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On the Effects of Ocean Surface Motion on
Delay-Doppler Altimetry

Louis Marié, Frédéric Nouguier, Douglas C. Vandemark, Fabrice Ardhuin, and Bertrand Chapron

I. INTRODUCTION

S atellite radar altimetry provides unique data on sea level,
surface wave significant height and surface wind speed.

In practice, these observations are obtained by fitting a theo-
retical function to the satellite-measured waveform, where the
waveform is the average of many observed radar echoes as a
function of time delay between the transmission and reception
of radar pulses. This fitting process is known as retracking,
and differing methods involve the choice of both a theoretical
waveform shape and a fitting cost function.

Improving the quality of the retrieved altimeter observations
thus involves improving not only instrument characteristics,
but also the appropriateness of the parametric waveform model
used in the retracking process.

Prior to the SIRAL instrument on Cryosat-2, the information
contained in the phase of the return signal from successive
radar pulses was discarded: only the echo signal intensity was
considered, and multi-pulse burst averaging was used to im-
prove the Signal-to-Noise Ratio (SNR) and to mitigate speckle

noise before retracking [1]. Echo waveforms produced in this
way were satisfactorily understood in the framework set by the
original papers of [2] and [3]. In this “Conventional Altimetry”
(CA) framework, the overall waveform is considered to be
the sum, on an intensity basis, of the echos returned by the
individual scattering elements of the sea surface present in
each range bin. It is obtained as the “triple convolution” [3],
[4] of a function characterizing the intensity weighting at the
range bin level caused by the instrument range resolution
mechanism (the range “Point Target Response” (PTR) of the
instrument), the probability distribution function of the vertical
displacement due to surface waves of scattering elements with
respect to their rest positions, and a function describing the
radiated power distribution on the sea surface by the system
antenna, the “Flat Surface Impulse Response” (FSIR). This
does not account for the fact that scattering elements might
be displaced from their Doppler frequency bins by surface
wave orbital velocities, and assumes that the distribution of
surface elevations is independent of the range bin [5].

Retrackers based on this waveform model typically retrieve
three geophysical parameters from the radar signal [6]: the
normalized radar cross-section σ0, which is related to the
surface slope statistics [7]–[9], the standard deviation of the
vertical surface displacement, from which the significant wave
height Hs is derived, and the mean range from satellite to sea
surface over the instrument footprint. The altimeter range is
further processed to provide along-track Sea Level and Sea
Level Anomaly estimates with cm-level precision.

The SIRAL instrument onboard CryoSat-2 was the first
altimeter instrument to allow coherent (phase-preserving) pro-
cessing of successive radar echos. This permits implementa-
tion of the Delay-Doppler Altimetry (DDA) concept proposed
by [10], involving Synthetic Aperture Radar (SAR) processing
applied to successive echos. This approach allows separation
of the signal contributions according to their respective along-
track surface-return bins. This yields a two-dimensional Delay-
Doppler Map (DDM) of the received power distribution across
time delay and Doppler shift. A “Range cell Migration Correc-
tion” (RCMC or RMC) is typically applied to waveforms from
each Doppler bin to realign them. This removes the along-
track distance contribution from the instrument-to-surface slant
range. At this stage, signal accumulation (“stacking” or “multi-
looking”) is performed before retracking of the resulting 1-D
waveform is performed.

Several approaches have been proposed for the signal accu-
mulation stage:
– In the “SAR altimetry” approach [11], SAR-processed radar
waveforms viewing the same groundpoint during successive
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bursts of pulses are gathered together before summation. Fully-
Focussed SAR, in which the final summation itself is phase-
preserving, has also been successfully implemented [12]. This
can provide observations of the surface elevation of very
compact water bodies including lakes, canals [13], and sea-
ice leads [14].
– In the alternative “LR-RMC” approach recently proposed
by [15], SAR-processing and RMC are applied on bursts of
pulses, and this is followed by an incoherent stacking of the
intensity. This approach does not yield a finer along-track
resolution of the observations, but it does increase the SNR
prior to retracking.

The effect of the RMC step, already clearly explained in
[10], is to redistribute the total energy contained in the echo
waveform, shifting the weight towards the instant of encounter
of the radar pulse with the sea surface at nadir. The resulting
echo waveform is strongly affected, featuring a sharp peak,
instead of a step, at the instant of encounter. This redistribution
of energy increases the SNR of the useful portion of the signal,
thereby increasing the accuracy of the tracking process.

Despite this potential for improved precision measurement,
adoption of DDA was at first hampered by the misconception
that it had fundamentally different pulse repetition frequency
(PRF) requirements from CA, and that the two modes of
operation, as they were implemented for instance in SIRAL,
were mutually exclusive. This precluded inter-calibration of
the results, and incurred an unacceptably high risk of putting
in jeopardy the continuity of the vitally-important sea level
observations timeseries started with the 1992 Topex/Poseidon
mission [16].

The feasibility of an “open-burst” mode of operation, which
could allow simultaneous processing of the same radar echos
using the two methodologies, was finally recognized by [16],
[17]. This opened the way for the selection of a Delay-Doppler
capable instrument for the Sentinel-6 “Michael Freilich” (S6-
MF, [18]) mission.

Following this adoption of DDA, there is now a clear need
to optimize a new generation of altimeter waveform retracking
models that may ultimately serve to improve satellite mission
ground segment retracking.

Starting from [19], a number of DDA waveform retrackers
have been derived, with varying degrees of sophistication. The
studies by [20] and [21] were the first to benefit from and
address actual Cryosat-2 data. The authors of [20] propose a
lucid exposition of the problem, analytically deriving a number
of steps, before resorting to the numerical evaluation of a
number of integrals. Results show convincing comparisons
with Cryosat-2 ocean return waveforms. The authors of [21],
in the context of geodesy, go further analytically, but overlook
the issue posed by the finite (and effectively coarse) resolution
of the along-track SAR processing. The proposed waveform
peak is too narrow for given significant wave height Hs,
and would have led to consistent overestimation of Hs if
the method had been used operationally. In the framework
of the ESA-funded SAMOSA project, [22] derived a semi-
analytical model that has since been adopted by a large
user community. Independently, [23] proposed another semi-
analytical model, placing specific emphasis on the retracking

of waveforms when the sensor data are affected by instrument
antenna mispointing.

These contributions essentially follow from the original [3]
framework and are based on a triple convolution in the range
direction only. They do not take into account the effectively-
finite azimuthal resolution of the actual SAR processing nor
the fact that sea surface movements (and not just height
displacements) affect the signature of scattering facets in the
Delay-Doppler Map. These factors introduce a PTR and
a probability distribution function in the Doppler direction
as well. The analysis framework needs to involve a triple
convolution in the azimuth direction also.

Several steps in this direction were made by [24]–[27].
These studies propose a computational approach involving a
convolution with an azimuth PTR [24], and inclusion of a
probability distribution function for the instantaneous radial
velocity of the surface scattering elements [25]. They discuss
statistics of these elements in relation with the overall sea
state characteristics in [26]. Finally, all these elements are
consolidated in [27].

The initial motivation for the present study comes from
a recent conference presentation [28]. But results to follow
have been derived independently from that work and the
previously cited studies. Developments are performed within
the framework of the ESA-funded “Interpretation and Analysis
of SKIM Campaign Observations” (IASCO) project, focused
on the analysis of airborne Doppler radar observations of the
sea surface collected as part of the phase-A work for the
Surface KInematics Multiscale (SKIM) concept that was a
candidate satellite mission for ESA Earth Explorer 9 [29], [30].

The paper is organized as follows. The measurement prob-
lem context, including key instrument characteristics and ac-
quisition geometry, is summarized in section II. A derivation
of the instrument response to a single scattering facet, the basic
building block of the overall instrument response, is discussed
in section III. Detailed consideration is given to the problem
of statistical averaging over realizations of the random sea
surface process, in terms of one facet’s instantaneous elevation
and velocity. The idea here is to reproduce for a moving sea
surface the initial “frozen-sea” analysis of [3]. A probabilistic
theory of these fluctuations is detailed in the Gaussian sea state
framework in Appendix A. The integration over the instrument
Field of View (FoV), required to upscale the results obtained
at the facet level to expected full surface ocean altimeter
waveforms, is discussed in section IV. This section culminates
with the analytical IASCO SAR altimeter waveform model Eq.
(20), which is compared with the Open-Source PySAMOSA
[31] implementation of the accepted SAMOSA model [22].
Implications and example results using this model are then
discussed in section V followed by a study summary.

II. PROBLEM CONTEXT

A. Main instrument characteristics

The S6-MF mission is thoroughly described in [18], but
several key characteristics are revisited for the sake of com-
pleteness. Relevant S6-MF orbit and Poseidon 4 instrument
characteristics are summarized in table I.
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The primary mission payload is Poseidon 4, a dual-
frequency Ku-/C-band altimeter. A notable difference with
respect to the preceding Poseidon systems is that the chirped
pulse deramping process is performed numerically after dig-
itization instead of analogically in the receiver front-end. It
is also capable to work in the “open-burst” mode, where it
continuously alternates between radar transmit and receive
operations. This is a significant improvement compared to
Cryosat-2 and Sentinel-3A instruments. Those sensors had to
alternate between much longer burst transmission and burst
reception periods (“closed-burst” mode, see e.g. [32] for an in-
depth discussion). This means that the Poseidon 4 signal can
be processed using both the CA and DDA approaches at all
times. One downside of the open burst mode is that the pulse
travel-time sets strong constraints on the maximum transmit
pulse repetition frequency fp, which has to be roughly halved
with respect to the previous instruments (the implications of
this design trade-off are discussed in [17]), and to vary contin-
uously, to adjust for travel-time variations along the platform
orbit. Finally, the instrument features a significantly improved
onboard processor [18], which is capable of performing on-
board the range-resolution, along-track Fourier transformation,
and RMC steps of DDA processing. This capability is however
not in permanent use, and the DDA processing is currently
performed on ground.

Parameter Symbol Value

Mean flight altitude h 1347 km

Mean flight velocity vs 6967 m.s−1

Mean Earth Radius RE 6371 km

Orbital factor κ = 1 + h/RE 1.21

Average pulse repetition
frequency fp 9178 Hz

Carrier frequency
(Ku-band) fc 13.575 GHz

Carrier wavelength
(Ku-band) λ 2.21 cm

Pulse duration Tp 32 µs

Chirp bandwidth B −320 MHz

ADC sampling frequency fs 395 MHz

I/Q samples per pulse Ns 20480

Chirp rate s −1.0 1013 Hz.s−1

Range-Doppler ambiguity
effective time shift δtrr = htrk

c
+ fc

s
3.13 ms

Pulses per burst Np 64

Burst duration Np/fp 6.97 ms

Antenna 3 dB
half-beamwidth

θ3dB
2

0.665◦

2-way ambiguity velocity λfp
4

∼ ±50.7 m.s−1

2-way ambiguity y λfp
4

h0
vs

∼ ±9.8 km

1-way range diversity
over FoV r − h0 ≃ κ y2

2h0
∼ [0; 43.2 m]

Elevation angle θ at end
of unambiguous zone

λfp
4vs

0.417◦

TABLE I
SENTINEL 6-MF / POSEIDON-4 DESIGN PARAMETERS.

One other consequence of the reduced fp of Poseidon 4 is
the fact that the Nyquist frequency fp/2 of the SAR processing
is also lower, with one ramification that follows. The 1-way
power radiation gain diagram G of the instrument antenna can
be conveniently written as a Gaussian function depending on
the elevation angle θ [3], [20]:

G(θ) = G0 exp

(
−2θ2

γ

)
, γ =

sin2(θ3dB)

2 log(2)
(1)

where G0 is the boresight gain of the instrument and θ3dB is
the half-power beamwidth. As shown in table I, the elevation
angle at the along-track position where the Doppler frequency
shift due to the platform flight velocity is equal to the Nyquist
frequency is of the order of 0.42◦, i.e. actually smaller than
the antenna 3 dB half-beamwidth, 0.66◦. A significant portion
of the instrument Field of View (FoV) is thus aliased in the
SAR processing, and appears as conspicuous sidelobes in the
DDM.

B. Measurement geometry

O

•S

z

•N

h

RE

•
P

y

∆

r⃗

ζ

α

ψθ

vt

vr
v⃗s

Fig. 1. Side-view of the nadir altimeter acquisition geometry. The Earth
center, satellite antenna center-of-phase and nadir are respectively denoted O,
S and N . The satellite is at altitude h above the reference spheroid of radius
RE . The satellite flight velocity with respect to the Earth surface is v⃗s, with
norm vs, tangential component vt, radial component vr (positive upwards).
At the current observation point P , the Earth surface is at height η above the
reference spheroid of radius RE , the elevation angle is denoted θ, the satellite
zenith angle is denoted ψ, the geocentric angular distance from nadir is α.
The vertical distance between the reference spheroid and its tangent plane at
nadir is denoted ∆ (it is always negative). The vector from S to P is denoted
r⃗, and its norm, the radar slant range to P , is denoted r.

