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Abstract Extracting balanced geostrophic motions (BM) from sea surface height (SSH) observations
obtained by wide‐swath altimetry holds great significance in enhancing our understanding of oceanic dynamic
processes at submesoscale wavelength. However, SSH observations derived from wide‐swath altimetry are
characterized by high spatial resolution while relatively low temporal resolution, thereby posing challenges to
extract the BM from a single SSH snapshot. To address this issue, this paper proposes a deep learning model
called the BM‐UBM Network, which takes an instantaneous SSH snapshot as input and outputs the projection
corresponding to the BM. Training experiments are conducted both in the Gulf Stream and South China Sea, and
three metrics are considered to diagnose model's outputs. The favorable results highlight the potential capability
of the BM‐UBM Network to process SSH measurements obtained by wide‐swath altimetry.

Plain Language Summary Oceanic dynamic processes can be classified into two categories:
balanced geostrophic motions (BM), including large‐scale circulation, mesoscale and submesoscale eddy
turbulence, and unbalanced wave motions (UBM), including barotropic tides, and inertia–gravity waves
(IGWs). Both types of motions coexist and have respective contributions to the sea surface height (SSH). How
to extract the BM from the total SSH observations obtained by satellite altimetry is the crucial problem to be
solved in this paper. To tackle this issue, we propose a deep learning model named the BM‐UBM Network to
establish the relationship between the total SSH and the BM component. The BM‐UBM Network can generate
SSH estimations for the BM when provided with a well‐resolved SSH snapshot.

1. Introduction
Conventional nadir‐looking satellite altimetry has successfully achieved global sea surface height (SSH) ob-
servations with high precision over the past few decades, confirming the fact that our planet earth is dominated by
an eddying ocean (Abdalla et al., 2021; Chelton et al., 2011; Chen & Chen, 2023). It is well recognized that
mesoscale eddies capture approximately 80% of the total kinetic energy, exerting a significant influence on the
ocean circulation, the air‐sea interaction, and the marine ecosystem (Dong et al., 2014; Zhang et al., 2014; Zhang
& Qiu, 2020). However, the nadir‐looking altimeter is limited in its ability to resolve other ocean energetic
motions at submesoscale or smaller scales (Amores et al., 2018; Ballarotta et al., 2019; Dufau et al., 2016; Vergara
et al., 2019), even though these motions play a crucial role in the cascade and dissipation of ocean energy (Ajayi
et al., 2020; Klein et al., 2019; Zhang et al., 2023). To improve the observational capabilities of satellite altimetry,
the next generation of wide‐swath imaging altimeter has been proposed, including the Surface Water and Ocean
Topography (SWOT) satellite launched on 16 December 2022 (Morrow et al., 2019), as well as the Guanlan
mission proposed by China (Chen et al., 2019). The unique interferometric techniques improve the measured SSH
resolution down to 15–30 km in wavelength (Fu & Ubelmann, 2014; Wang et al., 2019), allowing SWOT to
provide the first global SSH observations that encompass multiple ocean motions from mesoscale to sub-
mesoscale ranges.

Dynamical oceanic processes captured by wide‐swath satellite altimetry include both balanced motions (BM)
represented by large‐scale circulation, mesoscale and submesoscale turbulences, and unbalanced motions (UBM)
represented by barotropic tides and inertia–gravity waves (IGWs) (Torres et al., 2019; Zaron, 2019; Zhang
et al., 2019; Zhang & Qiu, 2018). Both types of motions have their projections onto the total SSH and dominate
the SSH variability at different spatial scales according to their relative strength. Although SSH observations have
been utilized to infer the geostrophic surface currents at large scales, the BM gradually loses its dominance and is
overtaken by the UBM as the scale decreases, resulting in failure of geostrophic balance. Therefore, it is necessary
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to separate these two types of motions, to reveal their respective characteristics and examine their dynamical
interactions.

Several approaches have been proposed to tackle the BM‐UBM separation. Richman et al. (2012) used a 48hr
cutoff period to delineate the high‐frequency components dominated by internal waves and the low‐frequency
components represented by geostrophic motions. Qiu et al. (2018) and Torres et al. (2018) used spatiotem-
poral filtering to partition ocean motions into BM and IGWs, where the cutoff frequencies they used are the
frequency of either the local tenth vertical‐mode IGW dispersion curve or the permissible tides. Wang
et al. (2023b) introduced a dynamics‐based decomposition, primarily disentangling the BM and UBM by
considering the relative magnitudes of the relative vorticity and the modified horizontal divergence in spectral
space. Furthermore, Wang et al. (2023a) classified ocean motions into large‐scale circulations, barotropic tides,
mesoscale (submesoscale) currents, low‐mode (high‐mode) IGWs based on their respective dynamical charac-
teristics. Contrary to these Eulerian filtering methods mentioned above, Shakespeare et al. (2021) proposed the
Lagrangian filtering, which separates the BM from UBM in a frame of reference moving with the flow.

