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Abstract 

Numer ous conce ptual fr amew orks exist for best pr actices in resear c h data and analysis (e .g., Open Science and FAIR principles). In 

pr actice , there is a need for further progress to improve transparency , reproducibility , and confidence in ecology. Here , w e propose a 
pr actical and oper ational fr amew ork for resear c hers and experts in ecology to achieve best practices for building anal ytical pr oce- 
dur es fr om indi vidual r esear c h pr ojects to pr oduction-lev el anal ytical pipelines. We intr oduce the conce pt of atomization to identify 
anal ytical ste ps that support generalization b y allowing us to go be y ond single analyses. The term atomization is employ ed to con ve y 
the idea of single anal ytical ste ps as “atoms” composing an anal ytical pr ocedur e . When gener alized, “atoms” can be used in more 
than a single case analysis. These guidelines were established during the development of the Galaxy-Ecology initiative, a web plat- 
form dedicated to data analysis in ecolo gy. Galaxy-Ecolo gy allows us to demonstrate a way to reach higher levels of reproducibility in 

ecological sciences by increasing the accessibility and reusability of analytical workflows once atomized and generalized. 
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Gr aphical abstr act 

Levels of attainable best practices through the atomization–generalization framework. 

Ke yw ords: biodi v ersity, r e pr oducib le anal yses, Galaxy, best practices, atomization, generalization, workflows, ecoinformatics 
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ac kgr ound 

cology’s reproducibility crisis 

esearch in ecology is increasingly shaped by the availability of
ov el anal ytical solutions and statistical tools. Giv en the e v er-
rowing amount of data a vailable , much attention is often given
o the thought process behind statistical analyses to handle dif-
erent data distributions, pseudo-replication, and sampling biases
or instance [ 1–3 ]. Despite the high-quality standards r equir ed by
he scientific comm unity fr om data access to analysis, the level of
omplexity of ecological systems makes results difficult to r epr o-
uce . T he ongoing “r epr oducibility crisis” has also led r esearc hers
o pay closer attention to the quality of analyses to increase con-
dence in their studies and conclusions [ 4 , 5 ]. Reproducibility (i.e.,
ifferent teams and experimental setups obtaining similar re-
ults) [ 6 ] is one of the main criteria for e v aluating r obust science
nd reliable conclusions . T he term “r epr oducibility” is a r elativ e
oncept and has known various definitions depending on field
nd context. Reproducibility of analyses (“computational repro-
ucibility”) is defined by Cohen-Boulakia et al. [ 7 ] as the ability of
istinct analyses to reach to the same conclusion. 

In the current context of the global biodiversity crisis, the scien-
ific community needs to use all available data and provide as ro-
ust as possible evidence regarding the state and dynamic of eco-
ogical systems, from genetic to ecosystem. At the same time, us-
ng analytical tools to provide robust evidence can be complex and

ay r equir e adv anced skills that ar e not widel y av ailable acr oss
he scientific community [ 2 ]. T herefore , operational solutions and

ethodological guidelines can allow analytical workflows to be
ore accessible without degrading the scientific quality of analy-

es and thus promote efficient and broad deployment of best prac-
ices. 

s the ecology community failing to meet best 
ractices? 
he first step to w ar d r epr oducibility is knowing current best prac-
ices and recommendations. Among them, the FAIR principles [ 8 ],
or which the availability of the data and the code used for each
ublished result is an essential criterion, may be k e y for a ppr o-
riate mana gement thr ough the data life cycle [ 9 ]. The FAIR prin-
iples (see also CARE principles [ 10 ]) are considered a founding
r ame work to share data along 4 important elements: “Findable”
or humans and machines, “Accessible” with a detailed access
r ocedur e, “Inter oper able” for inter action with other data or appli-
ations, and “Reusable” in an identical or different context. In ad-
ition to these principles, propositions have been delimited within
e v er al thematic comm unities in ecology to e v aluate and enhance
est pr actices a pplication, notabl y the species distribution mod-
ling communities [ 11 , 12 ]. 

