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Abstract : 

Depredation has become a major concern worldwide as it jeopardises both socio-economic activities and 
species conservation. While modelling can help to inform the management of these conflicts, 
effectiveness may be hampered by the complexity of interactions that depredation generates within socio-
ecological systems. Based on a systematic literature review, we summarised current practices and 
identified major gaps and research priorities for depredation modelling. We found that 74% of reviewed 
studies used statistical models to quantify depredation levels, identify environmental or anthropogenic 
factors influencing these levels or assess the effectiveness of specific mitigation measures. Only 8% of 
studies used models incorporating elements related to the three main entities involved in depredation: 
human activity, depredating species and depredated resource. Such integrated modelling approaches 
are however crucial to comprehensively assess management trade-offs. Thus, we highlighted future 
research priorities to comprehensively model depredation and inform the management of human-wildlife 
conflicts. 

Highlights 

► We carried out a systematic review to identify relevant approaches to study specific aspects of 
depredation through modelling. ► We found statistical models to be predominantly used. ► We identified
the main factors driving depredation modelling efforts. ► We provided recommendations for effective 
depredation modelling. ► We highlighted research priorities to comprehensively model depredation.
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1. Introduction 

The acceleration of human population growth in the second half of the 20th century has led to 

an intensification of conflicts between people and wildlife, commonly called human-wildlife 

conflicts (Nyhus, 2016; Woodroffe et al., 2005). Human-wildlife conflicts include threats posed 

by wildlife to human life, economic security, or recreation as well as negative human 

perceptions or actions against wild populations considered as a threat for human safety, health, 

food, and infrastructure (e.g. culling of top predators such as wolves; see overview in Nyhus, 

2016). Depredation, a behaviour developed by wild animals when feeding on resources raised 

or exploited by humans, is at the root of many of these conflicts (Sillero and Laurenson, 2001). 

Depredation has been reported worldwide from both terrestrial and marine ecosystems, and 

includes crop raiding by terrestrial herbivores (Barnes and Douglas-Hamilton, 1982), attacks 

on livestock by terrestrial predators (Dickman and Hazzah, 2016), and marine predators (mainly 

sharks and marine mammals) removing fish from fishing gear or aquaculture farms (Mitchell 

et al., 2018; Read, 2008; Tixier et al., 2021). 

Depredation can induce complex changes in socio-ecosystems by affecting both the 

depredating species and the resources raised or exploited by humans (i.e. crop, livestock, 

farmed fish, wild fish). The main effects of depredation are threefold. First, it can lead to direct 

interactions between the depredating species and humans or equipment, exposing depredating 

individuals to risks of death or injuries through lethal retaliation/control or incidental capture 

(Azevedo et al., 2017; Dans et al., 2003). Second, as depredation facilitates access to food, it 

can change the ecological role of the depredating species and alter natural ecosystem 

interactions (Clavareau et al., 2020). Third, depredation can compromise the profitability of 

human activities by decreasing yield or damaging equipment (Dickman and Hazzah, 2016; 

Wickens et al., 1992). For instance, killer whales (Orcinus orca) and sperm whales (Physeter 

macrocephalus) were found to remove an estimated 15 M US$ worth of fish from fishing lines 

every year in subantarctic fisheries (Tixier et al., 2020). In the United States, the estimated cost 

of the white-tailed deer (Odocoileus virginianus) raiding on crops was 619 M US$ in 2001 

(NASS, 2002).  

While ecological modelling (e.g. Lotka-Volterra prey-predator dynamic modelling) 

historically targeted theoretical questions rather than practical applications for natural resource 

management, enhanced computing facilities have facilitated the emergence of a diversity of 

modelling approaches that now routinely support decision-making for environmental and 

fisheries management (Badham et al., 2019; Colléter et al., 2015; Fulton et al., 2011; Geary et 
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al., 2020). Similarly, a range of socio-ecological modelling approaches have emerged to 

characterise the complex and multi-faceted aspects of depredation. These approaches are 

diverse, and include studies using, for instance, statistical approaches such as generalized-

linear-mixed models (Kiffner et al., 2021), Bayesian isotope mixing models (Reitsema et al., 

2020) or hidden Markov models (Mul et al., 2020). Mechanistic approaches have also been 

developed such as economic models (Loch-Temzelides et al., 2020) or mass-balance food web 

models (Clavareau et al., 2020). Conceptual models have also been used (Beck et al., 2019). 

Certain approaches can integrate heterogeneous data sources to capture processes and 

interactions between major environmental, biological, and socio-anthropogenic components of 

socio-ecosystems. In particular the data may concern the three main components of 

depredation: human activity, depredating and depredated species, but also information 

regarding the ecosystem that hosts these three conflict actors or the mitigation methods in place. 

In a depredation context, modelling can thus provide valuable means to test hypotheses and 

identify influential drivers of complex dynamics, to assess the consequences of alternative 

management scenarios and to guide interventions to enhance socio-ecosystem resilience and 

sustainability (Dambacher et al., 2015; Gourguet et al., 2021; Marzloff et al., 2016). However, 

given the complexity and diversity of impacts associated with depredation, it can be difficult to 

choose the appropriate modelling approach, which not only depends on the depredation context 

but also on data availability (Tixier et al., 2021). 

In this study, based on a systematic literature review across terrestrial and marine cases 

of depredation, we summarise the current use of modelling approaches and identify approaches 

that are suitable to study specific aspects of depredation. To this end, we refined a systematic 

classification of all relevant papers according to (1) modelling approaches, (2) study purposes, 

as well as (3) types of socio-ecological components explicitly considered. Identified knowledge 

gaps lead us to the proposal of future depredation research and modelling directions, including 

the integration of all available knowledge into interdisciplinary models that comprehensively 

capture the key aspects of socio-ecological systems affected by depredation. Such integrated 

models are critical to inform effective socio-ecosystem management when facing human-

wildlife conflicts.  

