Supplemental Information for:

A pan-cetacean MHC amplicon sequencing panel developed and evaluated in combination with genome assemblies

Dorothea Heimeier^{1,*}, Ellen C. Garland^{2,*}, Franca Eichenberger², Claire Garrigue^{3,4}, Adriana Vella⁵, C. Scott Baker⁶, , Emma L. Carroll^{1,*}

SUPPORTING METHODS	
PRIMER SEQUENCES AND PCR PROTOCOL	2
SUPPORTING TABLES	
TABLE S1: OVERVIEW OF CETACEAN GENOME ASSEMBLIES USED IN THIS STUDY (SEE EXCEL FILE).	2
TABLE S2: TABLE WITH PRIMER SEQUENCES AND PCR PROTOCOL.	2
TABLE S3: ORIGIN OF SAMPLES USED IN THIS STUDY INCLUDING COUNTRY OF ORIGIN, SOURCE AND PERMITS	3
TABLE S4: SUMMARY OF NUMBER OF INDIVIDUALS (N) SEQUENCED AND SUMMARY STATISTICS OF READ NUMBERS, MAPPING	6 AND
CLUSTERING	
TABLE S5: SUMMARY OF GENE SPECIFIC STATISTICS FOR SAMPLES FROM ODONTOCETES, MYSTICETES, HUMPBACK WHALES, A	ND
SOUTHERN RIGHT WHALES	
TABLE S6: SUMMARY OF AMPLICON PANEL CLASS I ALLELE RESULTS IN WHALES AND DOLPHINS	7
TABLE S7: MHC CLASS IIA ALLELES AT EACH LOCUS FOR EACH INDIVIDUAL SAMPLE.	8
TABLE S8: LIST OF CURATED ALLELES FROM CURRENT STUDY	9
SUPPLEMENTARY FIGURES	•••••
FIGURE S1: READ DEPTHS OF CLUSTERS FOR EACH CLASS IIA GENE FROM ALL SEQUENCING RUNS COMBINED.	
Mysticetes and Odontocetes	11
Humpback whales	
Southern right whales	13
FIGURE S2: READ DEPTHS OF CLUSTERS FOR EACH CLASS I GENE FROM ALL SEQUENCING RUNS COMBINED.	
Mysticetes and Odontocetes	
Humpback whales	14
Southern right whales	
FIGURE S3: DEGREE OF CHANGE (DOC) CURVES FOR CLASS I AMPLICON READS FOR COMBINED RUNS.	16
Mysticetes and Odontocetes	16
Humpback whales	
Southern right whales	
FIGURE S4: DQB AND DRB ALIGNMENT OF GENES AT AMPLICON LENGTH FROM GENOMES	
FIGURE S5: NEIGHBOR-JOINING PHYLOGENETIC TREES FOR AMPLICON LENGTH GENES FOR A) DRA, B) DRB, C) DQA, AND	•
	24

Odontocetes	
REFERENCES	

Supporting Methods

Primer sequences and PCR protocol

Each PCR was carried out in a final volume of 20 µl with 3 µl template DNA at 50 ng genomic DNA, 4 µl 5X reaction buffer, 4 µl Phusion Plus GC enhancer, 0.2 µl PhusionPlus[™] Polymerase (5 U/µl), 0.6 µl dNTPs and 0.8 µl each of forward and reverse primer. The finalized thermal cycling profile for the PCR was: 98°C for 30 seconds, 25 (DQA, DQB, DRA, DRB-a) or 30 cycles (class I) of 98°C for 5 seconds, 62°C for 10 seconds and 72°C for 30 seconds, followed by an extension step at 72°C for 5 minutes.

Supporting Tables

Table S1: Overview of cetacean genome assemblies used in this study (see excel file).

If assemblies from the same species were different from each other they are listed separately. Length of complete MHC region and class I and class IIa region between framework genes is given in kilobases (kb). Grey = at least one of the framework genes could not be identified. Red = an assembly was not usable for MHC plus explanation. Position of extracted genes are given from TRIM26 gene; grey = gene has not been identified in this assembly. If the gene was annotated in the assembly, the annotation reference is given without position information.

Table S2: Table with primer sequences and PCR protocol.

Each primer pair was contained the Illumina forward sequencing primer binding site ("TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG") and a 5' extension on the reverse primer containing the Illumina reverse sequencing primer site ("GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG").

Gene	Primer -forward 5'-3'	Length in bp	Primer -reverse 5'-3'	Length in bp	Predicted length of amplicon excl primer
DRA	TCTCTCCTGGTTCCCACCCTA	21	CCTGGGAGGGAAAGGCAGT	19	349bp
DRB-a	GAGCCCGCCCAGGTRATCAG	20	CCCGAACGCAGTCTCCTCTG	20	389bp
DQA	ACATGGTTCTTTCCTCTCYCTCTG	24	GGGAACAAGAGAGTGAGGYCTG	22	334bp
DQB	GTTGAGCGGCGGGTTTCAG	19	TCTCGGCAGGKGRGGGTG	18	384bp
Class I	AGGCTCCCACTCCCTGAGG	19	CGGGTCYSGCAATGTTGGG	19	341bp

Table S3: Origin of samples used in this study including country of origin, source and permits.

		four letter	Number of				
Common name	Species name	code	Samples	Sample codes	Source of samples	Country of origin	Permit
Southern right whale	Eubalaena australis	Euau	30	see FigureS3C	biopsies	NZ	1)
Pygmy blue whale	Balaenoptera musculus brevicauda	Bamu	1	Bamu-U18-023	stranding	NZ	NZCeTA
Eden's whale	Balaenoptera edeni	Baed	2	Bed31, Bed34	strandings	NZ	NZCeTA
Common minke whale	Balaenoptera acutorostrata	Baac	2	Bac16; Bac-QLM-11-91	strandings	NZ	NZCeTA
Humpback whale	Megaptera novaeangliae	Meno	25	see FigureS3B	biopsies	New Caledonia	2)
		Meno	1	Meno-NZ12A	stranding	NZ	NZCeTA
Bottlenose dolphin	Tursiops truncatus	Tutr	2	Ttr05-BOI106, Ttr-JB04-05	biopsies	NZ	3)
		Tutr	1	Tutr-U18-059	strandings	NZ	NZCeTA
Hector's dolphin	Cephalorhynchus hectori	Cehec	2	Che11CB124, Che12CB043	biopsies	NZ	4)
Long-finned pilot whale	Globicephala melas	Glme	2	Glo093, Glo099	strandings	NZ	NZCeTA
Dusky dolphin	Lagenorhynchus obscurus	Laob	2	Lob06, Lob07	strandings	NZ	NZCeTA
Risso's dolphin	Grampus griseus	Grgr	1	Grgr-M1	stranding	Malta	8)
		Grgr	1	Grgr-U19-016	stranding	NZ	NZCeTA
Rough-toothed dolphin	Steno bredanensis	Stbr	2	Sbr-04-FP03; Sbr-07-SA03	biopsies	French Polynesia; Samoa	5)
Short-beaked common dolphin	Delphinus delphis	Dede	1	Dde-M1	stranding	Malta	8)
Striped dolphin	Stenella coeruleoalba	Stco	1	Sco-M1	stranding	Malta	8)
Dwarf sperm whale	Kogia sima	Kosi	1	Ksi-NC05-111	stranding	New Caledonia	6)
Pygmy sperm whale	Kogia breviceps	Kobr	1	Kbr106	stranding	NZ	NZCeTA
Blainville's beaked whale	Mesoplodon densirostris	Mede	2	Mede1, Mede2	biopsies	French Polynesia -Raiatea	5)
Cuvier's beaked whale	Ziphius cavirostris	Zica	2	Zca-NZ12-99; Zica-U19-001	strandings	NZ	NZCeTA
Gervais' beaked whale	Mesoplodon europaeus	Meeu	1	Meu-SW7444	strandings	USA	7)
Gray's beaked whale	Mesoplodon grayi	Megr	2	Megr-U17-093; Megr-U18-013	strandings	NZ	NZCeTA

1) Field work was conducted under University of Auckland Animal Ethics approved protocol 002072 to Emma Carroll and under New Zealand Marine Mammal Protection Act Permit 84845-MAR and Marine Reserve Act Permit 87513-MAR.

2) Biopsy samples were collected under permits to claire Garrigue. No permit requirements pre 2004; Provence Sud -2006: 60241766/DRN/ENV; 2007: 60241115/DENV/MT/DP; 2009: 1462.2008/PS; 2010: 383-2010/ARR/DENV; and 2011: 3313-2010/ARR/DENV.

