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Abstract 

Cold-water corals form vast reefs that are highly valuable habitats for diverse deep-sea communities. However, 
as the deep ocean is warming, it is essential to assess the resilience of cold-water corals to future conditions. The 
effects of elevated temperatures on the cold-water coral Lophelia pertusa (now named Desmophyllum pertusum) 
from the north-east Atlantic Ocean were experimentally investigated at the holobiont level, the coral host, and its 
microbiome. We show that at temperature increases of + 3 and + 5 °C, L. pertusa exhibits significant mortality con-
comitant with changes in its microbiome composition. In addition, a metagenomic approach revealed the pres-
ence of gene markers for bacterial virulence factors suggesting that coral death was due to infection by pathogenic 
bacteria. Interestingly, different coral colonies had different survival rates and, colony-specific microbiome signatures, 
indicating strong colony-specific variability in their response to warming waters. These results suggest that L. pertusa 
can only survive a long-term temperature increase of < 3 °C. Therefore, regional variations in deep-sea temperature 
increase should be considered in future estimates of the global distribution of cold-water corals.
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Introduction
In the deep sea, cold-water corals form extensive reefs 
that represent highly valuable habitats, providing nursery 
grounds, and a source of food for numerous marine spe-
cies [12]. These key ecosystem engineers thus act as local 
biodiversity enhancers and provide many ecosystem and 
ecological services [3]. Nevertheless, these corals now 
face serious anthropogenic threats, particularly in sub-
marine canyons, due to unsustainable fishing activities, 
pollution, and global warming [54]. Sea water is warming 

down to the deep ocean [5], and projected climate sce-
narios indicate that warming is likely to be faster in deep 
environments than at the surface of the oceans in the 
future [9]. In the Atlantic Ocean, mesopelagic and bathy-
pelagic water temperatures are predicted to rise by up to 
3 °C before the end of the century [72].

Temperature changes are known to impact the health 
of cold-water corals by changing their associated micro-
biome (i.e., associated microbial communities), organic 
carbon content, respiration, feeding behavior and skeletal 
biomineralization, which could, in some cases, lead to 
coral death [10, 19, 22, 30, 59]. In the Mediterranean Sea, 
where corals live at 13–14 °C, a recent study showed that 
Lophelia pertusa (now synonymized as Desmophyllum 
pertusum, [1]), the main reef-building and most wide-
spread cold-water coral species, had reduced physiologi-
cal functions when exposed to warmer waters. It also 
appeared to be less tolerant to warming than Madrepora 
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oculata, another common coral of the deep-sea reefs [19]. 
The study conducted at the holobiont level, considering 
both the coral host and its microbiome, showed that at 
warmer temperatures, physiological activity, growth rate, 
and energy reserves were reduced, and behavior was 
altered with increased polyp activity. At the same time, 
the coral microbiome changed in composition, with the 
appearance of potential opportunistic bacteria [19].

The coral microbiome has been shown to be closely 
linked to the health and growth of tropical corals as it 
contributes significantly to the host metabolism [8], and 
may contribute to stress tolerance [6]. However, while 
some microorganisms are beneficial to their host, others 
can cause coral diseases [66, 78]. The microbial commu-
nities may, therefore, be a good indicator of tropical coral 
health [29]. In the case of cold-water corals, a number of 
studies have shown that the microbiome is affected in its 
composition and diversity in response to environmen-
tal changes [17, 19, 25, 26, 33, 48]. Although the role of 
the associated bacteria and their potential metabolisms 
have begun to be investigated [34, 52, 64], the extent of 
the potential functions of cold-water coral microbiome 
remains largely unknown.

In the north-east Atlantic Ocean, cold-water coral 
populations live at lower temperatures than those in 
the Mediterranean Sea (i.e., 8–12  °C in the Gulf of Bis-
cay  [76]). As deep-sea temperatures are rising, it is not 
yet known whether L. pertusa in the Atlantic are already 
living at their thermal optimum, making them highly vul-
nerable to global warming, or whether they can thrive 
in waters as warm as their Mediterranean counterparts, 
and would therefore be less affected by future ther-
mal changes. Knowledge on the impacts of warming on 
Atlantic L. pertusa remains limited to respiratory physi-
ology [22, 31] and growth [13].

In this context, the aim of the present study was to 
determine, under laboratory conditions, the effects of 
elevated temperatures on the Atlantic reef-forming 
cold-water coral Lophelia pertusa. A two-month aquaria 
experiment was conducted in which corals from a sub-
marine canyon in the Bay of Biscay (north-east Atlantic 
Ocean) were exposed to three different temperature con-
ditions: the in situ temperature (10 °C), and temperatures 
corresponding to two different warming scenarios (13 °C 
and 15  °C). The coral response was investigated at the 
holobiont level by measuring coral survival and growth, 
and by describing the diversity of the microbiome by 
metabarcoding, and its functions using metagenomics.