2. Methods 
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2.1. Systematic review process 

We conducted a systematic review of the scientific literature covering studies that used 

modelling to study depredation. Based on a number of initial trials to test for the sensitivity of 

the literature search according to specific terms, we finalised a combination of search terms as 

follows. We used (a) “depredation” as the primary search term and combined it with specific 

terms for depredation on four resource types. For depredation on crops, we added (b) ‘crop 

raiding’ OR ‘crop damage’, for depredation on livestock (c) ‘livestock attack’ OR ‘livestock 

damage’, for depredation on farmed fish (d) ‘stock attack’ OR (‘aquaculture’ AND 

‘interaction’), and for depredation on fishery catches (e) ‘catch remov*’ OR ‘catch damage’. 

These specific terms were combined with (f) ‘wildlife’ OR ‘predat* to focus on damage caused 

by wild species, as well as (g) ‘mammal*’ OR ‘shark*’ commonly observed depredating in the 

marine realm. Terms such as (h) ‘law’, ‘chemi*’, ‘nest*’ or ‘bacteri*’ were excluded to restrict 

the search to publications addressing depredation in a human-wildlife conflict context. To focus 

the search on studies that used a modelling approach, we added (i) ‘model*’ to the set of search 

terms. This resulted in the following final search equation: 

((𝑎 𝑂𝑅 𝑏 𝑂𝑅 𝑐 𝑂𝑅 𝑑 𝑂𝑅 𝑒 ) 𝐴𝑁𝐷 (𝑓 𝑂𝑅 𝑔)) 𝑁𝑂𝑇 ℎ 𝐴𝑁𝐷 𝑖 

which was used to search in abstracts, keywords and titles of studies published between 1995 

and 2021 (April 20) and referenced by the Web of Science (WoS) in all fields.  

2.2. Preliminary paper screening, data coding and extraction  

The search equation yielded a total of 774 publications (cf. fill list provided in Table B1), 

among which 312 (40%) were considered relevant for this review based on initial screening of 

titles and abstracts, as they were indeed relying on modelling approaches to study depredation. 

The remaining publications were discarded either because modelling was only mentioned or 

discussed (rather than effectively used as a methodology), or because they were found to focus 

on natural predation rather than depredation.  

For each of the retained 312 publications, we collected the following information:  type 

of human activity and nature of the exploited or produced resource subject to depredation; realm 

(terrestrial or marine); depredating species taxa; geographic location of the case study (countries 

for terrestrial and FAO major fishing areas for marine cases); primary purpose of the study; 

and, type of modelling approach(es) and type of model(s) used as well as the variables captured 

in the model(s).  

Jo
urn

al 
Pre-

pro
of



5 
 

To categorise identified publications according to their dominant modelling purpose, 

we used the major socio-ecological aspects of depredation identified in Tixier et al. (2021) to 

define six categories: (1) the “perception” category for studies investigating human perception 

of depredation or depredating species; (2) the “depredating species ecology” category for 

publications assessing either the distribution, diet and population size or dynamics of 

depredating species; (3) the “factors influencing depredation” category for studies that mainly 

focused on the environmental or anthropogenic factors influencing depredation or the number 

of depredating individuals; (4) the “quantification of depredation” category for publications 

that either assessed the risk (probability), rate or frequency of depredation events, or the change 

in yield caused by depredation (without quantifying socio-economic consequences); (5) the 

“socio-economic consequences” category for publications focusing on the financial or 

employment consequences of depredation (i.e. profitability or sustainability of food production 

or exploitation activities); (6) the “mitigation” category for publications investigating ways to 

mitigate depredation or to assess the effectiveness of mitigation management measures. 

Modelling approaches were first grouped into three broad categories, namely: statistical, 

mechanistic or conceptual; and then further assigned to subcategories as follows. Statistical 

models were further categorised as simple (e.g. regression) or advanced statistical models (e.g. 

hidden Markov models, machine learning). Mechanistic models were categorised into 

population dynamics models, individual-based models, trophic models, qualitative models and 

economic models. No subcategories were defined for conceptual models. 

We assessed the degree of integration of the three components involved in depredation 

(human activity, depredating species and depredated resource) into the models used in the 

reviewed publications. For this, the variables used to capture aspects of each of these three main 

components were identified and schematically represented (Figure 1). Variables considered 

relating to humans and their activities included individual perception of the conflict (i.e. of 

depredation risk, or of depredating species), economic aspects (costs, profits), personal 

information (age, gender, ethnicity), social data (wealth, education, religion, occupation) and 

activity details (gear or agriculture technique, operation characteristics, number of farms or 

boats owned, yield and effort) (Figure 1). Integration of the depredating species and/or the 

depredated resources occurred via variables related to the natural diet of the depredating 

species, spatial distribution, presence-absence of the species, population size (abundance or 

density), parameters of population dynamics (mortality, breeding and growth rate) or 

population structure (i.e. life stage or age, body mass and sex) (Figure 1). Depredation is 
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commonly expressed as loss rate, frequency of events, or probability of occurrence. Concerning 

management, mitigation is characterized by the use of physical devices or strategic methods. 

(Figure 1). The list of possible environmental variables included temperature, moon phase, 

water chemistry, study area protection status, bottom topography (slope, depth, altitude), habitat 

characteristics (vegetation type, vegetation coverage, water surface and distance to coast in 

marine realm), and climatic conditions (average rainfall, season, weather, cloud cover) (Figure 

1). Lastly, variables considered relating to anthropogenic stressors were human population size, 

activity category (recreational or professional), and land use characteristics (agriculture 

coverage, road and settlement density) (Figure 1). Category details for all analysed papers are 

available in Supplementary Material Table B1, so we do not comprehensively cite relevant 

papers in the following sections. 