1) From the side: Figure 1 presents a side-view of the
satellite trajectory and acquisition geometry in a vertical plane
that is locally tangent to the trajectory in the Earth-bound
frame [33]. A number of useful coordinate systems can be
defined (see also Fig. 2). The current observation point P can
be referred to by its geocentric angular distance from nadir
α, azimuth with respect to the satellite ground track φ and
distance from the Earth center RE+η, or by its cylindrical (ρ,
φ, z = ∆+η) or Cartesian (x, y, z = ∆+η) coordinates in the
frame of reference locally tangent to the sphere and centered
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on the nadir. ∆ denotes the distance in the z direction between
the reference spheroid and the plane tangent to the sphere at
nadir. It is always negative. In this work the y-direction of the
Cartesian coordinate system is parallel to the satellite velocity
vector.

Given the typical beam apertures used in nadir altimetry, ρ
is of the order of at most 104 m. At such scales, it is easy to
see that the observation point distances from nadir following
the spherical surface, ζ, and along the tangent plane (ρ, equal
to
√
x2 + y2), differ by less than 5 mm, and can be used

interchangeably. From this one gets that θ ≃ tan(θ) = ρ/h.
It is well known [4] that Earth sphericity must be taken

into account for its vertical deflection of the surface, with ∆
varying with ρ as ∆ = −ρ2/(2RE) and reaching values of the
order of 8 m at the edge of the instrument beam. This effect
is also found in the expression of the slant range from S to
P ,

r =

√(
h− η +

ρ2

2RE

)2

+ ρ2 ≃ h− η +
κ

2h
ρ2,

which increases faster with ρ2 than in a flat surface approxi-
mation by a factor κ = 1 + h/RE , equal to 1.21 for S6-MF
flight parameters. And although θ is well approximated by a
flat-Earth expression ρ

h , the satellite zenith angle must also be
corrected for sphericity and is given by

ψ = κ
ρ

h
.

•
N

x

y

ρ

P•φ

f ↗

f ↘

v⃗s

φGD

U⃗GD

Fig. 2. Top-view of the nadir altimeter acquisition geometry. The nadir
is denoted by N . The y−direction of the Cartesian coordinate system is
parallel to the ground projection of the satellite flight velocity vector, v⃗s. The
azimuth angle φ is counted clockwise from the y-direction. The “Geophysical
Doppler” vector is U⃗GD. The current point P can be referred to by its
cylindrical coordinates (ρ, φ,∆+ η), its Cartesian coordinates (x, y,∆+ η),
or by its Delay-Doppler coordinates r =

√
(h−∆− η)2 + ρ2 and f . The

isorange lines are represented by the circular grid centered on N , the isodops
in absence of mean surface motion by the dashed lines grid, and the actual
isodops showing the effect of mean surface motion by the thin lines grid.

2) From above: Figure 2 represents the acquisition geom-
etry seen from above. The satellite flight velocity aligns with

the positive y-direction. The current point P on the surface
can be labeled using different sets of coordinates, Cartesian
(x, y, z = ∆ + η), cylindrical (ρ, φ, z = ∆ + η), or, more
interestingly, Delay-Doppler coordinates that are constructed
from its slant range from the satellite, r, equal to h−η+ κ

2hρ
2,

and the Doppler shift at its location, f .
At a given location, the Doppler shift due to a dynamic

ocean is composed of a “frozen-sea” contribution and a
wave-induced contribution emerging from the correlation of
the Lagrangian velocity of the specular facets and their
backscattering cross-sections. This contribution is discussed
in section III and Appendix A , where it is shown to represent
the projection on the radar line-of-sight of an additional
“Geophysical Doppler” vector UGD. In [30], this vector is
further decomposed into a “Current Doppler” vector UCD,
i.e. the ocean “Total Surface Current Vector” and a “Wave
Doppler” vector due to the intrinsic motion of the sea surface
specular facets. Note, the “Wave Doppler” term is the dom-
inant component (see Eq. 2 in [34]), with magnitude of the
order of 2.5 to 3.5 m.s−1 at Ku-band, and a weak dependence
on sea state and wind speed.

Denoting the magnitude of this vector, UGD, and the
azimuth it points to, φGD, the expression for the total Doppler
frequency shift can be read from Eq. (13) as

f =
2

λ

[
−vr +

yvt
h

− tan(ψ)UGD cos(φ− φGD)
]
,

with λ the wavelength of the carrier radio waves. The radial
velocity term is discussed in section III. This can be readily
removed as a “Doppler Centroid Anomaly”.

Turning to the Geophysical Doppler contribution, UGD is
small with respect to vt. Introducing ε, the fractional Doppler
shift change observed due to the surface motion when looking
along the satellite flight direction, equal to

ε = −κUGD
vt

cos(φGD),

and the deflection angle

φε = −κUGD
vt

sin(φGD),

f can be expressed to first order in UGD/vt as

f = −2vr
λ

+
2vt
λh

ρ(1 + ε) cos(φ− φε). (2)

When the satellite travels “against the wind”, φGD ≃ 180◦,
and ε is positive, indicating an excess Doppler shift with
respect to the “frozen sea” situation. For the Sentinel-6 MF
flight parameters, ε is of order 4.3 10−4, and φε is of
order 0.03◦ at most. The frozen-sea isodops are represented
as dashed lines in figure 2, while isodops accounting for
a (much exaggerated) Geophysical Doppler contribution are
represented in thin lines.

III. NEAR-NADIR DELAY/DOPPLER RADAR:
AT THE FACET LEVEL

Near-nadir radar backscattering is well represented in the
so-called Physical Optics, Kirchhoff, approximation. The elec-
tromagnetic field backscattered to the instrument from the sea
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surface is dominated by the weighted composition of individ-
ual returns from distributed stationary-phase (i.e. “specular”)
surface facets [35], [36]. Generic life history traits of such
specular points were addressed in a Gaussian sea surface
context by [37]. In short, such “facets” appear and disappear
at well-defined instants, and have well-defined trajectories in
between. They thus constitute meaningful objects, and can
be ascribed Lagrangian trajectories and velocities during their
lifetime.

The phase of each contribution to the overall field is
given by the two-way facet distance to the phase center of
the instrument antenna, modulo the wavelength. The phases
are considered random, uniformly distributed and statistically
independent. Upon taking products of the field with itself at
the same or different instants or locations and performing
ensemble averages, only terms involving the product of the
contribution of one facet with its complex-conjugate can
survive. Practically, this means that interference between the
different scattering elements within the scene do not contribute
to the average total received power.

These assumptions lead to Rayleigh statistics for the field,
and to the fact that the average backscattered power is pro-
portional to the illuminated surface even though the computed
field expectation value remains zero, in analogy with the phe-
nomenology of the Wiener process. Two other consequences
are that the instrument received power PTR is equal to the
squared modulus of its amplitude PTR, and that applying the
RMC step of DDA to complex amplitudes or detected power
yields the same result for the average power Delay/Doppler
Map (DDM).

What follows next is a derivation dedicated to modeling
the Delay/Doppler instrument power response to the return
from a single facet. This is then used as a basic building
block to model and more fully understand near-nadir DDM
measurements from a multi-faceted moving sea surface.

A. Facet kinematics

Consider an isolated facet whose rest position is
(x0, y0, z0 = ∆ + η). It is affected by surface wave motion,
and at the middle of the observation interval it is located at
(x0 + x̃, y0 + ỹ, z0 + z̃) and moves with respect to the Earth
with a Lagrangian velocity (ũ, ṽ, w̃). Assume this Lagrangian
velocity to be constant, and small with respect to both the
satellite velocity and the speed of light. If we denote by τn
the instant of transmission of the n-th radar pulse with respect
to the middle point of the observation interval, and by t′ the
flight time of the pulse since its transmission, the distance
from the radar to the facet evolves with time τn + t′ as:

r(τn + t′) =

√√√√√√ (x0 + x̃+ ũ(τn + t′))2

+(y0 + ỹ + (ṽ − vt)(τn + t′))2

+(h− (z0 + z̃) + (vr − w̃)(τn + t′))2

In this expression, the variations of all terms are small with
respect to the instrument range resolution over the ranges of
variation of both t′ and τn: all variations can be neglected
in the analysis of CA processing. Some terms, however, can

vary by a sizable fraction of a wavelength over these time
scales. These have an impact on the phase of the return signal
from the facet, and must be taken into account in the analysis
of coherent processing algorithms. A robust approximate ex-
pression, neglecting terms varying by less than roughly 10−2

wavelengths over the ranges of variations of t′ and τn, is

r(τn + t′) ≃ h− (η + z̃) +
κρ20
2h

+
[
vr − y0

vt
h

− w̃
]
τn

+
[
vr − y0

vt
h

]
t′ +

v2sτ
2
n

2h
.

The last term in this expression can be relevant in the Fully-
Focused SAR altimetry context, for which coherent processing
is used for τn as large as 1 s. On shorter time scales relevant
for DDA, it remains negligibly small. The slant range from the
radar to the facet is thus obtained as a function of the slow
(τ ) and fast (t′) times as:

r(τn + t′) ≃ (3)

h+
κρ20
2h

− η − z̃︸ ︷︷ ︸
r0

+
[
vr − y0

vt
h

− w̃
]
τn︸ ︷︷ ︸

r′0τn︸ ︷︷ ︸
rn

+
[
vr − y0

vt
h

]
t′︸ ︷︷ ︸

ṙ0t′

.

The vertical component of the Lagrangian velocity of the facet
manifests itself as a slow pulse-to-pulse phase drift. The other
facet velocity components are much too small to be felt. The
large and dominating contributions are due to the platform
velocity and must be taken into account on both the slow
(inter-pulse, τ ) and the fast (intra-pulse, t′) time scales.

B. Radar signal generation and reception

Consider a burst of Np radar pulses, numbered from 0 to
Np − 1, transmitted every 1/fp seconds from the satellite
between −Tb/2 and Tb/2. Pulse number n is transmitted at
instant τn. Time between pulse transmission and reception is
measured with the “fast time” variable t′. Transmission is from
t′ = −Tp/2 to t′ = Tp/2. The return signal is recorded
during a time window centered around an estimate of the
two-way pulse travel time. This is provided by an onboard
tracker as t′trk = 2htrk/c. This time delay can be considered
constant over the burst duration and the recording window is
long enough to contain the entire useful length of the return
signal1.

Between t′ = −Tp/2 and t′ = Tp/2, the instantaneous
transmitted frequency changes linearly from fc−B/2 to fc+
B/2. Introducing the chirp rate s = B/Tp, and denoting by
1[a;b](t) the function equal to 1 for a ≤ t ≤ b and 0 otherwise,
the transmitted signal thus reads:

STX(t′) = 1[−Tp/2;Tp/2](t
′)ej2πfct

′
ej2π

st′2
2 .

1A number of delicate intermediate steps are required to make this
technologically feasible, in order to accommodate digitizer bandwidth or
memory constraints, such as introduction, and subsequent compensation of,
a digitization window delay with respect to the pulse start, pulse interleaving
control, PRI modulation to accommodate altitude variations, etc. These steps
are very well controlled, and we will in the following assume that the artefacts
they introduce have been perfectly compensated.
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At first order in ṙ0/c, the signal received at time instant τn+
t′ left the instrument at time τn + t′(1 − 2ṙ0/c) − 2 rnc (1 −
ṙ0/c). Introducing a slowly varying complex amplitude a(τn)
to keep track of the effect on the field of the reflection on
the facet, and up to the geometric factors required to take into
account the antenna radiation pattern, spherical divergence and
propagation losses (which can all be reinstated at the end of
the calculation), the received signal is:

SRX(τn + t′) =

a(τn)STX

(
t′
(
1− 2

ṙ0
c

)
− 2

rn
c

(
1− ṙ0

c

))
. (4)

Upon reception, the signal is amplified and analogically mul-
tiplied by e−j2πfct

′
, prior to recording. During the recording

window, the return signal is “de-ramped” (for a description of
the “full de-ramp” technique see e.g. [38]) by a replica of the
transmitted chirp, either with hardware prior to digitization or,
as in the Poseidon-4 instrument, numerically after digitization.
This replica is centered on t′ = t′trk, and is better described as
a function of yet another time scale, t = t′ − t′trk. The result
is a digitized recording of

S(τn, t) = e
−j2π

(
fct

′+ st2

2

)
SRX(τn + t′trk + t).