Material and methods
Specimen collection and maintenance
Corals were sampled in the Lampaul canyon in the Bay 
of Biscay, North-east Atlantic Ocean (47° 36.703 N, 07° 

32.192 W). The Lampaul canyon has been included in 
a newly defined Natura 2000 area, with the aim of pre-
serving deep-sea reef habitats. As early as in the 1950s, 
Le Danois [42] described the reef as a particularly rich 
coral area. Recent dives have revealed a great diversity of 
coral habitats in this area although severely impacted by 
fishing activities [76]. Five distinct colonies of L. pertusa 
(Linnaeus 1758) (orange specimens) were collected at 
800 m depth, within a water mass corresponding to the 
Mediterranean Outflow Water [21]. Samples were col-
lected using the remotely operated vehicle (ROV) Ariane 
from the R/V Thalassa, during the research cruise ChER-
eef (habitat Characterization and Ecology of cold-water 
coral Reefs) in August 2021 [49]. On board, the corals 
were maintained in oxygenated seawater at the ambi-
ent seabed temperature of 10  °C, using a cooling unit 
(ICE400, Aquavie, Connaux, France). Once at the labo-
ratory (Banyuls Oceanological Observatory), the colonies 
were maintained for 5  months at their in  situ tempera-
ture to acclimatize to laboratory conditions in a dark, 
thermoregulated room, in aerated 80 L tanks, continu-
ously supplied (> 1 renewal  day−1) with filtered (5  µm) 
seawater pumped from 10 m depth. Corals were fed three 
times a week alternately with freshly hatched Artemia 
salina nauplii (350  L−1) and 5 mL of marine snow plank-
ton diet (Two Little Fishies Inc, Miami Gardens, Florida, 
USA), to provide a complete and diverse nutrient sup-
ply [26]. After the acclimatization period, each of the L. 
pertusa colonies were cut into small fragments, hereafter 
referred to as nubbins, each composed of 3–13 living pol-
yps [62]. The cutting technique does not harm the nubbin 
[62]. The nubbins were glued onto PVC blocks using an 
aquatic epoxy resin (Hold Fast Sand, Aquarium System, 
Sarrebourg, France), and then transferred to experimen-
tal tanks.

Experimental design
Lophelia pertusa nubbins were exposed to three different 
temperature conditions: 10, 13 and 15 °C. The 10 °C con-
dition represented the in situ temperature (control), 13 °C 
(+ 3 °C increase) corresponded to the in situ temperature 
in the Mediterranean Sea, and 15  °C (+ 5  °C increase) 
represented a severe warming near the presumed upper 
limit of thermal tolerance for this species [10]. Experi-
ments were conducted following the protocol detailed in 
Chapron et al. [19]. Nubbins (i.e., subsamples of colonies) 
from four different colonies were present in each experi-
mental condition. Each colony was represented by 6–7 
nubbins randomly distributed in each of the three 36L 
experimental tanks, with sufficient distance between the 
nubbins to avoid any contact between the different nub-
bins and their polyps [62]. Five nubbins from each colony, 
each composed of at least 3 polyps, were dedicated to 
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microbiome analysis. One to two nubbins from each col-
ony, each composed of at least 5 polyps, were allocated 
for growth measurements (Supplementary Fig. 1).

Each experimental tank was equipped with a small 
water pump (NJ400, Newa Jet, Loreggia, Italy) that main-
tained a constant flow of 3  cm   s−1 to facilitate water 
mixing. To ensure stable temperature regulation, each 
experimental tank was placed in a larger water bath tank, 
and equipped with a temperature probe connected to a 
temperature controller (Biotherm Eco, Hobby Aquaristik, 
Gelsdor, Germany, precise at 0.1 °C), which was coupled 
to the water bath tank’s cooling unit (ICE400, Aquavie, 
Connaux, France). The temperature in each tank was 
monitored every 30  min using an autonomous IBUT-
TON probe and manually checked twice a day using a 
digital thermometer (Checktemp thermometer, Hanna 
Instrument, Woonsocket, USA). The pH, oxygen con-
centrations, and salinity were measured manually twice 
a week (Supplementary Table  1), using probes (C3010 
Multi-parameter analysers, Consort). Nubbins were 
acclimated for two weeks in the experimental aquaria 
prior to temperature changes. Then, the water tempera-
ture of the experimental tanks was gradually increased 
to avoid thermal shock. Temperature was raised over 
10  days until the targeted temperatures were reached, 
following the protocol described by Naumann et al. [59]. 
The feeding routine was maintained throughout the 
experiment.

Coral survival and skeletal growth
Throughout the experiment, polyps of each nubbin were 
thoroughly checked and noted as either dead or alive 
to assess survival rate. Survival rate was assessed at the 
polyp level as the percentage of surviving polyps at each 

sampling time relative to the initial number of polyps for 
each temperature condition.