Although data accessibility has been substantially improved
n ecology during the past decade, sharing analytical scripts and
odes remains largely marginal [ 13–16 ]. Ho w ever, even if sharing
ode is necessary to ac hie v e good computational r epr oducibil-
ty, it is insufficient. Ther efor e, the utilization of computational
 orkflo ws has been suggested as a solution for improving com-
utational r epr oducibility [ 7 , 17 ] thr ough softwar e suc h as Snake-
ake [ 18–20 ], Nextflow [ 21 , 22 ], or Galaxy [ 23 , 24 ]. A w orkflo w is

ener all y defined as a sequence of distinct computational tasks
or a particular objective [ 25 ]. As such, a w orkflo w represents the
ackbone of a single specific analysis . T hroughout the analyti-
al pr ocedur e, a typical w orkflo w starts with r aw data, whic h can
e extracted from several databases or data files and processed
hrough a series of analytical steps . T he products resulting from
hese analytical steps (i.e., the outputs of the computational work-
ow) can be data files, gr a phic r epr esentations, and an y associated
etrics. 
When pr operl y designed, a certain le v el of r epr oducibility can

e easily achieved since w orkflo w languages naturally capture the
ollowing 4 k e y elements [ 7 ]: 

– the specificities of the w orkflo w, the analysis steps, and asso-
ciated tools; 

– the w orkflo w entries , datasets , and parameters; 
– the environment and context of the use of the w orkflo w; and 

– the results obtained and the outputs of the w orkflo w. 

In the original publication of Wilkinson et al. [ 8 ], the focus of
AIR principles was mainly on observational data. Ho w ever, the
rinciples can be applied to software and computational work-
ows [ 25 , 26 ]. For instance, a code shared as supplementary ma-
erial of a non–open access publication could be considered “Inter-
perable” but is not easily “Findable ,” “Accessible ,” or “Reusable .”
n contrast, a large block of code consisting of several hundred
ines, from data preprocessing to final results and graphics, as pic-

ured in the Graphical abstract , may require efforts to under-
tand and adapt to other kinds of data (“nonr eusable”), mainl y
f annotations or comments are limited. Similarly, an analytical
r ocedur e shar ed without indicating the v ersions of har dw are,
oftwar e, and pac ka ges has a low c hance of pr oducing identi-
al outputs, making it less r epr oducible. These issues may harm
he scientific community by preventing fully transparent commu-
ication among users about knowledge production and practice
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comparison. They can also be detrimental to individual authors,
when they need to update or run new analyses. 

Impact on ecology research 

The efficiency of the scientific process is gr eatl y affected by the 
lack of computational reproducibility and FAIRness of analyti- 
cal pr ocedur es . T he adoption of FAIR practices was estimated to 
save 10.2 billion euros per year in Europe [ 27–29 ]. Moreover, con- 
sistent application of reproducibility and FAIR principles will im- 
pr ov e trust in r esearc h studies and scientific reports [ 30–32 ]. 

The widespread use of computational languages to process 
large-scale data and analyze complex systems has been a major 
advance in studying the ecosphere at any spatiotemporal scale 
[ 33 , 34 ]. Ho w e v er, the e v er-gr owing tec hnical and pr ogr amming
skills r equir ed to tak e ad v anta ge of suc h computational solu- 
tions by the scientific comm unity r aise ne w c hallenges [ 35–37 ].
The use of incr easingl y complex anal ytical solutions, pair ed with 

differ ent a ppr oac hes or pr ogr amming langua ges, cr eates barriers 
to uptake and challenges for peer review. Indeed, many ecolo- 
gists have acquired their programming skills through self-study or 
through courses that combine instruction in statistics and ecolog- 
ical principles with an introduction to pr ogr amming. This learn- 
ing process does not inherently compromise the quality of the 
anal yses and r esults; ho w e v er, it may lead to ina ppr opriate cod- 
ing habits. As a response to this situation, adequate training was 
identified by life science r esearc hers [ 38–40 ], as it would help in- 
volv e mor e people in the understanding of curr ent anal ytical solu- 
tions and benefit to scientific cooperation [ 41 , 42 ]. Research is typ- 
icall y structur ed thr ough a highl y competitiv e or ganization, with 

a potentially detrimental effect on scientific knowledge [ 43 ]. In- 
stead, fostering collaboration and collective intelligence by pro- 
moting tr anspar ent sharing of anal ytical pr ocedur es would offer 
more persistent and robust ways to achieve actionable science 
[ 44 ]. Such efforts would be of paramount importance in environ- 
mental sciences and the conservation of biodiversity by providing 
governance and guiding actions with increasingly robust evidence 
[ 45 ]. 