C. Range compression

Using the expression of SRX given in Eq. (4) and neglecting
terms amounting to phase shifts smaller than 10−2 cycles, the
expression of the digitized signal segments is

S(τn, t) = a(τn)1[−Tp/2;Tp/2] (t+ 2(htrk − rn)/c)

×e
j4π

[
s
(rn−htrk)2

c2
− rn

λ − ṙ0
c

htrk
λ

]

×e−j4π
st
c [rn+

fcṙ0
s −htrk(1−

ṙ0
c )].

The term on the first line represents the envelope of the pulse.
The term on the second line is a phase term, constant over
one pulse, but slowly changing from pulse to pulse. The final
term describes the time dependence of the deramped echo on
fast time. This time-dependence is used to obtain the response
of the instrument to the facet as a function of observation
range2, through a Fourier transform on t. Using the fact that
the independent variable r is linked to the analysis frequency
ω by the relationship r = htrk − cω

4πs , one obtains the radar

2In the original article of [10], the range compression is performed
after the along-track Fourier transform. The order of these two stages is
unconsequential, and we have based our description on the order used in
the S6-MF onboard processor.

echo amplitude of the facet as a function of r at time τn as:

S(τn, r) = a(τn)e
j4π

[
s
(rn−htrk)2

c2
− rn

λ − ṙ0
c

htrk
λ

]

× 1

Tp

∫
1[−Tp/2;Tp/2] (t+ 2(htrk − rn)/c)

×ej4π
st
c

[
r−rn−ṙ0

(
htrk

c + fc
s

)]
dt

=a(τn)e
j4π

[
s
(rn−htrk)2

c2
− rn

λ − ṙ0
c

htrk
λ

]

×Υr

(
r − rn − ṙ0

(
htrk
c

+
fc
s

))
.

In this expression Υr(δr) = sinc
(

2πsTp

c δr
)

, with sinc(x) =
sin(x)
x , denotes the range-compression amplitude impulse-

response function, which is symmetric and peaking around
0. At each instant, the range-resolved waveform reaches its
peak close to the actual facet range rn, but includes cm-scale
corrections for the motion of the instrument during the travel
time of the radar pulse (ṙ0htrk/c term) and for delay-Doppler
ambiguity (ṙ0fc/s term).

The first of these two corrections can be absorbed in a
change of the definition of τn, from the instant of pulse
transmission to the instant the pulse strikes the facet (this
convention has been used by [22]). The latter correction is of
a different nature, and has its origin in the range-resolution
method itself: the only differences allowing discrimination
between time-shifted and Doppler-shifted versions of a chirp
occur at its ends. This is a extremely short part of its total
duration. A target observed from a moving instrument thus
appears shifted from its actual location, by an amount that
depends on the relative speed and on the chirp bandwidth and
direction. The facet thus appears shifted by ṙ0δtrr in the range-
resolved waveform, with δtrr = htrk

c + fc
s an effective time

shift, equal to 3.13 ms for the S6-MF flight parameters. The
sensitivity of this term on htrk is small, and it is adequately
evaluated using the nominal flight altitude h. From Eq. (3),
ṙ0 = vr − y0vt/h. The portion of this range correction due
to the radial velocity of the platform vr is uniform in y
and identically affects the whole scene. More importantly, the
tangential velocity vt component depends on the along-track
location of the facet. This can only be removed after it is
estimated in the Doppler-resolution domain.

The waveform peak itself has a sinc shape, which stems
from the amplitude envelope of the chirp. The Fourier-space
representation of its square, which will be needed in the
following, is readily derived to be the “triangle” function

Υ̂2
r(K) = σr1[−1;1]

(
Kσr
2π

)[
1− |K|σr

2π

]
, (5)

with σr = c
2B .

For the Sentinel 6-MF parameters, the half-power width of
this function is equal to 0.886× c

2B ≃ 0.415 m. Classically [2],
[3], it is approximated as a Gaussian, though some confusion
exists regarding the appropriate width. One choice is to select
the value for which the −3 dB widths of the sinc shape and the
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Gaussian approximation coincide. For the power point target
response (PTR) in the range direction, this yields

Υ2
r(δr) ≃ e

− δr2

2σ2
r ,

using this time σr = 1√
2 log(2)

0.886c
4B = 0.176 m. The

equivalent expression in Fourier space reads

Υ̂2
r(K) ≃

√
2πσre

−K2σ2
r

2 . (6)

D. Doppler resolution

The next step in the evaluation of the contribution of the
individual facet to the DDM is to study the effect of the
Doppler frequency resolution. This step is performed through
a weighted Fourier transform in slow time. The discrete
sampling in τ tends to complicate notations. It can obscure
those characteristics of the DDM that are due to geophysical
processes with others that are due to technicalities (typically,
aliasing in Doppler frequency). We will thus conduct the
analysis as if the sampling was continuous in slow time, and
discuss the changes introduced by discrete sampling when
relevant. In this framework, the echo amplitude waveform due
to the facet at slow time τ can be modeled as

S(τ, r) =a(τ)e
j4π

[
s
(r0−htrk)2+τ2r′20

c2
− r0

λ −htrk
λ

ṙ0
c

]

× e
−j4π τr′0

c

[
fc−2s

r0−htrk
c

]
×Υr (r − [r0 + τr′0 + ṙ0δtrr]) .

The phase term on the first line of this expression is essentially
constant over the duration of one burst, and can in fact be
subsumed in the complex return signal amplitude a(τ). The
term on the last line encodes the fact that the return waveform
is essentially zero, except in the close neighborhood of the
actual facet range. Of the phase terms in the second line, it
can be seen that only the carrier frequency term can induce a
noticeable contribution. It is the Doppler shift term the DDA
method is based on. The others can be neglected.

The amplitude signature of the facet in the Delay-Doppler
plane3 is obtained by performing a weighted Fourier transform
in τ :

S(f, r) =
1

Tb

∫
w(τ)a(τ)e

−j2πτ
(
f+2

r′0
λ

)

×Υr (r − [r0 + τr′0 + ṙ0δtrr]) dτ.

In this expression, w(τ) is a “window” weighting function,
used to control the shape of the impulse response function
along the f dimension.

A small τ -varying term appears in the argument of the
range-compression impulse response function. For a fixed

3This is an instance where the discrete sampling in τ introduces a difference
with the time-continuous analysis, by making the impulse-response periodic
in f with ambiguity period fp. While this ambiguity is unconsequential for
the high-fp instruments of CryoSat-2 and Sentinel-3, for which the sidelobes
correspond to very large along-track distances and are rejected by the antenna
diagram, the factor of two reduction in fp of the Poseidon-4 instrument
lets very conspicuous sidelobes enter the DDM. The power content in those
sidelobes significantly contributes to the stacked DDA power waveform. They
can be accounted for analytically, as will be shown in section IV-D.

value of r, this term amounts to a slowly-varying perturbation
of the window function used in the Fourier transform. This
gives more weight to the beginning, center, or end of the mea-
surement interval depending on whether the facet is entering,
dwelling in, or leaving the neighbourhood of r. The effect of
this term is small, broadening slightly the result in the range
direction for the large r′0 bins. Neglecting it (which amounts
to using for Υr its value at the middle of the observation
interval), we obtain

S(f, r) = Υr (r − [r0 + ṙ0δtrr])

× 1

Tb

∫
w(τ)a(τ)e

−j2πτ
(
f+2

r′0
λ

)
dτ.

E. Ensemble averaging over the sea surface realizations

Taking the squared modulus of S(f, r), the power response
for this realization of the facet is:

|S|2(f, r) = Υ2
r (r − [r0 + ṙ0δtrr])

1

T 2
b

∫∫
w(τ)w(τ ′)a(τ)a∗(τ ′)e

j2π(τ ′−τ)
(
f+2

r′0
λ

)
dτdτ ′.

The mathematical expectation of the DDM contribution per
unit projected area of the facets located around (x0, y0,∆+η)
must be obtained by averaging this individual contribution over
the possible realizations of the sea surface.

Sources of randomness that must be considered are N , the
actual number of facets, with probability pN , dependent on
the location and area of the patch, and for each facet, labelled
n,

• its corresponding vertical displacement due to waves, z̃n,
• its corresponding vertical Lagrangian velocity, w̃n,
• its corresponding complex reflecting amplitude at times
τ and τ ′, an(τ) and an(τ ′).

Hence, in the most general setting, the overall DDM contri-
bution of a unit area patch located in the neighbourhood of
(x0, y0,∆+ η) should be expressed as:

⟨|S|⟩2 (f, r;x0, y0,∆+ η) = (7)

1

T 2
b

∞∑
N=0

pN (x0, y0,∆+ η)

N∑
n=0∫

· · ·
∫
Psp(z̃n, w̃n, an(τ), a

∗
n(τ

′);x0, y0,∆+ η)

Υ2
r

(
r + z̃n − h+ η − κ

2h
ρ20 − ṙ0δtrr

)
w(τ)w(τ ′)an(τ)a

∗
n(τ

′)ej2π(τ
′−τ)(f− 2

λ [w̃n+y0
vt
h −vr])

dz̃ndw̃ndan(τ)da
∗
n(τ

′)dτdτ ′.

The probability distribution function
∑
N pN

∑N
n Psp(· · · )

is a very high-dimensional function, of which only specific
dependencies are currently known:

• The number of facets N and their complex reflec-
tion coefficient a are not known separately, but [36]∑
N pN

∑N
n

∫
|a|2nPsp(|an|2)d|an|2 is proportional to

the normalized sea surface backscatter cross section,
σ0, whose statistics and dependencies with respect to
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environmental conditions and observation geometry have
been extensively studied.

• The statistics of z̃n, independently of the other vari-
ables, have also been studied extensively. A Gaussian
prescription is a reasonable assumption, though higher-
order contributions likely exist, e.g. altimetric Sea State
Bias (SSB).

• Statistical correlations of z̃n and σ0 have been studied,
and are known to result in altimetric electromagnetic bias
(EMB).

• The joint statistics of z̃n and w̃n have been studied the-
oretically [39]. In the Gaussian context4, these variables
are independent.

• On the contrary, even in the Gaussian context, w̃n is not
independent of the local sea surface slope ∇z̃, which in
turn is correlated with the backscatter cross-section. A
correlation between surface backscatter and along-line-of-
sight surface velocity projection is thus expected, giving
rise to the “Geophysical Doppler” bias.

• The slow-time dynamics of the complex backscatter
amplitude an are difficult to examine experimentally, and
thus remain elusive, despite their fundamental importance
in determining the optimal time window for coherent-
radar observations of the sea surface. Choosing a long
time window for the coherent processing is not beneficial
if the lifetime of the individual facets is short, as the
expected resolution improvement is not achieved, but
the opportunity to obtain independent looks is wasted.
For instance, the effective Doppler (hence along-track)
point target response function can be computed under
the assumptions of a Gaussian dependence on τ − τ ′ of
the correlation function ⟨an(τ)a∗n(τ ′)⟩ and of a Gaussian
window function. This exercise shows that it is the short-
est time scale (facet coherence time or window function
width) that sets the effective Doppler resolution.

Given all these knowledge gaps, we pursue the analysis
according to the following practical assumptions:

• We consider all facets to be independent. The sums over
facet number N and index n reduce to multiplication by
⟨N⟩, the mathematical expectation of N . ⟨N⟩ depends
on the observation geometry.

• We consider the elevations of the facets z̃ to be Gaussian
and independent of all other variables (i.e. the study of
SSB and EMB is left for future investigation).

• We consider the correlation time of the complex reflecting
amplitude an to be long enough with respect to the
observation window duration, i.e. its dynamics can be
neglected. This assumption is probably at least marginally
correct over the duration of one burst (6.97 ms). With
this assumption, the product of Fourier transforms over
slow time simplifies into a Doppler resolution PTR,

4By “Gaussian context” we mean the situation addressed in references [37],
[39]–[41], in which the Fourier components of the sea surface elevation field
are independently distributed. In this situation, the sea surface elevation and
its derivatives with respect to time and space are jointly Gaussian, and their
joint pdfs can be expressed in terms of their second-order moments only. An
obvious limitation of this approach is that it can only represent statistically
homogeneous surfaces. It can for instance not account for the modulation of
the small-scale statistics of the surface by its long wavelength components.

Υ2
f (δf) = 1

T 2
b

∣∣∣∫ Tb/2

−Tb/2
w(τ)e−j2πτδf

∣∣∣2. As discussed in
[22], if the so-called “Hamming” window is used for
w(τ), this PTR can be extremely well approximated by
the Gaussian shape

Υ2
f (δf) ≃

(
25

46

)2

e
− δf2

2σ2
f ,

with σf = 1√
2 log(2)

1.293
2Tb

≃ 78.74 Hz.

