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11 Abstract 

12 Polyamide 6 fiber ropes are of interest for floating offshore wind turbine mooring lines but could 

13 exhibit complex mechanical behavior during loading at sea, such as creep, relaxation, variable dynamic 

14 stiffness or visco-plasticity. There is a need for a model that could be introduced into finite element 

15 analyses in order to predict this complex response. It should also describe the effect of the loading 

16 history. This paper proposes an elasto-visco-plastic behavior model based on four dashpot-ratchet-

17 spring elements that allow a precise description of polyamide 6 rope behavior. An identification 

18 method, using a multi-relaxation test, is described. It has been implemented in a finite element and 

19 validations are made by comparing the model results to the experimental data. The present work is 

20 the result of an extensive effort initiated by the 3-year collaborative research project POLYAMOOR 

21 and continued by the MONAMOOR project, both led by France Energies Marines.

22 Key-words: polyamide 6, constitutive model, synthetic rope, laid strand

23 1. Introduction

24 Offshore floating wind turbines will be located in exposed sites with significant environmental loading 

25 due to waves and wind. They will require mooring lines that maintain the floater position and 

26 withstand the swell energy (Davies et al. 2003; Flory et al. 2007). Synthetic fiber ropes have become 

27 extremely attractive as an alternative to steel chain and wire ropes due to their light weight, easier 

28 handling for installation and the possibility to reduce the overall footprint. The high compliance and 

29 viscosity of synthetic ropes will lower the line tension and provide damping. Polyamide 6 (PA6) fibers 

30 are well-suited for this type of application thanks to their low stiffness, good tensile strength and their 
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31 viscous behavior. Polyester mooring lines could be used but their stiffness remains too high to 

32 withstand the structural load of the floater. Polyamide 6 ropes are already used in other marine 

33 applications but their visco-elasto-plastic behavior is not fully understood, and they are limited to 

34 temporary applications. The development of a reliable model for the mechanical behavior of 

35 polyamide 6 fibers is essential for permanent mooring applications. It should allow the strain and the 

36 stress to be predicted as a function of the loading history and it should satisfy the hypotheses and 

37 rules of finite element (FE) simulations. This paper proposes a constitutive law called ‘POLYAMOOR 

38 law’ that aims at completely describing the complex behavior of polyamide 6 fiber elements. The 

39 identification of the parameters of this law allows a visco-elasto-plastic characterization of the 

40 complex mechanical response of polyamide ropes. The model has been implemented in a commercial 

41 finite element code; the present study shows first comparisons between the model and experimental 

42 results for a laboratory rope scale. 

43 The following section will discuss first the complex behavior of polyamide 6 ropes due both to their 

44 fiber structure and properties, and also to their hierarchical organization and construction. It will then 

45 present existing models, that have been developed to investigate the complex behavior of synthetic 

46 ropes more generally. 

47 1.1. Structure and complex behavior of polyamide 6 fibers

48 Polyamide 6 fibers, and more broadly, synthetic fibers, are characterized by a time-dependent load-

49 elongation behavior and a non-linear viscoelastic and viscoplastic behavior  (Chailleux and Davies, 

50 2005).  The behavior of a nylon 6 rope is characterized by an elongation under a constant load called 

51 ‘creep’ or a load drop under constant strain known as ‘relaxation’, characteristic of a time dependent 

52 viscous behavior; it is also characterized by hysteresis during cyclic loading, that highlights the ability 

53 to absorb and dissipate energy; it can show a permanent extension after initial loading of a new rope, 

54 characteristic of a viscoplastic behavior and a construction rearrangement of the rope (Weller et al., 

55 2015). This complex behavior is due to both the polymeric nature of the filaments and also to their 

56 hierarchical structure and construction.

57 In addition, the mooring line application requires knowledge of the behavior of polyamide 6 fibers in 

58 water. Humeau et al showed that these fibers are very sensitive to water (Humeau et al., 2018). A 

59 significant water uptake is noted during immersion, which induces a plasticizing effect, so the 

60 experimental identification of the model parameters must be performed on wet samples.  

61 1.2. Effect of scale and construction
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62 The visco-elasto-plastic behavior of ropes for mooring lines is mainly the result of the material 

63 properties of polyamide 6 fibers. However, the effects of the rope construction must also be 

64 considered as they play a major role in the stabilization of the whole structure when the rope is first 

65 loaded (François and Davies, 2008).  The main parameters influencing the behavior for twisted rope 

66 will be its lay-length and the twist angles. Lechat et al studied different components of a twisted 

67 polyester rope. They showed that a similar nonlinear behavior was observed at all scales, but the 

68 higher scale presented a loss of strength and modulus. For that twisted structure, this loss was related 

69 to the number of fundamental elements and the twisting angle (Lechat et al., 2006). 

70 1.3. Different model of ropes materials

71 The design of mooring lines has been the main motivation to develop models that describe the 

72 complex non-linear behavior of synthetic ropes. Since lines are already in service offshore, guidance 

73 documents have been proposed (François and Davies, 2008). Dynamic stiffness tests are often 

74 employed for the characterization of rope behavior. The dynamic stiffnesses are measured by cyclic 

75 loading around a mean value. Apparent spring constants are determined, and viscoelastic parameters 

76 can be analytically calculated to implement three-parameter models (Lechat et al., 2006). Currently in 

77 the offshore industry, the viscoelastic and viscoplastic behavior of mooring lines is accounted for by 

78 stiffness values related to two tension load cases, quasi-static and dynamic. The latter is due to the 

79 response of lines under wave loading or under the movements of the platform. This description is very 

80 limiting when designing offshore floating wind turbine floaters and mooring lines as they will be 

81 subjected to more complex constraint. They are expected to maintain the integrity of the electricity 

82 export cable, limit the floater offset, withstand the wave loading and they should not lose too much 

83 tension (creep effect) during their service life (which would require maintenance for re-tension). 

84 Hence, to be able to design properly and precisely these complex structures and their response, there 

85 is a need to introduce a model describing the complex behavior of polyamide 6 mooring lines that 

86 could also describe the effect of the history of these loadings on the rope’s response.

