	species,	four	had	their	δ15N	
values influenced solely by the size of individuals: M. punctatum, 
S. beanii, S. boa and A. carbo. However, in the case of A. carbo and 

S. boa, the depth range sampled for these species was too small 
to test the other relationships. M. punctatum was previously de-
scribed	 as	 a	 generalist	 feeder	 in	 the	Mediterranean	 Sea	 with	 a	
mixed diet during all stages of its development, except small indi-
viduals	that	seem	to	feed	exclusively	on	copepods	(Scotto	di	Carlo	
et al., 1982).	 As	 they	 grow,	 individuals	 become	 more	 efficient	
predators	and	begin	to	select	larger,	more	nutritious	prey	(Bernal	
et al., 2015).	In	another	study	in	the	Northern	Atlantic,	A. carbo also 
showed an increase in δ15N	values	with	individual	size,	confirming	
the probable ontogenetic diet or trophic level shift for this species 
(Farias	et	al.,	2014).	Its	diet	would	shift	from	pelagic	zooplankton	
to bathypelagic prey, reflecting an improvement in its predatory 
ability	(Farias	et	al.,	2014). To our knowledge, this is the first time 
that a shift in trophic ecology with body size is reported for S. bea-
nii and S. boa. The diet of S. beanii is generally described as being 
composed of crustaceans and small fish, whereas that of S. boa is 
composed of crustaceans and mesopelagic fish, so our results sug-
gest	that	the	proportions	may	vary	with	individual	size	(Whitehead	
et al., 1984). Finally, among the studied species, only A. risso has 
undergone a significant but weak decrease in δ15N	values	with	in-
dividual size. This trend has already been found for two species of 
the	southern	Kerguelen	mesopelagic	community	belonging	to	the	
families	Platytroctidae	and	Myctophidae	 (Woods	et	al.,	2019).	A	
significant decrease in δ15N	values	was	also	found	 in	a	small	pe-
lagic	neritic	fish	species,	the	European	sardine	(Sardina pilchardus). 
This reduction was attributed to the greater efficiency of large 
sardines in capturing phytoplankton, which is less enriched in 15N	
than	 zooplankton	prey	 (Bode	et	 al.,	2003, 2004, 2006).	 In	 addi-
tion,	several	species	belonging	to	the	Paralepididae	family	(which	
includes A. risso) have shown tooth loss in adult specimens and a 
recent	 study	 in	 the	western	Atlantic	 also	 found	 this	 pattern	 for	
A. risso	(Devine	&	Van	Guelpen,	2021;	Ho	&	Duhamel,	2019). This 
tooth loss may lead to dietary changes in this species, partially 
explaining the negative relationship between δ15N	values	and	size	
found in our results.

F I G U R E  4 δ15N	as	a	function	of	
individual	size	(standard	length,	in	cm)	
at the community level. The colour 
shades of the points correspond to their 
superposition. The x-	axis	is	in	log2 for 
clarity.
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    |  11 of 18LOUTRAGE et al.

F I G U R E  5 Relationships	between	δ15N	values	and	individual	size	(standard	length,	in	cm).	(a)	significant	relationships	and	(b)	non-	
significant	relationships.	For	the	non-	significant	relationships,	the	coefficient	of	variation	(CV)	is	shown.	The	colour	shades	of	the	points	
correspond to their superposition.
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12 of 18  |     LOUTRAGE et al.

