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Abstract

Numerous conceptual frameworks exist for best practices in research data and analysis (e.g., Open Science and FAIR principles). In
practice, there is a need for further progress to improve transparency, reproducibility, and confidence in ecology. Here, we propose a
practical and operational framework for researchers and experts in ecology to achieve best practices for building analytical proce-
dures from individual research projects to production-level analytical pipelines. We introduce the concept of atomization to identify
analytical steps that support generalization by allowing us to go beyond single analyses. The term atomization is employed to convey
the idea of single analytical steps as “atoms” composing an analytical procedure. When generalized, “atoms” can be used in more
than a single case analysis. These guidelines were established during the development of the Galaxy-Ecology initiative, a web plat-
form dedicated to data analysis in ecology. Galaxy-Ecology allows us to demonstrate a way to reach higher levels of reproducibility in
ecological sciences by increasing the accessibility and reusability of analytical workflows once atomized and generalized.
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Background
Ecology’s reproducibility crisis

Research in ecology is increasingly shaped by the availability of
novel analytical solutions and statistical tools. Given the ever-
growing amount of data available, much attention is often given
to the thought process behind statistical analyses to handle dif-
ferent data distributions, pseudo-replication, and sampling biases
for instance [1-3]. Despite the high-quality standards required by
the scientific community from data access to analysis, the level of
complexity of ecological systems makes results difficult to repro-
duce. The ongoing “reproducibility crisis” has also led researchers
to pay closer attention to the quality of analyses to increase con-
fidence in their studies and conclusions [4, 5]. Reproducibility (i.e.,
different teams and experimental setups obtaining similar re-
sults) [6] is one of the main criteria for evaluating robust science
and reliable conclusions. The term “reproducibility” is a relative
concept and has known various definitions depending on field
and context. Reproducibility of analyses (“‘computational repro-
ducibility”) is defined by Cohen-Boulakia et al. [7] as the ability of
distinct analyses to reach to the same conclusion.

In the current context of the global biodiversity crisis, the scien-
tific community needs to use all available data and provide as ro-
bust as possible evidence regarding the state and dynamic of eco-
logical systems, from genetic to ecosystem. At the same time, us-
ing analytical tools to provide robust evidence can be complex and
may require advanced skills that are not widely available across
the scientific community [2]. Therefore, operational solutions and
methodological guidelines can allow analytical workflows to be
more accessible without degrading the scientific quality of analy-
ses and thus promote efficient and broad deployment of best prac-
tices.

Is the ecology community failing to meet best
practices?

The first step toward reproducibility is knowing current best prac-
tices and recommendations. Among them, the FAIR principles [8],
for which the availability of the data and the code used for each
published result is an essential criterion, may be key for appro-
priate management through the data life cycle [9]. The FAIR prin-
ciples (see also CARE principles [10]) are considered a founding
framework to share data along 4 important elements: “Findable”
for humans and machines, “Accessible” with a detailed access
procedure, “Interoperable” for interaction with other data or appli-
cations, and “Reusable” in an identical or different context. In ad-
dition to these principles, propositions have been delimited within

several thematic communities in ecology to evaluate and enhance
best practices application, notably the species distribution mod-
eling communities [11, 12].

Although data accessibility has been substantially improved
in ecology during the past decade, sharing analytical scripts and
codes remains largely marginal [13-16]. However, even if sharing
code is necessary to achieve good computational reproducibil-
ity, it is insufficient. Therefore, the utilization of computational
workflows has been suggested as a solution for improving com-
putational reproducibility [7, 17] through software such as Snake-
make [18-20], Nextflow [21, 22|, or Galaxy [23, 24]. A workflow is
generally defined as a sequence of distinct computational tasks
for a particular objective [25]. As such, a workflow represents the
backbone of a single specific analysis. Throughout the analyti-
cal procedure, a typical workflow starts with raw data, which can
be extracted from several databases or data files and processed
through a series of analytical steps. The products resulting from
these analytical steps (i.e., the outputs of the computational work-
flow) can be data files, graphic representations, and any associated
metrics.