It is worth noting that these methodologies summarized previously require temporally continuous SSH snapshots
and therefore are not applicable to wide‐swath altimeter satellite which has a long revisit period. The SWOT
mission poses the challenge of separating the BM and UBM from a single well‐resolved SSH snapshot. Torres
et al. (2019) used spatial filtering with the cutoff wavelength (or transition scale) to separate the BM and UBM,
and diagnosed the kinetic energy exchanges between them based on SSH snapshots. Le Guillou et al. (2021)
introduced a data assimilation technique, named BFN‐QG, to map SSH from altimetric observations while
respecting quasi‐geostrophic dynamics. Additionally, some studies treated the snapshot‐style separation of the
BM and UBM as an image‐to‐image translation problem, and used deep learning approaches to solve it. Wang,
Grisouard, et al. (2022) used Generative Adversarial Network (GAN) to extract internal tides (IT) from an
idealized eddying simulated SSH snapshot. Lguensat et al. (2020) used Residual Network (ResNet) to filter IGWs
from SSH data based on a realistic numerical simulation (eNATL60).

The researches of Wang, Grisouard, et al. (2022) and Lguensat et al. (2020) have its own advantages. Wang,
Grisouard, et al. (2022) carried out tests under different relative magnitudes of the BM and UBM (by setting
different configurations for idealized simulation) in order to mimic various dynamical regimes in the real‐ocean
scenarios. Lguensat et al. (2020) was an important attempt based on a realistic (rather than idealized) numerical
simulation. Therefore, our study combines the advantage of these researches, conducting realistic‐simulation‐
based analysis to extract the BM from SSH snapshot in different oceanic regions representing different
dynamical regimes, including the Gulf Stream and South China Sea.

The rest of the paper is organized as follows: Section 2 presents the data set and the decomposition method used in
this paper. Section 3 introduces the framework of the BM‐UBM Network, including its structure, configurations,
results. In Section 4, we discuss some potential limitations of the BM‐UBM Network and propose several di-
rections for future work.

2. Data and Method
2.1. MITgcm Numerical Simulation

The data used in this study is the state‐of‐the‐art global ocean simulation from the Massachusetts Institute of
Technology general circulation model (MITgcm) with a latitude–longitude–cap (llc) numerical grid (Marshall
et al., 1997). The MITgcm llc4320 data set has a 1/48° (∼2 km) spatial resolution and a 1h temporal resolution.
Not only large‐scale circulations, barotropic tides, and mesoscale eddies, but also abundant submesoscale mo-
tions, and IGWs have been included in this data set. These realistic ocean simulations are attributed to the surface
boundary condition forced by the 6‐hourly ERA‐Interim atmospheric reanalysis and the synthetic surface pres-
sure field consisting of the full luni‐solar tidal potential.

The favorable agreement between the MITgcm llc4320 and in situ observations has been extensively validated.
Regarding the BM, Qiu et al. (2018) displayed the agreement of the surface eddy kinetic energy (EKE) estimated
from the MITgcm llc4320 and the AVISO SSH product. Regarding the UBM, Savage et al. (2017) showed that
the frequency spectrum of the MITgcm llc4320 agreed well with the spectrum derived from the hourly dynamic
height measured by nine McLane profiler moorings. Moreover, comparisons between the MITgcm llc4320 and
Acoustic Doppler Current Profiler (ADCP) observations has been conducted in many regions, including the
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Drake Passage (Rocha, Chereskin, et al., 2016), the North Pacific (Qiu et al., 2017), and the California Ocean
Current (Chereskin et al., 2019). Overall, these validation studies highlight the accuracy and reliability of the
MITgcm llc4320 in simulating ocean dynamics.

The hourly SSH data of the MITgcm llc4320 from 11 July 2012 to 10 September 2012 are used. The experiments
are conducted in two 5° × 5° areas, including the Gulf Stream (38°–43°N, 60°–65°W) and South China Sea
(17.5°–22.5°N, 115°–120°E) (Figure S1 in Supporting Information S1). The Gulf Stream (South China Sea) is
characterized by stronger BM (UBM) than UBM (BM). Choosing different regions, namely different dynamical
regimes, helps demonstrate the usefulness of the BM‐UBM Network.