3) Biopsy samples were collected under the permit to C.S.B. from the New Zealand Department of Conservation and animal ethics protocols AEC/02/2002/R9 and AEC/02/2005/R334 from the University of Auckland

4) Biopsy samples were collected under permit Rnw/HO/2009/03 from DOC issued to CSB, according to Animal Care and Use Protocol 3805 approved by the Oregon State University Institutional Animal Care and Use Committee, and University of Auckland Animal Ethics Protocol AEC/02/2008/ R658.

5) Rough-toothed dolphin samples were collected in collaboration with Scott Baker and Marc Oremus from French Polynesia with support of Pew Marine Conservation Fellowship, as part of the project 'A pattern of dolphins'. Research permit was delivered by the Direction de l'Environnement of FP to Michael Poole's marine mammal research program and from Samoa by Juney Ward as part of the Ministry of Environnement.

6) Under stranding permit issue number 6021-1028/DRN/ENV.

7) SWFSC Marine Mammal and Sea Turtle Research (MMaSTR) collection

8) Malta cetacean samples came from the collection by the Conservation Biology Research Group, Department of Biology, University of Malta under Adriana Vella's care and lead.

Environment and Research Authority (ERA) Permits were issued in Adriana Vella's name. These samples were forwarded by the University of Malta under both CITES and EPD permits in July 1999.

Table S4: Summary of number of individuals (N) sequenced and summary statistics of read numbers, mapping and clustering.

Mysticetes* excluding humpback and southern right whales. Odontocetes = toothed whales; Mysticetes = baleen whales.

										class	I					class	lla	
	N	N < rea		# total reads	# avg reads/ ind	# reads mapped	% of total	# reads mapped	% of total	# avg reads/ ind	clı	# reads ustered			% of total	# avg reads/ ind	# reads clustered	% of mapped
Odontocetes	24		0	660,698	27,529	631,233	96	405,216	61	16,884	3	815,602	2 78	226,017	34	9,417	200,124	89
Mysticetes*	5		2	120,631	24,126	119,346	99	63,989	53	12,798		51,356	5 80	55,357	46	11,071	47,892	87
Humpback whales	26		0	778,390	29,938	777,185	100	499,472	64	19,210	3	895,530) 79	277,713	36	10,681	248,322	89
Southern right whales	30		1	285,089	9,503	283,468	99	183,215	64	6,107	1	58,748	8 87	100,253	35	3,342	87,125	87
Total	85		1	,844,808	21,704	1,811,232	98	1,151,892	62	13,552	9	921,236	5 80	659,340	36	7,757	583,463	88
			clas	s II DRA			cla	ass II DRB class II DQA					clas	s II DQB				
		eads oped	% of total					# reads clustered		of #re ed map	eads ped	% of total	# reads clustered	% of mapped	# rea mapp			% of mapped
Odontocetes	27	,161	4	22,920) 84	1 114,909	17	103,622	9	90 43	,249	7	37,680	87	40,6	98 6	35,902	88
Mysticetes*	8	,034	7	6,913	8	5 23,004	19	20,468	1	89 3	,810	3	3,434	90	20,5	09 17	17,077	83
Humpback whales	29	,114	4	25,815	8) 65,221	8	58,657		90 55	,572	7	50,872	92	127,8	06 16	112,978	88
Southern right whales	21	,862	8	18,036	6 82	2 18,308	6	15,557	;	85 34	,225	12	31,300	91	25,8	58 9	22,232	86

90 136,856

7 123,286

214,871

12 188,189

88

90

86 221,442 12 198,304

86,171

Total

5 73,684

Table S5: Summary of gene specific statistics for samples from odontocetes, mysticetes, humpback whales, and southern right whales.

Statistics include number of individuals that amplified a gene (N), average reads per allele and individual (avg read/all/ind), total number of alleles (# all) and their pairwise identity in % (pw id%), and number of alleles identical to previously described alleles from assemblies and/or Genbank (assbl/GB).

			D	RA (3	851bp)			D	RB-a (4	405bp)	
	Total N	N	avg read/all/ ind (+-SD)	# <u>all</u>	Pw id %	alleles prev described (assbl/ GB)	Ν	avg read/all/ ind (+-SD)	# <u>all</u>	Pw id %	alleles prev described (assbl/ GB)
Odontocetes	24	24	640 (+-800)	20	97.5	5/6	22	2,731 (+-2470)	27	93.5	0/1
Mysticetes*	5	5	688 (+-1262)	5	99.6	4/2	5	2,791 (+-4020)	4	97.7	0/1
Humpback whales	26	26	852 (+-636)	1	na	1/0	26	1,352 (+-1060)	12	98.0	0/5
Southern right whales	30	30	455 (+-434)	2	98.0	1/0	28	298 (+-724)	6	98.7	1/3
Total	85	85	659	28	96.3	15	81	1,793	49	92.2	11

			D	QA (336bp)		DQB (385bp)					
	Total N	N	avg read/all/ ind (+-SD)	# <u>all</u>	Pw id %	alleles prev described (assbl/ GB)	N	avg read/all/ ind (+-SD)	# <u>al</u>	Pw id %	alleles prev described (assbl/ GB)	
Odontocetes	24	23	952 (+-567)	26	96.0	3/7	21	908 (+-992)	29	93.3	1/10	
Mysticetes*	5	3	750 (+-1366)	3	98.6	3/1	3	2,901 (+-2000)	4	96.1	1/1	
Humpback whales	26	26	1,606 (+-1407)	1	na	1/0	26	2,109 (+-1204)	14	97.4	1/5	
Southern right whales	30	30	788 (+-566)	2	99.7	1/1	29	365 (+-1150)	15	97.4	0	
Total	85	82	1024	32	95.1	13	79	1,571	62	93.6	19	

			C	lass I (S	318bp/341	bp)
	Total N	N	avg read/all/ ind (+-SD)	# <u>all</u>	Pw id %	alleles prey described (assbl/ GB)
Odontocetes	24	22	2,307 (+-2256)	105	92.7	1/5
Mysticetes*	5	2	2,432 (+-2395)	13	93.6	2/0
Humpback whales	26	25	1,693 (+-1137)	33	92.2	1/0
Southern right whales	30	26	962 (+-959)	32	93.3	3/0
Total	85	75	1,849	183	92.2	12

Table S6: Summary of amplicon panel class I allele results in whales and dolphins.

Sample indicates the sample code of the sample used, except for humpback whale (Meno) and southern right whale (Euau) where the species code and sample size (n) are given. Shown is the number of class I alleles (# alleles) identified from 72 samples from 12 different cetacean species mapped the cetacean genome assembly indicated by "genome" at 95% and 92% overlap identity. An exact match of one allele to the genomic sequence in the assembly is in green shading and bold numbers. When a sequence differed by only 1-3 bp the shading is in green without bold numbers.

				number o	f alleles map	ped at 95% (9	2%) to genome		
Sample	cetacean family	# alleles	genome	к class I <u>a</u>	к class I b	к class I с	middle class I	β class I	un-mapped
Bamu-U18-023	Balaenopteridae	7	Blue whale	1 (3)			1 (2)	1 (2)	4 (0)
Bed-34-1	Balaenopteridae	6	Rice's whale		1 (1)		2 (4)	1 (1)	2 (0)
Meno (n=26)	Balaenopteridae	33	Blue whale	3 (12)	3 (5)		0 (6)	1 (9)	26 (1)
Euau (n=30)	Balaenidae	32	Southern right whale		2 (2)		12 (25)	2 (5)	16 (0)
Che12CB043	Delphinidae	3	Bottlenose dolphin				0 (2)	0 (1)	3 (0)
Dde-M1	Delphinidae	7	Bottlenose dolphin			0 (1)	1 (4)	0 (2)	6 (0)
Glo93	Delphinidae	8	Bottlenose dolphin		2 (2)	1 (3)	3 (3)		2 (0)
Glo99	Delphinidae	3	Bottlenose dolphin		1 (1)		2 (2)		
Grgr-M1	Delphinidae	7	Bottlenose dolphin			3	3 (3)	1 (1)	
Grgr-U19-016	Delphinidae	5	Bottlenose dolphin			1 (1)	2 (2)	2 (2)	
Lob06	Delphinidae	8	Bottlenose dolphin			3 (3)	1 (3)	0 (2)	4 (0)
Lob07	Delphinidae	7	Bottlenose dolphin		0 (1)	1 (2)	1 (2)	2 (2)	3 (0)
Sbr-04-FP03	Delphinidae	7	Bottlenose dolphin				2 (2)	3 (4)	2 (0)
Sbr-07-SA03	Delphinidae	7	Bottlenose dolphin		1 (1)	0 (2)	2 (2)	2 (2)	2 (0)
Sco-M1	Delphinidae	5	Bottlenose dolphin		1 (1)	0 (1)	0 (1)	1 (2)	3 (0)
Ttr05-BOI106	Delphinidae	9	Bottlenose dolphin		1 (1)	1 (1)	2 (3)	3 (4)	2 (0)
Ttr-JB04-05	Delphinidae	5	Bottlenose dolphin			1 (2)	1 (1)	1 (2)	2 (0)
Ttr-U18-059	Delphinidae	10	Bottlenose dolphin		2 (2)		2 (4)	2 (4)	4 (0)

Table S7: MHC class IIa alleles at each locus for each individual sample.