To determine if polyps were alive, their colour was first 
observed. Healthy polyps from the Lampaul canyon are 
pink/orange, and a change of color inside the calyx was 
considered a strong indicator of polyp death (Fig.  1a). 
In cases of doubt, polyps were rinsed with seawater and 
deemed dead if there were no remaining tissues or if the 
tissues had detached from the calyx. When all the polyps 
of a nubbin were dead, the nubbin was removed from the 
aquarium.

Skeletal growth was measured using fluorescent cal-
cein staining and by measuring polyp linear extension 
[39], as well as by a novel protocol of structured-light 3D 
scanning. At the beginning of the experiment, 1–2 nub-
bins (> 5 pol) per colony, dedicated for growth monitor-
ing were stained with calcein fluorescein at 150 mg   L−1 
following the protocol described by Chapron et al. [16]. 
They were then scanned using the automatic AutoScan 
Inspec (Shining 3D, China) before starting the experi-
ment (Supplementary Fig.  2). More precisely, nubbins 
were scanned by taking successive photos of the nub-
bin in several layers. The Ultrascan software aligned and 
superimposed these photos to form a cloud of points, 
which was then smoothed to reconstruct the nubbin in 
3D. The software computes the volume of the 3D image 
hereafter called biovolume.

After two months, the nubbins were scanned again, 
using the same protocol as at the start of the experiment. 
They were then cleaned in a hydrogen peroxide solution 
 (H2O2, 4%) at 60 °C for 12 h to remove all organic tissues, 
and rinsed with demineralised water. Then, each polyp 
calyx was individualised, placed on a slide, and glued 
with Patafix© in order to identify polyp’s septa under a 
microscope. The calcein labelling was observed under 

Fig. 1 Photo showing a L. pertusa nubbin (1) with living polyps characterized by a pink colour (2) and white dead polyps (3) (A). Polyp survival rate 
(mean values from four colony replicates per time point and error type are presented) of L. pertusa at 10 °C, 13 °C and 15 °C at T0 (n = 120, 122, 124 
polyps respectively at 10, 13 and 15 °C), after 2 weeks (n = 100, 94, 64 polyps), 4 weeks (n = 93, 85, 48 polyps), 6 weeks (88, 73, 45 polyps) and 8 weeks 
(87, 72, 42 polyps) (B)
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a fluorescence microscope (Olympus IX51, Olympus, 
Tokyo, Japan) with excitation at 495  nm. Images were 
captured with a camera and image analysis was carried 
out using Image J software. Growth was assessed by 
measuring the distance between the calcein label and the 
outer edge of the septum of the calyx (repeated 10 times). 
Apical and subapical polyps were identified and their 
growth was compared (Supplementary Fig. 3). 3D models 
from the beginning and the end of the experiment were 
compared using the Meshmixer software, to determine 
differences in volume and surface.

Bacterial community sampling and DNA extraction
For each experimental condition, three polyps per colony 
of L. pertusa were sampled at the start of the experiment 
(T0), and after 2, 4, 6, and 8 weeks. Additionally, at each 
sampling time, one litre of aquarium seawater was sam-
pled and filtered sequentially through a 3  µm pore-size 
polycarbonate filter (Millipore, Darmstadt, Germany) 
followed by a 0.22  µm filter. Coral samples and the fil-
ters were flash-frozen in liquid nitrogen and then stored 
at − 80 °C until nucleic acid extractions. For DNA extrac-
tion, individual polyps (including skeleton, tissues, and 
mucus) were first crushed using a sterile hammer, then 
ground in tubes containing a garnet matrix, and lysed 
mechanically using a FastPrep Instrument (MP, Biomedi-
cal, llkirch-Graffenstaden, France). DNA extraction was 
performed using the Maxwell Blood DNA Purification 
Kit LEV and the Maxwell 16 MDx Instrument (Promega, 
Madison, WI, United States) following the manufactur-
er’s instructions. The FastPrep grinding and lysing proto-
col was also applied for the seawater samples after cutting 
the 0.22 µm filters into small fragments.

16S rRNA amplicon sequencing and data analysis
The V1–V3 region of the bacterial 16S rRNA gene was 
amplified by PCR using the primers 27F-AGR GTT 
TGATCMTGG CTC AG [37] and 519R-GTNTTAC-
NGCGGCKGCTG [73] with the HotStarTaq Plus Master 
Mix Kit (Qiagen, Valencia, CA, United States) and high-
fidelity Phusion polymerase under the following condi-
tions: 30 s at 98 °C, 16 cycles of 98 °C for 10 s, 60 °C for 
30 s, 72 °C for 80 s and final extension for 5 min at 72 °C. 
Following the PCR, all the amplicon products from the 
different samples were mixed in equal concentrations 
and purified using Agencourt Ampure beads (Agen-
court Bioscience Corporation, MA, United States). The 
DNA library was prepared using the purified PCR prod-
ucts following the Illumina TruSeq DNA library prepa-
ration protocol. All the samples were sequenced on the 
same Miseq Illumina sequencer run using Miseq reagent 
kit V3 (Illumina, CA, United States), producing 2 × 300-
bp long reads. PCR and sequencing were conducted 

by a commercial laboratory (Integrated Microbiome 
Resource, Halifax, Canada). All 16S rRNA sequences 
were deposited in GenBank under SRA accession num-
ber PRJNA1085650.