Are there simple and ready-to-use solutions? 
In this article, we aim to promote the reuse of existing concepts 
and solutions as pillars to w ar d better practices for ecological 
anal yses by pr oviding a str eamlined fr ame work. We belie v e the 
atomization–gener alization fr ame work pr esented in the second 

part of this article r epr esents an oper ational and actionable path 

for r esearc hers and experts to attain le v els of best pr actices (e.g.,
r epr oducibility, FAIR, open science, R compendium) [ 46 ] with no 
mor e inv estment than they ar e able or willing to pr ovide [ 47 ]. At- 
omization is used to refer to the identification of distinct analyt- 
ical steps, each constituting an analytical procedure. It is a non- 
standard term introduced in this article to convey the idea of an- 
alytical “atoms.” As for atom particles that etymologically corre- 
spond to “indivisible” but are composed of subatomic particles, an 

anal ytical atom r epr esents a single anal ytical step composed of 
se v er al functions. Gener alization involv es the alteration of an an- 
alytical step to enlarge its applicability in diverse contexts and for 
div erse pur poses . T her efor e, gener alization cannot be efficientl y 
ac hie v ed without prior atomization. 

Atomization and generalization are central organizing princi- 
ples in the design of the Galaxy-Ecology (Galaxy-E) initiative (see 
section "Entering a new dimension: the Galaxy-E initiative exam- 
ple"). Galaxy-E is a demonstration platform for applying best prac- 
tices such as the FAIR principles and computational r epr oducibil- 
ty for anal ytical pr ocedur es in ecology. Hence, this r e vie w article
s partly Galaxy-oriented, not to present the platform as a pre-
criptive solution but to give an operational example of the best
ractices it helps to achieve. 

ain Text 
uidelines for best practices 

tomization: what is it and why? 
tomization refers to dividing an analytical procedure into sev- 

ral specific steps (“atoms”; Graphical abstract ), generating 
 suite of elementary analytical steps as pictured in the Graph-

cal abstract . For instance, in a maximally atomized w orkflo w,
ach small step would be conducted by its own bespoke func-
ion. Breaking down the analytical process into atoms function- 
ng as building blocks allows for better understanding, modular- 
ty, and visibility of the analytical flow. It permits making it more
ccessible to a broader audience or facilitating the peer-r e vie w
r ocess. Indeed, an extended 1-bloc k code that imports r aw data,
ak es pre processing ste ps (e.g., filter, formatting), conducts anal-

ses (e.g., distribution study, modeling), and performs final r epr e-
entations of results (e .g., maps , plots) can be challenging to un-
erstand and reuse by others or even the same person after some
ime. 

McIntire et al. [ 48 ] described the PERFICT a ppr oac h (Pr ediction,
valuation, Reusability, Free access, Interoperability, Continuous 
 orkflo ws, and routine Tests) to set a new foundation for mod-

ls in pr edictiv e ecology. This can be a pplied mor e gener all y to
he anal ytical pr ocedur e in ecology and biodiv ersity. In their ar-
icle, McIntire and collaborators make an analogy between code 
e v elopment and Lego construction, similar to our definition of
tomization. Functions are a w orkflo w’s most fundamental ana-
ytical steps and can be seen as modular pieces, like single pieces
f Lego. Modules can be created from a single or series of succes-
iv e functions, compar abl y as in Lego structur es made of se v er al
ieces (e.g., meant to build cars, houses, or roads). These modules

or atoms, tools) can be used standalone or combined to make
imple to complex analytical w orkflo ws (e.g., data formatting or
uration, running statistical models, or generating graphical ele- 
ents for visualization). Doing so, the atomization a ppr oac h may

acilitate sharing or teaching analytical practices since beginners 
an easily understand the general organization of the analyti- 
al pr ocedur e by simpl y r eading the list of steps in the analy-
is with a limited degree of complexity. Decoupling pr ogr amming
kills from analytical skills can make data processing more ac-
essible to a wider audience. Indeed, once each elementary step
s clearly identified and delimited along the atomization process,
t is easier to grasp the whole analytical procedure and focus on
he r e vie w of eac h step at a time or (r e)use it. Ne w w orkflo ws can
urther be generated by recombining existing, validated, or peer- 
 e vie wed elementary steps in innov ativ e wa ys . T his process can
a ve time , increase confidence , and a void potential pr ogr amming
istakes, allowing greater focus on understanding the analytical 
 orkflo w. 

