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Abstract :

The monitoring of waves at the ocean surface is critical for both operational needs (e.g., maritime traffic)
and scientific studies (e.g., air-sea interactions). Synthetic aperture radar (SAR) Satellites provide one of
the only remote sensing observations to retrieve ocean wave information on a global scale. However
state-of-the-art SAR processing schemes often lead to poor inversion performance due to overly-
simplistic assumptions. Here we leverage deep learning schemes to address these shortcomings. We
state the targeted measurement of the ocean wave spectrum at sea surface as a neural mapping from
SAR satellite observations. We exploit supervised deep learning schemes trained from a large-scale
collocation dataset between real SAR observations and Wavewatch |1l model data. Our results emphasize
for the first time how deep learning schemes can outperform the state-of-the-art analytical SAR-based
inversion with an improvement in terms of mean square error greater than 65%. We analyse and discuss
further the key features of the trained neural processing.
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1. INTRODUCTION

The monitoring of ocean waves at the ocean surface is critical
for both operational needs (e.g., maritime traffic) and scien-
tific studies (e.g., air-sea interactions) [2][3]. In this context,
the retrieval of ocean wave spectra is a key challenge. It in-
forms us on the frequency-direction distribution of sea surface
waves at any space-time location. While moored observato-
ries deliver a direct measurement of these wave spectra, they
involve a very scarse spatial sampling. As such, they cannot
deliver a synoptic view of ocean wave dynamics on a global
scale. Numerical models such as WaveWatch III (WW3) [4]
[S]provide means to solve sampling gaps. They may however
involve significant uncertainties [6]. Especially, they cannot
account for fine-scale variabilities and complex air-sea and
wave-current interactions [6].

Satellite ocean remote sensing provides means to monitor
the sea surface from space. In particular, synthetic aperture
radar (SAR) imagery provides through the signal backscat-
tered by the sea surface an indirect observation of the sea sur-
face state, including among others wind, rain and wave sig-
natures [1]]. The complexity of the SAR process as well as of
the non-linear interactions between the backscattering and the
sea surface state make the inversion of the SAR observation
highly challenging. For instance, the cutoff phenomenon pre-
vents the SAR process to actually image large wave numbers
in the azimuthal direction . This results in a poor reliability of
analytical model-driven inversion schemes as they cannot ac-
count for such non-linear patterns [7], as illustrated in Fig[T}

Deep learning has emerged as a powerful paradigm to ad-
dress inversion problems as the supervised learning of an in-
verse operator from training data [8]. Numerous remote sens-
ing studies have recently leveraged this approach [9]], includ-
ing for satellite SAR observations [10]. Regarding sea surface
waves, deep learning schemes have significantly improved
the retrieval of significant wave height from SAR observa-
tions [11]]. The significant wave height is an average quantity,
which derives from the total energy of the wave spectrum.

This paper explores further deep learning schemes for the
inversion of SAR observations of the sea surface. We ad-
dress the retrieval of the entire wave spectrum. Our contri-
bution lies both in the collection of a large-scale collocated
datasets of SAR sea surface observations and WW3 data and
in the development of supervised deep learning schemes. We
propose different neural architectures. Our numerical exper-
iments support their relevance to outperform the baseline ap-
proach and address the complexity of the SAR processing.

This paper is organized as follows. Section [2] introduces
related background. We describe the proposed approach in
Section [3and detail our numerical experiments in Section [4]
Section [Sldiscusses our main contributions.

2. PROBLEM STATEMENT

Through the signal backscattered by the sea surface, satel-
lite SAR sensors can image the energy of sea surface waves
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Fig. 1: Inversion of the sea surface wave spectrum from a Sentinel-1 SAR observation: from left to
right, SAR roughness image, magnitude of the SAR cross-spectrum, collocated WW3 wave spectrum used
as reference data, state-of-the-art analytical SAR-based inversion [[1]], proposed learning-based inversion.
We depict all spectra as normalized spectra using the same colorbar.

and their frequency-direction distribution [[12]. The SAR pro-
cessing relies on the analysis of different looks through cross-
spectra [1]. But, it only directly informs the energy that is at
azimuthal wave numbers below the cutoff value and at range
wave numbers smaller than the spatial resolution of the sensor
by the SAR process. The cutoff phenomenon then affects the
SAR imaging process in high waves conditions. It results in a
displacement and loss of the energy in the azimuth direction
of the satellite. This effect can impact entire wave systems if
they are at not at low enough azimuthal wave numbers.