4.3  |  Trophic and habitat- driven ontogenetic shifts

Lampanyctus crocodilus and M. atlanticum showed, in addition to an 
increase in δ15N	values	with	individual	size,	an	increase	in	individual	
size	with	depth.	 In	 the	Mediterranean	Sea,	L. crocodilus has already 
been shown to make a change in its diet in relation to its changes in 
migratory	activity	 (Fanelli	 et	 al.,	2014; Stefanescu & Cartes, 1992). 
L. crocodilus has a diet dominated by epipelagic crustaceans in its pe-
lagic phase and its migratory activity decreases or even stops when it 

reaches	the	senescent	stage.	It	then	adopts	a	benthopelagic	behav-
iour	and	feeds	on	fish	at	greater	depth	(Bernal	et	al.,	2023; Stefanescu 
& Cartes, 1992;	Valls	et	al.,	2014).	Our	present	results,	therefore,	sug-
gest	that	this	behaviour	may	also	occur	in	the	Bay	of	Biscay.	As	for	
M. atlanticum, it has a particular mode of reproduction. This species 
adopts a benthic behaviour during the spawning period and the fer-
tilisation of its eggs takes place in burrows located under the surface 
of	the	sea	bed	(Dallarés	et	al.,	2021; Silverberg et al., 1987). This spe-
cific reproductive behaviour may explain our results that the largest, 

F I G U R E  6 Proportions	of	variance	in	
δ15N	values	explained	by	size	and	depth	
alone and by size and depth together. 
Asterisks	indicate	a	significant	influence	of	
one or other of the variables tested. The 
unexplained variance has been omitted 
for graphical clarity and corresponds to 
the difference between one and the sum 
of the explained variance.

Species Variable Variance F value p- value

Xenodermichthys copei	(Bluntsnout	
smooth-	head)

Size <0.001 0.058 .824

Depth 0.026 7.48 .009

Lampanyctus crocodilus	(Jewel	
lanternfish)

Size 0.115 54.5 .001

Depth <0.001 0.081 .771

Lampanyctus macdonaldi	(Rakery	
beaconlamp)

Size 0.006 1.30 .252

Depth 0.003 0.578 .477

Myctophum punctatum	(Spotted	
lanternfish)

Size 0.067 26.2 .001

Depth 0.004 1.75 .202

Notoscopelus kroyeri	(Lancet	fish) Size <0.001 0.320 .578

Depth <0.001 0.480 .500

Arctozenus risso	(Spotted	barracudina) Size 0.009 5.78 .019

Depth 0.002 1.43 .219

Searsia koefoedi	(Koefoed's	searsid) Size 0.016 0.880 .380

Depth 0.006 0.350 .578

Serrivomer beanii	(Stout	sawpalate) Size 0.045 5.28 .032

Depth 0.003 0.409 .510

Argyropelecus olfersii	(Olfer's	
Hatchetfish)

Size 0.010 3.34 .072

Depth 0.015 4.92 .026

Melanostigma atlanticum	(Atlantic	soft	
pout)

Size 0.032 3.81 .044

Depth <0.001 <0.001 .994

Note:	Values	in	bold	are	those	showing	a	significant	influence	of	the	variable	(p-	value	<.05).

TA B L E  3 Results	of	the	variance	
partitioning	analysis	(ANOVA)	for	each	
species.
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    |  13 of 18LOUTRAGE et al.

and thus reproductive individuals are found at greater depth. From 
a	trophic	perspective,	 it	has	been	shown	in	the	Mediterranean	Sea	
that the diet of M. atlanticum consists almost exclusively of pelagic 
prey	(Dallarés	et	al.,	2021). Larger individuals may have the ability to 
capture larger prey, which can also explain the relationship between 
δ15N	 values	 and	 individual	 size	 found	 for	 this	 species.	 These	 two	
species	 (L. crocodilus and M. atlanticum), in addition to having these 
two	significant	relationships	(larger	individuals	are	found	deeper	and	
have higher δ15N	values),	presented	the	highest	percentages	of	the	
variance in δ15N	values	explained	by	both	size	and	depth	(i.e.	the	red	
portion, >7%) in the partition models. This part reflects the propor-
tion of the model that cannot distinguish the effect of depth and size 
on δ15N	values.	The	benthopelagic	behaviour	of	these	species	in	the	
adult stage may also partly explain this influence, as δ15N	values	(in-
cluding	those	of	POM	at	the	base	of	food	webs)	are	higher	at	greater	
depth	and	particularly	in	the	benthic	domain	(Bergmann	et	al.,	2009; 
Richards et al., 2020; Trueman et al., 2014).