3. Results 

3.1. Global scope of depredation modelling 

The number of publications using modelling to study depredation has dramatically increased 

since 1996, with 85% of the 312 reviewed publications published after 2010 (Figure A1). 

Terrestrial depredation was studied in 263 publications (84%), among which 53% focused on 

livestock depredation, 42% on crop depredation, and 5% on both (Figure 2). Only 49 

publications (16%) studied marine depredation, 76% of which focused on depredation on 

fishery catches, 22% on depredation on farmed fish, and 2% on both (Figure 2). Overall, 96 

species were identified as depredating. These species belonged to 12 orders, including 14 bird 

species (Anseriformes, Gruiformes, Passeriformes, Pelecaniformes, Suliformes), 74 terrestrial 

mammals (Artiodactyla, Carnivora, Primates, Proboscidea, Rodentia), 7 marine mammals 

(Cetacea, Carnivora) and one cephalopod (Octopoda). 

The reviewed studies used a modelling approach to address depredation cases 

distributed across 61 countries around the world (Figure 3). In the terrestrial environment, 55 

publications (22%) studied cases within the United States, covering 27 federal states, of which 

nearly half (19) studied grey wolf (Canis lupus) depredation on livestock. Other countries that 

concentrated high research effort using modelling included India and Nepal (34 publications). 

The majority (25, 74%) of these 34 publications investigated depredation on livestock by big 

cats, including tigers (Panthera tigris), leopards (Panthera pardus), snow leopards (Panthera 

uncia) or Indian lions (Panthera leo persica). Big cat depredation has also been studied in 

Tanzania (4), where it involved African lions (Panthera leo), and Brazil (7), where it involved 

jaguars (Panthera onca) and pumas (Puma concolor). In Italy, six studies focused on grey wolf 
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depredation on livestock and six on wild boar (Sus scrofa) depredation on crops. In Tanzania, 

the case of elephants (Loxodonta africana) depredation on crops was investigated in 3 

publications. 

In the marine environment, the reviewed studies were distributed across 12 FAO major 

fishing areas (Figure 4). Most studies using models (9 publications, 19% of publications on 

marine depredation) focused on depredation in the Northeast Atlantic (FAO area 27), mainly 

depredation by harbour seal (Phoca vitulina) on salmon fisheries. In seven publications (15%), 

models were used to study depredation by killer whales and sperm whales on toothfish fisheries 

in the Southern Indian Ocean (FAO area 58). Another six publications (13 %) used models to 

study depredation by bottlenose dolphins (Tursiops truncatus) on farmed fish and fishery 

catches in the Mediterranean and Black seas (FAO area 37). There were five publications from 

the Northeast Pacific and Western Central Atlantic (FAO area 67 and 31 respectively). Killer 

whale and sperm whale depredation on sablefish (Anaploma fimbria) was investigated in the 

Gulf of Alaska and that of double-crested cormorant (Phalacrocorax auritus) on farmed catfish 

(Ictalurus spp.) in the Mississippi. 

3.2. Modelling approach and study purpose 

Most reviewed studies used statistical models for both terrestrial and marine cases of 

depredation (263 publications, 84%), followed by mechanistic models (39, 13%) and 

conceptual models (6, 1%) (Figure 5). The majority of statistical modelling studies (239 

publications, 89%) used simple regression models (e.g. Kiffner et al., 2021), followed by more 

complex models such as machine learning (21, 8%, e.g. Reitsema et al., 2020) and hidden 

Markov models (3, 1%, e.g. Mul et al., 2020). Mechanistic models were mainly economic 

models (16, 41%; e.g. Clark et al., 2020b), population dynamics models (6, 15%; e.g.  Brewster 

et al., 2019) and individual based models (11, 28%; e.g. Simon and Fortin, 2020) (). Trophic 

(5, 12%; e.g. Clavareau et al., 2020) and qualitative models (1, 3%; Szymkowiak and Rhodes-

Reese, 2020) were employed to a much lesser extent. Conceptual models have only been used 

to study terrestrial depredation (6, e.g. Beck et al., 2019. 

The main purpose of the reviewed publications was to determine the factors influencing 

the magnitude and extent of depredation (127 publications, 41%; Figure 5). A number of 

models, such as regression models, were used to quantify how the occurrence and severity of 

depredation varied spatially and seasonally. For instance, African lion depredation on livestock 

in Tanzania was found to be explained by vegetation productivity and proximity to surface 
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water (Beattie et al., 2020), while killer whale depredation on fishery catches in Uruguay varied 

with distance to the coast (Passadore et al., 2015). The second most common study purpose was 

the quantification of losses due to depredation (28%). Application of generalized additive 

models (GAM) revealed that whale depredation removed 30% of total catches from the fishery 

around Crozet islands (southern Indian Ocean) (Tixier et al., 2020). Generalized Linear Models 

(GLM) showed deer and elk depredation affected 7% of safflower plants in Utah (Haney and 

Conover, 2013). Testing the effectiveness of mitigation measures was the third most common 

study purpose (18%). For this, models were mainly used to compare the frequency or intensity 

of depredation events with and without mitigation measures or among different mitigation 

measures. For example, GLMs were used to test the effectiveness of fences or protective 

enclosures in reducing crop depredation by elephants in Tanzania (Scheijen et al., 2019), and 

GAMs to test the effectiveness of deterrent devices in reducing bottlenose dolphin depredation 

on coastal gillnet catches (Waples et al., 2013). To a lesser extent (8% of the reviewed 

publications), models were used to investigate the ecology of the depredating species, in 

particular their spatial distribution (Burr et al., 2020; Giefer and An, 2020). Models were also 

used to assess the socio-economic consequences (4%) and the human perception (4%) of 

depredation. Human perception of depredation or depredating species was mostly studied in the 

context of implementing new mitigation measures, re-introducing emblematic species or 

translocation. For example, a linear model was used to explore attitudes towards the proposed 

translocation of blue sheep into Sagarmatha National Park to reduce depredation of livestock 

by snow leopards (Hanson et al., 2020). 