Sequence analysis was performed with Dada2 in R [15], 
v 1.26.0). We applied the standard pipeline with the fol-
lowing parameters: trimLeft = 20, truncLen = c(290, 270), 
maxN = 0, maxEE = c(2,5), truncQ = 2. The sequences 
were filtered, dereplicated, and chimeras removed, to 
obtain amplicon sequence variants (ASVs). ASVs were 
classified against the SILVA v. 128 database [65] for taxo-
nomic assignment. An additional BLAST [4] search was 
performed on the ASVs selected by SIMPER analysis 
with the vegan package [60].

Metagenomic sequencing and data analysis
A total of 12 samples (two per temperature condition at 
T0 and after 8 weeks) were used for sequencing metage-
nomes generated with Truseq DNA Nano and sequenced 
on Illumina Novaseq (2 × 150  bp) with 80  Gb/sample 
as target. After removing adapters and quality filtering 
using Cutadapt, sequences from each metagenome were 
assembled individually with MegaHIT [44] using the 
meta-large options. Subsequently, EukRep [80] was used 
to identify and segregate eukaryotic from prokaryotic 
contigs, using a minimum contig size of 2 Kbp. Eukary-
otic contigs (coral host and protistan symbionts) were 
then removed from the dataset. Prokaryotic genes were 
predicted on prokaryotic contigs using two distinct tools: 
MetaGeneMark, a metagenomic gene discovery tool 
[82], and Prodigal, a software designed for the predic-
tion of proteins within prokaryotic genomes [32]. While 
MetaGeneMark could predict both complete and partial 
genes, Prodigal focused exclusively on complete genes. 
To ensure downstream analysis quality, only genes with a 
length of 250 bp or more were retained.

To build a gene catalog, the predicted genes from the 
different samples were pooled and dereplicated at 95% 
similarity and 80% alignment coverage with ’linclust’ [70]. 
Metagenome reads were back-mapped to the catalog 
using BWA [45], and the number of counts per gene was 
obtained using HTSeq [2]. Counts per gene were normal-
ized by gene length and the geometric mean abundances 
of 10 selected single-copy genes in each sample [67]. Nor-
malized gene abundance tables were generated, including 
the abundance of each gene (ORF) in each sample. The 
corresponding functional abundance tables were gener-
ated by adding all the normalized abundances of all genes 
annotated to a specific function within a given database 
(e.g., KEGG). Prokaryotic genes were taxonomically 
annotated with MMseqs2 against the Genome Taxonomy 
Database (GTDB) [63], and functionally annotated using 
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blastp with Diamond [v0.9.22] against the KEGG (Kyoto 
Encyclopedia of Genes and Genomes database.

All metagenomic sequences were deposited at the ENA 
under accession number PRJEB68224.

Statistical analysis
Tests for normality of variance were performed using 
the Shapiro–Wilk test with the R software (v. 4.2.2). The 
distribution of survival data was normal, allowing a mul-
tiple factors ANOVA analysis. HSD post hoc tests were 
performed using the TukeyHSD function to determine 
differences among temperature conditions. As the distri-
bution of growth rates was not normal (p < 0.05), a non-
parametric multiple comparison Kruskal–Wallis (K–W) 
test was used to test possible statistical differences 
between thermal conditions and sampling times.

The vegan package [60] was used for the following com-
putations. Diversity was assessed by calculating the Shan-
non diversity index [69]. A nMDS based on Bray–Curtis 
similarity was constructed using the Hellinger trans-
formed ASV table [41]. Significant differences between 
community composition were tested with PERMANOVA 
with the adonis function. Homogeneity of variances was 
tested with the betadisper function followed by permut-
est. The assumption of homogeneity was respected for 
the comparison of the temperature conditions through 
time. A simper test was then performed [81] to identify 
the ASVs that contributed the most to the differences 
between temperature conditions.

DESeq2 [46] was used on the gene abundance table to 
identify the genes that varied the most between tempera-
ture conditions. A nMDS based on Bray–Curtis similarity 
was then constructed using the genes that vary the most 
and the significant difference between groups was tested 
with PERMANOVA with the adonis function in vegan.