When properly designed, a certain level of reproducibility can
be easily achieved since workflow languages naturally capture the
following 4 key elements [7]:

- the specificities of the workflow, the analysis steps, and asso-
ciated tools;

- the workflow entries, datasets, and parameters;

— the environment and context of the use of the workflow; and

- the results obtained and the outputs of the workflow.

In the original publication of Wilkinson et al. [8], the focus of
FAIR principles was mainly on observational data. However, the
principles can be applied to software and computational work-
flows [25, 26]. For instance, a code shared as supplementary ma-
terial of a non-open access publication could be considered “Inter-
operable” but is not easily “Findable,” “Accessible,” or “Reusable.”
In contrast, a large block of code consisting of several hundred
lines, from data preprocessing to final results and graphics, as pic-

tured in the Graphical abstract 0 may require efforts to under-
stand and adapt to other kinds of data (“nonreusable”), mainly
if annotations or comments are limited. Similarly, an analytical
procedure shared without indicating the versions of hardware,
software, and packages has a low chance of producing identi-
cal outputs, making it less reproducible. These issues may harm
the scientific community by preventing fully transparent commu-
nication among users about knowledge production and practice
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comparison. They can also be detrimental to individual authors,
when they need to update or run new analyses.

Impact on ecology research

The efficiency of the scientific process is greatly affected by the
lack of computational reproducibility and FAIRness of analyti-
cal procedures. The adoption of FAIR practices was estimated to
save 10.2 billion euros per year in Europe [27-29]. Moreover, con-
sistent application of reproducibility and FAIR principles will im-
prove trust in research studies and scientific reports [30-32].

The widespread use of computational languages to process
large-scale data and analyze complex systems has been a major
advance in studying the ecosphere at any spatiotemporal scale
[33, 34]. However, the ever-growing technical and programming
skills required to take advantage of such computational solu-
tions by the scientific community raise new challenges [35-37].
The use of increasingly complex analytical solutions, paired with
different approaches or programming languages, creates barriers
to uptake and challenges for peer review. Indeed, many ecolo-
gists have acquired their programming skills through self-study or
through courses that combine instruction in statistics and ecolog-
ical principles with an introduction to programming. This learn-
ing process does not inherently compromise the quality of the
analyses and results; however, it may lead to inappropriate cod-
ing habits. As a response to this situation, adequate training was
identified by life science researchers [38-40], as it would help in-
volve more people in the understanding of current analytical solu-
tions and benefit to scientific cooperation [41, 42]. Research is typ-
ically structured through a highly competitive organization, with
a potentially detrimental effect on scientific knowledge [43]. In-
stead, fostering collaboration and collective intelligence by pro-
moting transparent sharing of analytical procedures would offer
more persistent and robust ways to achieve actionable science
[44]. Such efforts would be of paramount importance in environ-
mental sciences and the conservation of biodiversity by providing
governance and guiding actions with increasingly robust evidence
[45].

Are there simple and ready-to-use solutions?

In this article, we aim to promote the reuse of existing concepts
and solutions as pillars toward better practices for ecological
analyses by providing a streamlined framework. We believe the
atomization-generalization framework presented in the second
part of this article represents an operational and actionable path
for researchers and experts to attain levels of best practices (e.g.,
reproducibility, FAIR, open science, R compendium) [46] with no
more investment than they are able or willing to provide [47]. At-
omization is used to refer to the identification of distinct analyt-
ical steps, each constituting an analytical procedure. It is a non-
standard term introduced in this article to convey the idea of an-
alytical “atoms.” As for atom particles that etymologically corre-
spond to “indivisible” but are composed of subatomic particles, an
analytical atom represents a single analytical step composed of
several functions. Generalization involves the alteration of an an-
alytical step to enlarge its applicability in diverse contexts and for
diverse purposes. Therefore, generalization cannot be efficiently
achieved without prior atomization.