Light red shading indicates allele was called with less than 20 reads. Green writing indicates allele is already present on GenBank (see also Table S8).

		DRA		DRB-a		DQA		DQB	
	<20 reads	Allele 1	Allele 2	Allele 1	Allele 2	Allele 1	Allele 2	Allele 1	Allele 2
Balenopteridae	Bac-16	Baac-DRA**01	Baac-DRA**02	Baac-DRB-a**01					
Balenopteridae	Bac-QLM	Baac-DRA**01	Baac-DRA**02	Baac-DRB-a**01					
Balenopteridae	Bamu-U18-0236	Bamu-DRA**01		Bamu-DRB-a**01		Bamu-DQA**01	Bamu-DQA**02	Bamu-DQB**01	Bamu-DQB**02
Balenopteridae	Bed-31-1	Baed-DRA**02		Baed-DRB-a**01		Baed-DQA**01		Baed-DQB**02	
Balenopteridae	Bed-34-1	Baed-DRA**01	Baed-DRA**02	Baed-DRB-a**01	Baed-DRB-a**02	Baed-DQA**01		Baed-DQB**02	Baed-DQB**01
Delphinidae	Cehec11-CB124	Cehec-DRA**01		Cehec-DRB-a**01		Cehec-DQA**01		Cehec-DQB**01	
Delphinidae	Che12CB043	Cehec-DRA**01	Cehec-DRA**02	Cehec-DRB-a**01		Cehec-DQA**02	Cehec-DQA**01	Cehec-DQB**01	Cehec-DQB**02
Delphinidae	Dde-M1	Dede-DRA**01	Dede-DRA**02	Dede-DRB-a**01	Dede-DRB-a**02	Dede-DQA**01	Dede-DQA**02	Dede-DQB**01	Dede-DQB**02
Delphinidae	Glo93	Glme-DRA**01	Glme-DRA**02	Glme-DRB-a**01		Glme-DQA**01			
Delphinidae	Glo99	Glme-DRA**01		Glme-DRB-a**02	Glme-DRB-a**03	Glme-DQA**01		Glme-DQB**01	
Delphinidae	Grgr-M1			Grgr-DRB-a**01	Grgr-DRB-a**02	Grgr-DQA**01	Grgr-DQA**02	Grgr-DQB**01	Grgr-DQB**02
Delphinidae	Grgr-U19-016	Grgr-DRA**01		Grgr-DRB-a**03		Grgr-DQA**01	Grgr-DQA**02	Grgr-DQB**03	Grgr-DQB**04
Kogiidae	Kbr-106	Kobr-DRA**01				Kobr-DQA**01	Kobr-DQA**02		
Kogiidae	Ksi-NC05-111	Kosi-DRA**01		Kosi-DRB-a**01		Kosi-DQA**01	Kosi-DQA**02	Kosi-DQB**01	Kosi-DQB**02
Delphinidae	Lob06	Laob-DRA**01		Laob-DRB-a**01		Laob-DQA**01	Laob-DQA**02	Laob-DQB**01	
Delphinidae	Lob07	Laob-DRA**01		Laob-DRB-a**01		Laob-DQA**01		Laob-DQB**01	
Ziphiidae	Mede1	Mede-DRA**01		Mede-DRB-a**01		Mede-DQA**01		Mede-DQB**01	Mede-DQB**02
Ziphiidae	Mede2	Mede-DRA**01	Mede-DRA**02	Mede-DRB-a**01	Mede-DRB-a**02	Mede-DQA**01	Mede-DQA**02	Mede-DQB**03	Mede-DQB**04
Ziphiidae	Meu-SW7444	Meeu^01		Meeu-DRB-a**02	Meeu-DRB-a**03	Meeu-DQA**01	Meeu-DQA**02		
Ziphiidae	Megr-U17-093	Megr-DRA**01		Megr-DRB-a**01		Megr-DQA**01		Megr-DQB**01	Megr-DQB**03
Ziphiidae	Megr-U18-013	Megr-DRA**01		Megr-DRB-a**02	Megr-DRB-a**03	Megr-DQA**01	Megr-DQA**02	Megr-DQB**02	
Delphinidae	Sbr-04-FP03	Stbr-DRA**01		Stbr-DRB-a**01		Stbr-DQA**01		Stbr-DQB**01	Stbr-DQB**02
Delphinidae	Sbr-07-SA03	Stbr-DRA**01		Stbr-DRB-a**02	Stbr-DRB-a**03	Stbr-DQA**01		Stbr-DQB**03	Stbr-DQB**02
Delphinidae	Sco-M1	Stco-DRA**01				Stco-DQA**01		Stco-DQB**01	
Delphinidae	Ttr05-BOI106	Tutr-DRA**01		Tutr-DRB-a**03		Tutr-DQA**01	Tutr-DQA**02	Tutr-DQB**01	
Delphinidae	Ttr-JB04-05	Tutr-DRA**01		Tutr-DRB-a**03		Tutr-DQA**03		Tutr-DQB**04	
Delphinidae	Tutr-U18-059	Tutr-DRA**02	Tutr-DRA**03	Tutr-DRB-a**01	Tutr-DRB-a**02			Tutr-DQB**02	Tutr-DQB**03
Ziphiidae	Zca-NZ12-99	Zica-DRA**01		Zica-DRB-a**01	Zica-DRB-a**02	Zica-DQA**01		Zica-DQB**01	
Ziphiidae	Zica-U19-001	Zica-DRA**01		Zica-DRB-a**03	Zica-DRB-a**01	Zica-DQA**01	Zica-DQA**02	Zica-DQB**01	Zica-DQB**02

Table S8: List of curated alleles from current study

Curated alleles from the current study and how they correspond to previously described alleles on GenBank or in published genome assemblies. Light red shading indicates allele was called with less than 20 reads. Yellow shading indicates alleles include stop codons in reading frame and predicted to be non-functional. Accession numbers of GenBank sequences are given, accession numbers for genome assemblies can be found in TableS1. Green text highlights alleles which sequences were found on GenBank or genome assemblies.

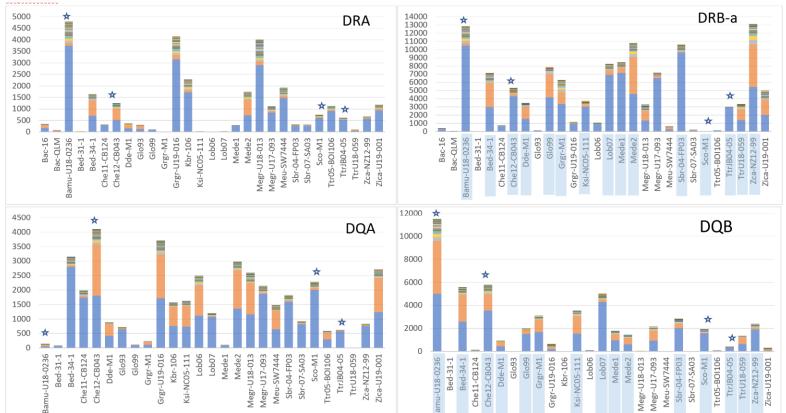
	same allele as	same allele as in	
DRA	allele	genome assembly	GenBank
Baac**01	Meno, Bamu	Meno, Bamu, Baac	
Baac**02			
Baed**01	Babo	Bari	Baom-DRA*01_EF375605
Baed**02			
Bamu**01	Meno, Baac	Meno, Bamu, Baac	
Cehec**01			Deca-DRA*0101_FM986350
Cehec**02			
Dede**01			
Dede**02			Deca-DRA*01_EF375603, Stco-DRA*04_EF375588
Euau**01		Euau, Eugl	
Euau**02			
Glme**01	Grgr	Glme	Grgr-DRA*0101_FM986351
Glme**02			
Grgr**01	Glme	Glme	Grgr-DRA*0101_FM986351
Kobr**01			
Kosi**01			
Mede**01	Megr, Meeu		
Mede**02			
Meeu**01	Mede, Megr		
Megr**01	Meeu, Mede		
Meno**01	Baac, Bamu	Meno, Bamu, Baac	
Laob**01		Saob	
Stbr**01		Stbr	
Stco**01			
Tutr**01		Tutr	Deca-DRA*0101_FM986350
Tutr**02			
Tutr**03			
Zica**01			