This SAR imaging process transfers into a complex
non-linear and possibly non-bijective function to map SAR-
derived signatures, such as the SAR cross spectrum, to wave
spectrum. These issues have plagued analytical inversion
approaches. The state-of-the-art inversion scheme [1]] cannot
retrieve any wave spectrum information above the cutoff. Be-
sides, the considered over-simplifying assumptions may even
result in artifacts through dubious high-energy patterns as
illustrated in Fig[T] The analytical baseline retrieves a high-
energy wave pattern northwards for northward wavenumbers
between 0.05 rad.m™' and 0.2 rad.m™!. This directly relates to
the inability of lifting the directional uncertainty as evidenced
by the weak consistency with the WW3 data.

Recently, deep learning has emerged as an appealing
framework for SAR-based ocean remote sensing [13], in-
cluding for the estimation of the significant wave height of
the ocean from SAR cross spectra [[11]. As the significant
wave height relates to the total energy of the wave spectrum,
these results support the ability of deep learning to retrieve
relevant features of all wave systems, including beyond the
cutoff value, from partial SAR-derived features.

Here, we aim to explore further how deep learning can
reveal the potential of SAR sea surface observations to moni-
tor sea surface wave dynamics, in particular their frequency-
direction distribution.

3. PROPOSED APPROACH

This section presents the proposed deep learning approach
for the inversion of ocean wave spectrum from SAR obser-

vations. It relies on the supervised learning of a mapping
between SAR-derived cross-spectrum and the normalized
frequency-direction wave spectrum. We first introduce the
data collection process to build a large-scale training dataset.
We then present the considered deep neural schemes.

3.1. Collocated Datasets

To our knowledge, we provide the first reference dataset to
address the learning-based inversion of sea wave spectrum
from SAR observations. Due to the limited availability of in
situ data, especially in terms of spatial coverage of the global
ocean, we exploit collocations between Sentinel-1 SAR ob-
servations and the hindcasts of the WW3 model over a whole
year, namely 2020. We use the latter as the groundtruth data
for the wave spectrum. These hindcasts show a good aver-
age match to in situ observation datasets [S[][6]. They were
also used as reference data for the training of deep learning
schemes for the estimation of the significant weight height.
We may however point out that these hindcasts are only an
estimation of the real wave distribution. As such, they involve
uncertainties to be accounted for in our analysis. Overall, we
consider a polar grid for the discretization of the frequency-
direction domain with 24 wavenumbers from 0.005 rad.m™! to
2.063 rad.m™" and 32 angular bins from 0° to 345°.

From previous numerical experiments, we noted that the
available ESA Level-2 data of sentinel-1 SAR data and the as-
sociated cross-spectrum data, referred to as the Quality cross
spectrum dataset, involved complex noise patterns due to the
considered non-linear processing. We then chose to recom-
pute raw cross spectrum from the 3 individual looks of each
sentinel-1 SAR Image. We use the resulting average absolute
and imaginary cross spectra as our SAR-derived dataset. We
re-interpolate all cross-spectra on the same North-based polar
grid as WW3 wave spectrum data.

We complement the resulting collocated dataset with the
SAR cross-spectrum simulated from the WW3 wave spec-
trum using a closed-form solution [14]. We also include
the ESA OCN Level 2 Wave spectrum (ESA-WS) product.
This product relies on an analytical model-based inversion
[LS][LI[12]. It provides the state-of-the-art operational base-



line for benchmarking purposes. Overall, our dataset com-
prises 142000 samples. We focus on normalized spectra to
address the frequency-direction distribution patterns such that
each sample of the dataset combines: (i) a normalized SAR
cross spectra referred to as C'S of shape (n, 2,24, 32), (ii) a
normalized WW3 wave spectra referred to as W' W3 of shape
(n,24,32), (iii) a normalized Simulated SAR cross spectra
referred to as C'F' of shape (n,2,24,32), (iv) a normalized
ESA OCN Level 2 wave spectra referred to as /S A of shape
(n, 24, 32) with n the number of samples. We randomly pick
100000 samples to create a training dataset and 10000 sam-
ples for the validation dataset. The remaining ones form the
test dataset.