Atomization and generalization are central organizing princi-
ples in the design of the Galaxy-Ecology (Galaxy-E) initiative (see
section "Entering a new dimension: the Galaxy-E initiative exam-
ple"). Galaxy-E is a demonstration platform for applying best prac-
tices such as the FAIR principles and computational reproducibil-

ity for analytical procedures in ecology. Hence, this review article
is partly Galaxy-oriented, not to present the platform as a pre-
scriptive solution but to give an operational example of the best
practices it helps to achieve.

Main Text

Guidelines for best practices
Atomization: what is it and why?
Atomization refers to dividing an analytical procedure into sev-

eral specific steps (“atoms”; Graphical abstract 9), generating
a suite of elementary analytical steps as pictured in the Graph-

ical abstract 9 For instance, in a maximally atomized workflow,
each small step would be conducted by its own bespoke func-
tion. Breaking down the analytical process into atoms function-
ing as building blocks allows for better understanding, modular-
ity, and visibility of the analytical flow. It permits making it more
accessible to a broader audience or facilitating the peer-review
process. Indeed, an extended 1-block code that imports raw data,
makes preprocessing steps (e.g., filter, formatting), conducts anal-
yses (e.g., distribution study, modeling), and performs final repre-
sentations of results (e.g., maps, plots) can be challenging to un-
derstand and reuse by others or even the same person after some
time.

McIntire et al. [48] described the PERFICT approach (Prediction,
Evaluation, Reusability, Free access, Interoperability, Continuous
workflows, and routine Tests) to set a new foundation for mod-
els in predictive ecology. This can be applied more generally to
the analytical procedure in ecology and biodiversity. In their ar-
ticle, McIntire and collaborators make an analogy between code
development and Lego construction, similar to our definition of
atomization. Functions are a workflow’s most fundamental ana-
lytical steps and can be seen as modular pieces, like single pieces
of Lego. Modules can be created from a single or series of succes-
sive functions, comparably as in Lego structures made of several
pieces (e.g., meant to build cars, houses, or roads). These modules
(or atoms, tools) can be used standalone or combined to make
simple to complex analytical workflows (e.g., data formatting or
curation, running statistical models, or generating graphical ele-
ments for visualization). Doing so, the atomization approach may
facilitate sharing or teaching analytical practices since beginners
can easily understand the general organization of the analyti-
cal procedure by simply reading the list of steps in the analy-
sis with a limited degree of complexity. Decoupling programming
skills from analytical skills can make data processing more ac-
cessible to a wider audience. Indeed, once each elementary step
is clearly identified and delimited along the atomization process,
it is easier to grasp the whole analytical procedure and focus on
the review of each step at a time or (re)use it. New workflows can
further be generated by recombining existing, validated, or peer-
reviewed elementary steps in innovative ways. This process can
save time, increase confidence, and avoid potential programming
mistakes, allowing greater focus on understanding the analytical
workflow.

Generalization: what is it and why?

Generalization refers to the modification of an analytical proce-
dure to make it applicable to many settings by removing speci-
ficities related to a particular data file or data format. This means
trying to avoid hard-coding anything that is specific to the struc-
ture of the original dataset (e.g., number of years). Generalization
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Figure 1: Illustration of the atomization of an existing code. The first level of atomization is delimitating the large sections of an analytical procedure
that exist in almost all procedures. This first level is conveyed using same colors to the second level of atomization, where more detailed and specific
analytical steps are illustrated in each section. The process of atomization can continue through a multitude of levels, ultimately leading to the

maximally atomized procedure, which comprises a single function.

aims to optimize the reusability at different times (e.g., regular
result update) and enlarge the application of a given analysis to
different input data files while keeping the initial analytical pro-
cedure fully reproducible, as pictured in the Graphical abstract