• After [35], [36], the cross section of an isolated specular
point is expressed as |an|2 = |R|2π/|Ω̃n|, with |R|2 the
normal-incidence Fresnel power reflection coefficient and
Ω̃n the Gaussian curvature at the specular point.

F. Averaging over z̃: recovering the “triple-convolution
model”

With these assumptions, the expression of the DDM contri-
bution per unit area of the neighbourhood of (x0, y0,∆+ η)
reads

⟨|S|⟩2 (f, r;x0, y0,∆+ η) = π|R|2 ⟨N⟩ (8)

×
∫
Psp(z̃)Υ

2
r

(
r + z̃ − h+ η − κ

2h
ρ20 − ṙ0δtrr

)
dz̃

×
∫∫

Psp(w̃, Ω̃;x0, y0)Υ
2
f

(
f − 2

w̃

λ
+ 2

ṙ0
λ

)
dw̃dΩ̃

|Ω̃|
,

where Υ2
r and Υ2

f are approximately Gaussian, with specified
widths, and Psp(z̃) and Psp(w̃, Ω̃) respectively provide the
(Gaussian) pdf of the elevation and joint pdf of the vertical
velocity and the total curvature of the surface at specular
facets. Since we have chosen to neglect z̃’s correlations with
the other variables, Psp(z̃) is identical to the full-surface pdf
of z̃, P (z̃).

The first integral is thus the convolution of a Gaussian with
the instrument range PTR:

Υ̃2
r(δr) =

∫
P (z̃)Υ2

r (δr + z̃) dz̃. (9)

This integral defines an effective range PTR, accounting for
both the effect of surface waves and the instrument PTR
(such effective quantities will be denoted by a ·̃ symbol
in the following). It is the “frozen-sea” contribution to the
detected interface thickness. This is accounted for by the
“triple convolution model” treatment of CA and DDA.

In the Gaussian sea state approximation,

P (z̃) =
1√
2πσh

e
− z̃2

2σ2
h ,

where the surface vertical displacement standard deviation σh
is related to the significant wave height Hs by

σh =
Hs

4
.

Using the Gaussian approximation of the instrument PTR
given by Eq. (6), the effective range PTR can thus be readily
approximated in physical space as

Υ̃2
r(δr) ≃

σr
σ̃r
e
− δr2

2σ̃r2 ,
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with
σr =

1√
2 log(2)

0.886c

4B
, σ̃r =

√
σ2
r + σ2

h.

A representation using the exact range PTR expression Eq.
(5) can be obtained in Fourier space aŝ̃

Υ2
r(K) = σr1[−1;1]

(
Kσr
2π

)[
1− |K|σr

2π

]
e−

K2σ2
h

2 ,

where σr = c
2B . Except where explicitly mentioned, all graphs

in this article are produced using this formulation.
We now turn to the second integral in Eq. (8), which

involves the probability density function Psp(w̃, Ω̃).

G. Averaging over w̃: the effect of wave motion on the
Doppler PTR

As shown in [40], [41], a specular-point pdf follows from
the full-surface pdf as

Psp(w̃, Ω̃) =
|Ω̃|
[
1 + ∂xz̃|2sp + ∂y z̃|2sp

]2
⟨N⟩

× P (∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp, w̃, Ω̃).

Under a Gaussian assumption, this equation shows that the
curvature dependent terms in Eq. (8) in fact compensate: facets
with small curvature have large cross-section, but occur less
frequently by an exactly compensating amount. At lowest
order in z̃, the curvature Ω̃ is a product of second spatial
derivatives of z̃. In a Gaussian framework, discussed in section
2.1 of [39], these derivatives are independent of both the wave
slope and the vertical velocity. Ω̃ can then be marginalized out
and integrated. The surface slope at specular facets is fixed by
the geometry, and expressed in terms of the observation angles
ψ and φ. There remains:

⟨|S|⟩2 (f, r;x0, y0,∆+ η) =
π|R|2

cos4(ψ)
(10)

× Υ̃2
r

(
r −

[
h− η +

κ

2h
ρ20 + ṙ0δtrr

])
×
∫
P (∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp, w̃)

×Υ2
f

(
f − 2

w̃

λ
+ 2

ṙ0
λ

)
dw̃.

The pdf of w̃ is discussed at length in appendix A, where
its expression is shown to read

P (w̃, ψ, φ) =
1

π
√
2πσw̃mssT

exp

(
− tan2 ψ

mssT

)
× exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
,

with mssT the total mean squared surface slope, and

UGD = −Mss
−1 msv

the UGD vector, with UGD and φGD its magnitude and
direction. The distribution for w̃ is Gaussian, but not centered,
with variance

σ2
w̃ = mtt −msvT Mss

−1 msv,

where mtt, Mss and msv are defined in terms of spectral
moments of z̃ and its time and space derivatives. This variance
is uniform on the sea surface, and is somewhat smaller than
the full-surface variance of w̃, because part of the dispersion
of w̃ is absorbed in the variations of the projection of UGD

on the radar line-of-sight. Introducing this expression in Eq.
(10), one obtains:

⟨|S|⟩2(f, r;x0, y0,∆+ η) =
|R|2

cos4(ψ)

exp
(
− tan2 ψ

mssT

)
mssT

(11)

× Υ̃2
r

(
r −

[
h− η +

κ

2h
ρ20 + ṙ0δtrr

])
×
∫

exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
× 1√

2πσw̃
Υ2
f

(
f − 2

w̃

λ
+ 2

ṙ0
λ

)
dw̃.

With Υ2
f known to be Gaussian, the last integral is the

convolution of two Gaussian functions. It yields the Doppler
Point Target Response function, accounting for the spreading
effect of surface wave motion on the relative velocity of the
satellite and the facet:

Υ̃2
f (δf) =

(
25

46

)2
σf
σ̃f
e
− δf

2σ̃f
2
, (12)

with

σ̃f
2
= σ2

f +
4σ2

w̃

λ2
.

Inserting this expression in Eq. (11), and introducing the
instrument power radiation diagram G and the various fac-
tors required to account for the spherical divergence of the
transmitted signal, the DDM contribution per unit transmitted
power of the neighborhood of (x0, y0,∆+ η) finally reads

dDDM(f, r;x0, y0,∆+ η) =
λ2G2(θ, φ)

(4π)3r40
σ0(ψ,φ)dS (13)

× Υ̃2
r

(
r −

[
h− η +

κ

2h
ρ20 + vrδtrr −

y0vt
h
δtrr

])
× Υ̃2

f

(
f +

2

λ

[
vr −

y0vt
h

+ tan(ψ)UGD cos(φ− φGD)
])

.

H. Facet-level Model Discussion

Figure 3 presents the DDM obtained for 7 individual patches
of the sea surface located every 3000 m along the satellite
track, not accounting for (top graphs) and accounting for
(bottom graphs) the impact of surface waves on the signal.
vr has been set equal to 0 in this example.

A first striking feature is that the footprint of each patch
is highly localized in the DDM: each sea surface patch
produces only a very small footprint over a burst duration,
and even if averaging over 7 consecutive bursts was performed
to produce the DDM ( 1

20 s incoherent averaging time such
as classicaly used), the signature of each patch would only
describe a very short segment of the parabola. Note, the full
parabolic signature, often shown in publications, results from
the combination of many footprints of individual patches, and



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

10

0

10

20

30

40

50

r-r
A
 (m

)

a)

4000 2000 0 2000 4000
f (Hz)

10

0

10

20

30

40

50

r-r
A
 (m

)

c)

34

35

36

37

38

39

r-r
A
 (m

)

2 bursts
7 bursts

b)

4100 4200 4300 4400
f (Hz)

34

35

36

37

38

39

r-r
A
 (m

)

2 bursts
7 bursts

d)

Fig. 3. a) DDM contributions of 1 m2 sea surface patches regularly spaced every 3000 m in the along-track direction between y = −9000 m and 9000 m,
taking into account only the instrument point-target response. c) DDM contributions of 1 m2 sea surface patches regularly spaced every 3000 m in the
along-track direction between y = −9000 m and 9000 m, taking into account the smearing in the range and Doppler directions due to fully developed waves
described by the spectral form [42], with a 12 m.s−1 headwind (3.75 m significant wave height). b) and d): close-up views on the neighborhood of the
y = 9000 m patch (red rectangles in subplots a) and c)). On all the graphs, the color shades represent the DDM normalized by its maximal value. The dotted,
dash-dotted, dashed and thick lines represent respectively the locus of the sea surface in the flat-Earth approximation, in the spherical-Earth approximation,
in the spherical-Earth approximation, account taken of the δtrr term, and taking also into account the Geophysical Doppler term. The green line segments
in suplots b) and d) represent the shift along the f direction of the image of the patch in the interval separating one burst and the next and one burst and the
sixth next (classical 20 Hz product). The thin white crosses in suplots b) and d) mark the tip of the Delay-Doppler PTR.

the full DDM must be estimated as an integral over the sea
surface.

A second feature, mostly visible in Fig. 3a and b, is that
even in the “no-waves” case the frequency resolution achieved
in a single burst is quite coarse in comparison with the
total Doppler bandwidth (the ratio is equal to the number of
inter-pulse intervals per burst, 63 in this case). The “Range
Migration Correction” on which DDA processing is based, by
applying a frequency-dependent range shift, leaks this Doppler
spread into a large contribution to range spread. This can then
lead to overestimation of the significant wave height during
the geophysical parameter estimation step within waveform
retracking. The effective widths of the range and Doppler
point-target responses Υ̃2

r and Υ̃2
f , estimated as a function of

wind speed using the elevation spectrum model of [42] in its
fully-developed seas limit, are represented in figure 4. The
wave contribution to the effective range PTR width rapidly
increases with wind speed, and becomes dominant for wind
speed larger than 6 m.s−1. This is consistent with the con-
spicuous broadening of the PTR in the range direction, visible
between figures 3b and 3d. By contrast, the instrumental
contribution to the effective Doppler PTR width dominates up
to wind speeds in excess of 13 m.s−1. The overall Doppler
PTR width only weakly depends on wind speed, remaining
between 80 Hz, its low-wind value, and 120−130 Hz at high
wind speed. Again, this is consistent with the only marginal
width increase of the PTR in the Doppler direction between
figures 3b and 3d.

Returning to Eq. (13), the effect of a non-zero vr on the
DDM is minor. The two terms involving vr amount to shifts
of the DDM; one in the range direction (vrδtrr term in the
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Fig. 4. Effective range (σ̃r , blue, left axis) and Doppler (σ̃f , red, right
axis) widths of the wave-accounting Point Target Responses Υ̃2

r and Υ̃2
f as

a function of wind speed (bottom axis) and corresponding Hs (top axis), for
the elevation spectrum model [42] at infinite fetch. Dashed lines mark the
instrumental lower bounds, thin lines mark the waves-only contribution, and
thick lines represent the total effective widths.

range PTR), and one in the Doppler direction (2vr/λ term in
the Doppler PTR, leading to a “Doppler Centroid” correction).
While not negligible, these two effects are readily corrected.
In the following, we assume these corrections are applied and
omit both terms.

More importantly, the various white lines in Fig. 3 mark
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the locus of a flat (η = 0) sea surface on the DDM under
a number of approximations. The dotted lines represent the
flat-Earth approximation, which is clearly too coarse. The
dash-dotted lines represent the spherical-Earth approximation,
showing improved agreement with the observed behaviour, but
still differing with respect to the center of the PTR in Fig. 3d.
Adding the range-Doppler ambiguity correction δtrr ṙ0 results
in the dashed lines. While further improved, reaching near-
perfect agreement also requires the UGD correction factor
(solid line). This last correction should be applied as a stretch
of the f coordinate, but can be more conveniently expressed
as a shift in the r coordinate for given f : taking x0 = 0
for simplicity, the contribution to the DDM observed at f is
the one that should appear at f/(1 − κ cosφGDUGD/vt) or,
using the notations of Eq. (2), f/(1 + ε). Its spherical Earth
deflection correction ∆ should thus not be evaluated as

∆(f)|UGD=0 =
κ

2h

(fhλ)2

(2vt)2

but as

∆(f)|UGD
=

κ

2h

(fhλ)2

(2vt)2
1

(1 + ε)2
.