	same allele as in	
DRB	genome assembly	GenBank
Baac**01		
Baed**01		
Baed**02		
Bamu**01		Bamu94001-DRB*3c_DQ354666
Cehec**01		
Dede**01		
Dede**02		
Euau**01		
Euau**02		
Euau**03	Euau	
Euau**04		EuauWA9511-DRB*1c_DQ354677
Euau**05		EuauWA9511-DRB*1c_DQ354677
Euau**06		EuauWA9511-DRB*1c_DQ354677
Glme**01		
Glme**02		
Glme**03		
Grgr**01		
Grgr**02		
Grgr**03		
Kosi**01		
Mede**01		
Mede**02		
Meeu**02		
Meeu**03		
Megr**01		
Megr**02		
Megr**03		
Meno**01		MenoSEA88060-DRB*4c_DQ354685
Meno**02		
Meno**03		MenoCa91037-DRB*6_DQ354681, MenoGM90012-DRB*7 DQ354682
Meno**04		
Meno**05		MenoWA94020-DRB*5 DQ354687
Meno**06		_
Meno**07		
Meno**08		MenoWA94016-DRB*3_DQ354686
Meno**09		MenoSEA88060-DRB*2c_DQ354684
Meno**10		
Meno**11		
Meno**12		
Laob**01		CeheBP18-DRB_DQ354675
Stbr**01		
Stbr**02		
Stbr**03		
		(Tutr-DRB*04_EF507865, Tutr- DRB*06_EF507867, Tutr-
Tutr**01		DRB*05_EF507866) exon2 only
Tutr**02		
		(Tuad-DRB_EF017818, Tuad-
		DRB*07_EF507874, Tuad-
Tutr**03		DRB*05_EF507872) exon 2 only
Zica**01		

Zica**02 Zica**03

	same allele as in	
DQA	genome assembly	GenBank
Baed**01	Bari	
Bamu**01		
Bamu**02	Bamu	BamuCA9402-DQA_EU024800
Cehec**01		Cehe-DQA*02_EU024797
Cehec**02		Cehe-DQA*04_MH484168
Dede**01		Sogu-DQA4_FJ848540
Dede**02		
Euau**01	Eugl, Euau	Bamy9201-DQA_EU024801
Euau**02		
Glme**01		
Grgr**01		
		GlmeNZ207-DQA_EU024803,
Grgr**02	Stbr, Glme	Sogu-DQA3_FJ848539
Kobr**01		
Kobr**02		
Kosi**01		
Kosi**02		
Mede**01		
Mede**02		
Meeu**01		
Meeu**02		
Megr**01		
Megr**02		
Meno**01	Meno	
Laob**01		
Laob**02		Cehe-DQA*03_MH484167
		GlmeNZ207-DQA_EU024803,
Stbr**01	Stbr, Glme	Sogu-DQA3_FJ848539
Stco**01		
Tutr**01		
Tutr**02		TutrNZ17-DQA_EU024798
Tutr**03	Soch	
Zica**01		
Zica**02		

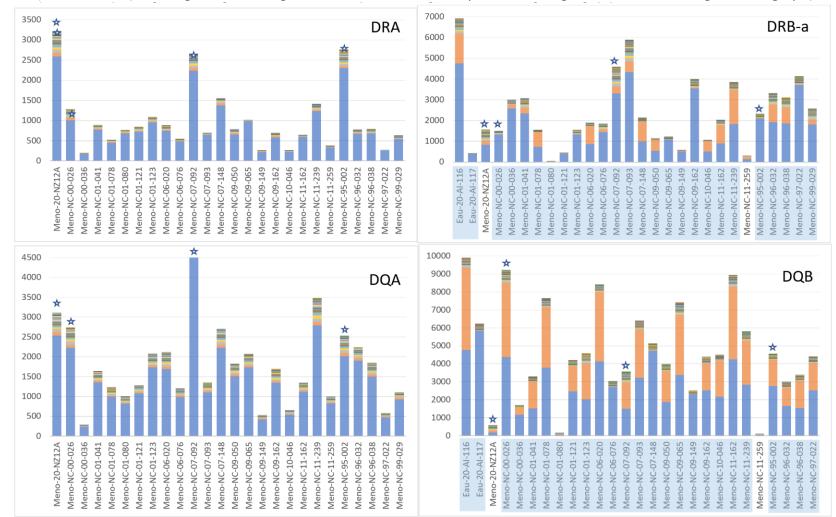
	same allele as in	
QB	genome assembly	GenBank
Baed**01		
Baed**02		
Bamu**01	Bamu	
Bamu**02		BamuGC-DQB*18_KJ179635
Cehec**01		CeheNI01-DQB*2_DQ354629
Cehec**02		Cehe-DQB*05 MH484170
Dede**01		Cehe-DQB*06 MH484171
Dede**02		Stco-DQB*16 KY119141
Euau**01		
Euau**02		
Euau**03		
Euau**04		
Euau**05		
Euau**06		
Euau**07		
Euau**08		
Euau 08 Euau**09		
Euau**09		
Euau**11		
Euau**12		
Euau**13		
Euau**14		
Euau**15		
Glme**01		
Grgr**01		
Grgr**02		
Grgr**03		
Grgr**04		
Kosi**01		
Kosi**02		
Mede**01		
Mede**02		
Mede**03		
Mede**04		
Megr**01		
Megr**02		
Megr**03		
Meno**01		MenoGB0003-DQB*12c DQ3
Meno**02		MenoSEA-DQB*21c DQ3546
Meno**03	Meno	
Meno**04	lineito	MenoCA-DQB*6c_DQ354647
Meno**05		MenoSEA-DQB*21c DQ3546
Meno**06		MenoCA-DQB*5c_DQ354646
Meno**07		
Meno**07		
Meno**09		
Meno**10		
Meno**11 Meno**12		
Meno**12		
Meno**13		
Meno**14		
Laob**01		
Stbr**01		CeheNI01-DQB*2_DQ354629
Stbr**02	Stbr	
Stbr**03		
Stco**01		Stco-DQB*17_KY119145
Tutr**01		Tutr-DQB*07_AB302050
Tutr**02		Tutr-DQB*10_AB302053
Tutr**03		Tutr-DQB*12_AB302055
Tutr**04		Tutr-DQB*09_AB302052
Zica**01		
Zica**02		



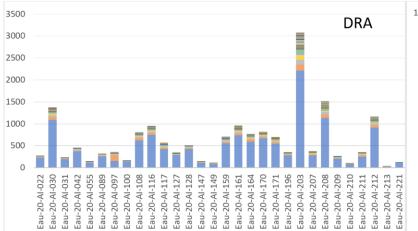
Supplementary Figures

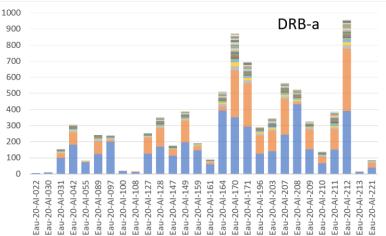
Figure S1: Read depths of clusters for each class IIa gene from all sequencing runs combined.

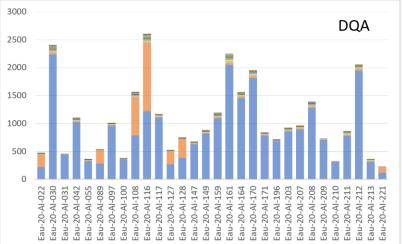
Samples with a star were technical repeat samples on the same plate. Samples and amplicons in blue shading were additionally sequenced on the MiSeq.