eneralization: what is it and why? 
ener alization r efers to the modification of an anal ytical pr oce-
ure to make it applicable to many settings by removing speci-
cities related to a particular data file or data format. This means
rying to av oid har d-coding anything that is specific to the struc-
ure of the original dataset (e.g., number of years). Generalization
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Figure 1: Illustration of the atomization of an existing code. The first le v el of atomization is delimitating the large sections of an analytical procedure 
that exist in almost all pr ocedur es . T his first le v el is conveyed using same colors to the second level of atomization, where more detailed and specific 
analytical steps are illustrated in each section. The process of atomization can continue through a multitude of levels, ultimately leading to the 
maximally atomized procedure, which comprises a single function. 

a  

r  

d  

c  

 

m  

a  

t  

t  

c  

t  

c  

r  

t  

l  

a  

f

P
B  

t  

t  

d  

t  

p  

i  

t  

p  

a  

e  

s  

a  

l  

s  

m  

c  

a
 

r  

u  

i  

fi  

a  

a  

w  

s  

o  

t  

t  

w  

s  

t  

p  

s  

s  

r  

b  

r  

t  

m  

a
 

o  

t  

d  

e  

m  

a

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae122/8010442 by C

N
R

S C
rem

a L H
oum

eau user on 25 February 2025
ims to optimize the reusability at different times (e.g ., regular
esult update) and enlarge the application of a given analysis to
ifferent input data files while k ee ping the initial analytical pro-
edur e full y r epr oducible, as pictur ed in the Gr a phical abstr act

. Gener alizing an anal ytical step r equir es identifying k e y ele-
ents and invariant parameters from those that must be adapt-

ble to allow for the analysis to be applied to specific characteris-
ics of various datasets . T hese par ameters m ust be implemented
o be easily modified if needed. Generalization can be tricky be-
ause the higher the flexibility of an analytical step, the greater
he risk of errors in its use . T his is why generalization should be
omplemented by a clear statement and an implementation of
 ed fla gs and warnings to pr e v ent suc h e v ents. As with atomiza-
ion, generalization is primarily a conceptual way to build ana-
 ytical pr ocedur es. It r equir es minor c hange of pr actices to r eac h
 certain degree of generalization, avoiding additional effort later
or r eusability, r epr oducibility, and sharing. 

ractical steps toward atomized and generalized coding 

reaking down codes into elementary steps to ac hie v e atomiza-
ion is not an intuitive task at first as it may target a single func-
ion or a more intricate set of se v er al functions . T here could be
iffer ent degr ees of atomization, depending on the gr ain r equir ed
o decompose the anal ytical pr ocess (Fig. 1 , Table 1 ). The ap-
lication of general guidelines and best practices implies find-

ng a balance between the most a ppr opriate degr ee of atomiza-
ion and generalization. This depends on the type of analytical
r ocedur e or the targeted audience (e.g ., with different interests
nd pr ogr amming skills). Attention to this balance is critical to
nsure that the analytical procedures could be reused. For in-
tance, a w orkflo w in whic h eac h function would be consider ed

 unique elementary step would optimize the flexibility but may
ik ely ad d unnecessary complexity. At the other extreme, con-
idering a whole analytical w orkflo w as an elementary step may
ak e it read y to use and simplify its application but would be too
oarse and ther efor e limit flexibility by violating the principle of
tomization. 

A fe w c hanges in code-writing habits can enhance the
eusability of the analytical procedure by generating an easy-to-

nderstand anal ytical pr ocedur e without inv esting m uc h time. It
s best to de v elop eac h elementary step dir ectl y in separ ate code
les and to give details of the order in which elementary steps
re used for each analytical w orkflo w . T o ensure reproducibility
nd traceability of the r esults, eac h computation of the analytical
 orkflo w should be associated with the details of the parameter

ettings and datasets used. From a practical point of view, a couple
f recommendations could be made for coding elementary steps
o facilitate generalization and ease the reuse. Once each elemen-
ary step is defined, we recommend all dependencies (e.g., soft-
ar e v ersion, pac ka ges, libr aries and their v ersions) to be set at the

