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ABSTRACT:
Long-term fixed passive acoustic monitoring of cetacean populations is a logistical and technological challenge,

often limited by the battery capacity of the autonomous recorders. Depending on the research scope and target

species, temporal subsampling of the data may become necessary to extend the deployment period. This study

explores the effects of different duty cycles on metrics that describe patterns of seasonal presence, call type richness,

and daily call rate of three blue whale acoustics populations in the Southern Indian Ocean. Detections of blue whale

calls from continuous acoustic data were subsampled with three different duty cycles of 50%, 33%, and 25% within

listening periods ranging from 1 min to 6 h. Results show that reducing the percentage of recording time reduces the

accuracy of the observed seasonal patterns as well as the estimation of daily call rate and call type richness. For a

specific duty cycle, short listening periods (5–30 min) are preferred to longer listening periods (1–6 h). The effects of

subsampling are greater the lower the species’ vocal activity or the shorter their periods of presence. These results

emphasize the importance of selecting a subsampling scheme adapted to the target species.
VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0025545
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I. INTRODUCTION

Passive acoustic monitoring (PAM) is commonly used

to study the seasonal and spatial distribution and acoustic

behaviour of cetaceans (e.g., Mellinger et al., 2007; Van

Parijs et al., 2009). PAM is a tool of choice for collecting

long-term data in remote areas such as the Southern Indian

Ocean (e.g., Samaran et al., 2010; Leroy et al., 2016;

Torterotot et al., 2020). Unlike visual methods, it offers the

possibility of collecting data during day and night, in bad-

weather conditions, or when individuals are under the

water’s surface (Stanistreet et al., 2016).

Blue whales are ideal candidates for such monitoring

because of their long (longer than 15 s), frequently repeated

loud (more than 180 dB re 1 lPa at 1 m), and low frequency

(20–100 Hz) calls (Cummings and Thompson, 1971). The

Southern Indian Ocean is inhabited by at least two subspe-

cies of blue whales: the Antarctic blue whale (Balaenoptera
musculus intermedia) and several populations of pygmy

blue whales (Balaenoptera musculus brevicauda). Their dis-

tinct acoustic repertoire allows distinguishing different

acoustic populations (Ichihara, 1966; LeDuc et al., 2003;

McDonald et al., 2006; Stafford et al., 2001). Due to the

sparse distribution, low density, and wide extent of habitat

of these acoustic populations, establishing their migration

patterns in a remote area poses a real challenge that can be

partly overcome by deploying wide arrays of autonomous

recorders (Samaran et al., 2010; Royer 2009).

Long-term PAM of cetacean’s species is generally

achieved by deploying autonomous recorders, which are

anchored to the seabed, that archive data until their recovery

after which data can be retrieved and processed on land.

Thus, battery capacity generally limits the recording dura-

tion of instruments (see review by Sousa-Lima, 2013).

Logistics and maintenance costs for redeploying recorders

for a long monitoring period must also be optimized. Hence,

the choices are either to reduce the frequential sampling rate

or recording schedule through temporal subsampling (e.g.,

Au et al., 2013). Decreasing the sampling rate will impact

the recorded frequency band and may restrict the recording

of some species. Temporal subsampling involves setting a

duty cycle in which the recorder only collects data for a lim-

ited fixed time on a repeated basis (Rand et al., 2022). For

example, a duty cycle or listening proportion of 0.5 can be

set by recording 30 min of data every hour. By adjusting the

listening proportion and recording duration, different sub-

sampling schedules can be designed.

However, a subsampling schedule can affect the ecolog-

ical conclusions drawn from PAM studies (e.g., Thomisch

et al., 2015). For instance, inappropriate duty cycles may

bias passive acoustic detections (Rand et al., 2022; Riera

et al., 2013). Thus, the choice of an adequate subsampling

scheme is paramount, must be made according to the

research scope and prior knowledge of the acoustica)Email: mathilde.michel@ensta-bretagne.org
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behaviour and detectability of the target species, and then

according to the available power and deployment plan of the

recorders (Rand et al., 2022; Sousa-Lima, 2013).

Fortunately, the introduction of low-power, high-capacity stor-

age has significantly reduced storage limitations in recorders.

Previous studies on the effects of PAM subsampling

focused on species’ daily presence, daily calling rates

(Thomisch et al., 2015; Stanistreet et al., 2016), or the

detectability of vocalizations (Rand et al., 2022). Here, we

analyse the effects of duty cycles on the detection of stereo-

typed and non-stereotyped vocalizations from three acoustic

populations of blue whales at three locations in the Southern

Indian Ocean with two main objectives: first, to assess the

effects on long-term monitoring of seasonal patterns; and

second, to evaluate the effects on daily call rates and the

conclusions that can be inferred from them about the pres-

ence of several species of large blue whales at the same site.