3.2. Neural architecture(s)

The targeted problem can be regarded as the learning of a
mapping from two-dimensional tensors to two-dimensional
tensors using polar coordinates. Image-to-image neural archi-
tectures naturally apply. Following numerous studies which
support the relevance of U-Nets [16] to solve inverse prob-
lems in computational imaging [17], we choose a U-Net as
our baseline neural architecture. We may emphasize that we
expect the targeted SAR inversion problem to require a non-
local analysis. Through the implemented scale-space decom-
position, the U-Net provides means to account for this impor-
tant feature. By contrast, a simple ConvNet [[L8] seems less
appropriate as supported by preliminary experiments. Be-
sides this direct U-Net-based inversion scheme, we investi-
gate a second type of architecture, which explicitly benefit
from the availability of a closed form to simulate SAR cross-
spectrum from wave spectrum. We decompose the inversion
scheme as a series of 2 U-Net: the first one aiming at pre-
processing and denoising the SAR cross-spectrum and the
second one solving the inverse problem for the analytical sim-
ulation of SAR cross-spectrum from wave spectrum. Com-
pared with the baseline U-Net architecture, this second ar-
chitecture offers a greater interpretability, especially to char-
acterize and understand the information extraction step from
real SAR observations. For both types of architectures, the
input shape of the network is (2, 24, 32) and the output shape
(1,24, 32). Regarding the parametrization of the U-Net, we
vary the numbers of encoding-decoding layers from 1 to 4 and
perform a sensitivity analysis. Let us denote by Mp; the first
U-Net model with j the number of encoding-decoding layers,
by Mpps and My the pre—processingﬂ and inversion U-Net
for the second architecture.

3.3. Learning scheme and implementation aspects

As training loss for the direct inversion scheme, we consider
the mean-square error (MSE) of the output of our model and

IThe pre-processing is meant to include a denoising of the spectrum but
also to account for other complex features of SAR observations

WW 3 as follows:

A o )
L(Z,WW3) = ; 1Zi — WW 3| (1)
Ap = 1000, Z = Mp(CS) and N the batch size
Regarding the two-stage architecture, the training loss
combines a pre-processing loss based on the MSE between
output of the pre-processing block and the SAR cross-
spectrum simulated from the WW3 wave spectrum, and an
inversion loss based on the MSE between the output of the
inversion block and the WW3 wave spectrum. This leads to
the definition of the loss following:
1
L=+ D N Z = WW3|P + e ||Y; = CFI*) ()
j=0
)\I = 1000, /\pp = 100, Y = MPP(CS), Z = M](Y) and N
the batch size
In both experiments, we use the Adam Optimizer with a
learning rate of 5 * 10 and a batch size of 100. The repos-
itory with our source code and all the experiments is avail-
able on: https://github.com/CIA-Oceanix/SAR-Based-Wave-
inversion. In terms of computational complexity, our direct
inversion model and our two-stage scheme involve respec-
tively about 7.7M and 15.4M parameters.

4. RESULTS

Metrics MSE Bias Corr Coeft

ESA 7.16 0.03 0.56
Mp; 356 £0.06 0.01£0.01 0.65=+0.03
Mpy 294£0.04 0.02+001 0.77 £0.04
Mp3 2.65+0.03 0.01+£0.01 0.80+0.03
Mpy 2.524+0.04 0.02£0.01 0.83+0.02
Mppy + My 2.53+0.03 0.02+0.01 0.83 +0.03

Table 1: Benchmarking of the proposed learning-based

schemes with regards to the baseline state of the art [[1]]