87 Various approaches for modeling the behavior of synthetic fibers are proposed in the literature.  They 

88 are distinguished by their consideration of the fiber structure. For a macro-mechanical approach and 

89 direct treatment of experimental data, continuum and micro (or meso) mechanical models are well-

90 suited.  A mechanical approach proposed by Ghoreishi et al (Ghoreishi et al., 2007) assumes the 

91 complex hierarchical structure as a continuum formed by a set of coaxial helixes only characterized by 

92 their external angle and corresponding radius. In this approach the constitutive material is assumed 

93 to be linear and the inter-fiber friction effects are neglected. By contrast, Durville et al (Durville, 2002) 

94 proposed a meso-mechanical approach with a description of contact-friction interactions between 
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95 beams in large transformations. The aim was to model the behavior of fiber structures by considering 

96 the contacts at the mesoscopic scale between the base components (fibers or yarns). In these 

97 approaches, the complex non-linear visco-elasto-plastic behavior of polyamide 6 fibers is not 

98 considered. In our case, phenomenological models, which consider the fibers as a homogeneous 

99 nonlinear viscoelastic body are more suitable.

100 François and Davies (François and Davies, 2008) proposed a model which defines the rope properties 

101 with several separate terms in order to simulate the behavior of PET ropes. These terms correspond 

102 to different responses of the rope: 

103 - A mean elongation (system pretension and permanent load),

104 - A visco-elastic response due to slow variation of mean load, which is modelled by a quasi-

105 static stiffness,

106 - A dynamic response which is modelled by the dynamic stiffness and depends on the mean 

107 load 

108 The quasi-static stiffness defined by François is determined using a cyclic test between two chosen 

109 tension levels with a constant load plateau at each level during which creep and recovery occur. This 

110 model consists of the summation of three strains: one for the fully relaxed behavior, one for the non-

111 recoverable strain and one for the viscoelastic behavior.  Therefore, the rope strain is a function of 

112 both the current tension and the maximum tension undergone by the rope (this approach provided a 

113 good description of the polyester rope behavior observed experimentally). François and Davies 

114 considered that a fully relaxed behavior exists for an ‘infinitely slow ‘rate of loading. The advantage of 

115 this approach is that it can be used in current mooring line software. 

116 Recent studies from Huntley on a wire-lay-3-strands nylon rope showed that the dynamic stiffness of 

117 the nylon rope depends on both the applied mean tension and the tension amplitude (Huntley, 2016). 

118 Hence, Pham et al (Pham et al., 2019) proposed a practical mooring analysis procedure to capture the 

119 tension amplitude effect on the dynamic mooring analysis. In this procedure, an empirical expression 

120 of the dynamic stiffness that considers the mean tension and the tension amplitude for nylon is used. 

121 One of the first macroscopic quantitative models for mooring ropes was proposed by Chailleux and 

122 Davies to describe the creep and recovery behavior of polyester and aramid fibers (Chailleux and 

123 Davies, 2005). It is an adaptation of Schapery’s non-linear viscoelastic and viscoplastic constitutive 

124 model (based on the modification of the generalized Boltzmann integral). This work was continued by 

125 Huang et al who employed Schapery’s single integral constitutive model to describe the viscoelastic 
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126 behavior and a one-dimensional dashpot-slider-spring model to represent the viscoplastic behavior 

127 (Huang et al., 2015, 2013).  

128 Falkenberg et al then developed the ‘Syrope’ model to describe the tension-stretch and axial stiffness 

129 characteristics of polyester ropes (Falkenberg et al., 2017). It is based on experimental testing. This 

130 model consists of:

131 - An original curve which represents the tension versus elongation during the first loading of a 

132 new rope, 

133 - The original working curve, corresponding to the stationary working point if the rope is at its 

134 historical highest mean tension and when the permanent stretch has been taken out, 

135 - The working curve which represents the working point when the curve is at a lower mean 

136 tension than the preceding maximum mean tension. 

137 Sorum et al proposed using the Syrope stiffness and the bi-linear stiffness model to predict fatigue 

138 lifetime of polyester mooring lines (Sorum et al., 2023). In their study, the Syrope model accounts for 

139 the quasi-static stiffness and permanent rope elongation while the bi-linear model applies both the 

140 quasi-static and dynamic stiffness in the dynamic analyses. 

141 Flory et al developed a spring and dashpot model aiming to describe the complex change in-length 

142 characteristic of polyester ropes (Flory et al 2007) (Figure 1). Their model integrates the visco-elasto-

143 plastic behavior of the material as well as the construction response that will include twisting, 

144 elongation, friction, packing and locking, which Flory called the ‘construction stretch’.  This model is 

145 phenomenological and does not aim at representing the actual components of the rope. The model is 

146 composed of four units in series:

147 - The creep, associated to polymer stretch, represented by the separate dashpot unit (4),

148 - A parallel spring and ratchet unit represents the construction stretch (3),

149 - A parallel spring and dashpot unit represents the slow response to tension and is associated 

150 with the working stretch (2),

151 - A separate spring unit represents the fast response to tension and is responsible for the 

152 dynamic stretch (1).
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153

154 Figure 1 - Flory's spring and dashpot model (based on Weller et al., 2018)

155 In that work, the equations of the model were not detailed, and no simulation was shown. Weller et 

156 al  (Weller et al., 2018) published a paper on a preliminary study on the identification parameters of 

157 the different elements of Flory’s model. They considered a fully bedded-in rope that would not have 

158 any further significant construction stretch. Therefore, they chose to take out the parallel spring 

159 dashpot unit leading to a four-parameter Burger model. This simplified model allowed the change-in 

160 length of the rope to be examined but was not sufficient to fully represent the complex time-

161 dependent behavior. 

162 The present paper proposes a constitutive model based on Flory’s proposal (Figure 1). Its development 

163 is based on the characterization of a polyamide 6 sub-rope in water and under representative 

164 conditions for different loadings. The identification method is direct and does not use any inverse 

165 identification approach as Weller et al did. This allows more control over the model. This 

166 phenomenological model aims to describe the real behavior of the rope during loading at sea, and to 

167 be implementable in the one-dimensional finite element analyses used in industry (using software 

168 such as ®Deeplines, ®Orcaflex, ®Flexcom, ®Sima …). 