II. MATERIAL AND METHODS

A. Data acquisition

Acoustic data used in this study were acquired by the

OHASISBIO (Observatoire Hydro-Acoustique de la

Sismicite et de la Biodiversit�e; Royer 2009) network of

autonomous hydrophones, located in the Southwestern

Indian Ocean, spanning from 24�S to 56�S in latitude and

from 52�E to 83�E in longitude. Among the nine sites

deployed, three sites were selected based on the consistent

presence of three different blue whale acoustic populations.

These instruments were located west of Kerguelen Island

(WKER) and northeast of St. Paul and Amsterdam Islands

(NEAMS) from 2010 to 2019 and south of the Southeast

Indian Ridge (SSEIR) from 2014 to 2018 (Fig. 1).

At least two subspecies of blue whales live in this area:

the Antarctic blue whale (B. m. intermedia), hereafter referred

to as ANT BW, and the pygmy blue whale (B. m.

brevicauda), of which two populations were clearly identified

in acoustic recordings: Southwestern Indian Ocean (SWIO

PBW) and Southeastern Indian Ocean (SEIO PBW) pygmy

blue whales. Each of these subspecies emits a distinctive, ste-

reotyped song phrase, as well as possibly common, non-

stereotyped D-calls (Fig. 2; Torterotot et al., 2019).

Each autonomous mooring consisted of an anchor, an

acoustic release, an adjustable line, and a submerged buoy

hosting the recording system. Instruments were moored

between 1000 and 1300 m below sea-surface and recorded

continuously at a sampling rate of 240 Hz (see Torterotot et al.,
2020, for more details).

B. Call automated detections

The study uses the detections from Torterotot et al.
(2020), who applied an automatic detection algorithm based

on dictionary learning and sparse representation of blue

whale calls (Socheleau and Samaran, 2017; Torterotot et al.,
2020). The algorithm scanned the acoustic data with a slid-

ing window of duration, t, and tried to reconstruct the

observed signal with a combination of calls composing the

dictionary: for SEIO PBW, only the second unit of the song

phrase was targeted, t¼ 25 s; for SWIO PBW, only the first

unit of the song phrase was targeted, t¼ 20 s; for ANT BW,

the all song phrase was targeted, t¼ 18 s; and for D-calls,

the whole call was targeted, t¼ 8 s (Torterotot et al., 2019).

Each part of the song phrase defined above will be named

“call” in the rest of the paper. The data analysed herein con-

sists of the call detections from the three acoustic popula-

tions described above, which have already been processed at

the three sites over a period of 9 or 4 yr. The detection data

included the recording site, the detected acoustic population,

as well as the start date and time of each detected call.

C. Subsampling analysis

1. Subsampling schemes

Subsampling schemes are defined by a listening period,

L (in minutes), and a cycle period, Tc (in minutes); the ratio

L/Tc defines the duty cycle, D (in percent), and N is the

number of cycles per day (Thomisch et al., 2015). Note that

a given duty cycle, D, can be designed with different sub-

sampling strategies, e.g., a single long listening period per

day or several short windows evenly distributed over the

day but amounting to the same listening period in a day.

The continuous data containing call detections were

subsampled according to 23 temporal subsampling schemes

with listening periods from 1 min to 6 h and duty cycles, D,

of 50%, 33%, and 25%. Potential effects of these subsam-

pling schemes were explored by varying the listening

period, L (hence, the number of cycles per day, N), and the

duty cycle, D (Table I).

Because a listening period can start anytime within a

cycle period, Tc (6 h every 12 h can be either the first 6 h or

the last 6 h), different listening phases, r (without overlap),

must be considered. For statistical analyses of the effects of

subsampling data, each possible realization r (r¼ 2 for
FIG. 1. (Color online) Mooring sites of the OHASISBIO hydrophone net-

work used in this paper.
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D¼ 50%, r¼ 3 for D¼ 33%, and r¼ 4 for D¼ 25%) of

each listening period for all cycles, N, and each duty cycle,

D, were processed and averaged.

If the detection of a blue whale call in continuous data

occurred during the listening period for a determined duty

cycle, it was included in the subsampled data set for this

duty cycle. To account for long calls that might only be par-

tially captured by subsampled data, detections must have

100% of the call duration falling within the listening period

to be included in the set. This choice was justified to agree

with the automatic detector used by Torterotot et al. (2020),

which operates from the calls described in Sec. II B. The

average percentage of excluded calls for each subsampled

dataset is presented in Table II.