Results
Polyp survival and skeletal growth
Survival differed significantly between temperature con-
ditions  (F2,20 = 106.209, p < 0.001), and across time within 
these conditions  (F8,20 = 7.029, p < 0.001) (Fig.  1b). More 
precisely, survival rates were overall significantly lower 
at 15  °C, with high polyp mortality after 15  days (sur-
vival of 52 ± 17%, Tukey HSD post hoc test p < 0.001), 
and decreased continuously until the end of the experi-
ment (survival of 31 ± 13% at 8  weeks, Supplementary 
Table 2). Survival rates also differed significantly between 
sampling times  (F4,20 = 95.485, p < 0.001) after 2  weeks 
for 13 and 15  °C (60 ± 12% and 34 ± 13%, respectively), 
and after 8  weeks in the control conditions (73 ± 9%). 
Finally, survival rates varied significantly between colo-
nies  (F4,20 = 88.024, p < 0.001), with some colonies (e.g., 
colonies 8 and 9) displaying higher survival rates than 

others (Tukey HSD post hoc test p < 0.001, Supplemen-
tary Fig. 4).

The average polyp linear growth rate was not signifi-
cantly different between corals exposed to water at 10 °C 
(2.6 ± 2.3  mm  y−1), 13  °C (2.2 ± 1.7  mm  y−1), and 15  °C 
(3.5 ± 2.9 mm  y−1) (Kruskall–Wallis, n = 44, p > 0.05) (Sup-
plementary Table  3). Apical (i.e., the younger polyps at 
the summit of the branch that drive the linear extension) 
and subapical polyps showed no significant differences in 
linear growth rates (K–W, n = 44, p > 0.05, Supplementary 
Table 3). No budding (i.e., formation of new polyps) was 
observed during the experiment.

Despite promising image quality (Supplementary 
Fig.  2), the low polyp growth rates were close to the 
detection limit of the 3D scanner apparatus (0.01  mm, 
manufacturer data), which thus prevented the use of bio-
volume and surface analyses to measure growth (Sup-
plementary Table 4). It is therefore recommended to use 
corals with higher growth capabilities and/or on a longer 
time scale in future studies with CWCs.

Coral microbiome
The non-metric multidimensional scaling ordination 
(nMDS) showed that at the start of the experiment (T0), 
the samples from the different temperature conditions 
grouped together, (Fig. 2). After 2 weeks, L. pertusa sam-
ples at 15  °C started separating from the 10 and 13  °C 
samples. By 4 weeks, the samples from the different tem-
peratures had separated from each other, and this sepa-
ration was maintained after 6 weeks. After 8 weeks, the 
13 and 15 °C samples were more dispersed and remained 
separated from the 10 °C samples, which were more clus-
tered. A non-parametric multivariate analysis of variance 
(PERMANOVA) revealed significant differences between 
temperatures at all experimental times. However, toward 
the end of the experiment, higher pseudo F-ratios values 
indicated a more pronounced separation between tem-
perature groups, and higher  R2 showed that tempera-
ture explained variation in the model better at the end 
of the experiment than at the beginning (Supplementary 
Table 5).

The bacterial community composition of the water was 
different from the coral bacterial communities (Supple-
mentary Fig.  5, PERMANOVA, F = 23.18, R = 0.15), and 
was similar between temperature conditions during the 
experiment.

Regarding the bacterial community composition at 
the class level, L. pertusa bacterial communities were 
dominated by ASVs belonging to Alphaproteobacte-
ria, which represented respectively in average along 
the experiment 37.5, 38 and 34% of the sequences at 
10, 13 and 15  °C (Fig.  3). Gammaproteobacteria were 
also one of the main classes characterizing the bacterial 
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communities but tended to decrease slightly at the end 
of the experiment in all temperature conditions. Both 
Desulfobacteria and Clostridia had the highest abun-
dance after 4  weeks at 13 and 15  °C (Fig.  3). Acidimi-
crobiia had highest relative abundance after 8 weeks.

The overall bacterial community diversity did not dif-
fer between temperature conditions (Shannon diversity 
index, K–W, p = 0.61), but differed through time (K–W, 
p < 0.01). Community diversity was consistently highest 

Fig. 2 Non-metric multi-dimensional scaling plot (nMDS) based on the Bray–Curtis similarity index showing similarity between bacterial 
community compositions of L. pertusa at the start of the experiment (T0), and after two, four, six, and eight weeks at 10 °C, 13 °C, and 15 °C

Fig. 3 Relative abundance of bacterial sequences at the class level (18 most abundant classes) in L. pertusa. The composition is based on average 
values over the triplicate of each colony at each temperature condition (10 °C, 13 °C, and 15 °C) at the start of the experiment T0, and after two, four, 
six, and eight weeks of the experiment
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at the start of the experiment and decreased over time 
(Supplementary Fig. 6).

Metagenomes were sequenced from samples taken 
at the beginning and the end of the experiment for all 
temperature conditions to identify bacterial genes that 
could vary in relative abundance between experimental 
conditions. The nMDS based on the genes that varied 
the most, identified with DESeq2, revealed that at T0, 
there were no significant differences in gene composi-
tion between temperatures (PERMANOVA, p = 0.14). 
However, after 8  weeks, the gene composition differed 
between coral microbiomes incubated at different tem-
peratures (PERMANOVA, p = 0.04) (Fig. 4a). No distinct 
patterns of sample separation were observed considering 
all genes together (Supplementary Fig. 7).