Certain objectives were addressed with specific modelling approaches. Depredation was 

mainly quantified out using statistical models, specifically regression models (86%) and 

machine learning (14%; Figure 5). In contrast, socio-economic consequences were primarily 

studied with mechanistic models (77%), which comprised economic models (60%), individual-

based models (20%), population dynamics models (10%) and trophic models (10%).  

3.3.System components and variables 

Among the three main components involved in all depredation conflicts, the depredating 

species were reported in most reviewed publications (268 publications; 86%), followed by the 

depredated resource (159; 51%) and humans (87; 28%). Among variables incorporated in 

models, variables related to environmental conditions were considered in most reviewed 

publications (176; 56%), followed by management (67; 21%), anthropogenic pressures (61; 

19%), and interacting species (preys or predators of the depredated resources or the depredating 
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species) (32; 11%). The most commonly studied variables for each of the three components 

were consistent across the terrestrial and marine realms (Figure 6). For depredating species, 

depredation behaviour was most commonly modelled (39%), either in the form of a depredation 

rate, occurrence or frequency of events. For depredated and interacting species, population size 

expressed as abundance or density was most commonly considered, respectively in 65 (20%) 

and 26 publications (8%). For depredating species, population size was also frequently 

accounted for (56, 18%). For instance, prey abundance or shortage of wild food sources 

explained common dolphin depredation in the Azores (Cruz et al., 2016) and wolf depredation 

on livestock in Portugal (Pimenta et al., 2018). As for environmental conditions, habitat was 

the most commonly studied explanatory variable (45%), followed by topography (13%) 

(Figure 7). Like population size, habitat and topography were primarily used to explain 

occurrence and intensity of depredation, e.g. forest coverage and slope in the case of elephant 

depredation on crops (Ngama et al., 2019). The occurrence (30%) and population dynamics 

parameters (10%) of the depredating species were the variables most commonly modelled in 

the marine realm (49 publications), and about half as often in terrestrial studies (14% and 5% 

of 263 publications, respectively) (Figure 6). For instance, when studying the causes of seal 

depredation, their bycatch mortality was also considered (Cosgrove et al., 2015). Conversely, 

in the terrestrial realm, population structure of the depredating species (6%) and human related 

variables such as social (6%) and personal information (6%), and perception (3%) were more 

frequently considered than in the marine realm (2%, 2%, 0% and 0%) (Figure 6). This was for 

example the case in a study addressing the translocation of blue sheep (Pseudois nayaur) to 

reduce livestock depredation by snow leopards (Hanson et al., 2020). The effect of the 

protection status of the study area was frequently investigated in terrestrial modelling studies 

(22 publications), while none of the marine studies did so. Anthropogenic pressure information 

was most commonly modelled via human population size or converted land (33 publications) 

(Figure 7). Both variables were mainly used to identify factors influencing depredation or for 

creating depredation risk maps. 

  In the marine realm, depredating species and depredated resources were generally 

characterised by different variables. Presence-absence, population size and population 

dynamics parameters were more frequently used for the depredating species (30%, 20% and 

10% of the 49 marine studies, respectively for each type of variable) than for the depredated 

resource (respectively 8%, 8% and 4%) (Figure 6). Presence-absence of the depredating species 

was mainly used to identify factors influencing its spatial distribution (e.g., Bonizzoni et al., 
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2021; Mul et al., 2020). Using a generalized additive model, Bonizzoni et al., 2021) found that 

trawling influenced the dolphin distribution in the Adriatic Sea and increased the chances of 

encountering them 4.5-fold. Conversely, population structure (10%) and taxonomic affiliation 

(10%) of the depredated species were more commonly taken into account than for the 

depredating species (each 2%). Briceño et al. (2015) found that in a South Australian fishery 

the risk of pot predation by the Maori octopus (Pinnoctopus cordiformis) increased with rock 

lobster (Jasus edwardsii) body size and was higher for males. 

3.4. Integration of system components into models 

Among the 312 reviewed publications, 33% used models that incorporated variables describing 

both the depredating species and the depredated resource, while 32% considered variables for 

the depredating species only (Figure 8). Models considering variables for both the human 

activity and the depredating species were found in 13% of publications, consisting of 20 

terrestrial and 21 marine studies.  

In only 8% of the reviewed publications, models incorporated variables from all three major 

components of depredation systems, including 18 terrestrial and 6 marine studies (Figure 8). 

In the terrestrial depredation studies, statistical models were primarily used to map the 

depredation risk for human activities, or guide conservation actions for the depredating species. 