Different subsampling schemes were applied on each

day of each year of the recording period at three sites and

over 9 yr. Prior to averaging data across years, an analysis of

variance (ANOVA) was performed; this preliminary analy-

sis was used to check that the results did not vary statisti-

cally significantly across years for the different metrics:

seasonality, daily call rate estimates, and call type richness.

These different metrics will be described in Secs.

II C 2–II C 4. All statistical analyses and subsampling

schemes were implemented in R (R Core Team, 2021).

FIG. 2. (Color online) Typical spectrograms of three stereotyped song phrase of (a) a Southeastern Indian Ocean pygmy blue whale (SEIO PBW), (b) a

Southwestern Indian Ocean pygmy blue whale (SWIO PBW), (c) an Antarctic blue whale (ANT BW), and (d) a series of five non-stereotyped D-calls, all

recorded in the Southern Indian Ocean by the OHASISBIO network.

TABLE I. Different subsampling designs used for blue whale detections. The duty cycle, D, (%) is the ratio between the listening period, L, and the cycle

period, Tc, repeated throughout a day.

Listening period Lp

D¼ 50% D¼ 33% D¼ 25%

r¼ 2 r¼ 3 r¼ 4

Cycle period Tc Cycles per day N Cycle period Tc Cycles per day N Cycle period Tc Cycles per day N

1 min 2 min 720 3 min 480 4 min 360

5 min 10 min 144 15 min 96 20 min 72

15min 30 min 48 45 min 32 1 h 24

30 min 1 h 24 1 h30 min 16 2 h 12

1 h 2 h 12 3 h 8 4 h 6

3 h 6 h 4 9 h 2.66 12 h 2

6 h 12 h 2 18 h 1.33 24 h 1
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2. Seasonal patterns

To explore the effect of duty cycles on the seasonality,

we examined the seasonal patterns described in Torterotot

et al. (2020). Continuous data were subsampled according

to the different patterns presented in Table I. Seasonal pat-

terns were here represented based on the absolute number of

detections per day for the calls as described in Sec. II B of

the three acoustic populations of interest, as well as for the

D-calls. Four types of seasonal patterns were identified and

used to compare the effect of subsampling (Fig. 3): (i) a

strong seasonal pattern with a high number of detections

(SEIO PBW at the NEAMS site), (ii) a strong seasonal pat-

tern with a low number of detections (SWIO PBW at the

NEAMS site), (iii) a no clear seasonal pattern with a high

number of detections (ANT BW at the WKER site), and (iv)

a no clear seasonal pattern with a low number of detections

(SEIO PBW at the SSEIR site).

To assess the accuracy of the seasonality implied by the

subsampled data, the ratio of sum of squares of residuals to

total sum of squares was calculated between all different

types of subsampling and continuous data. Given the objec-

tive of obtaining a more precise depiction of the seasonality

in continuous data, the regression coefficient was deter-

mined as follows:

R2 ¼ 1�

Xn

i¼1

yi � ŷið Þ2

Xn

i¼1

yi � yð Þ2

0
BBBB@

1
CCCCA
; (1)

where n is the number of measurements, yi is the value of

ith measurement, ŷi is corresponding predicted value, and y
is the mean of measurements.

A regression coefficient result close to one indicates a

good fit of the model and, thus, a good representation of the

seasonality from the subsampled data (three examples of lin-

ear regression for three listening periods with a duty cycle,

D¼ 50%; Fig. 4).

Furthermore, an ANOVA test was conducted for each

distinct dataset (site and vocalization type) to validate dif-

ferences in R2 values between each listening period of each

duty cycle. Subsequently, pairwise comparison tests were

performed for datasets in which the ANOVA p-value was

significant, between each listening period and the subse-

quent period, to compare the mean R2 values pairwise using

the Tukey test to adjust the p-values.

3. Daily call rate estimation

The daily call rate or average number of calls detected

over a day was computed with the formula used in

Thomisch et al. (2015):

cr;˚ ¼
1

N

XN

j¼1

cr;j; (2)

where cr;˚ was the daily call rate estimated from call rates,

cr;j, of the rth realization in all N cycles of the jth day. This

estimation was accomplished for all possible independent

realizations, r, of listening periods for all cycles, N, and

each duty cycle, D.

TABLE II. Average percentage and relative standard deviation of excluded calls from subsampled datasets for each type of call described in Fig. 2, based

on each duty cycle, D, and listening period., Lp. This is an average across all possible realizations, r.