DRB-a




Humpback whales (including 2 Southern right whales for which read depth was too high to fit in Southern right whale graph)



Southern right whales

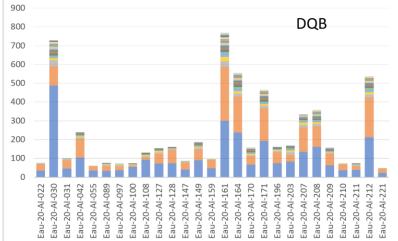
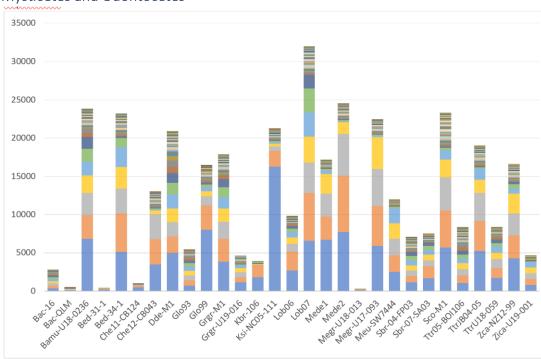
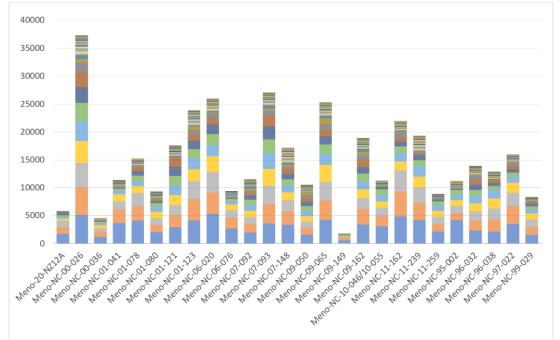




Figure S2: Read depths of clusters for each class I gene from all sequencing runs combined.

Mysticetes and Odontocetes

Humpback whales

14

Southern right whales

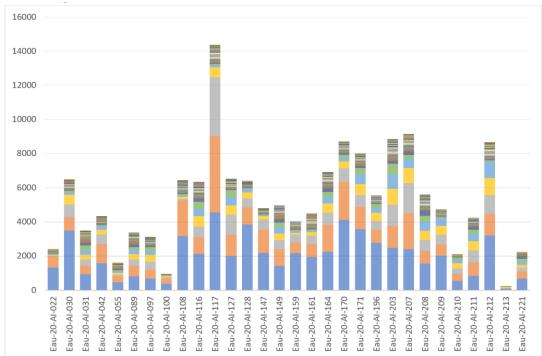
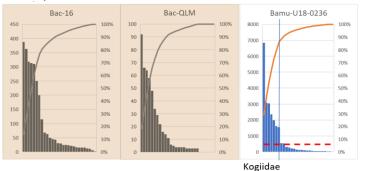
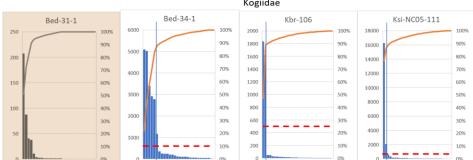
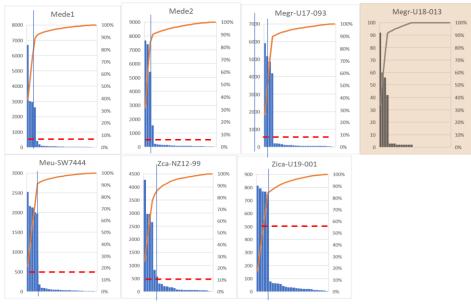
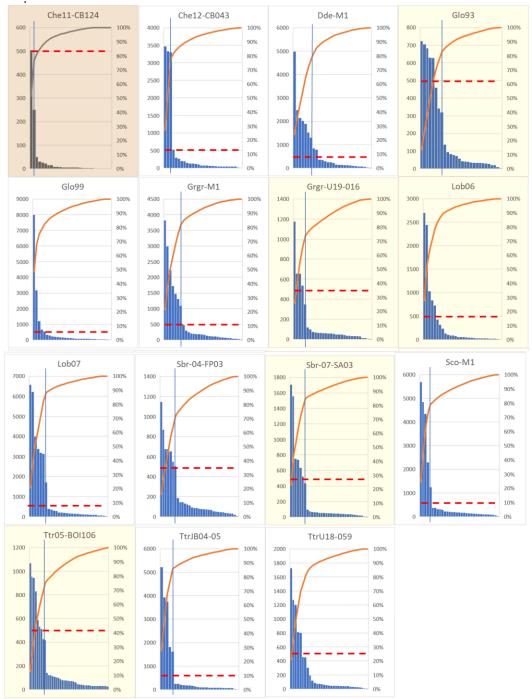
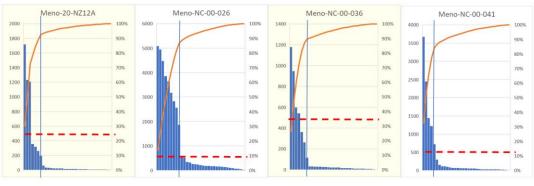




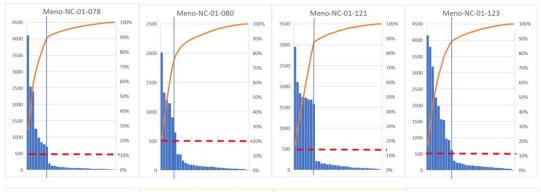
Figure S3: Degree of change (DoC) curves for class I amplicon reads for combined runs. Graphs shaded in red were excluded from further analysis due to low overall read numbers. The dashed red line indicates 500 reads.