4.4  |  Depth- driven increase in δ15N values

Two species, X. copei, and A. olfersii had their δ15N	values	signifi-
cantly	 influenced	 only	 by	 depth	 (and	 not	 by	 individual	 size).	 In	
addition, in the case of X. copei the smallest individuals were not 
found at greater depth. Like M. atlanticum, X. copei was previously 
reported	 to	 spawn	 demersally	 in	 the	 North	 Atlantic,	 with	 indi-
viduals in pelagic trawls that were juveniles and larger fish that 
were	 caught	 in	 the	deeper	 stations	 near	 the	bottom	 (Mauchline	
& Gordon, 1983).	 As	 the	 sampling	 in	 our	 study	was	 carried	 out	
during	the	spawning	season	of	this	species	(October–November),	
many spawning individuals were observed. The capture of large 
spawning individuals of X. copei at depth suggests that spawning 
of this species also occur on the slope area at that period in the 
Bay	of	Biscay.	Although	X. copei did not show a significant relation-
ship with size, it stood out for its wide dispersion of values δ15N	
values	 (CV = 6.57).	 In	 the	 North	 Atlantic,	 pelagic	 individuals	 of	

TA B L E  4 Summary	of	the	relationships	investigated	for	each	species	and	the	community	considered	as	a	whole.

Species Family
Mechanism driving 
ontogenetic shift Relationships Description

Lampanyctus crocodilus Myctophidae Trophic & and habitat shifts 
with body size

δ15
N

Depth & Size

Species showing shifts in both their vertical 
distribution	(largest	individuals	at	
greater depth) and their trophic ecology 
(increase	of	δ15N	values	with	the	size	of	
the individuals) with body size.

Melanostigma atlanticum Zoarcidae

Myctophum punctatum Myctophidae Trophic shift with body size

δ15
N

Size

Species showing only a shift in their 
trophic ecology with body size 
(influence	of	individual	size	on	
δ15N	values,	but	no	effect	of	depth	
whenever it could be tested).

Arctozenus risso Paralepididae

Serrivomer beanii Serrivomeridae

Stomias boaa Stomiidae

Aphanopus carboa Trichiuridae

Argyropelecus olfersii Sternoptychidae Depth-	driven	increase	in	
δ15N	values

δ15
N

Depth

Species showing an increase of their δ15N	
values	with	depth	(but	no	effect	of	
size). X. copei also showed a shift in the 
vertical	distribution	of	individuals	(the	
smallest individuals were not found in 
the deepest stations).

Xenodermichthys copei Alepocephalidae

Notoscopelus kroyeri Myctophidae No	shift

δ15
N

Depth & size

Species with no observed shifts in relation 
with	body	size	(no	effect	of	depth	on	
δ15N	values).	Moreover,	N. kroyeri and 
L. macdonaldi	had	a	low	CV	of	their	
δ15N	values	(CV < 3)	while	S. koefoedi 
had a wider dispersion of δ15N	values	
(CV = 4.81).

Lampanyctus macdonaldi Myctophidae

Searsia koefoedi Platytroctidae

Community -	 Trophic & and habitat shifts 
with body size

δ15
N

Depth & Size

The whole community showed an increase 
in	individual	sizes	with	depth.	A	weak	
but significant relationship was also 
found between δ15N	values	and	
individual size.