Three of these studies estimated the probability of depredation or identified factors influencing 

depredation levels or the socio-economic consequences of depredation to inform on possible 

mitigation measures for depredation on livestock by snow leopards following the re-

introduction of this species classified as “vulnerable” on the IUCN Red List (Chetri et al., 2019; 

Din et al., 2019; Loch‐Temzelides, 2021). For instance, Chetri et al. (2019), using GLMMs, 

found that the probability of livestock loss to snow leopards increased with herd size, thus 

affecting owners of large herds more frequently. Three other publications used conceptual and 

regression models to identify factors influencing the levels of lion depredation on livestock and 

to assess ways to attenuate the conflict through changes in human perception towards the 

depredating species (Beck et al., 2019; Dunnink et al., 2020; Hazzah et al., 2013). For example, 

(Hazzah et al., 2013) demonstrated that higher education was associated with more positive 

perceptions towards depredating lions and lower propensity of people to kill them as an act of 

retaliation to depredation. Three publications used regression models to identify areas with high 

risk of depredation to inform on the implementation of mitigation based on spatial adjustments 

of the human activity involved. These models combined variables describing characteristics of 

the human activity with information on the spatial occurrence of depredation, the depredating 
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species and the spatial density of the depredated resource (Karanth et al., 2012; Pimenta et al., 

2018; Treves et al., 2004). For instance, in Wisconsin, wolf depredation on livestock was 

explained by farm size and road density (Treves et al., 2004). In the marine environment, only 

two publications investigated the influence of environmental factors, species composition of 

the fishing catches, fishing yield and fishing gear type on the levels of marine mammal 

depredation using regression models (Cruz et al., 2016; Pardalou and Tsikliras, 2020).  

4. Discussion 

Human-wildlife conflicts caused by depredation represent a worldwide issue both in the 

terrestrial and marine environments and are likely to intensify in the coming decades. Based on 

our systematic literature review, we identified the main factors driving modelling efforts, 

considered the relevance of existing approaches according to case study specifics and data 

availability, and highlighted future research priorities to more comprehensively study 

depredation and inform management.  

4.1. Depredation modelling studies are over-represented for emblematic and 

traditional case studies and simplistic for the depredating species 

Various models have been applied to numerous cases of terrestrial and marine 

depredation worldwide. However, scientific efforts tended to concentrate on certain regions or 

taxa. In addition to the severity of depredation, factors such as the human activity subject to 

depredation becoming unviable, as well as the conservation status of the depredating species 

and the state of the exploited resource, may have contributed to an enhanced focus on certain 

cases. 

While estimating economic losses or assessing the viability of human activities 

impacted by depredation represent central modelling objectives, a large research effort has 

focused on a restricted set of case studies associated with depredated resources of high socio-

economic importance. In the marine realm, much modelling effort has been directed towards 

estimating the losses caused by depredation on fishery catches for high value species such as 

salmon (Salmo salar) in the Baltic Sea and Patagonian toothfish (Dissostichus eleginoides) in 

subantarctic waters (Fjälling, 2005; Grilly et al., 2015; Oglend, 2013; Tixier et al., 2020, 2019, 

2016). Beyond high-value species, well-represented case studies related to food industry sectors 

of importance in the global or regional economy. For instance, large modelling efforts have 

been dedicated to study depredation on livestock in the United States and in Brazil, which are 

two of the world’s largest meat producers, (Ritchie et al., 2017). The large number of these 
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well-documented case studies might reflect the ability of major food industries to invest in 

research and consolidate relevant datasets to model the major factors, such as losses to 

depredation, that drive their productivity and profitability. In these well-studied cases, 

modelling results overall suggest that depredation and its subsequent economic losses can 

jeopardise the profitability and long-term resilience of individual businesses (i.e. a fishing 

vessel, or a farm) without necessarily compromising the viability of a whole food production 

sector (i.e. a fishery, or regional farming production). Thus, modelling outputs mostly support 

decision-making at the individual or business scale than at the broader industry level. For 

instance, several studies have quantified how depredation differentially impacts individuals 

depending on their practises, techniques, perception of the conflict, adaptation strategies, or on 

their geographical location (Tixier et al., 2020). 

Much modelling effort has also been invested to study depredation by depredating 

species of high conservation interest. Indeed, a large proportion of the reviewed publications 

focused on vulnerable species such as grey wolf (least concern), snow leopard (vulnerable), 

lion (vulnerable), harbour seal (least concern), killer whale (data deficient) and sperm whale 

(vulnerable; https://www.iucnredlist.org). Several studies have modelled how responses or 

measures to minimise depredation by these species may jeopardise ongoing conservation 

initiatives to restore populations of these predators. Because depredation conflicts can lead to 

negative attitudes of people and retaliation towards these taxa (Salerno et al., 2020), a number 

of modelling studies aimed at understanding factors that affect human perception of depredating 

species. With the aim of respecting ongoing conservation efforts targeted at emblematic 

depredating species, many of the reviewed studies characterised the effectiveness of non-lethal 

measures to attenuate the levels of depredation, e.g. using fences (Kiffner et al., 2021), acoustic 

(Waples et al., 2013) or spatial activity adjustments (Chetri et al., 2019; Din et al., 2019; Loch‐

Temzelides, 2021).  

 Despite a growing number of publications, the study of marine depredation remains 

rare compared to terrestrial cases. This is somewhat surprising given that depredation affects 

coastal and offshore fisheries using a broad range of fishing techniques worldwide (Gilman et 

al., 2007; Mitchell et al., 2018). Terrestrial depredation has been known since the beginning of 

agriculture several millennia ago, with for instance, the case of elephant depredation in Africa 

(Barnes and Douglas-Hamilton, 1982). This early knowledge may explain the greater number 

of publications applying modelling to terrestrial depredation. Marine depredation has only 

emerged as a problematic around the 1970s, concomitantly with the global expansion of 
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fisheries and the increasing application of non-lethal mitigation measures in a conservation 

context (Hamer et al., 2012; Mitchell et al., 2018; Read, 2008; Tixier et al., 2021). The study 

of depredation in the marine environment is therefore relatively recent and this might imply 

limited availability of suitable data. Moreover, data acquisition is generally more difficult in 

the marine environment. Typically, depredation on fishery catches is not systematically 

detected as predators may remove fish from the fishing gear without leaving any visible 

evidence for fishers to know that it happened (Richard et al., 2020; Tixier et al., 2020). As a 

consequence, data on marine depredation are mainly qualitative (Peterson and Hanselman, 

2017; Werner et al., 2015). Thus, consolidating data collection on marine depredation will be 

pivotal to future modelling efforts.  