169 2. Materials and methods 

170 2.1. Materials

171 The synthetic rope studied is a reduced scale of a polyamide sub-rope for mooring lines supplied by 

172 Bexco, Hamme Belgium. The reduced-scale sub-rope studied in this paper was specially manufactured 
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173 for the research project.  It was tested in the form of 1-meter-long (pin-to-pin) three-stranded rope 

174 samples with a diameter of around 11.5 mm, an MBL of 40 kN and a linear density of 90 000 tex (g/km); 

175 it will be referred in this paper as ‘4Tsample’. Each strand is composed of yarns twisted together into 

176 rope-yarns. The rope-yarns are twisted together to form strands. 

177 The yarns used were supplied by Nexis fibers and have a linear weight of 188 tex (g/km). A proprietary 

178 coating has been applied on the rope-yarns by the rope manufacturer Bexco. This coating aims to 

179 reduce the abrasion inside the rope improving its fatigue durability (the target fatigue lifetime for 

180 FOWT is 20 years) (Chevillotte, 2020).

181

182 Figure 2 - 4T sub-rope sample with splices

183 The development of the behavior law was performed on this 4T sub-rope sample. This smaller scale is 

184 more adapted to laboratory experiments and the splices could be prepared in the laboratory at ENSTA 

185 according to Bexco practice. This allowed more experiments to be performed as the cost was also 

186 reduced. Several rope samples were needed to develop and identify the parameters of a behavior law 

187 and to validate the model predictions. 

188 An example of the 4T sub-rope samples is presented in Figure 2.

189 All samples were terminated by eye splices in order to be connected to the tensile testing machine. 

190 The strand lay-length imposes the length of the splices. 

191

192 Before each test, the sub-rope samples were fully immersed in tap water for 10 hours without load, 

193 in order to saturate them. As shown by (Humeau et al., 2018) on the same fiber type but without 

194 coating, this duration should be largely sufficient. During the tensile tests, the samples were 

195 maintained under water as explained in the next section.

196 2.2. Experimental procedure: monotonous tensile test, multi-relaxation tests and 

197 multi-creep test
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198 Testing polyamide 6 sub-ropes requires adapted test machines and load introduction interfaces. First, 

199 the recommended terminations for ropes are splices as noted in section 2.1. These terminations result 

200 in long samples (fig. 2). Hence, the experimental machine should be long enough to hold the sample 

201 and provide enough stroke to accommodate the elongation of the sample during the test. The latter 

202 is important as polyamide 6 shows a low stiffness with a high breaking strain around 20%. Adding the 

203 construction stretch to the high elongation fibres and to the splice terminations, a large displacement 

204 stroke is required for testing these ropes. A hydraulic machine dedicated to compression tests at high 

205 rates (Figure 3-left) called ‘Servotest’ fulfilled these requirements.  This Servotest machine may be 

206 also used for quasi-static tensile test, having a large piston stroke of 600 mm. The maximum 

207 displacement speed is 100 mm/s for quasi-static tests. The maximum tensile force is 200 kN at 10 m/s. 

208 The sample splices are linked to the machine by two 35-mm diameter loading pins.

209  

210 Figure 3 - Left:  Servotest hydraulic machine at ENSTA Bretagne; Right: 4T sub-rope samples attached to the jaws with 
211 vertical watering system

212 This is a vertical test machine. As noted previously the experimental tests must be performed in water. 

213 Following immersion in water for 10h the samples were kept wet during the test by a vertical system 

214 producing a constant and controlled water flow around the sub-rope. This consists of a volumetric 

215 pump with a low flow rate (around 1liter/min) that brings tap water near the top of the sample 

216 through a spiral-shaped pierced tube covered by a knitted fabric (Figure 3-right). This provides a 

217 homogeneous flow around the sub-rope section. The water then flows along the sample length by 

218 gravity. The lower loading pin is surrounded by a PVC tube for collecting the sample water and 

219 returning it to a tank. The HBM load cell has a range of ±50 kN and a resolution of 2 mV/V leading to 

220 a precision of around 10 N. The strain, in the central part of the sub-rope samples, was measured by 
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221 image analysis; two black 2mm-diameter markers were attached to the sub-rope and tracked by a 

222 CCD camera (Retiga 6000 by Q-IMAGING with 6.05 Mega Pixels). 

223 2.3. Stress and strain measurements adopted

224 The complex structure of synthetic fiber ropes complicates the use of the usual Cauchy stress based 

225 on the cross-section. A specific stress tensor Σ based on the density of the material is therefore used:

226 Σ =  
𝑇
𝜌𝑡

       (1)

227 with 𝜌𝑡 the density in kg/m³ and T the Cauchy stress tensor in Pa.

228      In the 1D case (rope case), this specific stress leads to:

229 Σ =  
𝐹

𝜌𝑡
   (2)

230 with 𝜌𝑡the linear density in kg/m and F the tensile force in Newton.

231      The SI specific stress unit is N.m/kg (= J/kg). The textile industry uses a specific unit called N/tex 

232 with:

233 1
𝑁

𝑡𝑒𝑥 =  106 
𝐽

𝑘𝑔 =  103 
𝑃𝑎

𝑔/𝑚3        (3)

234 where 1 tex = 1 g/km.

235 For defining and measuring a strain, one needs a reference mechanical state, which defines the 

236 reference length 𝐿0. In the case of rigid materials like metals, this reference state is usually chosen at 

237 rest, before any loading. In the case of textile materials, the mechanical state at rest, i.e., without any 

238 loading, has very variable geometric dimensions. Indeed, without any loading, this type of material 

239 has very low rigidity and we can easily modify its dimensions during handling. So, the state at rest 

240 cannot be used as a reference mechanical state, because of the high uncertainty of the reference 

241 length 𝐿0. In order to overcome this difficulty, a simple solution is to apply a low load to the material 

242 in order to stabilize its dimensions. Then, this lightly-loaded mechanical state can be used as a 

243 reference state for 𝐿0. This load rate is chosen as the minimum tension ensuring a straight rope under 

244 gravity. 

245     The logarithmic strain will be used for this study:

246 𝜀𝑙𝑜𝑔 = log ( 𝐿
𝐿0

)        (4)
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247 with 𝐿 the current length, 𝐿0 the reference length (measured with the rope loaded at 2% of its minimal 

248 breaking load or MBL) and log the natural logarithm.  