ame place, at the start of the code, follo w ed b y modular parame-

ers (e.g., input file location and name, column selection, modeling
arameters , data specificities , output sa ving location). When the
cript of the elementary step is completed, modular parameters
hould be the only part of the code that may be modified in future
euse. Dependencies and subsequent computational tasks should
e left untouched to ensure the integrity of the analysis and then

 epr oducibility. In the end, it is best to add an open-source license
o an y anal ytical pr ocedur e shar ed publicl y (e.g., MIT, GPL). It per-

its to clearly state the terms and conditions of diffusion, share,
nd reuse. 

As such, atomization and generalization may overcome social
r psychological barriers related to transparent sharing, related

o securing ownership (e.g., DOI) and to embarrassment or fear
uring a peer-r e vie w pr ocess [ 29 ]. Indeed, as atomization and gen-
r alization notabl y permit higher r eadability of codes, it would be
or e str aightforw ar d for the writer or e v en trusted peers to v erify

nd r e vie w the steps befor e submission. 
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Table 1: Example of atomization le v els 

Level 1—big shape Level 2 Level 3 

Data exploration Sampling plan Complete 
Balanced 

Missing values Proportion 
Distribution 

Data granularity Geogr a phic r esolution 
Tempor al r esolution 
Measur e r esolution 

Data distribution Geogr a phic cov er a ge 
Tempor al cov er a ge 
Measur es r anges 
Summaries 

… …
Pr epr ocessing Formatting Change file format 

Change general format 
Corrections Remove special characters 

Remove low-trust observations 
Corr ect measur es 

Filtering Remove unwanted observations 
Anonymization Anonymize names 

Anonymize localities 
Anonymize species 

… …
Analysis Variable exploration PCA 

Collinearity 
Correlation 

Unimodal tests Linear models 
χ2 

Student 
Statistical models Generalized linear models 

Generalized ad diti ve models 
Random forest 

Model e v aluation Evaluation metrics (e.g., AIC, J accar d) 
Validation methods 

Projections Geogr a phical pr ojections 
Tempor al pr ojections 

… …
Representation Plot Raw variables 

Modeled results 
Map Observations 

Projections 
… …
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Atomization and generalization are related and complemen- 
tary concepts that may be a pplied fr om the earliest stages of the 
pr ogr amming de v elopment. Indeed, atomization into adequate el- 
ementary steps is necessary to pr operl y gener alize an anal ytical 
pr ocedur e as it permits to enhance the modularity of the proce- 
dure and its capacity to be tailored to different data types. 

Entering a new dimension: the Galaxy-E 

initiati v e example 

De v eloping open and pr operl y atomized and generalized analyt- 
ical pr ocedur es can alr eady r epr esent a significant step forw ar d 

in terms of best practice. Galaxy is a good illustration of atom- 
ization and generalization with easier management of analytical 
w orkflo ws . T he platform pr oposes man y anal ytical tools that r ep- 
r esent gener alized and atomized elementary steps . T hese tools 
are modular and openly licensed, which permits building gener- 

alized w orkflo ws, as pictur ed in the Gr a phical abstr act . 
Galaxy [ 23 , 24 ] is a w orkflo w-oriented w eb platform for analyz- 

ing data and sharing outputs. It allows scientists to shar e, de v elop,
nd use various datasets and data-processing tools (e.g., data for-
atting, statistical tests, gr a phic r epr esentations). 
Galaxy enables good r epr oducibility for data exploration and

nalyses, helps compute intricate analyses on big data files, en-

bles collaboration, and can support the teaching process. Galaxy- 
 is a Galaxy server dedicated to ecological analyses maintained
y the European Galaxy team (supported by the German Fed-
ral Ministry of Education and Research and the German Net-
ork for Bioinformatics Infr astructur e) and is available at https:

/ecology .usegalaxy .eu [ 49 ]. 
Galaxy-E is mostly aimed at scientists who process biodiver- 

ity data and already understand the general functioning of the
nal ytical pr ocedur es they want to pr oduce . T he rationale for a
ser would be to create or reuse analytical w orkflo ws with high
AIRness in a collabor ativ e and open source platform. It can be
sed for individual analyses as well as for collabor ativ e pr ojects.

n some cases, if the analytical procedure is already clearly de-
ned, it can be used by citizens or for teaching. 