In most modelling studies, the depredating species was only implicitly captured as a rate 

or a probability of depredation. Further, depredating species were predominantly represented 

as a source of negative impacts on humans, including loss of income, destruction of buildings, 

physical injury or human mortality (Locke, 2013; Shoreman-Ouimet and Kopnina, 2015). This 

might arise because human-wildlife conflicts were most commonly modelled from an 

anthropocentric viewpoint, but also due to knowledge and data gaps about the ecology of the 

depredating species. As a consequence, only a handful of studies (e.g. Burr et al., 2020; Giefer 

and An, 2020) accounted for spatio-temporal variability in the occurrence or population size of 

the depredating species to explain the severity of the conflict or to quantify losses. The number 

of depredating individuals within populations may increase as a result of an increase of 

population size thanks to ongoing conservation initiatives and/or more and more individuals 

developing depredation as a new behaviour, for instance through social learning (e.g. Schakner 

et al., 2014). This highlights the importance of improving the knowledge on the ecology of 

depredating species as a key information needed to dynamically project population changes and 

wider long-term consequences of depredation. Such projections of long-term dynamics will 

have to account for both the negative and positive effects that depredation may have on life 

history traits of individuals, with on one hand, risks associated with humans or human 

equipment- and on the other hand, benefits from food intake at low foraging effort. For instance, 

studies using long-term data have shown that depredation could negatively impact the survival 

rate of killer whales by exposing individuals to lethal practices (shooting with firearms) used 

by illegal fishers but also positively influenced the calving rate of females by providing a 

facilitated access to fish prey (Tixier et al., 2017, 2015). 
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It should be noted that our review has certain limitations, and although we have tried to 

include as many papers as possible with a varied corpus of search words to define depredation, 

some may have been missed. Furthermore, the results of this study are limited to papers 

referenced in the Web of Science between 1996 and April 2021. However, we expect that the 

overall conclusions drawn from this study, which includes over 300 papers, will not be greatly 

affected. 

4.2. Recommendations for depredation modelling 

A diversity of modelling approaches has been applied to understand or predict processes 

or dynamics related to depredation (Table 1). 

Depredation involves at least three components: human activities, depredated and 

depredating species. The processes involved and hence potentially modelled, are therefore 

numerous and diverse. The main effects of depredation are also threefold: direct negative 

impacts of depredation on humans or equipment, alteration of natural ecosystem interactions 

and reduction of the profitability of human activities. In a given depredation situation, it is 

therefore essential to first identify the major processes and effects at play. This first step can be 

carried out using conceptual models, which have proven valuable to summarise relevant case-

specific processes (Nieva and Wegmann, 2002) . Creation of a conceptual model can provide a 

structured way to evaluate the availability of relevant data, identifying key knowledge gaps and 

prioritising field observations and sampling efforts. Indeed, quantification of key aspects of 

depredation conflicts is generally limited by lack of data and sparsity of observations rather 

than by methodological challenges.  

In a data-poor context, which represent a large proportion of marine depredation cases 

as well as numerous understudied or emerging terrestrial cases, qualitative modelling (methods 

derived from Puccia and Levins' "loops analysis"; Dambacher et al., 2003; Puccia and Levins, 

1985) seems an appropriate second step for analysing conceptual models for which the signs of 

the relationships between system components have been specified, though not their strengths. 

Specifically, qualitative modelling offers a way for assessing the direction (positive, negative, 

null) of the effects of alternative adaptation strategies on human economic benefits and 

wellbeing. The approach has been used to help assess the potential effectiveness of adaptation 

strategies in responses to scenarios of increasing depredation (Szymkowiak and Rhodes-Reese, 

2020). Further, a qualitative modelling study of marine depredation revealed in which ways the 
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expected effects of depredation depended on the relative importance of different interacting 

ecological processes (Clavareau et al., 2023). 

In a data-rich context, which generally corresponds to emblematic or traditional case 

studies with much long-term research and data collection efforts, as a second step, both 

statistical and process-based models can provide useful complementary insights into key 

elements of the depredation conflict. Statistical methods can help to fill basic knowledge gaps 

related to depredation, such as assessing the consequences of depredation on the production of 

natural resources and on human activities (Haney and Conover, 2013; Tixier et al., 2020), 

characterising the environmental or anthropogenic drivers that enhance depredation (Beattie et 

al., 2020; Briceño et al., 2015; Passadore et al., 2015), assessing effectiveness of mitigation 

measures (Dunnink et al., 2020), or mapping depredation risk (Denninger Snyder et al., 2021; 

Treves et al., 2011). If the objective is to estimate depredation rates or consequences on 

impacted industries, statistical approaches appear appropriate, e.g. GLMMs allowing random 

effects to be accounted and GAMs for non-linear relationships (Haney and Conover, 2013; 

Tixier et al., 2020). However, they are less suitable to jointly quantify multiple interacting 

aspects of the depredation conflict. Simple statistical models are therefore not recommended 

for holistic studies for which mechanistic models seem more appropriate. 

Indeed, mechanistic models can explicitly capture how interactions between relevant 

processes and variables can drive responses and dynamics across various scales and 

components in depredation conflicts. For instance, agent-based models can mechanistically 

capture interactions between multiple socio-ecological components and account for differences 

between individual or groups of individuals. They have for example helped to assess the 

potential role of education in reducing depredation conflicts with bears (Marley et al., 2017). 