2.2. Balanced–Unbalanced Motions Decomposition

The wavenumber‐frequency spectrum of hourly SSH data in the Gulf Stream is plotted in Figure 1a, in which the
SSH variance density of the UBM is particularly discernible in the semidiurnal and diurnal tide frequency bands
as well as along the dispersion curves of IGWs. Calculation of this wavenumber‐frequency spectrum follows the
classical methodology also used in Qiu et al. (2018) and Rocha, Gille, et al. (2016). Due to the large horizontal
scales of large‐scale circulations and barotropic tides (O(103)km), they have been excluded from the hourly SSH
data by removing the mean and linear trend (Wang et al., 2023a), leaving the sea surface height anomaly data used
to perform the BM‐UBM decomposition. The SSH three‐dimensional scalar T(x,y,t) is multiplied by a three‐
dimensional Hanning window, and we perform a discrete three‐dimensional Fourier transform to obtain
T̂(k, l,ω) , where k is the zonal wavenumber, l is the meridional wavenumber, and ω is the frequency. Then we
need to perform the transformation from an anisotropic spectrum to an isotropic spectrum using the azimuthally‐
averaged methodology, then obtain the two‐dimensional wavenumber‐frequency spectrum S(kr,ω), where kr is

the isotropic wavenumber defined as kr =
̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + l2

√
. The more detailed calculation process of the azimuthally‐

averaged methodology can be found in the Text S2 in Supporting Information S1.

The BM‐UBM decomposition is conducted in the wavenumber‐frequency domain, and the local tenth vertical‐
mode IGWs dispersion curve (red curve in Figure 1a) is adopted to separate the BM located below this curve
and the UBM located above this curve (Torres et al., 2018). To calculate the dispersion curves of IGWs at discrete
vertical modes, we first calculate the local buoyancy frequency based on the World Ocean Atlas 2018 (WOA18)
climatological temperature–salinity profiles (Zweng et al., 2018). Then, the different Rossby radii of deformation
are produced by solving the classical Sturm‐Liouville problem (Chelton et al., 1998). Finally, the related
dispersion curves of IGWs can be obtained by the function of wavenumber and frequency.

Once the BM and UBM have been separated in the spectral space, an inverse Fourier transform can be applied to
reconstruct the BM and UBM in physical space, thereby obtaining their respective projections onto the total SSH.
Figures 1b–1d plot the total SSH, the BM and UBM components on 1 September 2012. It is evident that the BM
accounts for the majority of the total SSH variation, while the UBM affects the SSH variation at smaller scales.
Figure 1j shows the wavenumber spectra of the BM and UBM. Consistent with previous studies, the BM exhibits
dominance at mesoscale ranges, while the SSH variance of the UBM surpasses that of the BM at submesoscale
ranges (Qiu et al., 2018). The intersection of two power spectral density (PSD) curves corresponds to the tran-
sition scale from the BM to UBM. Notably, the wavenumber spectral slope near k− 5 for the BM are consistent
with the predictions of the interior quasi‐geostrophic (QG) turbulence theory (Charney, 1971). Additionally, the
energy peak in the wavenumber spectrum (around 0.1cpkm) is due to temporal aliasing of IGWs caused by
inadequate outputting rate of the MITgcm llc4320 simulation (hourly snapshots) (Wang, Liu, et al., 2022), which
leads to the spectral energy of high‐frequency (subhourly) IGWs folding back to lower frequencies (as illustrated
by the aliased spectral energy of mode‐1 IGWs in Figure 1a).

The same decomposition methodology is also applied to separate the BM and UBM from the sea surface velocity
data of the MITgcm llc4320 (Figure S2 in Supporting Information S1), and calculate the relative vorticity and
horizontal divergence for the decomposition results (Figure S3 in Supporting Information S1). The BM displays
mesoscale features as patches with the large relative vorticity and extremely weak horizontal divergence, while
the UBM demonstrates a strong horizontal divergence pattern. Therefore, whether the analysis of SSH decom-
position results from the perspective of the wavenumber spectrum or the examination of sea surface velocity
decomposition results from the perspective of the relative vorticity and horizontal divergence properties, both
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Figure 1.
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approaches provide robust evidence to validate the correctness of the decomposition method in separating the BM
and UBM components.