249 2.4. Bedding-in procedure

250 For station-keeping applications, a bedding-in process is performed to stabilize the properties of the 

251 rope. It consists of a procedure with a chosen sequence of loading to allow the permanent strain, due 

252 to construction modifications and reorientations of amorphous regions of fibers, to take place before 

253 the installation. Lian et al (Lian, 2018)  showed that, depending on the bedding-in applied to a rope, 

254 different values of strain, initial creep and stiffness could be observed. Bain et al (Bain et al., 2020) 

255 studied the influence of bedding-in loading on HMPE braided rope performance and showed that 

256 applying a pre-load of at least 30% of the break load improved the rope properties. Depending on the 

257 rope material and construction, appropriate loading procedures must be found, but recommendations 

258 are proposed, for example, by (NI 432 Dt R02 E Bureau Veritas, 2007) . After removing this construction 

259 effect, simpler models can be proposed for ropes.  

260 Here a pre-loading sequence proposed specifically for the project is described in Table 1. It was applied 

261 with the loading rate equivalent to the ISO test. 

262 Table 1  Bedding-in sequence performed before each test

Loading/unloading rate Loading value 

[N/tex (%MBL)]

Creep/recovery 

duration [s]

5 ⋅ 10―4𝑠―1 0.07 (14) 3600

―5 ⋅ 10―4𝑠―1 0.01 (2) 3600

263

264 These two steps were applied for all tensile tests. The mechanical state at the end of this pre-loading 

265 is defined as the reference state for all strain measurements. 

266 2.5 Multi-relaxation cyclic tests

267 Four identical multi-relaxation tests were performed on four different 4T sub-rope samples to 

268 investigate the viscoelastic and viscoplastic properties of the polyamide 6 sub-rope. The procedure 

269 applied to each sample includes cyclic loading, relaxations, recoveries and a complex loading history 

270 with various maximum loading states. This enables most of the elasto-visco-plastic behavior can be 

271 described. It consists of a sequence of load-unload cycles mixed with stress-relaxation stages. The 

272 procedure is shown schematically in Figure 4 and for the 4T sub-rope can be described as follows:

273 - Cyclic loading at a strain rate around  8 ⋅ 10―5 𝑠―1 (0.08 mm/s)
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274 - Relaxation of 1 hour (by maintaining the piston position) at different strains during the cyclic 

275 loading

276 These tensile tests were preceded by the bedding-in procedure described previously. They were 

277 performed on the Servotest machine shown in Figure 3.

278

279 Figure 4 - Scheme of the loading paths of the multi-relaxation tests

280

281 3. Characterization of the behavior using multi-relaxation results and proposal of a 

282 constitutive law for a wet polyamide sub-rope 
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283 In this section, a visco-elasto-plastic characterization method is proposed. It is based on the analysis 

284 of the experimental results of multi-relaxation tensile tests (Figure 4 in section 2.5). An example of the 

285 experimental results from this type of test is shown in Figure 5. This characterization provides the 

286 identification of a visco-elasto-plastic behavior law based on Flory’s model as described in section 1.3.   

287 The one-dimensional spring-dashpot-ratchet law is represented in Figure 6 and has the following 

288 elements:

289 - A fast spring describing the dynamic behavior,

290 - A dashpot responsible for the viscous stress of the polymer,

291 - A time-independent part consisting of a ratchet element for the plasticity, and a slow spring 

292 responsible for the relaxed elasticity. 

293 This proposed law does not represent the construction stretch and the stabilization of the amorphous 

294 region, assuming that the bedding-in procedure has been previously applied. 

Figure 5 – Left: Strain versus time of a 4T sub-rope sample during multi-relaxation test. Right: Specific Stress of a 4T sub-rope sample during multi-
relaxation test
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295

296 Figure 6 - The proposed constitutive law; POLYAMOOR model.

297  

298 Two major hypotheses led to this model. First, the separate dashpot D4 in Flory’s model (Figure 1) was 

299 removed by considering that a fully relaxed state exists, which means a stabilized state at the end of 

300 all creep and relaxation (François and Davies assumption (François and Davies, 2008)). Second, we 

301 observed that the dynamic elasticity modulus is a linear function of stress (see next section 3.1). 

302 Therefore, it is not affected by the history of loading. The dynamic behavior of Flory’s model is 

303 revealed by replacing dashpot D2 by a rigid link; the resulting behavior is not exclusively elastic because 

304 of the position of the ratchet element in Flory’s model. So, in the proposed law, the ratchet element 

305 is put in parallel with the dashpot (Figure 6). Therefore, the dynamic behavior is exclusively given by 

306 elastic spring ‘i’ (fast spring) and is not history dependent.

307 We can notice that this model is similar to the Syrope model presented in section 1.1.3 (Falkenberg et 

308 al., 2017) as it can describe the dynamic stiffness thanks to the fast spring and it can describe both the 

309 original curve and the working curve with the fast spring, slow spring and non-linear ratchet element. 

310 The main equations describing this model are the following: 

311 𝜀 =  𝜀𝑒 +  𝜀𝑣 (5)

312  𝜀𝑣 =  𝜀𝑝 +  𝜀𝑠 (6) 

313 Σ = Σ𝑣 +  Σ2  (7)

314 with Σ = i(𝜀𝑒)(8) and Σ2 = 𝑠(𝜀𝑠)(9) and Σ𝑣 = 𝑣(𝜀𝑣,𝜀𝑣)(10)

315 with Σ2 ≤  𝑝(𝜀𝑝) (11)  and  𝜀𝑝 ≥ 0 (12) 

316 and 𝜀𝑝 ∙ [Σ2 ― 𝑝(𝜀𝑝)] = 𝜀𝑝 ∙ [Σ2 ― 𝑝(𝜀𝑝)] = 0    (13)

317 Where 𝜀 and Σ are the strain and the specific stress of the model, respectively. i(𝑥), s(𝑥), p(𝑥) and v

318 (𝑥,𝑦) are non-linear real functions of real variables. 𝜀𝑣 and 𝜀𝑝 are the rates or time derivatives of 
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319 viscous strain 𝜀𝑣 and plastic strain 𝜀𝑝. Equations (11,12,13) constitute the classical Kuhn-Tucker 

320 conditions for elastoplastic models (see Figure 14).