Depredation also impacts human activities socio-economically. On one hand, induced costs can 

be direct, caused by the loss of produced or exploited resources. On the other hand, they can be 

indirect when they are (i) related to additional effort required to prevent depredation or protect 

the resource, (ii) to additional production or exploitation efforts to compensate for losses and 

maintain activity yield, or (iii) to damages caused to equipment. It is therefore essential to 

quantify direct and indirect costs, notably to assess the sustainability of the activities concerned. 

For this specific purpose bio-economic models are the most appropriate. Bio-economic 

modelling has been used for instance to explore the impact of alternative fishing strategies and 

levels of depredation on the revenues of fisheries (Trijoulet et al., 2018). 
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A range of modelling approaches can be applied to capture broader consequences of 

depredation on socio-ecosystems, most likely as a third step once specific aspects have been 

studied using more focused statistical or mechanistic models. Wider trophic consequences can 

be studied using available software platforms such as Ecopath with Ecosim (EwE, Christensen 

and Walters, 2004). For instance, a recent marine application of EwE quantified the additional 

mortality caused by depredation by marine mammals on other ecological groups (Clavareau et 

al., 2020). In contrast, there is a lack of readily available modelling platforms for capturing the 

multiple feedbacks between humans, depredating species and resources. For this, extensions of 

the existing bio-economic modelling platforms reviewed by Nielsen et al. (2018) in the context 

of fisheries and marine socio-ecosystems modelling might be worth developing. 

4.3. Modelling feedbacks in depredation systems to support decision making  

While statistical and mathematical modelling can effectively guide natural resource 

management, practical contributions of most depredation modelling studies to tactical or 

strategic management of depredation conflicts remain limited. Because depredation modelling 

studies still mostly attempt to fill basic knowledge gaps, only few publications considered 

interactions between human activities subject to depredation, depredated resources and 

depredating species, i.e. the three main components. Future development of depredation models 

ought to capture the essence of this multi-species conflict involving depredating species and 

natural resources exploited by humans. Specifically, accounting for multiple feedbacks acting 

over a range of spatial and temporal scales will be crucial to better understand and predict the 

dynamics of depredation-impacted socio-ecosystems: (1) direct depletion of resources by 

depredation not only induces losses but can also trigger compensatory processes or reactions 

by humans; (2) both facilitated access to food and mitigations measures can modify life history 

parameters of depredating populations (e.g. mortality, growth rate, fecundity); (3) the diet of 

depredating species may be considerably altered, especially when the depredated resource is 

not part of their natural diet, resulting in a release of pressure on their wild prey; and so on. 

More broadly, the modification of life history parameters and pressures related to exploitation 

or predation themselves generate cascading effects that can modify ecosystem functioning. 

Moreover, most depredating species are higher trophic level species such as big cats, large 

sharks and marine mammals, and change in predation pressures from these top-predators are 

likely to generate greater top-down cascading ecosystem effects than changes from meso-

predators (Newsome et al., 2015; Oro et al., 2013). Cascading effects, the reduction of yield, 

the damage to equipment and the well-being of humans can in turn impact the viability of 
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human activities (Dickman and Hazzah, 2016; Wickens et al., 1992). Within human societies, 

complex feedback can also contribute to long-term dynamics as for instance depredation-

impacted primary industries may defend and promote their interests against the tourism industry 

or conservation-minded associations, who likely value the restoration of wild predatory 

populations. 

Even when accounting for different dimensions of depredation as explanatory factors 

(i.e. humans, depredating species or depredated resource), so far modelling studies tended to 

only estimate outcomes related to one single aspect of the issue, such as conservation status and 

human perception of the depredating species (Beck et al., 2019), assessment of socio-economic 

consequences of depredation for primary industries (Brewster et al., 2019; Clark et al., 2020a), 

effectiveness of mitigation measures (Dunnink et al., 2020), or human adaptation when exposed 

to depredation (Szymkowiak and Rhodes-Reese, 2020). Thus, while a small subset of models 

accounts for diverse aspects of depredation, most reviewed studies had a single aim and did not 

assess trade-offs between conservation status of the depredating species and socio-economic 

viability of human activities that rely on the depredated resource. Thus, future development for 

depredation modelling should aim to comprehensively assess the consequences of management 

interventions or future scenarios for the exploited resources, the depredating species and the 

human activities that directly or indirectly interact with them. Participatory modelling 

approaches (e.g. Comod, or participatory modelling.org; Hedelin et al., 2021; Voinov et al., 

2018, 2016; Voinov and Bousquet, 2010) will for instance be valuable to engage different 

stakeholder groups (conservationists, food industry and managers) in refining the scope of 

future model development, and to more broadly identify the multi-facetted variables and values 

at stake when modelling depredation conflicts. Beyond improving the relevance of the 

modelling for decision-making, engaging stakeholders along the different iterative steps of 

model development can yield additional benefits by promoting knowledge transfer within and 

between groups (Le Page et al., 2014). For instance, farmers or fishers might directly learn from 

successful peers about how to accept or best adapt to depredation or, confronting conflicting 

interests (such as conservation of depredating species versus maintaining productivity of the 

primary industries) can contribute to easing conflicts between different stakeholder groups. 

5. Conclusion 

In conclusion, although depredation modelling has increased over the last decade, it often 

focused on emblematic or traditional cases, particularly those of high socio-economic or 
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conservation significance. Noticeably, disparities between terrestrial and marine depredation 

modelling reflect differences in data availability and historical knowledge.  