Duty cycle, D Listening period, Lp

SWIO PBW SEIO PBW ANT BW D-calls

Mean of excluded calls (%) Mean of excluded calls (%) Mean of excluded calls (%) Mean of excluded calls (%)

50% 1 min 66.6 6 0,4 70.8 6 0.3 65.0 6 0.4 56.6 6 0.2

5 min 53.3 6 0.3 54.0 6 0.2 53.0 6 0.5 51.3 6 1.1

15 min 51.1 6 0.4 51.4 6 0.8 51.0 6 0.1 50.5 6 0.2

30 min 50.6 6 0.9 50.7 6 0.1 50.5 6 0.5 50.2 6 0.8

1 h 50.3 6 0.9 50.3 6 1 50.3 6 0 50.1 6 0.3

3 h 50.3 6 0.7 50.3 6 1.7 50.3 6 1.5 50.1 6 2.3

6 h 50.3 6 0.6 50.3 6 1.6 50.3 6 2.1 50.1 6 4

33% 1 min 77.7 6 0.9 80.5 6 0.7 76.7 6 0.2 71.0 6 0.9

5 min 68.9 6 0.3 69.3 6 0.8 68.7 6 0.1 67.5 6 1.1

15min 68.9 6 0.5 69.3 6 0.8 68.7 6 0.2 67.5 6 1.6

30 min 67.1 6 0.1 67.1 6 1.5 67.0 6 0.3 66.8 6 3.2

1 h 66.9 6 0.4 66.9 6 1.6 66.8 6 0.6 66.7 6 3.4

3 h 66.9 6 0.5 66.9 6 1 66.8 6 0.1 66.7 6 2.7

6 h 66.9 6 2.3 66.9 6 0.7 66.8 6 0.8 66.7 6 1.9

25% 1 min 83.3 6 0.4 85.4 6 0.3 82.5 6 0.4 78.3 6 0.5

5 min 76.7 6 0.9 77.0 6 0.4 76.5 6 0.5 75.7 6 2.2

15 min 76.7 6 0.9 77.0 6 0.8 76.5 6 0.5 75.7 6 1.2

30 min 75.3 6 1 75.3 6 1.8 75.3 6 0.5 75.1 6 1.7

1 h 75.2 6 1.6 75.2 6 1.4 75.1 6 0.5 75.1 6 1

3 h 75.2 6 1.7 75.2 6 2.1 75.1 6 3.6 75.1 6 5.2

6 h 75.2 6 1.1 75.2 6 4.7 75.1 6 4.4 75.1 6 11.2
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To assess the variability of estimated call rates accord-

ing to the type of subsampling, the ratio of call rate of sub-

sampled data to call rate of continuous data was calculated

for each cr; j :

ratior;j ¼
cr;˚ � ctruej

ctruej

: (3)

The continuous data were subsampled according to dif-

ferent schemes in Table I. This procedure was repeated for

all D percentages for each day to provide a mean and stan-

dard deviation of call rate estimates according to defined

subsampling scheme.

4. Call type richness

Call type richness is a measure of the number of acous-

tic populations present in a habitat at a given time. In this

study, only specific calls of three blue whale acoustic popu-

lations were used, as D-calls cannot be unambiguously

FIG. 3. (Color online) Schematic seasonal patterns, showing (i) and (ii) strong seasonal patterns with high and low numbers of detections by month, respec-

tively; (iii) and (iv) no clear seasonal patterns with high and low numbers of detections by month, respectively. See Fig. 4 of Torterotot et al. (2020) for an

actual example of such seasonal distributions.

FIG. 4. (Color online) Relationship between the number of continuous data detections and the number of subsampled data detections for SWIO PBW call

type at NEAMS site across three listening periods (1 min, 30 min, and 6 h) with a duty cycle, D¼ 50%. The data points (black circles) are fitted to a linear

regression model (blue line). X axis represents the number of detections per day for continuous data, and Y axis represents the number of detections per day

for subsampled data.
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linked to any specific acoustic populations. For continuous

data, an acoustic population was considered present if there

was at least one call detected during the day. In the sub-

sampled data, an acoustic population was considered present

acoustically if there was a detection in any of the N cycles

of the day. Call type richness at a site for continuous and

subsampled data was, therefore, calculated by counting the

number of acoustic populations present at the site per day

(maximum call type richness¼ 3).