321 Each element and its method of identification will be described in the following sections.

322 3.1 Dynamic non-linear elasticity

323 Short term elasticity can be observed at high frequencies, high strain rates or during sudden changes 

324 in the loading. Looking at the multi-relaxation curve in Figure 5, we can observe short term elasticity 

325 at every re-loading after a relaxation, a creep or a recovery. It has been shown by Bles et al on a woven 

326 fiber strap, that the tangent modulus, just after these stages (named 𝐸𝑖𝑛𝑠𝑡 in Figure 7) , can be 

327 considered as a short-term elasticity (Bles et al 2009).  This modulus is the equivalent of the fast spring 

328 in Flory’s model during unloading. In the proposed model, this dynamic non-linear elasticity is 

329 represented by the fast spring i(𝜀𝑒).  

330 Figure 7 - Method for measuring the short-term elastic modulus

331 The method to measure this modulus is described in Figure 7. These moduli are plotted versus the 

332 specific stress on Figure 8, for a 4T sub-rope. We observe the short-term modulus is linear with the 

333 specific stress. On Figure 8, we do not see a clear difference between the loading and the unloading. 

334 Hence, we will assume the evolution of this modulus as a function of the specific stress is similar for 

335 both loading and unloading. 
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336

337 Figure 8 - Short-term elasticity modulus (𝐸𝑖𝑛𝑠𝑡)  versus the specific stress at the beginning of the sudden change, i.e. at every 
338 re-loading after a relaxation, a creep or a recovery, for sub-rope 4T  

339 This result is in accordance with the work of François and Davies who found the dynamic stiffness to 

340 be linear with the mean load for polyester mooring lines (François and Davies, 2008). It also confirms 

341 that the dynamic elasticity is not impacted by the history of loading. This result can be expressed as: 

342 𝐸𝑖𝑛𝑠𝑡  =  𝑎 ⋅ Σ  +  𝑏  =  
𝑑Σ
𝑑𝜀

343 Hence, we can define a function Σ  =  𝑖(𝜀)   describing this nonlinear elasticity: 

344 Σ  =  𝑖(𝜀) =
𝑏
𝑎 ⋅ (𝑒𝑎⋅𝜀 ― 1) (14)

345 Where 𝑎 has no units and 𝑏 is in N/tex. These parameters can be easily identified by applying a simple 

346 linear regression to the data of Figure 8. 

347 3.2 Fully relaxed behavior

348 François and Davies defined a fully relaxed behavior (FRB) (François and Davies, 2008). This behavior 

349 should include all the time-independent behavior contributions, which are: the relaxed nonlinear 

350 elasticity and the plasticity. Since it is not possible to obtain a fully relaxed state which, theoretically, 

351 would require an infinite relaxation time, we assume the following hypothesis: we observe at the end 

352 of some periods Rx on Figure 4, that when two relaxations are at the same strain (one during the 
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353 loading and the other during the unloading), a fully relaxed state may be defined by extending the two 

354 time evolutions of the stress relaxation until they meet each other (see scheme on Figure 9).

355

356 Figure 9 - Method for measuring the fully relaxed state (FRB)

357 Hence, a fully relaxed mechanical state can be associated to the stress values at the meeting points 

358 between two associated relaxations (green stars on Figure 9). The loading curve corresponds to the 

359 first loading of the rope and is highlighted by a continuous blue line on Figure 10. There is no opposite 

360 relaxation for the relaxations on the first loading curve or at the beginning of cycles, and there is not 

Figure 10 - Specific Stress (N/tex) versus logarithmic strain (-) during a multi-relaxation test; the blue continue 
line is the loading curve. The dashed lines are the cycles.
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361 an opposite recovery for the recoveries. Hence, to a first approximation, the end of the 

362 relaxation/recovery is taken.  These fully relaxed strain-stress points were measured for 4T sub-ropes 

363 and an example is given in Figure 11. 

364 On Figure 11, we observe that the curves obtained are very similar to the ones of the Syrope model; 

365 the original working curve of the Syrope model could be compared to the first loading curve and the 

366 working curve corresponds to the FRB curves during cycles. 

367 This method gives an approximate value of the fully relaxed or time-independent behavior. 

368 Considering the proposed model, this behavior is revealed when the dashpot element is taken out. 

369 Only the spring and ratchet elements remain as shown on Figure 12. 

Figure 11 - Fully relaxed behavior (FRB) measured on sub-ropes 4T
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370

371

372 Figure 12 - POLYAMOOR model in the case of the fully relaxed behavior (when the dashpot viscosity is fully relaxed).

373 For the cycles of the fully relaxed behavior (not for the loading curve), a tangent modulus 𝑀𝐹𝑅𝐵 =

374
𝑑Σ𝐹𝑅𝐵

𝑑𝜀𝐹𝑅𝐵
  can be determined between two measured relaxed states of the same cycle. The resulting data 

Figure 13-– Fully relaxed behavior tangent modulus 𝑀𝐹𝑅𝐵 =
𝑑𝛴𝐹𝑅𝐵

𝑑𝜀𝐹𝑅𝐵
  versus the associated specific stress for 4T 

sub-ropes
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375 for a 4T sub-rope sample are presented on Figure 13; this FRB modulus is plotted versus the mean 

376 stress at the middle of two corresponding relaxed states (Figure 11).

377 We observe a linear relationship between this modulus and the specific stress which can be expressed 

378 as: 

379 𝑀𝐹𝑅𝐵  =  𝑐  ⋅  Σ𝐹𝑅𝐵  +  𝑔  =  
𝑑Σ𝐹𝑅𝐵

𝑑𝜀𝐹𝑅𝐵

380 This is very similar to the quasi-static stiffness introduced by François and Davies who also observed 

381 it was linear with the mean load.  A relationship between the stress and the strain  Σ𝐹𝑅𝐵 =  𝑑(𝜀𝐹𝑅𝐵)  

382 can consequently be found with 𝑑(𝜀) following: 

383 𝑑(𝜀) =
𝑔
𝑐 ⋅ (𝑒𝑐⋅𝜀 ― 1) (15)

384 Parameter 𝑐 has no units and 𝑔 is in N/tex. These parameters can be easily identified by a simple linear 

385 regression on the cycle data of Figure 13.