The effect of UGD must thus be represented as a perturbation
to the spherical Earth range deflection correction,

δ∆(f) = ∆(f)|UGD
−∆(f)|UGD=0

= ∆(f)|UGD=0

[
1

(1 + ε)2
− 1

]
≃ −2ε∆(f)|UGD=0

These corrections are represented as a function of the Doppler
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Fig. 5. Range corrections as a function of Doppler frequency for a sea surface
patch located on the satellite ground-track. The blue line (left scale) represents
the spherical-Earth range deflection. The solid red line (right scale, note
the very different scale) represents the range-Doppler ambiguity correction
ṙ0δtrr . The dashed red line (right scale) represents the δ∆ correction for
waves described by the spectral form [42], with a 12 m.s−1 headwind and
infinite fetch (3.75 m significant wave height).

frequency in Fig. 5. The spherical Earth deflection correction
(in blue) clearly dominates. Yet, the other corrections are
far from being negligible in the very demanding context of
precise nadir altimetry. The range-Doppler ambiguity correc-
tion ranges up to 15 cm at the ends of the unambiguous

along-track zone, and the δ∆ correction accounting for the
effect of the Geophysical Doppler contribution can reach
several centimeters of magnitude in the 12 m.s−1 situation
(the discussion in Appendix A shows that this case is in fact
representative of the frequently encountered ocean situations
with |U10| ≥ 7 m.s−1).

IV. NEAR-NADIR DELAY/DOPPLER RADAR:
FROM DELAY/DOPPLER MAP TO ECHO WAVEFORM

Section III provided an in-depth development for the in-
strument response to an infinitesimal ocean surface patch. The
upscaling operation from a single facet response to complete
sea surface DDM - more specifically, the ways in which this re-
sponse can be enfolded into the “triple convolution model” and
production of the stacked echo waveform, are now addressed.
All processing algorithms yield identical stacked waveforms in
the along-track homogeneous situation. Selecting one or the
other to construct our analysis leads to no restriction to its
applicability other than the along-track homogeneity assump-
tion. For computational convenience, this section essentially
follows the rationale of the LR-RMC algorithm of [15].

A. The Flat Surface Impulse Response

Eq. (13) expresses the DDM contribution of an infinitesimal
ocean surface patch located at (x0, y0,∆ + η). Considering
the sea surface to be flat, particularizing to the vr = 0 case,
assuming the antenna radiation diagram to be axisymmet-
ric, the backscattering cross-section to be independent of θ
and φ in the narrow solid angle illuminated by the radar,
approximating the 1/r40 term introduced by the spherical
divergence by its value at nadir, integrating over the sea
surface, denoting by primes the integration point coordinates,
and finally introducing the expression (2) for the Doppler shift
at the integration point, a simplified expression for the full
DDM is:

DDM(f, r) =
λ2σ0

(4π)3h4

∫∫
Sea

G2(θ′)ρ′dρ′dφ′

× Υ̃2
r

(
r − h+ η − κ

2h
ρ′2 + ρ′ cos(φ′)

vt
h
δtrr

)
× Υ̃2

f

(
f − 2vt

λh
ρ′(1 + ε) cos(φ′ − φε)

)
,

It is a 2-dimensional convolution of a combined range and
Doppler PTR that accounts for the effect of waves, both in
terms of vertical displacement and Doppler broadening. This
is performed with a Flat sea Surface Impulse Response (FSIR)
that accounts for the Geophysical Doppler bias as:

FSIR(f, r) =
λ2σ0

(4π)3h4

∫∫
Sea

G2(ρ′/h)

× δr

(
r − h+ η − κ

2h
ρ′2 + ρ′ cos(φ′)

vt
h
δtrr

)
× δf

(
f − 2vt

λh
ρ′(1 + ε) cos(φ′ − φε)

)
ρ′dρ′dφ′.

In this expression, δr and δf denote Dirac delta functions
acting along the r and f directions.

At this point, a useful simplification is to replace the second
integration coordinate, i.e. the azimuth φ′, by the Doppler
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frequency at the integration point 2vt
λh ρ

′(1 + ε) cos(φ′ − φε).
Next, we neglect the small misalignment angle φε and an order
ε correction in the range-Doppler ambiguity term. Introducing
Eq. (1) for the antenna gain, one obtains a Doppler-distributed
breakup of the FSIR as

FSIR(f, r) =

2λ2G2
0σ0

(4π)3h4

∫ ∞

0

∫ fmax

−fmax

δf (f − f ′)
e
−4 ρ′2

h2γ√
f2max − f ′2

× δr

(
r − h+ η − κ

2h
ρ′2 +

λ

2
f ′δtrr

)
ρ′dρ′df ′,

with fmax(ρ′) = 2vt
λh (1 + ε)ρ′. Defining

µε =
κhλ2

8v2t (1 + ε)2
, ν =

8

γκh
, (14)

Aε =
2λ2G2

0σ0
√
µε

(4π)3κh3
,

and the frequency and range coordinates of the apex of the
FSIR in the range/Doppler plane

fA =
λδtrr
4µε

, rA = h− η − µεf
2
A

the FSIR becomes

FSIR(f, r) = Aε
H(r − rA − µε(f − fA)

2)√
r − rA − µε(f − fA)2

e−ν[r−rA] (15)

with H(·) the Heaviside step function. Note that an additional
small correction in the antenna diagram term has been ne-
glected. The effect of a non-zero ε in the expressions of fA
and rA is assumed negligible. This FSIR expression is deemed
to be suitable for following aspects of this study including the
moving surface case.

Taking the S6-MF parameters, one finds fA = 8.447 Hz,
and µεf

2
A = 0.146 mm. Though not fully negligible, these

shifts can still be considered small and, being of technological
origin, are deterministic and correctable. In the following, we
consider them to be perfectly corrected (rA = h−η, fA = 0).
This amounts to the assumption that the correction has been
applied, as represented as a thick red line in Fig. 5.

B. From the Flat Surface Impulse Response to the echo
waveform

Going from the expressions of the Range/Doppler PTR
and the FSIR to an expression for the DDA echo waveform
requires the following steps:

• Computation of the Fourier transforms of the PTR and
the FSIR along the range and Doppler dimensions.

• Multiplication of the Fourier transforms.
• Inverse Fourier transformation in the Doppler dimension.
• Multiplication by a Doppler-dependent mask to imple-

ment the Range Migration Correction.
• Integration in the Doppler dimension to perform the

stacking operation.
• Inverse Fourier transformation in the range direction.

All but the last step can be analytically performed.

The first step is detailed in Appendices B-A and B-B. The
Fourier transforms of the FSIR and the PTR are obtained as
functions of two new independent variables T (conjugate to
f ) and K (conjugate to r) as

̂̂
FSIR(T ,K) = A0

πe−iKrAe−
T 2

4µε(ν+iK)

√
µ0(ν + iK)

and
̂̃̂
Υ2
f Υ̃

2
r(T ,K) =

√
2πσf

(
25

46

)2

e−
T 2σ̃f

2+K2σ2
h

2 Υ̂2
r(K),

with Υ̂2
r(K) either of the two Fourier-space representations

Eq. (5) or Eq. (6) of the range PTR. Their product is:

̂̂
DDM(T ,K) = A0

π
√
2πσf√
µ0

252

462
e−iKrA−K2σ2

h
2

ν + iK
Υ̂2
r(K)

× e−
T 2

2 [σ̃f
2+ 1

2µε(ν+iK) ]. (16)

As a sanity check, this expression can be used to derive the
CA echo waveform. This calculation, presented in Appendix
B-C, indeed yields the expected results.

Noting this expression to be Gaussian in T , its inverse
Fourier transform in this variable is

D̂DM(f,K) = Aε

√
2πσf

252

462
e−iKrA−K2σ2

h
2

√
ν + iK

Υ̂2
r(K)

× e
− µε(ν+iK)f2

1+2µε(ν+iK)σ̃f
2√

1 + 2µε(ν + iK)σ̃f
2
. (17)

The next processing stage is to multiply this function by
a Doppler-dependent mask to apply the Range Migration
Correction. The aim of this operation is to phase-shift the
contributions at different f in order to ensure a construc-
tive summation in the stacking stage. Based on the original
treatment by [10], the phase correction is exp(iµ0Kf2). This
step is discussed in Appendix B-D, and yields the DDA echo
waveform in Fourier space as:

ŴDDA(K) = A0

√
2π

√
µ0
σf

252

462

× e−iKrA−K2σ2
h

2 Υ̂2
r(K)

√
ν + iK

√
ν − 2iK(ε+ µ0νσ̃f

2
) + 2µ0K2σ̃f

2
. (18)

Analytically inverting the Fourier transform to obtain the echo
waveform as a function of r is only straightforward for the
case where ε = 0, σ̃f = 0, and when using the Gaussian
approximation of the range PTR. This is done in Appendix
B-E, where the result by [21] is recovered. We have not been
able to obtain an analytic form in a more general case.

C. Full DDM Model Discussion

Figure 6a represents the FSIR in the (f, r) plane taking
account of the along-track sidelobes in the Doppler dimension
(see section IV-D below). Restricting attention to the unam-
biguous region of the plane, the locus of the FSIR displays
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Fig. 6. a) Graph of the Flat Surface Impulse Response Eq. (15) as a function of Doppler frequency shift f and range r − rA. FSIR replicas shifted by
+fp and −fp have been added to represent the along-track sidelobes. b) Graph of the physical space DDM obtained by inverse-transforming the Fourier
space expression Eq. (17) with σ̃f

2 = 0. This DDM takes into account the wave-induced broadening of the PTR in the range direction only, for 3.75 m
significant wave height. Fourier-space DDM replicas shifted by +fp and −fp have been added before the inverse transform to represent the along-track
sidelobes. c) Graph of the physical space DDM obtained by inverse-transforming the Fourier space expression Eq. (17). This DDM takes into account the
wave-induced broadening of the PTR in the range and Doppler directions due to fully-developed seas described by the spectral form [42], with a 12 m.s−1

headwind (3.75 m significant wave height). Fourier-space DDM replicas shifted by +fp and −fp have been added before the inverse transform to represent
the along-track sidelobes. d) Graph of the Range Migration Corrected physical space DDM obtained by inverse-transforming the Fourier space expression Eq.
(22), in the same geophysical conditions. Fourier-space DDM replicas shifted by +fp and −fp have been added before the RMC and inverse transform to
represent the along-track sidelobes.
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the expected parabolic shape. It is slightly displaced due to the
UGD effect, but this effect is too faint to be measurable in this
representation. Taking slices for fixed f (not shown), it varies
from zero for r−rA ≤ µε(f−fA)2, and follows the expected
1/
√
r − rA − µε(f − fA)2 singularity on crossing the locus.

At each end of the interval, the f > fp/2 (resp. f < −fp/2)
branch of the parabola is aliased into the f ≥ −fp/2 (resp.
f ≤ fp/2) part of the domain. Close to the edges, this induces
a twofold increase of the recorded power density.

Fig. 6b shows the DDM in the (f, r) plane, and under the
σ̃f = 0 Hz approximation for a 12 m.s−1 headwind (3.75 m
significant wave height). This case thus includes the effect of
the instrument PTR and waves in the range direction only.
It corresponds to conditions shown in [21]. As expected, the
convolution by the wave-broadened instrument PTR introduces
a strong smearing of the FSIR in the range direction.

Fig. 6c shows the DDM in the (f, r) plane for 12 m.s−1

headwind (3.75 m significant wave height), now taking ac-
count of both the instrument and waves PTR in the range
and Doppler directions. The Doppler component of the PTR
smears the DDM in the Doppler direction and strongly in-
creases the thickness of the DDM. This effect is particularly
noticeable for large values of f , where the FSIR locus slants
more with respect to the iso-range lines. This leads to in-
creased smearing in the f direction.

Finally, Fig. 6d represents the range-migration corrected
DDM in the (f, r) plane and for the same environmental
conditions. The unambiguous part of the DDM has success-
fully been flattened to the r ≃ rA portion of the domain.
In this portion of the DDM, the smearing in f has been
converted by the RMC into a strong excess of smearing in
the r direction, which can easily be confused with a strong
excess of significant wave height.

The sidelobes, on the other hand, have been straightened
(the parabolic part of the RMC applies for every f ), but not
folded to r ≃ rA. Their power density is thus missing from
the r ≃ rA region, and is contaminating the r > rA part of
the domain. Thus the overall shape of the echo waveform is
affected. This issue can analytically be modeled and is the
subject of the next section.

D. Accounting for Poseidon-4 Doppler Sidelobes

The Poseidon-4 open-burst acquisition mode imposes strin-
gent constraints on the radar fp: it must vary to accommodate
changes in flight altitude along the orbit, and has to remain
near the low value of 9 kHz. Consequently, signals scattered
from distant up/down track areas can experience phase shifts
of more than a half period between consecutive pulses. This
introduces sidelobes in the DDM: a bin located at (r, f)
collects power that should appear at (r, f), but also the power
that should appear at (r, f + fp) and (r, f − fp). Higher-order
ambiguities are rejected by the instrument radiation diagram
and play a negligible role.