3. Deep Learning Framework: BM‐UBM Network
3.1. Configurations

The U‐Net, a representative of the Convolutional Neural Network (CNN), is particularly suitable for extracting
features from one image (Falk et al., 2019). It has beenwidely used in various oceanographic studies, such as ocean
eddies or fronts detection (Liu et al., 2021; Wang, Chen, et al., 2023). In this paper, we propose the BM‐UBM
Network, which utilizes the U‐Net architecture to establish the relationship between the total SSH and its BM
component. The network takes the total SSH as input and generates the SSH associated with the BM, and the SSH
corresponding to theUBM is obtained by subtracting theBMcomponent from the total SSH. Figure 2 illustrates the
architecture of the BM‐UBMNetwork, which consists of an encoder‐decodermodule and a concatenationmodule.
The encodermodule reduces the input image resolution and extracts essential features,whereas the decodermodule
restores the original resolution of the image to maintain the same resolution between the output and input.
Additionally, the concatenation module fuses the encoder and decoder modules at the same level.

Hourly SSH snapshots fromMITgcm llc4320 are used as input, and results from the BM‐UBM decomposition are
used as ground truth. These preprocessed data spanning from July 11 to 21 August 2012, August 22 to 31 August
2012, and September 1 to 10 September 2012 were split into the training/validation/testing data set, respectively.
Each SSH snapshot in the testing data set is independently fed into the BM‐UBM Network, with the purpose of
simulating the BM‐UBM Network processing the SWOT‐like 2D data. In other words, the BM‐UBM Network
extracts the BM from the spatial dimension only, independent of the temporal dimension. The training procedure
was run on a Nvidia Tesla P100 GPU. The BM‐UBM Network was coded using the PyTorch framework and
trained using the ADAM optimizer. A supervised learning strategy is used, in which the training loss function
involves the mean square error of the SSH and its gradient:

L(xSSH, x̃SSH) = ‖xSSH − x̃SSH‖2 + α‖∇xSSH − ∇x̃SSH‖2 (1)

where xSSH is the ground truth from training data set, x̃SSH is the prediction from the BM‐UBMNetwork, and α is
the weighing parameters whose value is set to 100. The choice of this loss function takes into account both the
accuracy of prediction and the preservation of high‐frequency information for the SSH field.

3.2. Results

To provide a comparison, we also choose the same moment as an example to show the predicted results of the
BM‐UBMNetwork. Comparing the predictions (Figures 1e and 1f) and references (Figures 1c and 1d) of the BM
and UBM, it can be concluded that the BM‐UBM Network can effectively extract the projection of the BM from
the total SSH, and the overall pattern is well described. The UBM results also include detailed SSH information at
small scales. Errors between the BM prediction and BM reference are plotted in Figure 1g. Since the UBM
prediction is calculated by subtracting the BM prediction from the total SSH, errors between the UBM prediction
and the UBM reference have the same values but opposite signs.

Three metrics are considered to diagnose the predicted accuracy of the BM‐UBMNetwork, including (a) the root‐
mean‐square error (RMSE), (b) the wavenumber spectrum, and (c) the wavenumber‐frequency spectrum. A total
of 240 SSH snapshots are independently processed to ensure that these metrics hold statistical significance. The
first RMSE‐based metric (blue line in Figure 1h) describes the fluctuation of errors for each SSH snapshot. The

Figure 1. The BM‐UBM decomposition results for SSH in the Gulf Stream. (a) The wavenumber‐frequency spectrum of hourly SSH data fromMITgcm llc4320. Dashed
white lines denote the inertial and tidal frequencies. Solid white lines denote the dispersion relation for IGWs of the first 10 vertical modes. Solid red line denotes the
frequencies to separate the BM and UBM. (b) An example of the total SSH snapshot. (c) and (d) The decomposition results of the BM and UBM obtained from the
wavenumber‐frequency spectrum. (e) and (f) The decomposition results of the BM and UBM obtained from the deep learning approach (DL). (g) Error between the BM
(DL) and the BM (True). (h) RMS of errors for the DL (blue line) and the Gaussian filter (GF) baseline (red line) over the testing data set, and two black horizontal lines
indicate the average values of RMSE. (i) The wavenumber spectra of the BM, UBM, and Error obtained from the DL and GF. Two black vertical lines represent the
effective separation scale for the DL and GF, respectively (j) The wavenumber spectra of the BM and UBM, where vertical black dashed line denotes the transition scale
from the BM to UBM, and black thin dashed lines denote spectral slopes of k− 3 and k− 5 for reference.
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variation of RMSE is not significant, consistently ranging within 2–3 cm, with the average RMSE of 2.40 cm.We
also calculate the correlation between the BM references and BM predictions, results show that the average
correlation coefficient is 0.996 (Figure S4 in Supporting Information S1).