9. Generalizing an analytical step requires identifying key ele-
ments and invariant parameters from those that must be adapt-
able to allow for the analysis to be applied to specific characteris-
tics of various datasets. These parameters must be implemented
to be easily modified if needed. Generalization can be tricky be-
cause the higher the flexibility of an analytical step, the greater
the risk of errors in its use. This is why generalization should be
complemented by a clear statement and an implementation of
red flags and warnings to prevent such events. As with atomiza-
tion, generalization is primarily a conceptual way to build ana-
lytical procedures. It requires minor change of practices to reach
a certain degree of generalization, avoiding additional effort later
for reusability, reproducibility, and sharing.

Practical steps toward atomized and generalized coding

Breaking down codes into elementary steps to achieve atomiza-
tion is not an intuitive task at first as it may target a single func-
tion or a more intricate set of several functions. There could be
different degrees of atomization, depending on the grain required
to decompose the analytical process (Fig. 1, Table 1). The ap-
plication of general guidelines and best practices implies find-
ing a balance between the most appropriate degree of atomiza-
tion and generalization. This depends on the type of analytical
procedure or the targeted audience (e.g., with different interests
and programming skills). Attention to this balance is critical to
ensure that the analytical procedures could be reused. For in-
stance, a workflow in which each function would be considered
a unique elementary step would optimize the flexibility but may
likely add unnecessary complexity. At the other extreme, con-
sidering a whole analytical workflow as an elementary step may

make it ready to use and simplify its application but would be too
coarse and therefore limit flexibility by violating the principle of
atomization.

A few changes in code-writing habits can enhance the
reusability of the analytical procedure by generating an easy-to-
understand analytical procedure without investing much time. It
is best to develop each elementary step directly in separate code
files and to give details of the order in which elementary steps
are used for each analytical workflow. To ensure reproducibility
and traceability of the results, each computation of the analytical
workflow should be associated with the details of the parameter
settings and datasets used. From a practical point of view, a couple
of recommendations could be made for coding elementary steps
to facilitate generalization and ease the reuse. Once each elemen-
tary step is defined, we recommend all dependencies (e.g., soft-
ware version, packages, libraries and their versions) to be set at the
same place, at the start of the code, followed by modular parame-
ters (e.g., input file location and name, column selection, modeling
parameters, data specificities, output saving location). When the
script of the elementary step is completed, modular parameters
should be the only part of the code that may be modified in future
reuse. Dependencies and subsequent computational tasks should
be left untouched to ensure the integrity of the analysis and then
reproducibility. In the end, it is best to add an open-source license
to any analytical procedure shared publicly (e.g., MIT, GPL). It per-
mits to clearly state the terms and conditions of diffusion, share,
and reuse.

As such, atomization and generalization may overcome social
or psychological barriers related to transparent sharing, related
to securing ownership (e.g., DOI) and to embarrassment or fear
during a peer-review process [29]. Indeed, as atomization and gen-
eralization notably permit higher readability of codes, it would be
more straightforward for the writer or even trusted peers to verify
and review the steps before submission.
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Table 1: Example of atomization levels

Level 1—big shape Level 2 Level 3
Data exploration Sampling plan Complete
Balanced
Missing values Proportion
Distribution

Data granularity

Data distribution

Preprocessing Formatting

Corrections

Filtering
Anonymization

Analysis Variable exploration
Unimodal tests

Statistical models

Model evaluation

Projections

Representation Plot

Map

Geographic resolution
Temporal resolution
Measure resolution
Geographic coverage
Temporal coverage
Measures ranges
Summaries

Change file format

Change general format
Remove special characters
Remove low-trust observations
Correct measures

Remove unwanted observations
Anonymize names

Anonymize localities
Anonymize species

PCA

Collinearity

Correlation

Linear models

XZ

Student

Generalized linear models
Generalized additive models
Random forest

Evaluation metrics (e.g., AIC, Jaccard)
Validation methods

Geographical projections

Temporal projections

Raw variables
Modeled results
Observations
Projections

Atomization and generalization are related and complemen-
tary concepts that may be applied from the earliest stages of the
programming development. Indeed, atomization into adequate el-
ementary steps is necessary to properly generalize an analytical
procedure as it permits to enhance the modularity of the proce-
dure and its capacity to be tailored to different data types.