These sidelobes are inconsequential in the CA context,
as the applied processing does not depend on f . In the
DDA context, however, all echoes detected in the Doppler
bin at f are range-shifted by µ0f

2. This includes those

which should have been shifted by µ0(f + fp)
2 or by

µ0(f − fp)
2. The total stacked echo waveform is thus bet-

ter reproduced by stacking D̂DM(f,K)eiµ0Kf2

for f ∈[
− fp

2 ;
fp
2

]
, D̂DM(f,K)eiµ0K(f−fp)2 for f ∈

[
fp
2 ;

3fp
2

]
and

D̂DM(f,K)eiµ0K(f+fp)
2

for f ∈
[
− 3fp

2 ;− fp
2

]
. The expres-

sion for the full DDM including the sidelobes is given in
Appendix B-F Eq. (23).

After DCA correction, the DDM is effectively even in f .
The contributions from the two sidelobes are thus identical.
The sidelobes-accounting Fourier space DDA waveform can
thus be expressed as

ŴSL
DDA(K) =2

∫ fp
2

0

eiµ0Kf2

D̂DM(f,K)df (19)

+2

∫ 3fp
2

fp
2

eiµ0K(f−fp)2D̂DM(f,K)df.

The calculation is detailed in Appendix B-G. Finally, the
Fourier-space and sidelobe-accounting DDA waveform is ob-
tained as

ŴSL
DDA(K) = A0

√
2π3/2

√
µ0

σf
252

462
(20)

× e−iKrA−K2σ2
h

2 Υ̂2
r(K)

√
ν + iK

√
ν − 2iK(ε+ µ0νσ̃f

2
) + 2µ0K2σ̃f

2

×
[
erf

(
fp Ξε
2

)
+ e−f

2
p

Ξ2
ε
4 erfc

(
fp

[
Ξε
2

+
iµ0K
Ξε

])
−e

−f2
p

[
i2Kµ0+

9Ξ2
ε

4

]
erfc

(
fp

[
3Ξε
2

+
iµ0K
Ξε

])]
.

with erfc(x) = ex
2

erfc(x) the exponentially scaled comple-
mentary error function,

Ξε ≃

√
µε
ν − 2iK(ε+ µ0νσ̃f

2
) + 2µ0K2σ̃f

2

1 + 2µε(ν + iK)σ̃f
2 ,

and we recall for the sake of compactness that

A0

√
2π3/2

√
µ0

=
λ2G2

0σ0
(8π)3/2κh3

,

ε = −κUGD
vt

cos(φGD),

µε =
κhλ2

8v2t (1 + ε)2
, ν =

8

γκh
,

δtrr =
h

c
+
fc
s
, fA =

λδtrr
4µε

,

rA = h− η − µεf
2
A,

σr =
c

2B
, σf =

1√
2 log(2)

1.293

2Tb
,

σ̃f
2
= σ2

f +
4σ2

w̃

λ2
,

Υ̂2
r(K) = σr1[−1;1]

(
Kσr
2π

)[
1− |K|σr

2π

]
.
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This analytically-derived final expression is the IASCO DDA
waveform model.

V. DISCUSSION

A. Comparison between different waveform models
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(Garcia & al. , 2014)
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Fig. 7. Graph of altimeter waveforms computed for a 12m.s−1 crosswind,
corresponding to Hs = 3.75 m, ε = 0, for the S6-MF flight parameters and
for a number of different altimeter processing configurations. The cyan curve
represents the CA waveform Eq. (21). The red curve represents the σ̃ = 0
DDA waveform discussed in Appendix B-E, under the assumption of very
large fp. The green curve represents the DDA waveform Eq. (18), which takes
into account the Doppler PTR width, but assumes large fp. The dashed blue
curve represents the unambiguous Doppler frequency range [−fp/2; fp/2]
contribution to the IASCO waveform model Eq. (20), and the continuous
blue curve represents the full IASCO waveform model Eq. (20), including
the effect of Doppler sidelobes. Finally, the magenta curves represent the
multilook waveforms produced by the “PySAMOSA” [31] implementation
of the established SAMOSA model [22] over the main lobe only (dashed
magenta curve), and after modification to account for the sidelobe aliasing
(continuous magenta curve). All analytical curves correspond to the same
A0 factor, chosen such that the σ̃ = 0 waveform is one at the epoch.
The SAMOSA waveforms have been normalized to correspond to the same
integrated energy as the blue waveforms.

Fig. 7 presents waveforms obtained using the different ex-
pressions developed in the text, for the case of a Hs = 3.75 m
sea surface generated using the spectrum of [42] for 12 m.s−1

cross wind and infinite fetch. All the waveforms are generated
using the same value of A0 for normalization. They contain
identical integrated energy, except for the dashed blue and
dashed magenta curves, which only account for the returns
from the unambiguous Doppler frequency band. Aside from
this particular case, the curves only differ by the expected
distribution of the received energy as a function of time.

The cyan curve, which represents the expected waveform
from CA processing, has a very different shape from the
others: after the sharp initial rise at the encounter of the radar
pulse with the surface, the power return in all range bins
is expected to be essentially identical, except for the slow
decrease due to the antenna gain pattern.

On the contrary, DDA processing brings a much larger
portion of the received radar energy into the leading edge.
All DDA model waveforms reflect this general behaviour. The

significant DDA differences shown reflect the different sets of
hypotheses under which these waveforms are derived.

Typically, the waveform derived by [21] displays a much
sharper initial rise. That model accounts for the spreading
effect in range of the vertical distribution of backscattering
facets, but not for the relatively coarse frequency resolution
of the along-track Fourier transform and the broadening due
to the vertical orbital velocities (red curve). Its peak level is
also much higher than the other DDA waveforms. Accounting
for the additional smearing of the energy in the Doppler
dimension leads to a markedly different waveform depicted
by the green line. The main peak is largely reduced, and there
is a significantly earlier rise in energy (the “toe” mentioned
in [21]).

This effect of the finite Doppler resolution of the along-
track Fourier transform is taken into account by the SAMOSA
model [22] for multi-look SAR altimeter returns, as well
as by the earlier semi-analytical models [19], [20], [23].
For these modeled waveforms, a correction serendipitously
emerges from numerical integrations performed over azimuth.
Yet the broadening effect of scattering facet motion is not
explicitly taken into account by any of these models.

Figure 6 clearly shows that the halved fp value of the S6-
MF instrument with respect to the CryoSAT and Sentinel-
3A instruments introduces aliasing in the along-track Fourier
transform. Consequently, only the energy returning from the
strip of the sea surface with a Doppler frequency shift com-
prised between −fp/2 and +fp/2 is correctly redistributed
by the RMC step. The waveform obtained by stacking over
this reduced frequency band is represented as a blue dashed
line in Figure 7. The height of the main peak is reduced
by almost 20% with respect to the green curve, obtained by
extending the integration to ±∞. Taking into account the
energy contained in the sidelobes (continuous blue curve)
only marginally increases the height of the main peak, but
slows the decrease of the signal tail. We stress that the total
energy content of this waveform is identical to that of the very
different-looking CA (cyan) or σ̃f = 0 (red) waveforms.

Waveforms produced using the well-established SAMOSA
model [22] are depicted by magenta lines, either multi-looking
over the unambiguous Doppler frequency range (dashed line)
or, after ad hoc modification to take into account the aliasing
effect and over the full frequency range (continuous line). In
both cases, the SAMOSA waveforms feature a higher main
peak and a somewhat reduced “toe” compared to their coun-
terparts produced using Eq. (20) (blue lines). The waveforms
rapidly match thereafter, showing similar behavior over the
decay region. Overall, the IASCO waveform model Eq. (20)
is in good agreement with SAMOSA over the late peak and
decay region. Differences in the leading edge are however
significant and are discussed next.

B. Effect of the Gaussian approximation of the range PTR

The red curve in Figure 8 represents the waveform obtained
using the modified multilook SAMOSA model in the same en-
vironmental conditions, together with the waveforms obtained
with Eq. (20) using the sinc2 (blue curve) and Gaussian (black
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Fig. 8. Graph of altimeter waveforms computed for a 12m.s−1 cross wind,
corresponding to Hs = 3.75 m, ε = 0, for the S6-MF flight parameters. The
continuous blue curve represents the waveform obtained using the full DDA
waveform Eq. (20), assuming the instrument range PTR has a squared sinc
shape Eq. (5). The continous black curve represents the waveform obtained in
the same conditions but now using for a range PTR having a Gaussian approx-
imation Eq. (6). The dashed blue curve represents the waveform obtained with
the squared sinc shape, this time neglecting the broadening induced by the
surface wave motions (ie in the σ̃f = σf approximation). The dashed black
curve represents the waveform obtained with the Gaussian approximation
of the PTR and in the σ̃f = σf approximation. Finally, the red curve
represent the multilook waveforms produced using the “PySAMOSA” [31]
implementation of the established SAMOSA model [22] after modification to
account for sidelobe aliasing. The normalization is consistent with Figure 7.
Zoomed-in plots of the waveforms at their peak and “toe” are shown in the
two insets on the left of the figure.

curve) approximations of the instrument range PTR. The effect
of the Gaussian approximation is visible with a slight (∼ 4%)
increase in peak height, and a very slightly reduced “toe” with
respect to the more exact squared sinc representation. Though
this effect is clearly visible, it is not sufficient to explain the
discrepancy with the SAMOSA waveform.

The dashed black curve represents the waveform obtained
in the Gaussian range PTR approximation (consistent with
SAMOSA), but neglecting the Doppler broadening due to
surface motion (also consistent with SAMOSA). The models
are now in close agreement.

This result is one validation of the IASCO waveform
model Eq. (20), but it also hints at a strong impact of
the scattering facet motion on the SAR altimeter waveform.
As the difference between the continuous and dashed blue
curves shows, neglecting this effect likely leads to a strong
overestimation of the waveform peak height, as well as a
noticeable underestimation of the waveform “toe” extension.

As a side remark, we notice that the Gaussian approximation
of the instrument range PTR, which is not practically useful
since the final Fourier transform is performed numerically
anyway, actually shows a slight detrimental effect. Henceforth
we do not use it.

C. Sensitivity to environmental conditions
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Fig. 9. Graph of normalized altimeter waveforms for different 10-m neutral
wind speeds, with significant wave height and vertical velocity variance
computed from the spectrum [42] in its infinite-fetch limit. All waveforms
are computed with the full DDA waveform Eq. (20), considering for the
instrument range PTR the exact squared sinc Eq. (5). The wind direction is
orthogonal to the satellite track (ε = 0). The influence of wind on signal level
through variations of the backscattering cross-section σ0 is not accounted for.

1) Dependence on U10 at infinite fetch: The dependence
of the IASCO waveform model Eq. (20) is represented as a
function of 10-m neutral wind speed in Figure 9. The wind
direction is orthogonal to the satellite track (ε = 0). The
wind only acts through its influence on Hs and σw̃, which
are computed using the spectrum prescription of [42] in its
infinite-fetch limit. The dependence of the peak height on wind
through the backscatter cross-section σ0 is not accounted for.

With increasing winds, the initial rise of the waveform
progressively broadens, and the peak height progressively de-
creases. The leading edge half-power point also progressively
shifts leftward. The decay part of the waveform is essentially
impervious to parameter changes.

2) Dependence on Hs for fixed σw̃: Figure 9 mixes the
influences of Hs and σw̃, the two parameters affecting the
waveform. Figure 10 shows the effect of changing the signifi-
cant wave height for a fixed value of σw̃, kept equal to its value
in an infinite-fetch 12 m.s−1 U10 sea surface, 0.77 m.s−1. ε
is kept equal to 0.

With increasing Hs, the peak height decreases, and the initial
rise progressively slackens. The half-height point gradually
shifts to earlier instants.

3) Dependence on σw̃ for fixed Hs: Figure 11 now con-
versely presents the effect of varying σw̃ for a fixed Hs, kept
equal to its 12 m.s−1 value of 3.75 m (refer to Figure 4 for
intuition on the range of variations explored here). Clearly, the
influence of σw̃ on the waveform is quite different from the
influence of Hs: with increasing σw̃, the peak height decreases,
the waveform “toe” lengthens, but this is achieved without
shifting the half-height point of the peak.