If the call types richness between subsampled and con-

tinuous data contained the same number of acoustic popula-

tions, then the decision was correct (d¼ 1) otherwise it was

incorrect (d¼ 0). To compute an average proportion of days

pd for which call type richness was correctly assessed using

each subsampling programme, d was determined for each

day, j, and for each duty cycle, D, and then averaged over

all, i, listening period phases. This allowed establishing an

average proportion of days in which call type richness was

well determined for each subsampling scheme such that

pd ¼
1

nr

Xr

i¼1

Xn

j¼1

dij; (4)

where n is the number of days with detections, r is the num-

ber of listening phases, and dij is the value of d for phase i
on day j.

To compare the results of different duty cycles, comparison

of means was performed. As the data were not normally distrib-

uted, a nonparametric Wilcoxon test was applied for each site.

III. RESULTS

A. Seasonal patterns

Effects of subsampling strategies were first evaluated

on seasonal patterns in the occurrence of three blue whale

acoustic populations and D-calls at three selected sites by

calculating R2, which is the regression coefficient. Results

for different duty cycles of 50%, 33%, and 25% are pre-

sented in Fig. 5.

For all acoustic populations and at all sites, the highest

duty cycle (largest proportion of listening, 50%) gave the

highest value of the regression coefficient, indicating a bet-

ter accuracy of seasonal model. Unsurprisingly, a 33% duty

cycle gave better estimates than a 25% duty cycle.

Within each duty cycle, short listening periods of

5–30 min improved the accuracy of the seasonal model com-

pared to longer listening periods of 1–6 h. Indeed, in many

cases, a significant difference was found between Lp¼ 1 h and

Lp¼ 3 h (Fig. 5), indicating that from Lp¼ 3 h onward, signifi-

cantly lower mean regression coefficient values were measured.

However, a listening period that was too short also had

a negative impact on the seasonal occurrence pattern.

Significant differences primarily occurred between 1-min

(Lp¼ 1 min) and 5-min (Lp¼ 5 min) listening periods,

resulting in lower mean regression coefficient values com-

pared to other Lp durations, especially for long calls from

the SEIO PBW acoustic population [Figs. 5(d)–5(f)].

The best fit between subsampled and continuous data

was achieved for acoustic populations with a strong seasonal

pattern and many detections. This was the case for the SEIO

PBW at NEAMS site, where regression coefficient was

approximately 0.95 for a cycle period 5 min and a duty cycle

of 50% [Fig. 5(d)]. Additionally, this dataset is the only one

in which there is no significant difference between succes-

sive Lp (p-value> 0.05). High regression coefficient was

also measured when an acoustic population had a no clear

seasonal pattern with many detections, such as the ANT BW

at the WKER site, where the regression coefficient was

always higher than 0.9 for a duty cycle of 50% and listening

time of 5 min [Fig. 5(i)]. Moreover, a significant difference

between successive Lp was observed only from Lp¼ 1 h

onward.

In contrast, the regression coefficient was lower for

datasets with few detections and a no clear seasonal pattern

[e.g., SEIO PBW at SSEIR, regression coefficient for

30 min at 50% � 0.7; Fig. 5(e)] or few detections and a

strong seasonal model [SWIO PBW at NEAMS, regression

coefficient for 5 min at 50% � 0.75; Fig. 5(a)]. Notably, on

the WKER site, differences in mean regression coefficient

values emerged earlier, between 30 min and 1 h of listening

period [Figs. 5(c), 5(f), 5(i), and 5(l)]. Conversely, for

D-calls, significant p-values between consecutive listening

periods varied across sites: for the SSEIR site [Fig. 5(k)],

significant differences were observed between Lp¼ 5 min

and Lp¼ 15min as well as between Lp¼ 15 min and

Lp¼ 30 min. However, for the WKER site [Fig. 5(l)], the

first significant differences between two listening periods

occurred between Lp¼ 30 min and Lp¼ 1 h.

B. Daily call rate estimates

The call rate of the subsampled data were very sensitive

to the duty cycle D and the listening period L (Fig. 6). The

average value of the ratio of subsampled to continuous data

were consistently below 0 for all listening durations, indicat-

ing a subsampled data underestimation of the daily call rate

for different listening durations. This underestimation was

most pronounced for the 1-min listening duration, which

deviated significantly from the expected value of 0 for lon-

ger duration calls [Figs. 6(a)–6(c)]. This deviation from

expected values was also observed for all listening periods

for usage cycles of 33% and 25%.

In general, the ratio variability [as defined in Eq. (3)]

increased as the listening period increased for a given duty

cycle percentage and increased as the duty cycle percentage

decreased. For a given duty cycle, its variability was greater

for the longest listening times (1–6 h).

The subsampled data underestimation and variability

were most significant for the SEIO PBW, which had the lon-

gest call duration [25 s; Fig. 6(b)]. In contrast, the sub-

sampled data underestimation of the daily call rate was

lower for D-calls, which were the shortest calls [8 s; Fig.