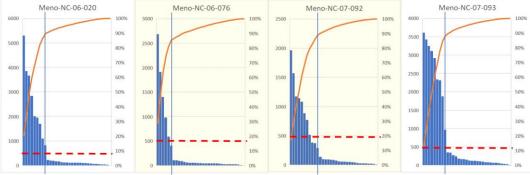

Mysticetes and Odontocetes

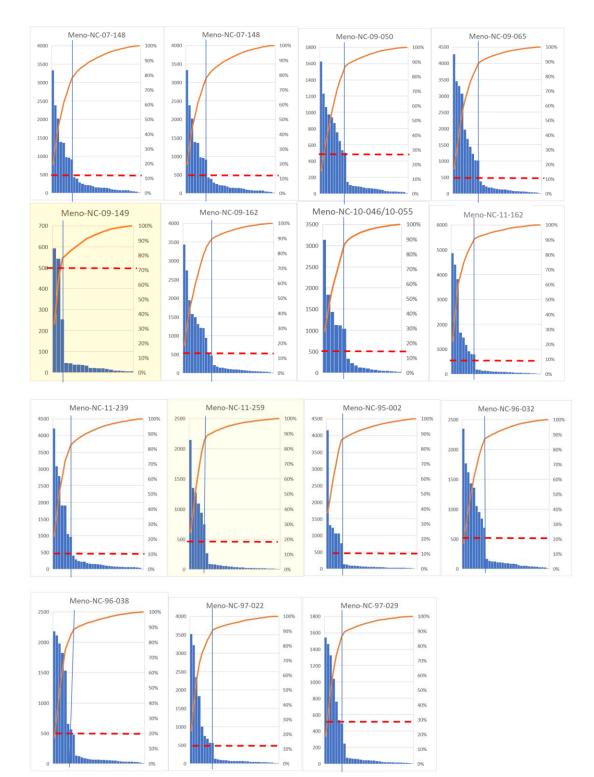
Balenopteridae



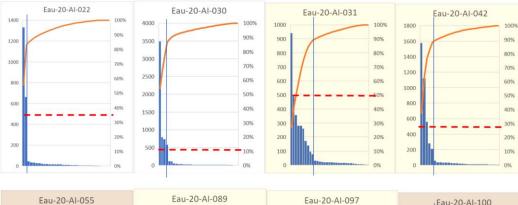

Ziphiidae

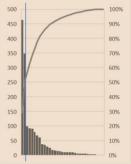


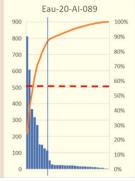

Delphinidae

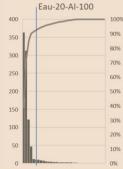


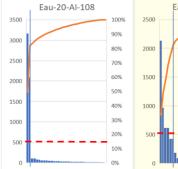
Humpback whales

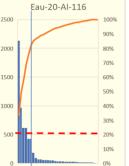


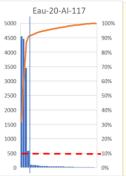


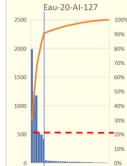


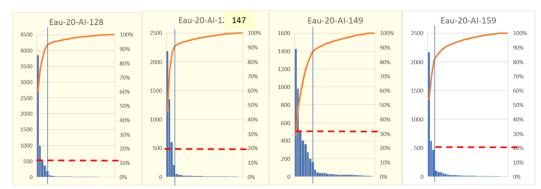

Southern right whales

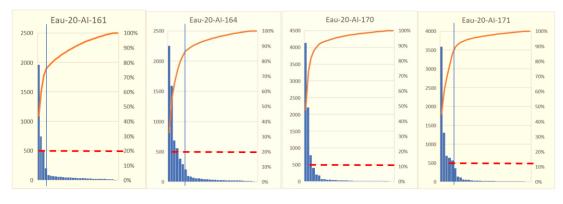


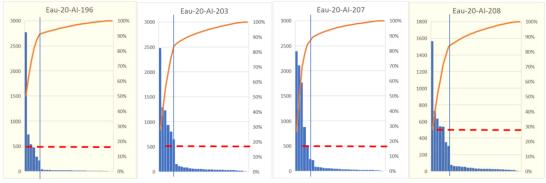


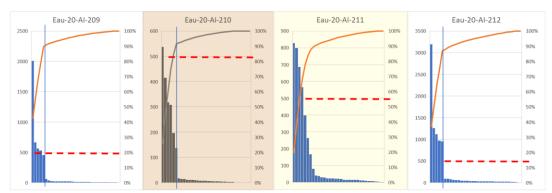












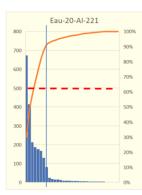
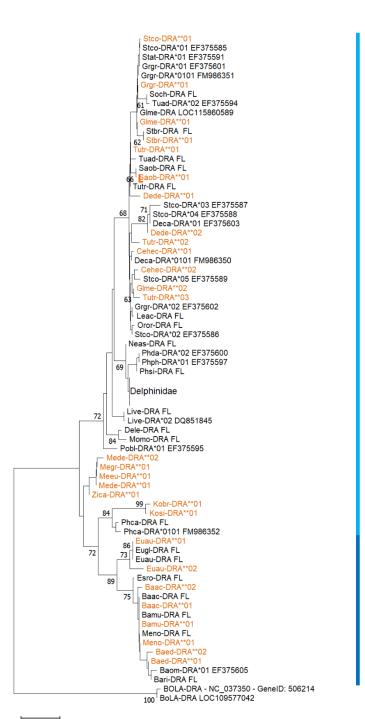


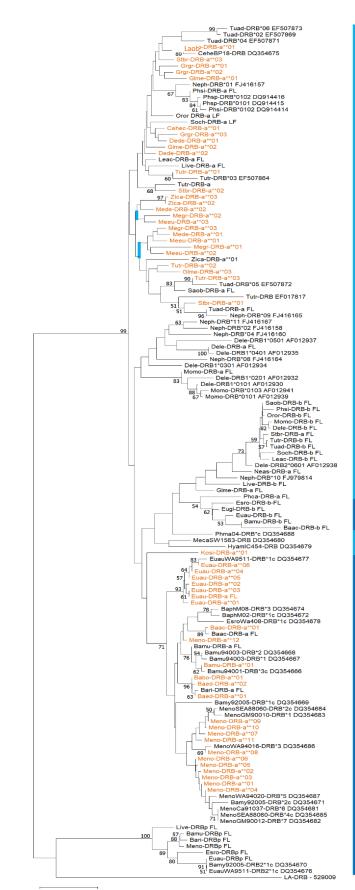
Figure S4: DQB and DRB alignment of genes at amplicon length from genomes

A)

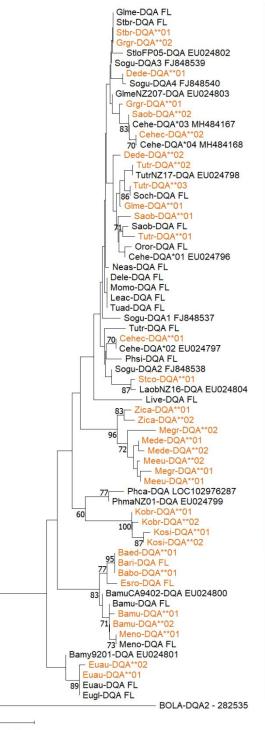
A) DQB and B) DRB alignment of genes at amplicon length from genomes (see accession numbers Table 1S) with exon 2 coding sequence indicated in orange in the consensus sequence. Primer binding sites for DQB2 (forward; dark green) and DQB1 (reverse, light green) primers for each sequence are shown, respectively, under the sequence. These are only shown if the primers bind to the sequence with a maximum of four mismatches Mismatches of the primer binding sequence are shown in yellow within the primer. Nucleotide bases are coloured (A = red, C = blue, G = yellow, T = green). Grey indicates the same nucleotide base as the consensus and only mismatches to the consensus sequence are shown. Mean pairwise identity over all sequences is shown in green where (Green: 100% identity; Greeny-brown: at least 30% and under 100% identity; Red: below 30% identity). DRB primer binding sites are also shown in B) for DRB-a gene sequences.

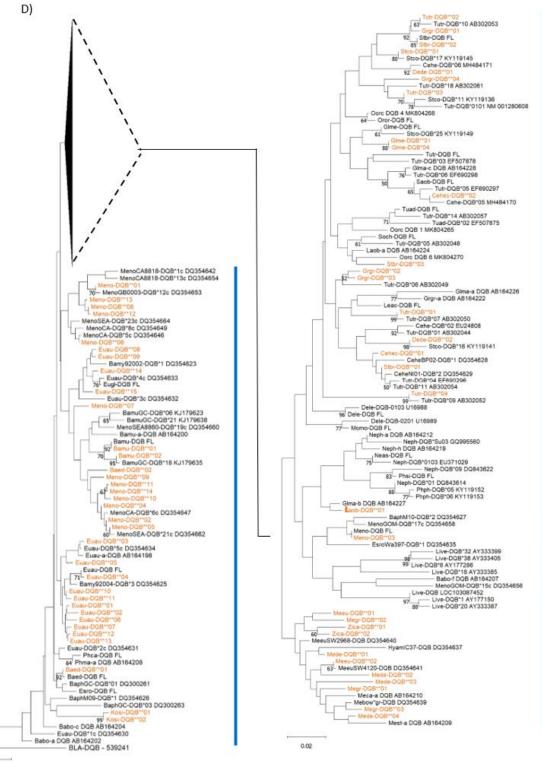

, ()	1 50	100	150	200	250	300	350 391
Consensus							
Identity				CDS			
Bari-DQB HiC_scf_7_trsf LOC118903936				1			
Esro-DQB HiC_scf_14_trsf LOC118903936	П				Ĩ	DQB-1 C/G TG C/	
Euau-DQB_HiC_scf_21_trsf LOC118903936		C/ĂĂĊT/C	DQB-2			DQB-1 C/G TG C/	
Eugl-DQB_HiC_scf_10_trsf LOC118903936	<u> </u>					DQB-1 T/G TG C/	
Bamu-DQB_LOC118903936		C/Á Á Č T/C	DQB-2			DQB-1 T/G TG C/	
Meno-DQB_trsf LOC118903936	11					DQB-1 C/G TG C/	
Dele-DQB_LOC111178925			C DQB-2			DQB-1 C/G TG C/	
Neas-DQB_LOC112406849			$\langle -$		11	DQB-1 T/G TG C/	
Tuad-DQB HiC_scf_14_trsf TUTR-DQB		C/Á Á Č T/C	DQB-2		1.11	DQB-1 T/G TG TG C	Л
Leac-DQB_HiC_scf_10_trsf TUTR-DQB				1		DQB-1 T/G TG C/	
Oror-DQB_trsf TUTR-DQB			QB-2			DQB-1 T/G TG C/	
Soch-DQB_trsfTUTR-DQB			QB-2	1	1	DQB-1 G/T T T/G T	G C/T
Momo-DQB_LOC114907849			, 🚺 📘		1		
Glme-DQB_LOC115860591			, 111			DOB-1 C/G TG C/	
Saob-DQB_LOC113631214		T/C C D	QB-2			DQB-1 T/G TG C/	
Tutr-DQB_TUTR-DQB	11		,	1	i 1		
Phsi-DQB_LOC116762318		T/C C D	QB-2		111	DQB-1 T/G TG C/	
Stbr-DQB_HiC_scf_15_trsf TUTR-DQB			, 111	1		DQB-1 T/G TG TG C	
Phca-DQB_LOC111178925		T/C C D			D	QB-1 C/G TG C/T T/G	
Live-DQB_LOC103087452			, 		1 1	DQB-1 A/C C C/G TO	
		C/A A C T/C	DQB-2			DQB-1 C/G TG C/	