We report our numerical experiments to benchmark the
proposed learning-based inversion schemes with respect to
the state-of-the-art ESA processing [15][19]. In Table 1 we
report three performance metrics evaluated on the test dataset:
namely the MSE, the associated mean bias and the corre-
lation score between the reconstructed wave spectrum and
the WW3 reference. Besides the ESA processing baseline,
we assess the performance of a direct U-net-based inversion
with 1 to 4 encoding-decoding layers and of the two-stage
architecture. All learning-based models clearly outperform
the baseline with a reduction of the MSE by 50% or more.
The best two models with a very similar performance are the
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(a) Inversion of the sea surface wave spectra from three
Sentinel-1 SAR observation: magnitude of the SAR cross-
spectrum, collocated WW3 wave spectrum used as reference data,
state-of-the-art analytical SAR-based inversion [1]], Mp4 inversion,
Mppg+Myy inversion. We depict all spectra as normalized spectra
using the same colorbar.
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(b) Reconstruction of a WW3-based simulated cross-
spectrum[14] from corresponding Sentinel-1 SAR observation:
magnitude of the SAR cross-spectrum, simulated cross-spectrum,
Mpp4 reconstruction. We depict all spectra as normalized spectra
using the same colorbar

cs

ww3

ESA

Mpa

Mepps+ My

Mepq
o aoe

o8

Fig. 2

direct U-Net inversion with 4 encoding-decoding layers and
the two-stage inversion schemes. They both outperform the
ESA baseline by more than 65% in terms of MSE and by
more than 50% in terms of correlation coefficient. These ex-
periments also clearly stress the relevance of the multi-scale

processing performed by U-Nets. The 4-scale configuration
(Mp4) improves by 30% the MSE score of the single-scale
configuration, which resorts to a simple CNN. We report in
Fig[l] and Fig[2a] inversion examples with a comparison be-
tween the input SAR cross-spectrum, the WW3 wave spec-
trum reference and the reconstructed wave spectrum using the
ESA baseline, U-Net scheme Mp, and the two-stage archi-
tecture Mpps+Myy. These examples involve high cutoff con-
ditions. We clearly see that the inversion of the SAR cross-
spectrum is not a simple denoising problem to retrieve the
wave spectrum. The difference between the WW3 reference
and ESA baseline further illustrates the complexity of the in-
version problem. Especially, the cutoff phenomenon leads to
large directional errors for the ESA baseline. By contrast, the
learning-based scheme relevantly retrieve the different high-
energy wave patterns. This is particularly illustrated in Fig[]
where the baseline estimate a northward energy partition that
is actually only the continuity of the main partition in the op-
posite direction. We observe a similar behaviour in the sec-
ond example displayed in Fig[2al The ESA model assigns
the energy southward while it should form a northward par-
tition as correctly retrieved by the learning-based schemes.
We also observe a better performance in the area which is
not affected by the cut-off phenomenon. The learning-based
schemes retrieve wave spectra closer to the WW3 reference
and show some robustness to the noise and artifacts present in
the SAR cross-spectra. As stated before, Mps and Mpps+My
schemes lead to very similar results. Beyond the inspection of
the agreement between the reconstructed and reference wave
spectra illustrated in Fig[2bl we can also analyze the agree-
ment between the pre-processed SAR cross-spectrum, i.e. the
output of the first stage Mpps, and the SAR cross-spectrum
simulated from the WW3 wave spectrum. It highlights the
ability of the two-stage architecture to retrieve energy patterns
above the cutoff in the SAR cross-spectra so that the inver-
sion is consistent with the wave-spectrum-to-SAR simulation
model. While sharing the same global patterns in the exam-
ple depicted in Fig[2a] the pre-processed and WW3-derived
SAR cross-spectrum also show some differences. The learn-
ing process may result in some over-smoothing of some struc-
tures but some differences in the intensity and spread of the
observed structures may also relate to the differences between
the true sea state and the WW3 prediction.

5. CONCLUSION

We have investigated how deep learning methods can solve
the inversion of the sea surface wave from satellite-derived
SAR observations. Using collocated SAR data and model-
based wave spectrum data, we have developed a supervised
scheme and have demonstrated its potential to largely out-
perform operational analytical methods and address intrinsic
issues of SAR imaging. Future work will investigate its ap-
plication to in-situ sea state measurements.
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