The second metric, wavenumber spectrum, provides a spatial‐scale‐dependent diagnosis. The zones where the
error spectrum is lower than both the BM and UBM will characterize where the separation is effective for both
signals. Therefore, the intersection of the error wavenumber spectrum with the BM wavenumber spectrum is
defined as the effective separation scale, which is particularly useful to identify the minimum wavelength at
which the predicted results are reliable. Results (Figure 1i) show that the effective separation scale of 34 km in
the Gulf Stream is roughly consistent with the resolution can be resolved by wide‐swath altimetry (15–30 km),
which is a robust demonstration of the capability to extract the BM at submesoscale of interest for wide‐swath
altimetry.

Furthermore, the two‐dimensional (2D) Gaussian filter operates on the principle of Gaussian function, which is
the most commonly mathematical tool used to smooth data in image processing. It is also adopted as the baseline
for comparison with the BM‐UBM Network we proposed. The cutoff wavelength of the 2D Gaussian filter is
determined by the transition scale between the BM and UBM (Figure 1j). Figure 1h plots errors of the results
obtained from the 2D Gaussian filter over the testing data set. The first RMSE‐based metric shows that the deep
learning approach (DL, blue line in Figure 1h) performs more stable, while the Gaussian filter baseline (GF, red
line in Figure 1h) exhibits notable fluctuation of errors for different snapshots, with an average RMSE of 3.12 cm.
The second wavenumber spectrum metric reveals an effective separation scale of 95 km for the Gaussian filter
(Figure 1i), which is larger than the typical transition scale between the BM and UBM (∼74 km, Figure 1j). Such a
discrepancy is clearly deemed unacceptable for the BM extraction at submesoscale. Compared to the 2DGaussian
spatial filter, the BM‐UBMNetwork leads to a great improvement with the relative gain of 23% for the RMSE and
64% for the effective separation scale.

The third metric, wavenumber‐frequency spectrum, provides a description both in space and time. The
wavenumber‐frequency spectra of the BM, UBM, error and the ratio of error with both signals are plotted in
Figure S5 in Supporting Information S1. The signal‐to‐noise ratio (SNR) of the BM (Figure S5c in Supporting
Information S1) shows that SNR values greater than 1 are concentrated in the low‐frequency regions dominated
by the BM. Similarly, the SNR of the UBM (Figure S5e in Supporting Information S1) also shows that SNR

Figure 2. The overall structure of the BM‐UBM Network, consisting of the encoder‐decoder module and the concatenation
module.
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values greater than 1 are concentrated in the high‐frequency regions dominated by the UBM. These results imply
that the BM‐UBM Network is not only a basic spatial filter, but also has the capability to capture temporal
characteristics of ocean dynamics.

Figure 3. Same as Figure 1 but for the South China Sea.
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To further investigate the performance of the BM‐UBM Network under different ocean dynamical regimes,
additional analyses are also conducted in a 5° × 5° region within the South China Sea, which is one of the typical
representative regions in the global ocean where the UBM is usually stronger than the BM. The UBM has distinct
footprints on the total SSH (Figure 3b), with a magnitude greater than that of the BM. The relatively greater
strength of the UBM results in a much larger transition scale (∼143 km, Figure 3j) than that of the Gulf Stream
(∼74 km, Figure 1j). The same three metrics are used to evaluate the predicted results obtained from the BM‐
UBM Network. The average RMSE of 1.52 cm and the effective separation scale of 37 km are better than the
2D Gaussian filter, which has an average RMSE of 2.63 cm and an effective separation scale of 109 km in the

Figure 4. Comparison of the magnitude of the BM gradient and BMLaplacian fields for the True, DL, and GF. Left column is
the magnitude of gradient field, and right column is the Laplacian field. Three rows from top to bottom correspond to the BM
obtained from the True, DL, and GF, respectively.
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South China Sea. Results of the correlation coefficient and wavenumber‐frequency spectrum are plotted in
Figures S6 and S7 in Supporting Information S1.