В)		
Consensus		400 441
Identity		
Baac-DRB-a_LOC103002985		
Bamu-DRB-a_LOC118903938		CeLA_DRB1-6,3
Bari-DRB-a-HiC_scf_7_trsf LOC118903938		CeLA_DRB1-6,3
Euau-DRB-a_HiC_scf_21_trsf LOC118903938		CeLA_DRB1-6,3
Dele-DRB-a_LOC111178928		CeLA DRB1-6,3
Leac-DRB-a_HIC_scf_10_trsf LOC101336370		CeLA_DRB1-6,3
Phsi-DRB-a_LOC116762320		CeLA_DRB1-6,3
Soch-DRB-a_trsf LOC101336370		CeLA_DRB1-6,3
Tutr-DRB-a_LOC101336370		CeLA_DRB1-6,3
Live-DRB-a_LOC103087297		CeLA_DRB1-6,3
Momo-DRB-a_LOC114907846	A/G CeLA DRB1-5,955 F	CeLA DRB1-6,3
Saob-DRB-a_LOC113631214		CeLA_DRB1-6,3
Tuad-DRB-a_HiC_scf_14- trsf LOC101336370		CeLA_DRB1-6,3
Neas-DRB-a_LOC112406848 Bamu-DRB-b_LOC118903935 Dele-DRB-b_LOC11178929 Morro-DRB-b_LOC11407847 Phsi-DRB-b_LOC11407847 Urad-DRB-b_HiC_scf14_trsfLOC117307523 Tud-DRB-b_HiC_scf14_trsfLOC117307523 Stbr-DRB-a_HiC_scf_15_trsfLOC101336370 Sab-DRB-b_trsfLOC117307523		CeLA DRB1-6,3
Glme-DRB-a_LOC115860591 Soch-DRB-b_trsf LOC117307523 Leac-DRB-b_HiC_scf_10_trsf LOC117307523 Live-DRB-b_LOC103085996		
Phca-DRB-a_LOC102973764 Eugl-DRB-b_HiC_scf_10_trsf LOC118903935	T/A, A/T C/G T/C DQB-2 DQB-1 C/G, C/T	n I I
Euau-DRB-b_HiC_scf_21_trsf LOC118903935 Esro-DRB-b-HiC_scf_14_trsf LOC118903935	T/A, AT C/G T/C DQB-2 DQB-1 C/G, CT	
	T/A, A/T C/G T/C DQB-2 DQB-1 C/G, C/T	


Figure S5: Neighbor-Joining phylogenetic trees for amplicon length genes for A) DRA, B) DRB, C) DQA, and D) DQB.

Alleles from genome assemblies are labelled FL, alleles found in our study are marked with ** and in red while alleles from Genbank contain their Genbank accession number. Accession numbers for genome assemblies can be found in Table S1. Light blue indicates toothed whales (odontocetes) and dark blue for baleen whales (mysticetes).


A)


B)

C)

0.02

27

.....

Acknowledgements and references for genome assemblies as provided on DNA-Zoo

Genome assemblies from 25 species were downloaded from DNA Zoo and investigated for MHC class I and class IIa regions. Five of those assemblies (shaded in red) were not used further due to fragmented or missing MHC regions. DNA Zoo genomes were scaffolded with Hi-C data using 3D-DNA (Dudchenko et al., 2017) and reviewed in Juicebox Assembly Tools (Dudchenko et al., 2018). More details on the methodology are available at <u>www.dnazoo.org/methods</u>.

		four letter			
Common name	Organism name	code	Database		Reference
North Atlantic right whale	Eubalaena glacialis	Eugl	DNA Zoo	https://www.dnazoo.org/assemblies/Eubalaena glacialis	1)
Southern right whale	Eubalaena australis	Euau	DNA Zoo	https://www.dnazoo.org/assemblies/Eubalaena australis	2)
Fin whale	Balaenoptera physalus	Baph	DNA Zoo	https://www.dnazoo.org/assemblies/Balaenoptera_physalus	3)
Gray whale	Eschrichtius robustus	Esro	DNA Zoo	https://www.dnazoo.org/assemblies/Eschrichtius_robustus_	4)
Humpback whale	Megaptera novaeangliae	Meno	DNA Zoo	https://www.dnazoo.org/assemblies/Megaptera_novaeangliae	5)
Rice's whale	Balaenoptera ricei	Bari	DNA Zoo	https://www.dnazoo.org/assemblies/Balaenoptera ricei	6)
Atlantic spotted dolphin	Stenella frontalis	Stfr	DNA Zoo	https://www.dnazoo.org/assemblies/Stenella_frontalis	7)
Atlantic white-sided dolphin	Lagenorhynchus acutus	Laac	DNA Zoo	https://www.dnazoo.org/assemblies/Lagenorhynchus_acutus	8)
Clymene dolphin	Stenella clymene	Stcl	DNA Zoo	https://www.dnazoo.org/assemblies/Stenella_clymene	9)
Commerson's dolphin	Cephalorhynchus commersonii	Ceco	DNA Zoo	https://www.dnazoo.org/assemblies/Cephalorhynchus_commersonii	10)
Bottlenose dolphin	Tursiops truncatus	Tutr	DNA Zoo	https://www.dnazoo.org/assemblies/Tursiops_truncatus	11)
Eastern spinner dolphin	Stenella longirostris	Stlo	DNA Zoo	https://www.dnazoo.org/assemblies/Stenella_longirostris_orientalis_	12)
Indo-Pacific bottlenose dolphin	Tursiops aduncus	Tuad	DNA Zoo	https://www.dnazoo.org/assemblies/Tursiops_aduncus	13)
Killer whale	Orcinus orca	Oror	DNA Zoo	https://www.dnazoo.org/assemblies/Orcinus_orca	14)
Long-finned pilot whale	Globicephala melas	Glme	DNA Zoo	https://www.dnazoo.org/assemblies/Globicephala_melas	15)
Pacific white-sided dolphin	Sagmatias obliquidens	Saob	DNA Zoo	https://www.dnazoo.org/assemblies/Lagenorhynchus_obliquidens	16)
Pantropical spotted dolphin	Stenella attenuata	Stat	DNA Zoo	https://www.dnazoo.org/assemblies/Stenella_attenuata	17)
Risso's dolphin	Grampus griseus	Grgr	DNA Zoo	https://www.dnazoo.org/assemblies/Grampus_griseus	18)
Rough-toothed dolphin	Steno bredanensis	Stbr	DNA Zoo	https://www.dnazoo.org/assemblies/Steno_bredanensis	19)
Pygmy sperm whale	Kogia breviceps	Kobr	DNA Zoo	https://www.dnazoo.org/assemblies/Kogia_breviceps	20)
Beluga	Delphinapterus leucas	Dele	DNA Zoo	https://www.dnazoo.org/assemblies/Delphinapterus_leucas	21)
Harbor porpoise	Phocoena phocoena	Phoh	DNA Zoo	https://www.dnazoo.org/assemblies/Phocoena_phocoena	22)
Blainville's beaked whale	Mesoplodon densirostris	Mede	DNA Zoo	https://www.dnazoo.org/assemblies/Mesoplodon_densirostris	23)
Gervais' beaked whale	Mesoplodon europaeus	Meeu	DNA Zoo	https://www.dnazoo.org/assemblies/Mesoplodon_europaeus	24)
Stejneger's beaked whale	Mesoplodon stejnegeri	Mest	DNA Zoo	https://www.dnazoo.org/assemblies/Mesoplodon_steinegeri	25)

Mysticetes

1) North Atlantic right whale

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al., 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by NOAA/T. Rowles/B. Bonde and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

2) Southern Right whale

This assembly was generated in collaboration with the University of Auckland.