Entering a new dimension: the Galaxy-E
initiative example

Developing open and properly atomized and generalized analyt-
ical procedures can already represent a significant step forward
in terms of best practice. Galaxy is a good illustration of atom-
ization and generalization with easier management of analytical
workflows. The platform proposes many analytical tools that rep-
resent generalized and atomized elementary steps. These tools
are modular and openly licensed, which permits building gener-

alized workflows, as pictured in the Graphical abstract 9
Galaxy [23, 24] is a workflow-oriented web platform for analyz-
ing data and sharing outputs. It allows scientists to share, develop,

and use various datasets and data-processing tools (e.g., data for-
matting, statistical tests, graphic representations).

Galaxy enables good reproducibility for data exploration and
analyses, helps compute intricate analyses on big data files, en-
ables collaboration, and can support the teaching process. Galaxy-
E is a Galaxy server dedicated to ecological analyses maintained
by the European Galaxy team (supported by the German Fed-
eral Ministry of Education and Research and the German Net-
work for Bioinformatics Infrastructure) and is available at https:
//ecology.usegalaxy.eu [49].

Galaxy-E is mostly aimed at scientists who process biodiver-
sity data and already understand the general functioning of the
analytical procedures they want to produce. The rationale for a
user would be to create or reuse analytical workflows with high
FAIRness in a collaborative and open source platform. It can be
used for individual analyses as well as for collaborative projects.
In some cases, if the analytical procedure is already clearly de-
fined, it can be used by citizens or for teaching.

There are different Galaxy servers, at global, continental, and
national levels (European and French levels, for example) but also
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Figure 2: Galaxy-Ecology users’ interface [49, 50]. Yellow panel on the left: analysis tool list; blue panel in the middle: current tool interface; red panel
on the right: Galaxy analysis history.
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Figure 3: Representation of a Galaxy workflow in the editing interface of a Galaxy server. Each box represents an analysis tool, and the lines represent
the flow of data through the tools. In relation with the atomization-generalization framework, each box (tool) corresponds to an atomized and
generalized step with editable parameters, inputs, and outputs.

according to the fields (e.g., biomedical, ecology, climate). The
Galaxy-E initiative is hosted by European [49] and French [S0]

servers.

Datasets can be uploaded on a Galaxy server from a local de-
vice, an online server, or a database. Users can then access every

available tool (Fig. 2, left panel) to modify, explore, and analyze
their data. All tools used, parameters, and data (inputs and out-

puts) of the analysis are saved in a private “Galaxy history” (Fig. 2,

right panel), documenting every step of the analytical procedure
and recording the provenance of each output. From any history,
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the user can extract a workflow (Fig. 3) or directly share or publish
the history itself. Workflows are reusable through WorkflowHub
[51] or Dockstore [52] and exportable in CWL and RO-CRATE stan-
dards.

Any analytical procedure can be adapted on the platform, and
Galaxy can be used through the whole data life cycle [53]. One can
use off-the-shelf tools, workflows, and tutorials to design an an-
alytical procedure or suggest, develop, and share new workflows
and tutorials, 2 aspects that do not require coding skills.

As each Galaxy tool includes atomized and generalized ele-
mentary steps that can be articulated in a workflow, the Galaxy
platform benefits from the same advantages as atomization and
generalization and can help enhance best practice application
(Table 2).

The Galaxy platform emphasizes (i) accessibility of tools and
data even without programming experience, (ii) reproducibility
through the easy creation and reuse of analysis workflows, (iii)
transparency through the open-source distribution of underlying
codes, and (iv) community support.