A number of recommendations for effective depredation modelling emerged from this 

analysis. Conceptual models can summarise fundamental understanding, which combined with 

qualitative modelling will provide insights on the impacts of changes, in the ecosystem or 

management, when data are scarce. Data-rich contexts can serve as pilot cases to develop 

detailed statistical or mechanistic models, which capture the complexity and interactions 

between the three main entities involved in depredation. The integration of broader feedback 

loops, encompassing the complex links between human activities, depredating and depredated 

species, will be essential for holistic modelling.  

Engaging stakeholders through participatory modelling can refine the scope of 

modelling, improve the relevance of decision-making, and encourage knowledge exchange. 

Finally, the development of integrated models will make it possible to study human-nature 

conflicts in their entirety and will help inform management of the ecosystems concerned to 

reduce human-wildlife conflicts. 
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Table 1.  Summary of modelling approaches for studying depredation with examples from the 

literature review. System components correspond to D depredating species, R depredated 

species, H humans. 

Modelling objectives  

System 

components 

captured 

Category Model type Examples 

Structured synthesis of drivers of human-

wildlife conflicts 

DRH Conceptual - Beck et al., 2019; Shaffer 

et al., 2019 

Qualitative analysis of factors driving 

human perception and adaptation 

strategies to depredation  

RH Conceptual - Amit and Jacobson, 2017 

Assessing the consequences of 

depredation on production of natural 

resources and human activities 

R or DH Statistical Multivariate model, e.g. 

GLM, GAM 

Haney and Conover, 2013; 

Tixier et al., 2020 

Characterising the environmental or 

anthropogenic drivers that enhance 

depredation 

D or R or DH Statistical Univariate model, e.g. 

linear regression, 

regression trees or 

Multivariate model, e.g. 

GLM 

Beattie et al., 2020; 

Briceño et al., 2015; 

Passadore et al., 2015 

Mapping of depredation risk DR or D Statistical Spatial statistical model, 

e.g. GAM, geostatistics 

Denninger Snyder et al., 

2021; Treves et al., 2011 

Assessment of mitigation measures 

effectiveness 

DRH Statistical Multivariate model, e.g. 

GLM, GLMM 

Dunnink et al., 2020  

Determining abundance and natural 

distribution of depredating species 

DR or D Statistical Univariate model, e.g. 

linear regression or 

Multivariate model, e.g. 

GLM; GAM 

Burr et al., 2020; Giefer 

and An, 2020 

Quantifying economic impact DH or DRH Mechanistic Bio-economic Holma et al., 2014; 

Skonhoft, 2017  

Assessment of direct and indirect effects 

of depredation on ecosystem components 

and human activities  

DRH Mechanistic Ecosystem model Ecopath Clavareau et al., 2020  

Assessment of effect of alternative 

adaptation strategies on human economic 

benefits and wellbeing  

DRH Mechanistic Qualitative model Szymkowiak and Rhodes-

Reese, 2020  
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Figure 1: Conceptual diagram of system components in depredation modelling studies. The 

three main components are humans, depredating species and depredated species. Additional 

components include biotope, anthropogenic pressure and management. Variables describing 

each component which were encountered in the reviewed publications are listed in boxes.
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Figure 2: Distribution of the number of reviewed studies using modelling to address 

depredation per realm (terrestrial or marine) and per human activity subject to depredation.  

 

Figure 3: Geographic distribution of the number of reviewed studies using modelling to address 

depredation in the terrestrial realm summarised by country. Pictograms represent dominant 

depredating taxa (wolf, big cat) per country. 
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Figure 4: Geographic distribution of the number of reviewed studies using modelling to address 

depredation in the marine realm summarised by FAO fishing areas. Pictograms represent 

dominant depredating taxa (cormorant, seal, sperm whale, orca, dolphin) per area.
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Figure 5: Classification of the reviewed studies using modelling to address depredation according to modelling approach and study purpose.
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Figure 6: Percentage of reviewed depredation modelling publications that include specific 

variables related to each of the three main system components (i.e. depredating species, 

depredated species and humans). Colour codes indicate how percentages relate either to the 

number of reviewed papers per realm (i.e., 263 terrestrial studies (brown) and 49 marine studies 

(blue)), or overall (312 publications (black)).  
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Figure 7: Percentage of reviewed depredation modelling publications including variables 

describing additional system components, namely: environmental conditions, interacting 

species community, anthropogenic pressure and management. Colours indicate whether 

percentages relate to the number of reviewed publications in terrestrial (brown) or marine (blue) 

realms, or overall (black).
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Figure 8: Percentage of reviewed depredation modelling publications including one (I), two 

(II) or three (III) system components, namely: humans as illustrated by the farmer icon, 

depredating species as illustrated by the wolf icon or depredated species as illustrated by the 

goat icon. Colours distinguish between studies in terrestrial (brown) or marine (blue) realms.  Jo
urn

al 
Pre-

pro
of
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Supplementary materials :  

Review of depredation modelling across terrestrial and marine realms: 

state of the art and research needs 

 

Appendix A : Evolution of depredation modelling over time 

 

Figure A1: Number of publications addressing depredation using modelling approaches 

between 1996 and April 2021 (source: Web of Science). 
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Appendix B :  

Table B1. Paper scoring sheet according to targeted categories (in columns). Each line 

corresponds to a paper. 

Requires a link to the data (submitted alongside the manuscript). 
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• We carried out a systematic review to identify relevant approaches to study specific 

aspects of depredation through modelling 

• We identified a numerous statistical models compared with other modelling 

approaches. 

• We identified the main factors driving modelling efforts in the specific case of 

depredation 

• We suggested a number of recommendations for effective depredation modelling 

• We highlighted future research priorities to comprehensively model depredation and 

inform the management of human-wildlife conflicts 
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