We then specifically compared gene composition 
between 10 and 15  °C after 8  weeks of incubation with 
DESeq2. Among the 69 genes that varied the most in rel-
ative abundance, only 5 could be annotated, and only one 
showed consistent variations between replicates. This 
gene was annotated as coding for hemolysin A secre-
tion system, which is involved in pathogenicity (KEGG 
K11004). This prompted us to search for other gene 
markers potentially indicative of the presence of patho-
genic bacteria. We therefore targeted genes involved in 
type 1 and 3 secretion systems (T1SS and T3SS), as well 
as pili and flagella construction (Supplementary Table 6). 
On average, the relative abundance of genes associated to 

T3SS, T1SS, pili, and flagella was significantly higher in 
the microbiome of corals incubated at 15 °C compared to 
10 °C and 13 °C (Fig. 4b, t-test, p < 0.01).

The taxonomic annotation of the functional genes 
allowed us to find some 16S rRNA ASVs with the cor-
responding taxonomy. Among the genes coding for fla-
gella, we identified two corresponding ASVs annotated at 
the genus level as Vibrio (Vibrionaceae) and uncultured 
P3OB-42 (Myxococcaceae) (Fig. 5). These ASVs (ASV212 
and ASV763) had highest relative abundance at 15 °C at 
the end of the experiment. Among genes coding for the 
T1SS, we identified one Puniceispirillales (Alphaproteo-
bacteria) (ASV1130) that also had highest abundance 
after 8 weeks at 15 °C, and one UBA4486 (Gammaproteo-
bacteria) (ASV213) and one Alteromonadaceae (ASV29), 
that were abundant at both 13 °C and 15 °C at the end of 
the experiment (Fig. 5).

Within the 16S rRNA amplicon dataset, we identified 
additional ASVs that became more abundant at 15  °C. 
ASV150, family Saprospiraceae, and ASV446, family 
Moritellaceae, were not present at 10  °C and 13  °C but 
observed at 15 °C (Supplementary Fig. 8). Inversely, some 
ASVs were present at 10  °C throughout the experiment, 
but had lower abundance at both 13 and 15 °C by the end 
of the experiment (ASV20, order Alteromonadaceae and 
ASV65, order Rhodobacteraceae, Supplementary Fig. 8).

Finally, some colonies harboured specific ASVs 
that were unique to their colony (e.g., ASV235, order 

Fig. 4 Non-metric multi-dimensional scaling plot (nMDS) based on the abundance of the functional genes that varied the most 
between temperature conditions (n = 5018) at the beginning and the end of the experiment as identified with DESeq2 (a). Abundance of genes 
annotated as belonging to pili and flagella formation, and involved in type 1 and 3 secretion systems (T1SS and T3SS) at the end of the experiment 
under incubation at 10 °C, 13 °C, and 15 °C (b)
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Thermoanaerobaculaceae, in colony L9, Supplementary 
Fig.  9), or were present at very low abundance in other 
(i.e., ASV4, family Spiroplasmataceae, in colony L8, Sup-
plementary Fig.  9). Within these colonies, these ASVs 
persisted under different temperature conditions and 
throughout the different times of the experiment (Sup-
plementary Fig. 9).

Discussion
We demonstrate that warming had a negative impact 
on the Lophelia pertusa holobiont from the north-east 
Atlantic Ocean. Within 8  weeks, survival dropped from 
60% at 13  °C (+ 3  °C) to 33% at 15  °C (+ 5  °C). Several 

lines of evidence indicate that coral mortality could be 
due to the action of pathogenic bacteria that prolifer-
ated within the host during the course of the experiment. 
Metagenomic analysis showed that bacterial gene com-
position differed between coral microbiomes incubated 
at different temperatures. Notably, several genes that 
were more abundant at higher temperatures were coding 
for secretion systems (T3SS and T1SS), pili, and flagella. 
Swimming motility is an important factor in bacterial 
colonization and infection [75]. Indeed, the flagellum 
is known to play a crucial role in chemotaxis and adhe-
sion to the coral during the infection by Vibrio species 
in tropical reefs [50]. In turn, secretion systems allow 

Fig. 5 Relative sequence abundance of potential pathogens characterizing L. pertusa bacterial communities under different experimental 
conditions (10 °C, 13 °C, and 15 °C) at the start of the experiment (T0), and after 2 weeks (2w), 4 weeks (4w), 6 weeks (6w), and 8 weeks (8w) 
of experiment. Mean values and standard deviations are presented
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the direct injection of effector proteins into the extra-
cellular medium (T1SS), or directly into host targeted 
cells (T3SS), contributing to pathogen infections [7, 20]. 
Increased abundance of microbial genes involved in 
virulence, motility, and chemotaxis has previously been 
observed in response to stress, including increased tem-
perature, in the tropical coral Porites compressa [77]. In 
our study, the genes potentially indicative of virulence 
were in particular associated with a Vibrionaceae, a Myx-
ococcaceae, a Puniceispirillales, and a Gammaproteobac-
teria that were more abundant at higher temperatures. 
These bacteria may be part of the pathogens invading 
stressed corals, although these bacterial families, includ-
ing Vibrionaceae, also comprise non-pathogenic mem-
bers [58].