386 As showed in Figure 12, the function 𝑑(𝜀) describes the two springs, (‘s’ and ‘i’) , in series. So, 

387 𝑑―1(Σ ) =  𝑖―1(Σ) + 𝑠―1(Σ) (15𝑏𝑖𝑠)

388 Where 𝑓―1(𝑦) denotes the inverse function of a function 𝑓(𝑥).  Thanks to equation 15bis and because 

389 the function 𝑖(ε) was already identified, the identification of the function 𝑑(𝜀) provides an 

390 identification of the function 𝑠(𝜀) :

391 15𝑏𝑖𝑠⟺𝑠―1(Σ)  = 𝑑―1(Σ ) ―  𝑖―1(Σ)  

392

393 ⟺𝑠―1(Σ)  =  
ln (𝑐

𝑔 ⋅ Σ + 1)
𝑐 ―

ln (𝑎
𝑏 ⋅ Σ + 1)

𝑎   

394 We inversed this function numerically using the one-dimensional Newton-Raphson algorithm.

395 So, at this stage, functions 𝑖(ε) and 𝑠(ε) are fully identified.

396 Once the fast elasticity and the slow elasticity are identified, we can deduce the plastic strain during 

397 the experimental test.

398 3.4 Plasticity

399 In the case of the fully relaxed behavior, the stress of the dashpot element is assumed to be zero:
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400 Σ𝑣  = 0

401 So

402 Σ𝐹𝑅𝐵  =  Σ2

403 According to the model definition equations and according to equation 15bis in the FRB case, that is:

404 𝑑―1(Σ𝐹𝑅𝐵 ) =  𝑖―1(Σ𝐹𝑅𝐵) + 𝑠―1(Σ𝐹𝑅𝐵) = 𝜀𝑒 𝐹𝑅𝐵 + 𝜀𝑠 𝐹𝑅𝐵 = 𝜀𝐹𝑅𝐵 ― 𝜀𝑝

405 we have:

406 Σ𝐹𝑅𝐵 = 𝑑(𝜀𝐹𝑅𝐵 ― 𝜀𝑝)

407 For the fully relaxed cyclic behavior, this leads to the strain-stress (𝜀𝐹𝑅𝐵,Σ𝐹𝑅𝐵) curve being shifted 

408 horizontally to the right when the plastic strain 𝜀𝑝 increases. Hence, on Figure 11, the curves for cycles 

409 1, 2, 3 and 4 are described by the same modeling curve, but it is shifted from the left to the right when 

410 the maximum stress increases. This is in accordance with Figure 13 on which we can observe that the 

411 points related to the four cycles all fit the same linear function.

412 We observe that the plastic strain value increases from one cycle to another as the intersections of 

413 the curves with the plastic strain (abscissa axis) are shifted to higher values for each cycle. This 

414 identified plastic strain (𝜀𝑝) of the model may correspond to the concept of permanent elongation 

415 described by François and Davies.

416 Because the function 𝑑(𝜀) has been identified previously, we can calculate the plastic strain using:

417 𝜀𝑝  =  𝜀𝐹𝑅𝐵  ―  𝑑―1(Σ𝐹𝑅𝐵)

Figure 14 - Pattern of the plasticity of the fully relaxed behavior, resulting from the Kuhn-Tucker conditions as part of the 
proposed model definition; the plastic strain can increase only when stress 𝛴𝐹𝑅𝐵 = 𝛴2 reaches values 𝑝(𝜀𝑝).
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418 Therefore, the plastic strain is a function of the maximum stress Σ𝐹𝑅𝐵  as illustrated on Figure 14. Using 

419 this expression, we obtain the curve of the plastic strain against the specific stress given in Figure 15.

420

421 Figure 15 - Plastic strain calculated versus the specific stress, for sub-rope 4T  

422 The negative plastic strain values obtained are due to the initial length being taken at a non-zero stress 

423 state due the need for pre-loading and a bedding-in sequence for fiber ropes as explained in section 

424 2.4. On Figure 16, we plot the function Σ𝐹𝑅𝐵 = 𝑑(𝜀𝐹𝑅𝐵 ― 𝜀𝑝)  that describes the FRB behavior using 

425 the FRB strain determined for cycle 3. Figure 16 highlights how the proposed model determines a zero-

426 specific stress for negative plastic strain values; Σ𝐹𝑅𝐵 = 0 = 𝑑(𝜀𝐹𝑅𝐵 ― 𝜀𝑝) ⇔𝜀𝑝 = 𝜀𝐹𝑅𝐵 when Σ𝐹𝑅𝐵 = 0.
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427

428 We observe a quasi linear relation between the plastic strain and load except at the beginning of the 

429 curve. To describe as closely as possible this behavior, the function describing the plastic strain has 

430 been chosen as follows:

431  𝑝(𝜀𝑝)  =  𝑒 ⋅ (tanh(𝑓.𝜀𝑝 + ℎ) + 1 ) when 𝜀𝑝 ≤  
―ℎ
𝑓  (16)

432  𝑝(𝜀𝑝) = 𝑒 ⋅ (𝑓 ⋅ 𝜀𝑝 + ℎ + 1) when 𝜀𝑝 >  
―ℎ
𝑓   (17)

433 Parameters 𝑓 and ℎ have no units while 𝑒 is in N/tex. These 3 parameters can be identified by a 

434 classical one-variable function fit on the Load Curve data of Figure 15.

435 The only element, that remains to be identified, is the viscosity element.

436  3.6. Viscosity

437 The viscosity is represented by the dashpot, which is in parallel with the slow spring and ratchet 

438 element. We assume a nonlinear behavior of the viscosity element following the equation below 

439 inspired by the work of (François and Davies, 2008):

440 Σ𝑣 = 𝑣(𝜀𝑣,𝜀𝑣) = 𝑊2(𝜀𝑣) ⋅ sinh―1 ( 𝜀𝑣

𝑊1(𝜀𝑣))  (19)

Figure 16 - Fully relaxed behavior (FRB) measured on sub-ropes 4T and function 𝑑(𝜀𝐹𝑅𝐵 ― 𝜀𝑝)  plotted for cycle 3
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441 Where Σ𝑣 and 𝜀𝑣 are respectively the stress and the strain rate of the viscosity element. This behavior 

442 leads to an analytical solution that can be approximated by a logarithm of the time for the relaxation. 