6(d)]. Note that for this particular type of call, variability
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was most pronounced for each listening period, likely stem-

ming from the irregularity in its occurrence.

C. Call type richness

The proportion of days in which call type richness was

correctly assessed according to different subsampling

schemes also depends on the selected duty cycle, D, and

duration of listening period, L (Fig. 7). Highest proportions

of days with correctly assessed call type richness was

observed for duty cycles of 50%, then 33%, and finally 25%

for each of the three sites. Results of Wilcoxon tests

between different duty cycles for each site show significant

p-values (p< 0.0001), indicating that the average number of

days with a correct estimate of the call type richness differs

according to the subsampling scheme. For each duty cycle,

a 1-min listening period was less likely to correctly capture

call type richness than longer listening periods. Short peri-

ods (between 5 and 30 min) gave a higher average propor-

tion of days with correctly assessed call type richness than

longer listening period (more than 1 h). WKER site had

more days correctly evaluated compared to the other two

FIG. 5. (Color online) Comparison of different subsampling schemas in which each column represents a site (from left to right, NEAMS, SSEIR, and

WKER) and each row represents a call (from top to bottom, SWIO PBW, SEIO PBW, ANT BW, and D-calls). Each shade of colour corresponds to a given

duty cycle, D (from left to right, 50%, 33%, and 25%), and bar plots represent different listening periods, L, for a given duty cycle (from left to right, 1 min,

5 min, 15 min, 30 min, 1 h, 3 h, and 6 h, respectively). Vertical black lines are the standard deviations of the regression coefficient. The four types of seasonal

patterns described in Sec. II C 2 are represented here as (a) SWIO PBW to NEAMS with a strong seasonal pattern and few detections, (d) SEIO PBW to

NEAMS with a strong seasonal pattern and many detections, (e) SEIO PBW to SSEIR with a no clear seasonal pattern and few detections, and (i) ANT BW

to WKER with a no clear seasonal pattern and many detections. Horizontal bars marked with “*,” “**,” and “***” show domains where Tukey tests yielded

p< 0.05, p< 0.01, and p< 0.001, respectively.
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FIG. 6. (Color online) Comparison of different subsampling patterns on the ratios between estimated and actual daily call rates for different duty cycles and

acoustic populations: a) SWIO PBW, b) SEIO PBW, c) ANT BW, d) D-calls. For each duty cycle, boxplots represent different listening periods L (from left

to right: 1 min, 5 min, 15 min, 30 min, 1 h, 3 h, 6 h respectively).

FIG. 7. (Color online) Comparison of proportion of days with a correct assessment of site call type richness with its standard deviation according to different

subsampling schemes, showing (a) NEAMS, (b) SSEIR, and (c) WKER. Each shade of colour matches a different duty cycle, D (from left to right, 50%,

33%, and 25%). For each duty cycle, barplots represent different listening periods, L (from left to right, 1 min, 5 min, 15 min, 30 min, 1 h, 3 h, and 6 h respec-

tively). Vertical black lines are the standard deviations. Horizontal bars with “****” show domains where Wilcoxon tests yielded p< 0.0001.
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sites [Fig. 7(c)]. For example, call type richness was cor-

rectly assessed at WKER site, with an average probability of

75% for D¼ 50% with probabilities decreasing with smaller

D (approximately 55% for D¼ 25%).

IV. DISCUSSION

The aim of this study was to evaluate how temporal

subsampling schemes can potentially bias metrics com-

monly used in passive acoustic studies to assess the occur-

rence of acoustic populations of blue whales in the Southern

Indian Ocean based on call detections. Effects of subsam-

pling are not the same, depending on the selected metric and

chosen subsampling strategy.

It is important to note that the results of this study are

specific to how calls were processed and detected. Here, the

detection algorithm was based on dictionary learning and

sparse representation of blue whale calls within specified

time windows. Other algorithms, for instance, based on call

rhythm or chorus intensity (e.g., Leroy et al., 2018), will not

be affected in the same way as in this study.

A. Effect of temporal subsampling on seasonal
patterns

High duty cycles had higher regression coefficient, indi-

cating that the seasonality was best represented with high

duty cycles (or, conversely, poorly represented with low

duty cycles). The best results were obtained when a species

had a very marked seasonality with a high number of detec-

tions in few months. At NEAMS site, SEIO PBW has a very

marked seasonality (April–July) with a minimum of 200

detections per week when the species was present and stable

over the years (Torterotot et al., 2020). In such a case, real

and estimated seasonal patterns match even with a duty

cycle of 25% [R2 > 0.9; Fig. 5(d)].