For scientists, from a user’s point of view, it offers extensive
computing power and a graphical interface to use analysis work-
flows, even without experience in software development. Web-
based access allows easy sharing of analytical workflows between
collaborators and with a broader audience. Galaxy supports tools
in almost any computational language, including R and Python, 2
of the most used languages in ecology, with many packages ded-
icated to ecological and biodiversity-oriented analyses incorpo-
rated [S7].

Anyone can use the tools on Galaxy and/or develop new tools
and workflows to make them available to all by publishing them in
the shared Galaxy ToolShed [58], which ensures that the tools and
dependencies can be installed on any Galaxy servers. Any analyt-
ical procedure or workflow can be shared and enriched in parallel
by several users, facilitating teamwork.

The platform is community-driven, which permits continuous
peer review of the platform and the tools, workflows, and tutori-
als provided. Many tutorials are available on the Galaxy Training
Network (GTN) [56], which is a valuable asset to the accessibility
and reusability of tools and workflows [59, 60].

If enough researchers and experts start using and contribut-
ing to the platform, the number and content of available analyt-
ical procedures could expand at the same pace as latest analyti-
cal methodologies are integrated to research processes. If a differ-
ent platform fits best and is more widely used by ecological and
biodiversity scientific communities in the end, the work done on
Galaxy will not be lost as tools are easily transposable to other
interfaces (e.g., scripts directly usable with R, Python, etc., trans-
lation of workflows to other workflow engines).

Galaxyisready to use and has proved its efficiency and suitabil-
ity in other research fields, including genomics and climate sci-
ence [61, 62]. Galaxy-Ecology has implemented workflows for bio-
diversity data exploration, environmental DNA processing, gen-
eral population and community metrics and models, ecoregional-
ization, and normalized difference vegetation index (NDVI) com-
putation with Sentinel-2 data, among others [63], with tutorials
for several of them available on the GTN platform [64].

In addition to using existing tools, users may develop and up-
load entirely new tools and workflows to the Galaxy server in
any computational language to make them accessible to all other
users.

Galaxy is a participative platform, and several ways to partici-
pate in Galaxy exist depending on one’s skills, available time, and
needs. Anyone can participate in the Galaxy-Ecology initiative by
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- sharing datasets, histories, and workflows;

- giving feedback on servers, tools, and workflows;

— sharing tools and workflow ideas (eventually with code)
through Git issues;

- asking for tool modifications through issues;

- modifying existing tools or proposing new tools through
GitHub or GitLab;

— writing or contributing to a GTN tutorial on a specific function-
ality or a workflow on the GTN platform;

— creating learning pathways with a set of tutorials curated
by community experts to form a coherent set of lessons
around a topic and building knowledge [65]; and

- proposing training events and helping users in the utilization
of a workflow and tutorial.

Analyses are rarely computed only once. Any analysis with a
generalization potential is a suitable candidate to be Galaxy-fied.
A methodological framework is presented in online supplemen-
tary material [66] at 3 levels depending on potential interests,
computing language skills, and willingness to invest more or less
time in the process: (i) “user” relying on existing Galaxy tools and
workflows to analyze data (lower time investment), (ii) “developer”
relying on an existing and validated analytical procedure to de-
velop Galaxy tools and workflows (highest time investment), and
(iii) “trainer” relying on existing Galaxy tools to share workflows
and create training material (variable time investment).

Discussion and limitations

Many best practices and recommendations exist for analytical
procedures, data management, and computational code develop-
ment. The levels of application of these best practices fall within
a continuum offering a range of possibilities from the sole shar-
ing of processed and interpreted results with a brief descrip-
tion of methods to an executable paper published within a con-
tainer and emulated virtual machine [17, 67]. Situated some-
where in between the aforementioned extremes, the atomization—
generalization framework and the utilization of the Galaxy plat-
form might represent viable solutions offering a satisfactory level
of best practices.