Other potential pathogens were detected by 16S rRNA 
metabarcoding. Several bacteria from the Saprospiraceae 
order were only present at 15  °C. This order has previ-
ously been detected in tissues of the tropical coral Acro-
pora muricata affected by White Syndrome [71] and 
heat stressed Stylophora pistillata [68], suggesting their 
potential implication as opportunistic pathogens. Simi-
larly, Clostridia earlier identified as potential patho-
gens in tropical coral [51] were present at 13 and 15 °C. 
In a meta-analysis, Mouchka et  al. [56], showed that 
Clostridia, together with Rhodobacter and Cyanobac-
teria, appeared to increase in abundance in majority of 
diseased tropical corals. Concurrently, they observed 
that bleached corals had a higher proportion of oppor-
tunist bacteria such as Vibrio sp. than healthy colonies. 
Similarly, Vega Thurber et al. [77] showed that thermally 
stressed tropical corals exhibited specific disease-associ-
ated microbiome, with a low abundance of Vibrio sp., and 
distinct microbiome metabolisms and functioning. Our 
results reveal for the first time that stressed cold-water 
corals display microbiome shifts toward a higher propor-
tion of opportunistic or potentially pathogenic bacterial 
taxa in the same way as tropical corals. It remains, how-
ever, to be demonstrated if these bacteria were already 
present in very low abundance in or on the coral at the 
start of the experiment, or if they originated from the 
surrounding water [43]. Changes in bacterial commu-
nity composition (dysbiosis) were due to the appearance 
of higher abundance of opportunistic and potentially 
pathogenetic bacteria, as detailed above, but also to the 
concomitant disappearance of bacteria present in control 
conditions. These changes appeared early in the experi-
ment (after 2  weeks), which suggests a rapid stress-
induced dysbiosis under warming conditions. Altogether, 
our results reflect a limited capacity of the coral to main-
tain or regulate its microbiome under elevated tem-
perature, which results in a proliferation of potentially 
pathogenic bacteria, especially for a 5 °C increase.

Mortality under elevated temperature has been 
reported earlier in L. pertusa from different regions dur-
ing short- and long-term experiments, and 14–15  °C is 
generally considered the upper limit of thermal toler-
ance for this species [10]. Previous experiments showed 
that Mediterranean L. pertusa, normally living at 13  °C, 
were strongly affected by water temperatures of 17  °C, 
with only 50% survival after 2  months of exposure, and 
only 20% after 6 months, whereas no mortality occurred 
at 15  °C [19]. In the Gulf of Mexico, where corals live 
between 7.0 and 9.5  °C, Lunden et  al. [47] reported 
54% and 0% of survival after 15 days at 14 °C and 16 °C 
respectively, while Brooke et  al. [10] reported complete 
mortality of corals at 25  °C after 24  h of exposure, and 
80% of survival after 7 days at 15 °C. In light of our results 
and the variations observed in earlier studies, we suggest 
that the level of temperature increase relative to the natu-
ral conditions (e.g., + 5  °C), rather than a fixed arbitrary 
value (e.g., 15 °C), should be considered when predicting 
coral survival in different habitats. We hypothesize that 
L. pertusa, wherever they are from, can only survive a 
temperature increase < 3  °C over a long period. Regional 
variations in deep-sea water temperature increase should 
therefore be considered before estimating the future 
global distributions of cold-water corals.