Additionally, we also examine the magnitude of the gradient and Laplacian fields for the BM from the True, DL
and GF (Figure 4). The BM outputs from the DL reveal a remarkable consistency with the True both in these two
fields. The prominent meanders in the gradient field and numerous vortices in the Laplacian field can be captured
by the BM‐UBM Network. In contrast, the GF performs significantly worse, and most of the information is
smoothed out. This situation is more pronounced for the second‐order Laplacian field compared to the first‐order
gradient field. Although the BM outputs from the GF may appear similar to the True in terms of SSH, it is
powerless to capture these two statistical characteristics. Therefore, the robust performance of the BM‐UBM
Network in capturing features both in the gradient and Laplacian fields is beneficial to utilize SSH to infer
geostrophic ocean current based on the QG theory, which is particularly crucial for data analysis of the BM
component.

4. Discussion and Outlook
As mentioned in the introduction, oceanic observations cannot give access to a full wavenumber‐frequency
spectrum. Only a frequency spectrum (such as mooring observations) or a wavenumber spectrum (such as sat-
ellite altimeter observations) can be obtained. The poor revisiting cycle of wide‐swath altimetry poses challenges
to extract the BM from a single SSH snapshot. As a result, we propose a deep learning approach (the BM‐UBM
Network) as a solution, which takes an instantaneous SSH snapshot as input and generates corresponding pro-
jection of the BM. The favorable performance highlights its potential capability to process SSH measurements
from wide‐swath altimetry. We also expect that the BM‐UBM Network will contribute to the study of multiscale
oceanic motions in the era of SWOT mission.

It should be acknowledged that the extracted BM could suffer from IGWs leakage and the remaining UBM may
also include some leaked submesoscale processes. And the experiment conducted in this paper remain a
simulation‐based case study, and the BM‐UBM Network is also trained to a special region or season. Several
studies have already pointed out that the interactions between BM and UBM show large differences in terms of
the geographical patterns and seasonality. Qiu et al. (2018) revealed that the dominance of the BM and UBM in
SSH variability exhibits significant different characteristics across the global ocean. Not only the geography, we
also examine the seasonal modulation by calculating the relative vorticity and horizontal divergence of the sea
surface velocity (Figure S8 in Supporting Information S1). Results suggest that the BM is stronger in wintertime,
whereas the UBM is more prominent in summertime, consistent with the conclusions of Rocha, Gille,
et al. (2016). Therefore, whether the geography or seasonality will be the major challenges in transforming the
deep learning method from theoretical analysis to practical tools. Generalization of the BM‐UBM Network over
the global ocean still deserves great efforts in future work.

Additionally, this paper is mostly a technological demonstration of applying the deep learning method to the BM‐
UBM decomposition in the context of the fact that deep learning is increasingly widely used in oceanographic
researches and more high‐spatial resolution SSH measurements will be available from wide‐swath altimetry.
However, this paper does not provide scientific explanations about why the BM‐UBM Network can realize the
BM extraction, which may be more confusing to many physical oceanographers who want to seek the physical
mechanism behind the BM‐UBM Network working. Therefore, advancing the interpretability of deep learning
and deepening our understanding of the oceanographic mechanisms are also directions for future work.

As an innovative attempt, the BM‐UBM Network is not the final solution and still has numerous areas for
improvement. As a natural extension for future research work, we can enhance the BM‐UBM Network from the
following aspects:

1. Enhancement of network architecture: A more sophisticated network architecture can be used to improve
performance. Notably, recent advancements in attention mechanisms, such as channel attention and spatial
attention, have demonstrated their applicability in capturing spatial and temporal dependencies (Woo
et al., 2018). Therefore, integrating attention mechanisms into the BM‐UBM Network could be a promising
direction for further enhancement.

2. Incorporation of additional information: Numerous studies have indicated a strong correlation between sea
surface temperature (SST) and SSH (Chen et al., 2021; Lguensat et al., 2020). Fablet et al. (2023) emphasize
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the contribution of SST‐SSH synergies to retrieve a significant fraction of the ageostrophic component.
Therefore, introducing additional oceanic variables closely related to the BM and UBM into the BM‐UBM
Network could potentially improve the decomposition accuracy and provide a more comprehensive under-
standing of oceanic processes.

3. Testing with measurements from wide‐swath altimetry: The current experiment still uses only numerical
simulation from theMITgcm llc4320 data set. Further experiments using SSHmeasurements from wide‐swath
altimetry can be conducted to display the results obtained from the BM‐UBM Network.

Data Availability Statement
TheWOA‐2018 temperature and salinity gridded data set can be accessed from Locarnini et al. (2018) and Zweng
et al. (2018), respectively. The MITgcm llc4320 simulation outputs can be downloaded from ECCO Data Por-
tal (2021). All data sets related to this work are publicly available at Zenodo repository (Gao et al., 2023).
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