Atomization and generalization of computer codes can repre-
sent a relatively low investment strategy to attain certain levels
of best practices such as transparency and reusability. It also car-
ries advantages such as easier peer review, modularity of analyti-
cal procedures, and, consequently, time savings. Indeed, applying
the framework is not sufficient to attain the highest levels of best
practices. For reproducibility and transparency, the management
of the environment, software, and package versions can be hard
to maintain and record. For example, on a local computer, a com-
prehensive tracking of input, outputs, and codes requires metic-
ulous management of folder structure in the environment. Addi-
tionally, noncode developers will be able to partially review the
analytical procedure only if the workflow is clearly outlined in an
adapted format (e.g., table, graphical representation). Accessibil-
ity and findability of the atomized and generalized analytical pro-
cedure are dependent on its proper sharing (e.g., persistent link,
open repository).

Galaxy can represent an easier gateway toward higher levels of
best practice as sharing a complete, detailed, and (re)executable
analytical procedure is facilitated through provenance track-
ing and automatic metadata enrichment. In comparison, many
scientific workflow management systems, such as Snakemake,
Nextflow, or the R package Targets, operate from the command
line. In ecology, numerous initiatives have tried to introduce such
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systems, starting with more user-friendly solutions—for example,
the KNIME and Kepler systems with the CoESRA initiative (Col-
laborative Environment for Scholarly Research and Analysis) in
Australia, Taverna with the BioVeL initiative (Biodiversity Virtual
e-Laboratory) in Europe, or, very recently, the BON in a Box pipeline
engine. These systems are more accessible to new users by of-
fering a graphical interface while achieving high specificity [68-
70]. However, good computer programming or scientific workflow
management knowledge is still necessary to use these applica-
tions appropriately.

In comparison to the atomization-generalization framework,
Galaxy can be rightfully seen as necessitating more time invest-
ment for scientists with programming experience as it requires
learning to use a new platform. Additionally, more effort may be
required on Galaxy when an additional analytical step needs to be
developed, but the Galaxy community can be an efficient crutch
on which hard-pressed scientists can rely. Indeed, one can ask for
help on the implementation of tools whether one knows comput-
ing languages and can share their code or not.

Conclusions

This article showcases a simple proposition to achieve best prac-
tices in analytical procedures with 2 plain guidelines: atomization
and generalization. This straightforward framework represents a
different manner to think and build analytical procedures; it does
not require using a new technology or learning to use a new soft-
ware. In terms of attaining higher levels of best practice, whether
itis through the atomization—generalization framework, Galaxy, a
combination of the two or otherwise, the optimal approach is to be
determined by individuals depending on their interests, projects,
and available resources. Relying on existing solutions as much as
possible is, in our perspective, an efficient way to achieve a bet-
ter understanding of best practices and their implications. Given
the current environmental crisis, science has the major political
and social responsibility to maintain good levels of transparency,
reproducibility, and efficiency.

Availability of Supporting Source Code and
Requirements

Project name: Galaxy-Ecology tools

Project  homepage: https://github.com/galaxyecology/tools-
ecology [71]

Software Heritage PID: swh:1:dir:2d6d04c76c640f6796c6bb27abfd
42c63028d4ca

Operating system(s): Platform independent, installation using
the Galaxy Tool Shed, notably through the Ecology section:
https://toolshed.g2.bx.psu.edu/repository/browse_repositories_
in_category?id=b4146bb7fe9b8726&message=&status=done)
Programming language: R, Python, XSLT

License: MIT

This has also been archived in Software Heritage [72]

The Workflow Hub dedicated project is available at [63] with re-
lated workflows [73-81].

Galaxy training materials “Ecology” topics are available at [64] and
associated workflows [, |.

Abbreviations

GTN: Galaxy Training Network; NDVI: normalized difference veg-
etation index.
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