We observed differences in survival between colonies, 
suggesting intra-species variability with the probable 
presence of genotypes that are more sensitive or more 
resilient to environmental changes. Interestingly, we 
also observed colony-specific differences at the microbi-
ome level. Some colonies had unique bacteria that were 
almost or totally absent in others (e.g., Spiroplasmataceae 
(class Mollicutes) and Thermoanaerobaculaceae). Varia-
tion between colonies of L. pertusa have been previously 
documented for different physiological parameters [13, 
24, 28, 31, 36, 47], including for their microbiome [34, 
35, 48]. The Thermoanaerobaculaceae found in colony L9 
had only 97% similarity to the closest hit in the databases 
(a sequence found in the sponge Halicona tubifera [23], 
and the Spiroplasmataceae from colony L8 had only 91% 
similarity to reference sequences, so we could not directly 
relate our data to the existing literature. Interestingly, the 
colony L8 harboring the Spiroplasmataceae exhibited 
one of the highest survival rates at 10  °C. Although our 
experimental design did not allow us to infer a direct rela-
tionship between colony-specific microbiome and sur-
vival, we can hypothesize that the microbiome could play 
a role. Future investigations should consider the microbi-
ome when exploring inter-individual variations and their 
possible role in the resilience of specific genotypes within 
a reef or a population [79]. It is of paramount importance 
for predicting potential population adaptation within the 
context of global change.
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We report here the first growth rate estimations for 
L. pertusa from the Bay of Biscay, and we observed that 
they are in the lower range compared to values pub-
lished for this species in other geographical areas, both 
in aquaria and in  situ. In  situ measurements showed L. 
pertusa growth rates ranging from 2.44 to 32 mm  y−1 in 
the Gulf of Mexico [11, 38], 1–40 mm  y−1 in the Mediter-
ranean Sea [18, 40], from 1 to 26 mm  y−1 in Norway [14, 
53] and up to 26 mm  y−1 in the North Sea [27]. Growth 
rates are usually lower in aquaria experiments where they 
range from 1 to 17 mm  y−1 for Mediterranean L. pertusa 
[39, 61], and are up to 9.4 mm  y−1 for corals from Nor-
way [57]. The values measured in our study never reach 
these maxima. However, considering that no budding 
(i.e., new polyp formation) occurred during the 2 month 
experiment, and that the growth rates of old polyps is 
significantly lower than that of new ones [39], it is not 
surprising to observe such low values in aquaria. The 
growth rates measured here are close to those found by 
Chapron et  al. [19] using a similar experimental setup. 
Earlier studies conducted in aquaria collected corals orig-
inating from shallow depths in Norwegian fjords [62], to 
690 m depth in the Mediterranean Sea at the deepest [39, 
59]. Here, the specimens collected in the Lampaul can-
yon were from a depth of 800  m, which, to our knowl-
edge, corresponds to the deepest corals maintained in 
aquaria for such medium-term experiments. The lower 
growth rate may, therefore, also be explained by the fact 
that our corals originated from deeper waters, and since 
maintaining such a deep population in aquaria at atmos-
pheric pressure could be detrimental to their health. 
This hypothesis is supported by the lack of difference in 
growth rates between subapical and apical polyps, which 
normally grow faster [19]. The mortality observed in the 
control conditions (72% survival at 10 °C after 2 months), 
despite stable physico-chemical conditions, further indi-
cates that aquarium conditions may not be optimal for 
these deep corals, which were collected at 800 m depth. 
Alternatively, the lower growth rate may simply reflect 
the different ecological properties of the Lampaul canyon 
corals. A better characterization of in situ coral biology is 
thus required.

In the present study, temperature had no significant 
effect on skeletal growth rates, which contrasts with 
results from previous studies. Based on similar tempera-
ture values for Mediterranean L. pertusa (i.e., 10, 13 and 
15  °C), Chapron et al. [19] observed the highest growth 
rates at 13  °C, in the in  situ conditions, and a lower at 
both 10 and 15 °C. A decrease of calcification rates with 
lower temperatures was described by Naumann et  al. 
[59] on Mediterranean L. pertusa when exposed to 12 °C 
and 6  °C, but these corals were placed in lower tem-
peratures compared to in  situ conditions (i.e., ~ 13  °C at 

300 m depth in the Cap de Creus canyon, [74]). A warm-
ing experiment on L. pertusa from a Norwegian fjord 
revealed higher calcification rates for corals exposed 
to 12  °C compared to 8  °C, their natural habitat condi-
tions [13]. This suggests that corals from different regions 
may respond differently to a changing environment and 
exhibit varying levels of sensitivity. While an increase in 
growth rates is not necessarily indicative of good health 
status, the lack of temperature impact on polyp growth 
rates during our two-month experiment indicates that 
corals had likely maintained sufficient reserves and/or 
metabolism that could be invested to sustain growth. 
However, as cold-water corals are known to be slow-
growing species compared to tropical corals, a longer-
term experiment could have allowed to detect more 
subtle differences in growth response [19, 55].

Conclusion
We showed that an increase in water temperature 
of + 3  °C and + 5  °C was responsible for dramatic mor-
tality in L. pertusa. Mortality appears to be associated 
with bacterial pathogens, as evidenced by the substan-
tial increase in the number of genes coding for virulence 
factors such as motility and secretion systems. In more 
resilient individuals, while the polyps survived, elevated 
temperatures led to rapid changes in the associated bac-
terial community composition (dysbiosis). Interestingly, 
some specific colonies harboured specific microbiomes, 
suggesting that colony-specific traits contribute to vary-
ing resilience to environmental changes. Finally, our 
results suggest that NE Atlantic L. pertusa are as sensitive 
to warming as Mediterranean or Gulf of Mexico popula-
tions. Although the NE Atlantic L. pertusa have a lower 
upper thermal limit than other L. pertusa populations 
(< 13 °C vs < 15 °C), it appears that all L. pertusa, regard-
less of the region they originate from, and the water tem-
perature in which they live, will be strongly impacted by 
a + 3 °C increase. Future works on the thermal tolerance 
of cold-water corals should, therefore, consider the level 
of temperature increase in an ecological context.
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