Results imply a mechanism that is likely to bias the joint
estimation of Hs and rA from the waveform: in cases of
particularly large σw̃, one might imagine the peak of the
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Fig. 10. Graph of normalized altimeter waveforms for fixed σw̃ =
0.77 m.s−1 and varying Hs.
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Fig. 11. Graph of normalized altimeter waveforms for fixed Hs = 3.75 m
and varying σw̃ .

waveform to be quite low and the midpoint to be unaffected,
which a tracker might mistake for a large Hs situation with a
depressed sea surface.

4) Effect of the “Geophysical Doppler” shift (ε ̸= 0): The
effect of a non-zero ε is extremely small, and would be hard to
capture in large-scale graphs such as Figures 9, 10 and 11. To
provide insight into its influence on the waveform, the most
practical approach is to study the biases its presence induces
in the results of a waveform retracker such as SAMOSA. This
is the subject of the next section.

D. Tracker biases

The influences of UGD and σw̃ on the results of the
SAMOSA retracker are studied in this section by generating
IASCO waveforms using known parameter values and then
examining biases in the retrieved values.
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Fig. 12. Difference between SAMOSA retracked Hs and “true” Hs as a
function of “true” Hs, obtained by varying U10 in the infinite-fetch limit of
spectrum [42].

1) Significant height: Figure 12 presents the difference
between “true” Hs and Hs estimates obtained running the
SAMOSA retracker on IASCO waveforms generated with
varying wind speeds. Again, the infinite-fetch form of the
spectra is used to estimate Hs, σw̃ and UGD as functions of
U10. Clearly, the produced waveforms are consistently asso-
ciated by SAMOSA to overestimated values of Hs. This bias
varies rapidly for small Hs, and increases weakly afterwards,
rising from 0.22 m for Hs ≃ 2 m to 0.29 m for Hs ≃ 10.5 m.
For a given wind speed, this bias is identical in the headwind,
tailwind and crosswind situations, showing it is essentially
independent of ε, and dominated by the effect of σw̃.
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Fig. 13. SAMOSA retracked Sea Level for a nominally flat surface located at
η = 0, obtained by varying U10 in the infinite-fetch limit of spectrum [42].

2) Sea Level: Fig. 13 presents the Sea Level (SL) estimates
obtained using the SAMOSA retracker on IASCO waveforms
generated for varying wind speeds blowing over a flat surface
located at η = 0. Clearly, the biasing effect mentioned above
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is present: a bias varying between −1 cm and 2 cm is present
even for zero ε (black curve). The mere existence of a non-zero
σw̃ induces a bias in the retrieved SL. This time, however, the
effect of a non-zero “Geophysical Doppler” shift, though very
small, is clearly visible. The case of a headwind drives the
tracker to overestimate SL, while the existence of a tail wind
has the opposite effect. The azimuthal dependence of the bias
(not shown) is essentially sinusoidal, but is not centered around
0, as the σw̃ effect introduces a (actually larger) isotropic bias.

E. Effect of instrument parameters

The IASCO waveform can be applied with no modifications
to assess CryoSAT-2 and Sentinel-3A cases. But because the
altitude, flight velocity, and fp of these instruments all differ,
it is non-trivial to disentangle parameter change impacts from
simple waveform plot assessments. This section thus focuses
on waveform sensitivity to the most important parameters,
the pulse repetition frequency and the platform flight altitude.
Two other key parameters are the antenna beamwidth and the
flight velocity. The antenna beamwidth affects the waveform
in a straightforward way, by changing the slope of the decay
region of the waveform (the finer the beamwidth, the faster the
decay). The flight velocity is not a very sensitive parameter
over its quite limited range of variation, and mainly affects the
balance between the main lobe and sidelobes of the along-
track SAR processing - this by changing the portion of the
instrument FoV that is associated to Doppler shifts smaller
than the Nyquist frequency.
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Fig. 14. Graph of altimeter waveforms obtained for a 12m.s−1 side wind,
corresponding to Hs = 3.75 m, σw̃ = 0.77 m.s−1, ε = 0, for the S6-MF
flight parameters and for instrument fp equal to varying fractions of the actual
S6-MF fp.

1) Effect of instrument fp: Fig. 14 shows the dependence
of the IASCO waveform as a function of the instrument fp,
expressed in fraction of the actual S6-MF fp, for constant
burst duration (i.e. the number of pulses per burst is increased
when fp increases). Reducing the instrument fp by a factor
of two (cyan curve) reduces the effectiveness of the RMC
and reduces the main peak height by a large factor with

respect to the nominal (orange) curve. Interestingly, increasing
the fp by a factor of two (green curve), effectively makes
S6-MF similar to CryoSAT-2 and Sentinel-3A fp. This also
seems to almost saturate this effect. Further increasing fp
only brings minimal changes (the black curve represents the
fp → ∞ limit). This is expected, as for large values of fp the
ambiguous frequency ranges correspond to far-off distance in
the along-track. Signal that is effectively rejected by the off-
nadir antenna gain pattern.
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Fig. 15. Graph of altimeter waveforms obtained for a 12m.s−1 side wind,
corresponding to Hs = 3.75 m, σw̃ = 0.77 m.s−1, ε = 0, for the S6-MF
flight parameters and fp, and for varying instrument Nb (burst duration).

2) Effect of instrument Np: Conversely, Fig. 15 shows the
dependence, for fixed fp, of the IASCO waveform on the burst
duration (number of pulses per burst). The burst duration influ-
ences the waveform through the along-track SAR processing
resolution σf . Changing Nb changes the measurement floor
on σw̃, shown as the red dashed line in Figure 4. Higher
Nb values reduce the instrumental contribution to the overall
σ̃f . As can be seen in the figure, even though Nb = 64, the
value implemented in the S6-MF onboard processor, may be
a bit marginal, the result obtained for a value of Nb = 128
(green curve) is very close to the ideal curve obtained in the
limit of vanishing instrumental contribution (black curve), at
least in these conditions. Increasing this much further could
increase the influence of facet range walk during the burst time
window. Also, the finite lifetime of the individual scatters,
which is currently not well known, sets limits to gains that
can be achieved by increasing the coherent processing time
window. Reprocessing S6-MF data with Nb = 128 is feasible
on ground, but can not be done using the current onboard
processor.

3) Effect of platform altitude: Fig. 16 shows the depen-
dence of the IASCO waveform on the platform altitude h,
compensated for the expected h−5/2 power decrease [10].
The remaining dependence after amplitude compensation is
small, and is essentially due to changes in energy balance
between the main lobe and the sidelobes of the along-track
SAR processing. It almost disappears in the σ̃f → 0 limit. The
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Fig. 16. Graph of altimeter waveforms obtained for a 12m.s−1 side wind,
corresponding to Hs = 3.75 m, ε = 0, for varying platform altitude, the
S6-MF fp and constant 7200 m.s−1 platform speed. A compensation factor
of (h/h0)5/2 has been applied.

only difference remains in the decay region. It is consistent
with the change in the aliasing lobe slope in the DDM caused
by the change of µ. In this case, the pulse repetition frequency
is fixed and equal to its S6-MF value.

VI. CONCLUSION

With the ambition to more precisely estimate the impact
of ocean surface motions on Delay-Doppler altimetry, a new
analytical (Fourier-space in range) Delay Doppler Altimeter
waveform has been derived.

Developments start with the DDM signature of an isolated
backscattering facet of the sea surface, the basic building block
from which the aggregated DDM response of the sea surface is
composed. Through a careful analysis of the joint statistics of
its equivalent radar cross-section, its elevation with respect to
the mean sea level, and its instantaneous velocity with respect
to the radar instrument, the ensemble average of this signature
is obtained under the Gaussian statistical approximation.

The convolution of this signature with the Flat Surface
Impulse Response is computed, yielding an analytical expres-
sion of the full DDM, Eq. (23). Integrating this expression
in Doppler, the IASCO waveform, an analytical expression
of the DDA waveform, is finally obtained, Eq. (20). This
waveform is validated against the well-established SAMOSA
model waveform, modified to account for the SAR aliasing
sidelobes.

Due to its analytical form, IASCO model waveforms and
their relative sensitivities can be readily obtained with re-
spect to change in varied technological and environmental
parameters. In particular, the influence of surface facet orbital
and mean motion on the retracking process has been studied,
where the SAMOSA retracker is used as a benchmark. Surface
phenomena not taken into account by the SAMOSA waveform
model, but addressed by the IASCO waveform model, are
found to potentially cause observable biases in geophysical

parameters of crucial scientific importance, such as significant
wave height and altimeter range (and hence Sea Level).

Our study highlights the sensitivity of the DDA radar wave-
form to motion-related characteristics of the sea surface, which
on the contrary have no influence on the CA radar waveform.
In the context set by the open-burst acquisition mode of the
S6-MF Poseidon-4 instrument, this opens the way to a coupled
DDA and CA analysis of the radar observations, which will
provide for a high-precision, unbiased continuation of the
historical timeseries of σ0, Hs and Sea Level, supplemented
with new timeseries of kinematic quantities such as σw̃ and
UGD:

• One option might be to combine the SAMOSA and
IASCO waveforms in a retracker to retrieve and compare
directly, through a Maximum-Likelihood approach, esti-
mates of surface wave vertical motion standard deviation
σw̃ and of the along-track projection of the “Geophysical
Doppler” vector UGD.

• These new parameters could be derived and find scientific
use in their own right, or be used as inputs to altimeter
EMB- or SSB-mitigation routines.

• A hybrid approach might also be attempted, using CA
estimates, which are impervious to the motion-induced
biases DDA studied here, as first guesses or constraints
for the DDA retracker. It will lead to the implementa-
tion of a Maximum A Posteriori optimization approach
ingesting both the DDA and CA instrument waveforms.

• Another possible option would be to apply the fitting
procedure to the DDM itself. Our Eq. (23) could serve
as the basis for such an attempt.

Future investigations will be conducted to refine these theo-
retical and analytical formulations to provide a tool for present
and future 2D off-nadir altimeter design and performance
assessment. Efforts will also be conducted to optimize and
extend DDA waveform processing strategies (e.g. [43]) to
retrieve upper ocean sea surface height slopes and motions
in an effort to better estimate upper ocean velocities.

APPENDIX A
EXPRESSING P (∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp, w̃).

From section 2.1 in [39], an expression can be simply
derived for P (∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp, w̃) in terms of
spectral moments of the sea surface elevation. In the notations
of [30], [44],

mtt = ⟨∂tz̃∂tz̃⟩ , msv =

∣∣∣∣ ⟨∂tz̃∂xz̃⟩
⟨∂tz̃∂y z̃⟩

,

Mss =

[
⟨∂xz̃∂xz̃⟩ ⟨∂xz̃∂y z̃⟩
⟨∂xz̃∂y z̃⟩ ⟨∂y z̃∂y z̃⟩

]
the correlation matrix of surface vertical velocity and surface
slope components is:

Mtss =

[
mtt msvT

msv Mss

]
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and their joint pdf :

P (∂xz̃, ∂y z̃, w̃) =
1

(2π)3/2
√

|det(Mtss)|

× exp

−1

2
[w̃, ∂xz̃, ∂y z̃]Mtss

−1

∣∣∣∣∣∣
w̃
∂xz̃
∂y z̃

 .

The pdf of w̃ at ∂xz̃ = ∂xz̃|sp, ∂y z̃ = ∂y z̃|sp is obtained
by rearranging this expression. Using the Sherman-Morrison-
Woodbury matrix inversion formula, the block inverse of Mtss

reads:

Mtss
−1 =

1

σ2
w̃

[
1 −msvTMss

−1

−Mss
−1msv Css

]
,

with

σ2
w̃ = mtt −msvT Mss

−1 msv,

Css = σ2
w̃Mss

−1 +Mss
−1 msv msvT Mss

−1.

Also:

det(Mtss) = σ2
w̃ det(Mss).

One recognizes in −Mss
−1 msv the “Geophysical Doppler”

vector UGD [30]. This vector is composed of the Total Surface
Current Vector and a (usually dominant) “Wave Doppler”
vector. The magnitude of UGD and the azimuth towards
which it points are respectively denoted as UGD and φGD.
Figure 17 represents UGD,

√
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Fig. 17. Spectral moments of ∂tz̃ as a function of wind speed, for the
elevation spectrum model [42] at infinite fetch, expressed in m.s−1 (left axis)
and in Hz (right axis).

wind speed, using the elevation spectrum model of [42] for
infinite fetch, and under the assumption of infinitely short
electromagnetic wavelength (see discussion at the end of this
section). Already discussed in [30], [44], UGD varies rapidly
with wind speed up to |U10| ∼ 7 m.s−1, after which it
levels off on a slowly increasing plateau. The other quantities,√
mtt and σw̃, increase almost monotonously,

√
mtt remaining

slightly larger than σw̃.