443 Hence, it is coherent for predicting the stress relaxation and creep strain for polyester rope which 

444 follows a logarithmic time evolution. Civier et al studied the creep of polyamide 6 and showed it also 

445 follows a logarithmic time evolution (Civier et al., 2022). 

446 Using the previous identification of the elastic part, the viscous strain during the experimental tests 

447 can be deduced using the expression: 

448 𝜀  =  𝜀𝑒 + 𝜀𝑣 ⟺ 𝜀𝑣  =  𝜀  ―  𝜀𝑒 ⟺ 𝜀𝑣 =  𝜀  ―  𝑖―1(Σ) (20)

449 To calculate the viscous stress, we only use the monotonic increasing plastic strain called ‘load curve’ 

450 on Figure 15 and highlighted on Figure 10. This means that we will only use the data from the loadings 

451 between the cycles. Hence, the obtained identification will include seven relaxations (corresponding 

452 to the seven load phases where the load exceeded the previous maximum load). Along the loading 

453 curve, the ratchet element is activated (plasticity) (𝜀𝑝 > 0). According to the equations of the law, the 

454 stress Σ2 and the plastic strain satisfy the limits of relation (11): 

455 Σ2 =   𝑝(𝜀𝑝)

456 And according to (5) and (20) 𝜀𝑝 =  𝜀𝑣 ― 𝜀𝑠 =  𝜀𝑣 ― 𝑠―1(Σ2) =  𝜀  ―  𝑖―1(Σ) ― 𝑠―1(Σ2) 

457 So Σ2 =   𝑝(𝜀𝑣 ― 𝜀𝑠) =  𝑝(𝜀𝑣 ―  𝑠―1(Σ2)) 

458 ⟺ 𝑝―1(Σ2) =  𝜀𝑣 ―  𝑠―1(Σ2)

459 ⟺ 𝜀𝑣 =  𝑝―1(Σ2) +  𝑠―1(Σ2)  

460 We define a function 𝑘 by its inverse as; 𝑘―1(Σ) = 𝑝―1(Σ)  +  𝑠―1(Σ)

461 So, we have: 𝜀𝑣 =  𝑘―1(Σ2) (21) and Σ2 = 𝑘(𝜀𝑣).

462 According to the equations of the model (7), the viscous stress can be expressed as:

463 Σ𝑣  =  Σ ― Σ2 =   Σ ― 𝑘(𝜀𝑣) (22)

464 ⟺ 𝑘(𝜀 ― 𝑖―1(Σ)) = (Σ ― Σ𝑣) 

465 ⟺ 𝜀 ― 𝑖―1(Σ) = 𝑘―1(Σ ― Σ𝑣)

466 ⟺  𝜀  ―  𝑖―1(Σ) ― 𝑘―1(Σ ― Σ𝑣) = 0 (23)
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467 To calculate the viscous stress, we can use the bisection (dichotomy) method to resolve the equation 

468 (23). This method was applied to the experimental results from multi-relaxation tests on 4T sub-ropes 

469 (Figure 17). 

470 To identify the parameters of the function 𝑣(𝜀𝑣,𝜀𝑣), we use the relaxation stages on Figure 17. We 

471 apply a linear regression between the viscous stress and the viscous strain for each relaxation stage: 

472 Σ𝑣  =   ―  𝑟 ⋅ 𝜀𝑣 + 𝑞     (23𝑏𝑖𝑠)

473 The chosen viscosity behavior, added to this linear relation, led to the following differential equation:

474 𝜀𝑣  = 𝑊1 ⋅ sinh ( ―𝑟 ⋅ 𝜀𝑣 + 𝑞
𝑊2 )  (24)

475 We resolve it analytically giving: 

476 Σ𝑣(𝑡)  =  2 ⋅ 𝑊2 ⋅ tanh―1 [tanh (Σ𝑣(𝑡0)
2 ⋅ 𝑊2) ⋅ exp ( ―𝑟 ⋅ 𝑊1.(𝑡 ― 𝑡0)

2 ⋅ 𝑊2 )] (25)

477

Figure 17 - Calculated viscous stress versus the viscous strain during the load curve (no cycle data) for sub-ropes 4T (the 
straight parts correspond to the relaxation stages of the test where the sub-rope strain is maintained constant)
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478 In this equation resulting from the behavior of the model, Σ𝑣(𝑡) is given by the data of Figure 17, and 

479 the parameter 𝑟 is given by the linear regression (eq.23bis). So we can optimize parameters 𝑊1 and 

480 𝑊2 for a best fit on experimental data of each relaxation stage on Figure 17 (7 stages). This 

481 optimization was done by a non-linear least-squares Marquardt-Levenberg algorithm applied to the 

482 equation (25). Figure 18 presents these values versus the mean value of the viscous strain during the 

483 relaxation stages. 

484 According to experimental observations (Figure 18-left), W1 does not show a simple variation 

485 depending on the viscous strain and the variations are small with respect to those of W2, resulting in 

486 a low contribution to the overall viscous strain. So, we decided to fix W1 as a constant (equal to the 

487 mean of the values obtained) and not as a function of the viscous strain. Using a fixed value for W1 

488 we can apply the non-linear least-squares Marquardt-Levenberg algorithm again to optimize W2. 

489 Figure 18-right shows the W2 values obtained both using a fixed value for W1 (triangle) or unfixed 

490 values (circle). Also Figure 19 shows the evolution of the specific viscous stress for three different 

491 relaxations (different initial specific stress at the beginning of the relaxation) using fixed W1 values or 

492 using W1 values unfixed. The differences are small, so the choice of a fixed value allows us to simplify 

493 the law and seems appropriate.  