Abbreviation:	CV,	Coefficient	of	variation.
aOnly	the	δ15N-	size	relationship	was	tested	for	A. carbo and S. boa	due	to	too	low	depth	ranges	sampled	for	these	two	species	(test	with	linear	models	
only, not through variance partitioning analyses).
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14 of 18  |     LOUTRAGE et al.

this species have a diet limited mainly to copepods and ostracods, 
while benthic individuals show a wider variety of food, maybe ex-
plaining in part this high variability in δ15N	 values	 (Mauchline	&	
Gordon, 1983).	In	addition,	it	has	been	observed	that	both	imma-
ture and larger individuals may graze on inactive prey or debris 
such as small copepods, potentially decoupling the relationship 
between size and δ15N	values	 (Roe	et	al.,	1984).	 In	addition,	 the	
δ15N	values	of	X. copei were significantly influenced by depth. This 
may	be	a	consequence	of	the	reproductive	individuals	residing	at	
depth for this period and therefore integrating the enrichment of 
the δ15N	values	at	depth	(Choy	et	al.,	2015; Gloeckler et al., 2018; 
Richards et al., 2020;	Romero-	Romero	et	al.,	2019).	As	 for	A. olf-
ersii,	 it	 is	 a	 short-	migratory	 species	described	 to	 feed	on	crusta-
ceans	and	small	fish	(Muus	et	al.,	1999).	It	has	already	been	shown	
that	non-	migratory	species	such	as	A. olfersii integrate changes in 
zooplankton δ15N	with	depth	(Hannides	et	al.,	2013;	Koppelmann	
et al., 2009).	Indeed,	individuals	located	deeper	are	more	depend-
ent on the food web based on bacterially degraded organic parti-
cles and thus enriched in δ15N	than	individuals	located	less	deep	
(Choy	 et	 al.,	 2015; Gloeckler et al., 2018; Richards et al., 2020; 
Romero-	Romero	et	al.,	2019). This result was already observed for 
two	non-	migratory	species	near	 the	 island	of	Hawaii:	Cyclothone 
pallida and Melanocetus johnsonii	 (Romero-	Romero	 et	 al.,	 2019). 
Among	the	non-	migratory	species	in	our	study,	A. olfersii was the 
species	with	the	largest	range	of	depth	sampled	(≈1000 m)	which	
may explain the significant influence of depth on δ15N	 values	
for	 this	 species.	For	 the	other	non-	migratory	species	 (i.e.	L. mac-
donaldi, A. risso, S. koefoedi), the depth range sampled was maybe 
too small to detect any influence of depth on the δ15N	values.

4.5  |  No ontogenetic change and no influence of 
depth on δ15N values cases

Finally,	 five	species	 showed	no	 trophic-	driven	change	with	body	
size: X. copei, S. koefoedi, A. olfersii, L. macdonaldi and N. kroyeri. 
Among	these	species,	some	showed	high	variability	in	δ15N	values	
(X. copei, S. koefoedi, A. olfersii), while others had relatively con-
stant	values	across	 their	 size	 range	 (L. macdonaldi and N. kroyeri). 
This result could potentially reflect differences in feeding strate-
gies between species. Species with a high dispersion of δ15N	val-
ues may have higher dietary plasticity, allowing them to feed on 
a wide variety of prey. Such a pattern has already been found for 
several small pelagic neritic species such as Scomber scombrus in 
the	Iberian	Peninsula	(Bode	et	al.,	2006). However, information on 
the	diet	of	the	Platytroctidae	family	is	very	scarce	in	the	literature.	
S. koefoedi has been reported to have a diet composed largely of co-
pepods, but also ostracods, chaetognaths and polychaetes, which 
could partly explain the large variability in δ15N	values	found	dur-
ing	its	ontogeny	(Hopkins	et	al.,	1996;	Novotny,	2018).	In	contrast,	
species with low variability in δ15N	values	could	have	implemented	
an alternative strategy to the one classically observed, based on 
an increase in the size of the prey associated with an increase in 