3) Fin whale

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. The sample for the assembly was collected by The Marine Mammal Center under the Marine Mammal Health and Stranding Program (MMHSPR) Permit No. 18786-04 issued by the National Marine Fisheries Service (NMFS) in accordance with the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The work at DNA Zoo was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03.

4) Gray whale

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. Work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by Pam Tuomi (Alaska Sealife Center) from Girdwood, Alaska and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program and the Alaska Marine Mammal Tissue Archival Project.

5) Humpback whale

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details.

6) Rice's whale

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen(s) used in this study were collected by the NMFS Panama City Lab/Lydia Staggs and provided by the National Marine Mammal Tissue Bank, which is maintained in the Marine Environmental Specimen Bank (Marine ESB) at NIST, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

Odontocetes

7) Atlantic spotted dolphin

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program

(MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by Wayne McFee and Jessica Conwa (NOAA) and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

8) Atlantic white-sided dolphin

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by Wayne McFee (NOAA) and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

9) Clymene dolphin

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study (Field ID WAM 602; Storage ID NM15K707C) was collected from from Topsail Island, NC by Bill McLellan (UNCW), and provided by the National Marine Mammal Tissue Bank, which is maintained in the Marine Environmental Specimen Bank (Marine ESB) at NIST, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

10) Commerson's dolphin

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details.

11) Bottlenose dolphin

Neely, B.A. "The genome of the Atlantic bottlenose dolphin (Tursiops truncatus)." Unpublished. https://www.ncbi.nlm.nih.gov/nuccore/MRVK00000000.1

12) Eastern Spinner dolphin

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details.

This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by Wayne McFee and Jessica Conwa (NOAA) and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

13) Indo-Pacific bottlenose dolphin

Vijay, Nagarjun, Chungoo Park, Jooseong Oh, Soyeong Jin, Elizabeth Kern, Hyun Woo Kim, Jianzhi Zhang, and Joong-Ki Park. 2018. "Population Genomic Analysis Reveals Contrasting Demographic Changes of Two Closely Related Dolphin Species in the Last Glacial." Molecular Biology and Evolution 35 (8): 2026-33. <u>https://doi.org/10.1093/molbev/msy108</u>.

14) Killer whale

Foote, Andrew D., Yue Liu, Gregg W. C. Thomas, Tomas Vinar, Jessica Alfoldi, Jixin Deng, Shannon Dugan, et al. 2015. "Convergent Evolution of the Genomes of Marine Mammals." Nature Genetics 47 (3): 272-75. https://doi.org/10.1038/ng.3198.

15) Long-finned pilot whale

Culibrk,L., Leelakumari,S., Taylor,G.A., Tse,K., Cheng,D., Chuah,E., Kirk,H., Pandoh,P., Troussard,A., Zhao,Y., Mungall,A., Moore,R., Bourque,L., Daoust,P.-Y., Jones,M., Ortenburger,A., Marra,M.A. and Jones,S.J.M. "The genome of the Pilot Whale (Globicephala melas)." Unpublished. <u>https://www.ncbi.nlm.nih.gov/nuccore/SWEB00000000.1</u>.

16) Pacific white-sided dolphin

Culibrk,L., Leelakumari,S., Taylor,G.A., Tan,R., Tse,K., Cheng,D., Chuah,E., Kirk,H., Macleod,T., Pandoh,P., Troussard,A., Zhao,Y., Mungall,A.J., Moore,R., Marra,M.A., Haulena,M. and Jones,S.J.M. "The genome of the whitesided dolphin."

Unpublished. <u>https://www.ncbi.nlm.nih.gov/nuccore/RCWK0000000.1</u>.

17) Pantropical spotted dolphin

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen(s) used in this study were collected by the NMFS Panama City Lab/Lydia Staggs and provided by the National Marine Mammal Tissue Bank, which is maintained in the Marine Environmental Specimen Bank (Marine ESB) at NIST, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

18) Risso's dolphin

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This sample was collected by The Marine Mammal Center under the Marine Mammal Health and Stranding Program (MMHSPR) Permit No. 18786-04 issued by the National Marine Fisheries Service (NMFS) in accordance with the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The work at DNA Zoo was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03.

19) Rough-toothed dolphin

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This sample was collected by The Marine Mammal Center under the Marine Mammal Health and Stranding Program (MMHSPR) Permit No. 18786-04 issued by the National Marine Fisheries Service (NMFS) in accordance with the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The work at DNA Zoo was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03.

20) Pygmy sperm whale

Genereux, D.P., Serres, A., Armstrong, J., Johnson, J., Marinescu, V.D., Murén, E., Juan, D., Bejerano, G., Casewell, N.R., Chemnick, L.G., Damas, J., Di Palma, F., Diekhans, M., Fiddes, I.T., Garber, M., Gladyshev, V.N., Goodman, L., Haerty, W., Houck, M.L., Hubley, R., Kivioja, T., Koepfli, K.-P., Kuderna, L.F.K., Lander, E.S., Meadows, J.R.S., Murphy, W.J., Nash, W., Noh, H.J., Nweeia, M., Pfenning, A.R., Pollard, K.S., Ray, D.A., Shapiro, B., Smit, A.F.A., Springer, M.S., Steiner, C.C., Swofford, R., Taipale, J., Teeling, E.C., Turner-Maier, J., Alfoldi, J., Birren, B., Ryder, O.A., Lewin, H.A., Paten, B., Marques-Bonet, T., Lindblad-Toh, K., Karlsson, E.K., Zoonomia Consortium, 2020. A comparative genomics multitool for scientific discovery and conservation. Nature 587, 240–245. https://doi.org/10.1038/s41586-020-2876-6.

21) Beluga

Jones, Steven J. M., Gregory A. Taylor, Simon Chan, Rene L. Warren, S. Austin Hammond, Steven Bilobram, Gideon Mordecai, et al. 2017. "The Genome of the Beluga Whale (Delphinapterus Leucas)." Genes 8 (12): 378. <u>https://doi.org/10.3390/genes8120378</u>.

22) Harbor porpoise

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by Carol A. Stephens and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the

direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program and the Alaska Marine Mammal Tissue Archival Project.

23) Blainville's beaked whale

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by Wayne McFee (NOAA) and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

24) Gervais' beaked whale

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by NOAA Wayne McFee and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program.

25) Stejneger's beaked whale

The draft assembly was generated by the DNA Zoo team from short insert-size PCR-free DNA-Seq data using w2rap-contigger (Clavijo et al. 2017), see (Dudchenko et al., 2018) for details. This work was performed under Marine Mammal Health and Stranding Response Program (MMHSRP) Permit No. 18786-03 issued by the National Marine Fisheries Service (NMFS) under the authority of the Marine Mammal Protection Act (MMPA) and Endangered Species Act (ESA). The specimen used in this study was collected by Pam Tuomi (ASLC) and provided by the National Marine Mammal Tissue Bank, which is maintained by the National Institute of Standards and Technology (NIST) in the NIST Biorepository, and which is operated under the direction of NMFS with the collaboration of USGS, USFWS, MMS, and NIST through the Marine Mammal Health and Stranding Response Program and the Alaska Marine Mammal Tissue Archival Project.

References

Clavijo, B. J., Accinelli, G. G., Wright, J., Heavens, D., Barr, K., Yanes, L., & Di-Palma, F. (2017). W2RAP: a pipeline for high quality, robust assemblies of large complex genomes from short read data. *BioRxiv*, 110999.

https://www.biorxiv.org/content/10.1101/110999v1%0Ahttps://www.biorxiv.org/content/10.1 101/110999v1.abstract

- Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S., Machol, I., Lander, E. S., Aiden, A. P., & Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. *Science*, 356(6333), 92–95. https://doi.org/10.1126/science.aal3327
- Dudchenko, O., Shamim, M. S., Batra, S. S., Durand, N. C., Musial, N. T., Mostofa, R., Pham, M., Hilaire, B. G. S., Yao, W., Stamenova, E., Hoeger, M., Nyquist, S. K., Korchina, V., Pletch, K., Flanagan, J. P., Tomaszewicz, A., McAloose, D., Estrada, C. P., Novak, B. J., ... Nathaniel, T. (2018). The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under \$1000. *BioRxiv*, 254797. https://www.biorxiv.org/content/early/2018/01/28/254797%0Ahttps://www.biorxiv.org/conte nt/early/2018/01/28/254797?utm_content=buffer421d5&utm_medium=social&utm_source=t witter.com&utm_campaign=buffer