High regression coefficient was also obtained for the

ANT BW species. Number of detections of this species was

high at the 3 selected sites (> 500 per week). However,

unlike the SEIO PBW at NEAMS, its peaks of presence

were less marked: significant emissions are observed over a

more spread-out number of months. This result suggests

that areas where vocalizations are numerous and constant

over time provide a good representation of seasonal

patterns.

In contrast, SWIO PBW calls at NEAMS site were only

present occasionally between April and May. Its seasonal

pattern was, therefore, more difficult to represent when data

were subsampled, even for a high duty cycle (R2 < 0.75 for

50%). Similarly, SEIO PBW calls at SSEIR site have a low

coefficient of regression, suggesting a less accurate repre-

sentation of seasonal patterns for this acoustic population

(R2 < 0.6 for 50%). These results are explained by its low

acoustic activity (<90 calls per week) with calls, therefore,

less likely to be captured in subsampled data.

Even though D-calls are shorter in duration and, thus, a

smaller percentage of calls are removed by subsampling, the

results show that they exhibit similar patterns to the signals

emitted by the three studied acoustic populations. This sug-

gests that irregularly emitted vocalizations, despite being

shorter, should also be considered when choosing the duty

cycle.

High acoustic activity with a high number of detections

is the most important input for accurately representing the

patterns of species presence from subsampled data.

Conversely, continuous data collection seems unavoidable

to monitor species that frequent an area irregularly or are

present without acoustic activity or with a sparse acoustic

activity.

For calls from the three acoustic populations and

D-calls, long listening periods (�1 h) result in a less accu-

rate representation of continuous data compared to shorter

listening periods. Similarly, a 1-min listening period leads to

the less accurate results on the representativeness of season-

ality in subsampled data. Indeed, many vocalizations will be

cut off by an excessively short listening period and, thus, are

less likely to be detected. This effect is even greater for

acoustic populations with the longest window length used

by the automatic detection algorithm (25 s for SEIO PBW).

Although short listening periods seem to give better results,

it is necessary to consider the duration of call (and/or the

function and parameters of the detection algorithm) of the

target species as a decisive factor in designing the subsam-

pling scheme. In this regard, listening periods between 5

and 30 min provide similar representations of continuous

data by subsampled data and, therefore, seem most suitable

for our acoustic populations in the area.

B. Effects of temporal subsampling on daily call rate
and call type richness

The accuracy of daily call rate estimates is highly influ-

enced by subsampling designs, as depicted in Fig. 6. There

is a notable variation between the estimated call rate and the

actual call rate, particularly for extended listening periods

ranging from 1 to 6 h. Furthermore, this discrepancy

becomes more pronounced as the duty cycle decreases.

These findings align with those observed by Thomisch et al.
(2015). Specifically, a listening period of only 1 min consis-

tently leads to a strong underestimation of the call rate,

accompanied by low variability. This suggests that such a

short duration is inadequate for our target species, which

produces long calls between 18 and 25 s.

This is especially notable for the acoustic population

with the longest call duration, SEIO PBW. As partial calls

were excluded from the subsampled datasets to retain only

complete calls, a substantial proportion was removed

(70.8% for Lp¼ 1 min and D¼ 50%; Table II), resulting in

a persistent underestimation regardless of the listening

period.

Additionally, the variability is amplified when calls are

generated in irregular patterns (such as D-calls, for example)

or there are few detections. These findings are consistent

with those of Thomisch et al. (2015), who observed a

greater disparity between call rate estimates and the actual

rate for vocalization patterns characterized by low call rates.
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Regarding D-calls, their irregular emission and shorter dura-

tion align with the conclusions of the study by Rand et al.
(2022) on killer whales (Orcinus orca), where the optimal

duty cycle has shorter listening lengths than for the stereo-

typed vocalizations of the acoustic populations studied here.

These cycles would facilitate capturing the variation in

acoustic behaviour throughout the day.

Regardless of the selected duty cycle (50%, 33%, or

25%), the daily call rates across all listening periods are con-

sistently underestimated. Nevertheless, the 30-min listening

period provided the most accurate daily call rate (i.e., the

closest to the daily call rate from continuous sampling) and

the lowest variability for all four types of calls, as shown in

Fig. 6. This suggests that a 30-min listening period may rep-

resent the optimal compromise for studying stereotyped

vocalizations and irregular D-calls. The richness of call

types was as underestimated as the percentage of work

cycles decreased: a duty cycle of 50% yields more accurate

results than a duty cycle of 25%. These findings match the

trends observed by Thomisch et al. (2015), who showed that

a duty cycle of 10% led to a 26% underestimation of the

daily presence of North Atlantic right whales (Eubalaena
glacialis), or those observed by Riera et al. (2013), who

found that a duty cycle of 25% resulted in a 24% decrease in

killer whale (O. orca) acoustic encounters compared to con-

tinuous recording.