mouth	size.	 In	 this	case,	meeting	energy	 requirements	would	be	
based	on	an	increase	in	the	quantity	of	resources	ingested,	made	
possible by the increase in mouth size, while maintaining the same 
type	(size)	of	food	resources	rather	than	a	higher	energy	content	
per	 larger	 prey	 ingested.	 The	 two	 Myctophidae	 species	 of	 this	
group, N. kroyeri, and L. macdonaldi showed weak variability in δ15N	
values with increasing body size. These two species have been re-
ported	 to	 have	 a	 diet	mainly	 composed	 of	 crustaceans	 (Coad	&	
Reist, 2004; Gjøsæter, 1981). However, for the L. macdonaldi case, 
the restricted size range sampled can explain part of this absence 
of	 relation	 (= 3 cm).	 In	 addition,	 the	 smaller	 individuals	 sampled	
had	a	standard	length	of	11.5 cm,	which	is	important	considering	
the	maximum	size	of	16 cm	reported	for	this	species.	 In	the	case	
of N. kroyeri,	individuals'	diets	may	not	be	size-	restricted	like	in	the	
case	of	filter	feeders,	with	a	strategy	of	increasing	the	quantity	of	
ingested food with size.

4.6  |  The Myctophidae case study

An	important	observation	from	our	results	is	that	the	Myctophidae	
species studied here appeared to have significant differences in 
their feeding strategies during ontogeny. They were found in three 
of the four groups of species formed from the different relation-
ships. First, L. crocodilus differs from the other species in that it 
undergoes changes in both its diet and depth distribution with 
increasing	body	 size.	As	 large	 adults	 have	 a	 reduced	 swim	blad-
der, the energy gain associated with nocturnal migration to feed 
in productive surface waters may outweigh the costs, making 
feeding	in	the	benthic	boundary	layer	more	cost-	effective	(Fanelli	
et al., 2014). While both M. punctatum and N. kroyeri are known to 
migrate vertically at night in the epipelagic layer, they appeared 
to have adopted opposite feeding strategies, with M. punctatum 
appearing	to	change	its	diet	(i.e.	increasing	δ15N	values	with	size),	
whereas not only was this change not seen in N. kroyeri, but its 
δ15N	 values	 remained	 very	 stable	 across	 the	 species	 size	 gradi-
ent. Thus, by not shifting its diet towards larger or more energetic 
prey with increasing body size, N. kroyeri appears to have opted 
for	 an	 increase	 in	 food	quantity	 rather	 than	a	 change	 in	quality.	
Finally, L. macdonaldi	 had	 the	 deepest	 distribution	 (i.e.	 median	
depth = 2000 m),	which	probably	explains	in	part	the	lack	of	prof-
itability for this species to move into the epipelagic layer to feed 
at night. L. macdonaldi also appeared not to have undergone any 
dietary changes during ontogeny, although this remains to be con-
firmed with a wider sampling across the size range of the species. 
All	 these	 differences	 in	 the	 ontogenetic	 foraging	 strategies	 of	
these phylogenetically related species may be partially explained 
by	differences	in	morphological	traits.	Indeed,	differences	in	mor-
phological traits can lead to differences in swimming ability, prey 
capture,	detection	ability	visual	acuity,	etc	 (Villéger	et	al.,	2017). 
Differences	in	feeding	strategies	and	depth	distribution	in	relation	
to body size suggest divergence within this highly diverse family 
to avoid competition.
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    |  15 of 18LOUTRAGE et al.

5  |  CONCLUSION

Overall,	 we	 identified	 significant	 variations	 in	 foraging	 trade-	offs	
related to ontogenetic changes in the community. These variations 
could influence the functional roles played by the species within the 
ecosystem, highlighting the need for further incorporation into fu-
ture	 research	 (Nakazawa,	 2015).	Network-	based	 approaches	 have	
demonstrated	that	the	role	of	fish	is	stage-	specific	in	terms	of	their	
functionality, with significant impacts on energy pathways, food web 
structure	 and	 dynamics	 (Miller	 &	 Rudolf,	 2011;	 Nakazawa,	 2015; 
Ramos-	Jiliberto	 et	 al.,	 2011; Woodward et al., 2005). Therefore, 
characterising these changes for the 12 relatively unknown species 
examined in this study constitutes a crucial initial step towards a 
more profound comprehension of the trophodynamic functioning of 
deep pelagic food webs.
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