The pdf of w̃ for a given surface slope ∇z̃|sp is:

P (w̃,∇z̃sp) =
1

(2π)3/2σw̃
√
|det(Mss)|

× exp

(
− 1

2σ2
w̃

[w̃ +UGD · ∇z̃|sp]2
)

× exp

(
−1

2
∇z̃|Tsp Mss

−1 ∇z̃|sp
)
.

The term on the first line is a normalization factor, the term
on the second line shows that the mode of the distribution of
w̃ is displaced by the projection of −UGD along the radar
line-of-sight, and the final term accounts for the decreasing
probability of finding specular facets away from nadir. The
surface elevation gradient ∇z̃|sp on specular facets at the cur-
rent point is fixed by the observation geometry, and such that
∂xz̃|sp = tan(ψ) sin(φ), and ∂y z̃|sp = tan(ψ) cos(φ). The
UGD ·∇z̃|sp term thus reduces to UGD tan(ψ) cos(φ−φGD).
The surface slope covariance matrix Mss, being symmetric,
can be diagonalized by a mere coordinate system rotation, and
a maximal surface slope variance azimuth φss can be found
such that:

Mss = Rφss ×
[

ma 0
0 mx

]
×R−φss ,

with Rφss the matrix describing rotation of angle φss in the
(x, y) plane, and ma and mx the mean squared surface slopes
in the “along” and “across” directions. With these notations,
one obtains

P (w̃,∇z̃sp) =
1

(2π)3/2σw̃
√
mamx

× exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
× exp

(
− tan2 ψ

2

[
cos2(φ− φss)

ma
+

sin2(φ− φss)

mx

])
.

As in [9], we denote the total mean squared surface slope by
mssT = ma +mx. The fractional difference between ma and
mx is described by δss, such that ma = mssT

2 (1 + δss) and
mx = mssT

2 (1− δss). With these notations

P (w̃,∇z̃sp) =
1

π
√
2πσw̃mssT

√
1− δ2ss

× exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
× exp

(
− tan2 ψ

mssT(1− δ2ss)
[1− δss cos(2(φ− φss))]

)
.

The integrals yielding the mean squared slope statistics as
moments of the surface elevation spectrum logarithmically
diverge with wavevector k: they are thus dependent on the
structure of the sea surface at all scales. This ultraviolet diver-
gence can be regularized either by the roll-off of the elevation
spectrum in the viscous regime, or by the filtering effect caused
by the finiteness of the electromagnetic wavelength, depending
on which limit is reached first. Numerous studies introduced
mssshape to account for the electromagnetic filtering effect.
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In the optical limit, [45]–[47] show mx/ma to be weakly
dependent on environmental conditions and close to 0.6. In
the present notations, this translates to δss ≃ 0.25.

Admittedly, the relevance of these optical results to Ku-
band physics remains to be firmly established, but point to a
small impact of directional effects on the backscattering cross-
section in the near-nadir geometry [48]. Taking the δss → 0
limit in the above expression:

P (w̃,∇z̃sp) =
1

π
√
2πσw̃mssT

exp

(
− tan2 ψ

mssT

)
× exp

(
− 1

2σ2
w̃

[w̃ + UGD tan(ψ) cos(φ− φGD)]
2

)
.

Note one should probably replace mssT by mssshape to
empirically account for the electromagnetic cut-off effect. In
our calculations, integrations are performed up to the viscous
cut-off limit, using the spectral form proposed by [42], to keep
mssT in the developments.

APPENDIX B
FROM FSIR TO ECHO WAVEFORM

A. Fourier transformation of the FSIR

Starting from Eq. (15), the Fourier transform in r and f of
the FSIR can be expressed as

̂̂
FSIR(T ,K) = Aεe

−i[T fA+KrA]

×
∫∫

dfdre−iT f−r(ν+iK)H(r − µεf
2)√

r − µεf2
.

Performing the change of variable
√
r − µεf2 → u turns this

expression into

̂̂
FSIR(T ,K) = Aεe

−i[T fA+KrA]

×
∫

dfe−iT f−(ν+iK)µεf
2

∫
e−u

2(ν+iK)du.

The two Gaussian integrations can be performed indepen-
dently. Introducing the approximations µε ≃ µ0(1 − 2ε) and
Aε ≃ A0(1− ε), one obtains the final result as

̂̂
FSIR(T ,K) = A0

πe−i[T fA+KrA]e−
T 2

4µε(ν+iK)

√
µ0(ν + iK)

.

B. Fourier transformation of the wave-accounting Point Target
Response

Starting from the expressions (9) and (12) of the wave-
accounting PTRs, and using the fact that∫

due−iuKe−
u2

2σ2 =
√
2πσe−

K2σ2

2 ,

the Fourier transform of the PTR is easily obtained as

̂̃̂
Υ2
f Υ̃

2
r(T ,K) =

√
2πσf

252

462
e−

T 2σ̃f
2+K2σ2

h
2 Υ̂2

r(K).

Depending on the intended use of the expression, either the
exact representation of the instrument PTR Eq. (5) or its
Gaussian approximation Eq. (6) can be used for Υ̂2

r(K).

C. Computation of the CA echo waveform from Equation (16)
Going from expression (16) to the DDA waveform still

requires significant work. The succession of steps is detailed
in the main text: the Fourier-space DDM must still be inverse-
transformed in the Doppler dimension, the RMC must be
applied, the result must be stacked by integration in the
Doppler dimension, and the result must be inverse-transformed
in the range dimension to yield the waveform.

In the CA context, however, no RMC is applied before the
integration. The range Fourier-transform of the CA waveform
is equal to the Doppler-dimension integral of the DDM, which
is easily obtained as the value of Eq. (16) along the T = 0
line:

ŴCA(K) = A0

√
2ππσf√
µ0

252

462
e−iKrA

e−
K2σ2

h
2

ν + iK
Υ̂2
r(K).

Assuming the Gaussian shape for Υ̂2
r , the inverse Fourier trans-

form of this function can be obtained using Eq. 3.462.3 of [49]
in terms of the parabolic cylinder function D−1. This function
can in turn be expressed in terms of the complementary error
function, and the result is obtained as:

WCA(r) = A0
π2σrσf√

µ0

252

462
e−

ν2σ̃r
2

2 (21)

× exp
(
−ν
[
r − rA − νσ̃r

2
])

erfc

(
−r − rA − νσ̃r

2

√
2σ̃r

)
.

This expression coincides with the classical result [3], [21].
The expression of rA contains a δt2rrv

2
t

2κh shift, which amounts
to 0.146 mm: due to the range-Doppler ambiguity bias, the
sea surface appears 0.146 mm closer to the satellite than it
actually is. The effective interface thickness σ̃r, accounting for
both the instrument PTR and the sea surface height dispersion
due to waves, has its usual expression.

D. Range Migration Correction and stacking

In this step, the expression of D̂DM(f,K) given by Eq. (17)
has to be multiplied by exp(iµ0Kf2), and the result must be
integrated (“stacked”) in f . The product of the DDM Fourier
transform and the RMC mask is:

D̂DMRMC(f,K) = Aε

√
2πσf

252

462
e−iKrA−K2σ2

h
2

√
ν + iK

Υ̂2
r(K)

× e
−f2

[
µε(ν+iK)

1+2µε(ν+iK)σ̃f
2 −iKµ0

]
√
1 + 2µε(ν + iK)σ̃f

2
.

Introducing Ξε such that

Ξ2
ε =

µε(ν + iK)

1 + 2µε(ν + iK)σ̃f
2 − iKµ0,

it can be expressed as

D̂DMRMC(f,K) = Aε

√
2πσf

252

462
e−iKrA−K2σ2

h
2

√
ν + iK

Υ̂2
r(K)

× e−Ξ2
εf

2√
1 + 2µε(ν + iK)σ̃f

2
. (22)
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Integrating this expression in f yields the Fourier-transform
in r of the DDA waveform. The integral is Gaussian and is
easily performed, and the result is obtained as

ŴDDA(K) = Aε

√
2π3/2σf

252

462
e−iKrA−K2σ2

h
2

√
ν + iK

Υ̂2
r(K)

× 1

Ξε

√
1 + 2µε(ν + iK)σ̃f

2
.

This expression now deserves being simplified. Using again
the approximations µε ≃ µ0(1 − 2ε) and Aε ≃ A0(1 − ε),
and neglecting terms of order ε2, one obtains

Ξε ≃

√
µε
ν − 2iK(ε+ µ0νσ̃f

2
) + 2µ0K2σ̃f

2

1 + 2µε(ν + iK)σ̃f
2

and

ŴDDA(K) = A0

√
2π3/2σf

252

462
e−iKrA−K2σ2

h
2

√
µ0

√
ν + iK

Υ̂2
r(K)

× 1√
ν − 2iK

[
ε+ µ0νσ̃f

2
]
+ 2µ0K2σ̃f

2

.

E. Analytical inversion in the ε = 0, σ̃f = 0 case

Inverting this Fourier transform in the general case is
difficult. Assuming a Gaussian range PTR, the special case
ε = 0, σ̃f = 0 studied by [21] is however tractable, and
provides a check of the expression. Starting from

WDDA(r) = A0
πσrσf√
µ0ν

252

462

∫
dKe

iK(r−rA)e−
K2σ̃r

2

2

√
ν + iK

,

introducing the integration variable shift K → K + iν brings
the integral to the form

WDDA(r) = A0
πσrσf√
νµ0

252

462
e−ν(r−rA−ν σ̃r

2

2 )∫
(iK)−1/2eiK(r−rA−νσ̃r

2)e−
K2σ̃r

2

2 dK.

Using Eq. 3.462.3 of [49] then yields

WDDA(r) = A0σrσf
252

462

√
2π3/2√
σ̃rνµ0

D−1/2

(
−r − rA − νσ̃r

2

σ̃r

)

exp

(
−ν

2σ̃r
2

2
− ν(r − rA − νσ̃r

2
)− (r − rA − νσ̃r

2
)2

4σ̃r
2

)
where D−1/2 is the parabolic cylinder function of order −1/2.

Up to changes in the normalization constant and the trans-
position from r to two-way travel time, this expression is
identical to Eq. (A16) of [21].

As noted by these authors, numerical implementations of
this parabolic cylinder function have a tendency to overflow for
negative argument. This problem can be circumvented using
Eqs. (19.3.7, 19.3.8, 19.27.4 and 19.27.5) from [50] to express
it in terms of modified Bessel functions as:

D−1/2(x) =

√
|x|
2π

K1/4

(
x2

4

)
+H(−x)

√
π|x|I1/4

(
x2

4

)
.

A more uniform balancing of the different terms of the
expression can then be achieved using the exponentially scaled
implementations of the modified Bessel functions.

F. Accounting for sidelobes in the DDM

For f ∈ [−fp/2; fp/2], the full DDM, accounting for
Doppler sidelobes, can be expressed as:

D̂DM
SL

RMC(f,K) = eiµ0Kf2

×
[
D̂DM(f,K) + D̂DM(f + fp,K) + D̂DM(f − fp,K)

]
Starting from Eq. (17), this is easily expressed as:

D̂DM
SL

RMC(f,K) = Aε

√
2πσf

252

462
Υ̂2
r(K) (23)

× e−iKrA−K2σ2
h

2 e−Ξ2
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2

√
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√
1 + 2µε(ν + iK)σ̃f

2

×
[
1 + e−(Ξ2

ε+iµ0K)fp(fp+2f) + e−(Ξ2
ε+iµ0K)fp(fp−2f)

]
.

G. Accounting for sidelobes in the DDA waveform

Starting back from Eqs. (19) and (17), the main lobe
contribution to the sidelobes-accounting DDA waveform can
be expressed as

2

∫ fp
2

0

eiµ0Kf2

D̂DM(f,K)df = 23/2Aεπσf
252
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Υ̂2
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√
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2
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0

e−Ξ2
εf

2

df.

The integral can be expressed in terms of the error function.
After simplification, this leads to

2
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2
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eiµ0Kf2
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2
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2
.

The contribution of the sidelobes, on the other hand, is

2

∫ 3fp
2
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The integral can again be expressed in terms of the comple-
mentary error function erfc. The calculation is tedious, but
straightforward, and the result is obtained as:

2

∫ 3fp
2
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− erfc
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.

Finally, the complete Fourier space expression of the
sidelobes-accounting DDA waveform is obtained as

ŴSL
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.

Again, numerical implementations of the complementary error
function have a tendency to overflow, and one has to resort
to exponentially scaled implementations. Denoting erfc(x) =
ex

2

erfc(x), a more stable expression is obtained as
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