Short listening periods (between 5 and 30 min) increase

the likelihood of accurately assessing call type richness

regardless of duty cycle. For listening periods of 1 min or

longer than 1 h, call type richness is more likely to be under-

estimated (Fig. 7). These results are consistent with those

found for the daily acoustic presence of other marine mam-

mal species such as killer whales (Rand et al., 2022) or

beaked whales (Stanistreet et al., 2016).

It is important to note that the studies cited above relate

to the daily presence of a single species, whereas this study

relates to the call type richness of a site, i.e., the total num-

ber of call types present per day. The effect of subsampling

is greater on the call type richness metric than on the daily

presence metric computed by Thomisch et al. (2015): the

proportion of days with a correct assessment of call type

richness is lower (maximum 77% for a duty cycle of 50%).

In comparison, Thomisch et al. (2015) found a 100% proba-

bility of correctly assessing daily presence of ANT BWs at a

site for a duty cycle of 50%.

In sites where multiple acoustic populations of blue

whales coexist, with many detections for each (e.g.,

WKER), number of days with a correctly assessed call

type richness is better at a site recording a majority of

calls from a single population and few calls from the other

acoustic populations (e.g., SSEIR; Fig. 7). Therefore, duty

cycle has a significant impact on the estimation of call

type richness in the study area. A good knowledge of the

use and presence of species in the study area is, thus, criti-

cal to choose the most appropriate recording strategy so

as not to miss detection of a rare species due to inadequate

subsampling.

V. CONCLUSION

This study demonstrates that temporally subsampling

acoustic data can have heterogeneous effects on results of

long-term monitoring of blue whale acoustic populations as

well as the assessment of call type richness daily call rate

based on their presence in different geographic areas.

If subsampling is necessary because of technical or

logistical constraints, it is preferable to collect data in sev-

eral short listening periods compatible with the duration of

the vocalizations sought. Such a subsampling scheme leads

to many cycles per day and allows for a better representation

of daily call rate over the course of a day as well as a better

representation of seasonal patterns.

The occurrence of different types of seasonal patterns

may affect the accuracy with which subsampling patterns

represent continuous data. Number of detections is a deci-

sive factor for using a low duty cycle (25%) to obtain good

results. This study also showed that when acoustic popula-

tions are rare in an area, continuous sampling may be

required to not lose too much information in representation

of seasonal patterns, the daily call rate, and estimation of

call type richness. Indeed, if the objective of a passive

acoustics project is to characterize a soundscape and explore

its acoustic biodiversity, continuous recordings are neces-

sary to avoid missing rare or transient species over a very

short period.

The subsampling strategy must, therefore, be chosen

based on biological considerations and a good understanding

of the vocal behaviour of the target species. In addition, for

long-term and large-scale monitoring studies, selection of

the temporal subsampling strategy should also be based on

an understanding of the different migration and occurrence

patterns of the species in the study area. For a multiyear pro-

ject, it would be appropriate, for example, to monitor contin-

uously an area during the first year to gain knowledge about

the acoustic presence of species, and then adapt the sub-

sampling plan accordingly for the remainder of the monitor-

ing period.

Depending on the automatic detection algorithm, sub-

sampling may affect study results differently. The imple-

mentation of subsampling must, therefore, also consider the

detector that will be used to process the data. In this study,

100% of the vocalization had to be included in the listening

period because the detector used to detect the vocalization

worked this way (i.e., a detector cannot detect incomplete

calls if they are not sufficiently similar to the calls used to

build the learning dictionary; Socheleau and Samaran,

2017). As other detectors exist and may operate differently,

it is important to define their operation upstream, which may

influence the subsampling strategy.

Embedding acoustic signal processing algorithms in

acquisition systems now offers new possibilities for acoustic

monitoring. A random subsampling scheme could, for

instance, limit the effect of single species dependence by

generalizing it to multiple species. However, the effect of

such schemes would first need to be evaluated on continuous
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data. The data in this study focused on low frequency emis-

sions from blue whales. Over a wider frequency range,

many other species with their different behaviours might

require specific subsampling schemes for each. Optimizing

passive acoustic data collection procedures, including the

selection of appropriate sampling strategies, is among the

issues for future management and conservation studies of

underwater biodiversity.
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