Figure 18 - Parameters W1 and W2 calculated from the viscosity behavior for 4T sub-ropes sample
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494

495 Figure 19 - Evolution of the specific viscous stress (N/tex) following equation 25 for three different relaxations (circles, 
496 triangle, cross) using W1 fixed or unfixed

497 The W2 behavior with respect to the viscous strain can be expressed using a power law:

498 𝑊2(𝜀𝑣) =  𝑎𝑤2 ⋅  𝜀𝛼
𝑣 + 𝑏𝑤2      (26)

499 With 𝑎𝑤2 and 𝑏𝑤2 expressed in N/tex and 𝛼 with no units. 

500 4. Parameter identification and experimental validation

501 4.1 Identification, simulation by finite element analysis and experimental validation 

502 for the 4T sub-rope sample

503 Following the identification method, the 11 parameters of the POYLAMOOR model were identified 

504 using the multi-relaxation data of four tests on 4T sub-rope samples as described above. For each 

505 parameter, the average of the parameters obtained for the four tests was calculated. These are 

506 presented in Table 2. An example of the experimental plots is shown on Figure 5.

507

508

509
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510 Table 2 - Identified parameters for the POLYAMOOR on a 4T sub-rope sample

4T value Element of the POLYAMOOR model

𝑎 [-] 33

𝑏 [N/tex] 0.48
𝑖(𝜀) =

𝑏
𝑎 ⋅ (𝑒𝑎⋅𝜀 ― 1)

𝑐 [-] 26

𝑔 [N/tex] 0.086
𝑑(𝜀) =

𝑔
𝑐 ⋅ (𝑒𝑐⋅𝜀 ― 1)

𝑒 [N/tex] 0.11

𝑓 [-] 161

ℎ [-] 8

𝑝(𝜀𝑝)  =  𝑒 ⋅ (tanh(𝑓 ⋅ 𝜀𝑝 + ℎ) + 1) if 𝜀𝑝 ≤
―ℎ
𝑓

𝑝(𝜀𝑝) = 𝑒 ⋅ (𝑓 ⋅ 𝜀𝑝 + ℎ + 1) if 𝜀𝑝 >
―ℎ
𝑓

𝑊1 (𝑠―1) 1.8 ∙  10―7

Σ𝑣 = 𝑣(𝜀𝑣,𝜀𝑣) = 𝑊2(𝜀𝑣) ⋅ sinh―1 ( 𝜀𝑣

𝑊1)
𝛼 [-] 3

𝑎𝑊2[N/tex] 186.75

𝑏𝑤2 [N/tex] 0.0016

𝑊2(𝜀𝑣) =  𝑎𝑤2 ⋅  𝜀𝛼
𝑣 + 𝑏𝑤2  

511

512 A validation of the approach was performed by comparing the simulation of this experimental 

513 procedure using the parameters in Table 2 to the experimental data. The behavior given by the model 

514 is very close to the experimental response (Figure 20 and Figure 21). 

Figure 20- Comparison of the model and the experimental results for the 4T sample Left: Time evolution of the logarithmic strain [-] for the 
experimental result and the model Right: Time evolution of the specific stress [N/tex]
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515 Some differences can be seen for the recoveries but they are quite small. We observe on Figure 20-

516 right and Figure 21-right that the model under and overestimates the specific stress during the loading 

517 and the unloading, respectively. This error could, in part, be explained by the hypothesis of linear 

518 evolutions of the moduli versus the specific stress for the loading and the unloading. This linearity 

519 during the loading may not be completely justified, as we see the model fits the experimental data 

520 well for cycle 1 and 4 and underestimates it for cycle 2 and 3.  It could also be due to an underestimated 

521 evolution of the specific stress in the ratchet element. The parameters could be optimized to describe 

522 a chosen load range more closely. Such an optimization should be performed on all parameters, as 

523 their identification is inter-dependent. 

524 There is a visible difference in the behavior during the relaxations at unloading. This was expected as 

525 the viscous parameters have been identified on the first loading sequence of the test and we can 

526 expect some differences between the loading and the unloading steps. The choice of equation (19) to 

527 describe the viscosity behavior could also be questioned and another behavior might improve the 

528 prediction.

529 Overall, the model works well with cycles and relaxations in the load range of 0.01 to 0.25 N/tex for 

530 the 4T sub-rope sample. The differences are not critical for the application. The POLYAMOOR model 

531 should allow the behavior of mooring lines under normal service loading (cycle 1 reaches 0.1 N/tex 

532 around 17%MBL) and under storm conditions (cycle 4 reaches 0.45 N/tex around 77%MBL) to be 

533 determined. 

534 5. Conclusion

535 A constitutive model based on Flory’s proposal and its identification method was proposed. It does 

536 not require any inverse identification and allows good control over the model. The model reproduces 

Figure 21 - Zoom of the figure 20: Left: Evolution of the logarithmic strain Right: Evolution of the specific stress
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537 both the concepts of permanent elongation and creep behavior introduced respectively by Francois 

538 et al and Civier et al. The model has been defined such that it can be implemented in a one-

539 dimensional FEM model solved in the time domain, assuming access to stored mechanical parameters 

540 of the global numerical scheme. 

541 This model was developed using a cyclic multi-relaxation test which can be applied to the prediction 

542 of the mechanical behavior of polyamide 6 fiber ropes under representative loading.  It has the 

543 following elements:

544 - A fast spring describing the dynamic behavior,

545 - A dashpot responsible for the viscous stress of the polymer,

546 - A time-independent part consisting of a ratchet element for the plasticity, and a slow spring 

547 responsible for the relaxed elasticity.

548 A first validation has been made by comparing the model results to the experimental data used for 

549 the identification. The model predicts some small differences as it under or overestimates the specific 

550 stress during some cycles. Also, some differences on the recovery stages are visible but remain small. 

551 The viscous expression is suspected to be the source of differences and further work may allow 

552 optimization of this component. Nevertheless, these differences are instantaneous and do not affect 

553 the remaining loading history. Hence, it was concluded that the differences were not critical for the 

554 application and that further optimization of the parameters could allow a correction of the model if 

555 needed. 

556 Further validations are being made by applying the law and the identified parameters to other loading 

557 sequences, in order to show whether the law can be predictive. 

558 As the development of the law was made on 4T sub-rope samples, an identification of the law at higher 

559 scales is on-going.  The aim of those identifications is to investigate if larger scale ropes, composed of 

560 the same fibers but with a different construction, show a similar response to the one identified on the 

561 4T sub-rope. The analysis of the parameters obtained will also enable the influence of the rope 

562 construction to be investigated. 
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