Ther e ar e differ ent Galaxy serv ers, at global, continental, and
ational le v els (Eur opean and Fr enc h le v els, for example) but also

https://ecology.usegalaxy.eu
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Figure 2: Galaxy-Ecology users’ interface [ 49 , 50 ]. Yellow panel on the left: analysis tool list; blue panel in the middle: current tool interface; red panel 
on the right: Galaxy analysis history. 

Figure 3: Representation of a Galaxy workflow in the editing interface of a Galaxy serv er. Eac h box r epr esents an analysis tool, and the lines represent 
the flow of data through the tools. In relation with the atomization–generalization framework, each box (tool) corresponds to an atomized and 
generalized step with editable parameters , inputs , and outputs . 

a  

G  

s
 

v  

a  

t  

p  

r  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae122/8010442 by C

N
R

S C
rem

a L H
oum

eau user on 25 February 2025
ccording to the fields (e.g., biomedical, ecology, climate). The
alaxy-E initiative is hosted by European [ 49 ] and French [ 50 ]
ervers. 

Datasets can be uploaded on a Galaxy server from a local de-
ice, an online server, or a database. Users can then access e v ery
vailable tool (Fig. 2 , left panel) to modify, explor e, and anal yze
heir data. All tools used, parameters, and data (inputs and out-
uts) of the analysis are saved in a private “Galaxy history” (Fig. 2 ,
ight panel), documenting e v ery step of the analytical procedure
nd recording the provenance of each output. From any history,
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the user can extract a w orkflo w (Fig. 3 ) or directly share or publish 

the history itself. Workflows ar e r eusable thr ough WorkflowHub 
[ 51 ] or Doc kstor e [ 52 ] and exportable in CWL and RO-CRATE stan- 
dards. 

An y anal ytical pr ocedur e can be ada pted on the platform, and 

Galaxy can be used through the whole data life cycle [ 53 ]. One can 

use off-the-shelf tools, w orkflo ws, and tutorials to design an an- 
al ytical pr ocedur e or suggest, de v elop, and shar e ne w w orkflo ws 
and tutorials, 2 aspects that do not r equir e coding skills. 

As each Galaxy tool includes atomized and generalized ele- 
mentary steps that can be articulated in a w orkflo w, the Galaxy 
platform benefits from the same advantages as atomization and 

generalization and can help enhance best practice application 

(Table 2 ). 
The Galaxy platform emphasizes (i) accessibility of tools and 

data e v en without pr ogr amming experience, (ii) r epr oducibility 
through the easy creation and reuse of analysis w orkflo ws, (iii) 
tr anspar ency thr ough the open-source distribution of underl ying 
codes, and (iv) community support. 

For scientists, from a user’s point of view, it offers extensive 
computing po w er and a gr a phical interface to use anal ysis work- 
flows, e v en without experience in software development. Web- 
based access allows easy sharing of analytical workflows between 

collaborators and with a broader audience. Galaxy supports tools 
in almost any computational language, including R and Python, 2 
of the most used languages in ecology, with man y pac ka ges ded- 
icated to ecological and biodiversity-oriented analyses incorpo- 
rated [ 57 ]. 

Anyone can use the tools on Galaxy and/or de v elop ne w tools 
and w orkflo ws to make them available to all by publishing them in 

the shared Galaxy ToolShed [ 58 ], which ensures that the tools and 

dependencies can be installed on any Galaxy servers. Any analyt- 
ical pr ocedur e or w orkflo w can be shar ed and enric hed in par allel 
by se v er al users, facilitating teamwork. 

The platform is comm unity-driv en, whic h permits continuous 
peer r e vie w of the platform and the tools, w orkflo ws, and tutori- 
als pr ovided. Man y tutorials ar e av ailable on the Galaxy Tr aining 
Network (GTN) [ 56 ], which is a valuable asset to the accessibility 
and reusability of tools and w orkflo ws [ 59 , 60 ]. 

If enough r esearc hers and experts start using and contribut- 
ing to the platform, the number and content of available analyt- 
ical pr ocedur es could expand at the same pace as latest analyti- 
cal methodologies are integrated to research processes. If a differ- 
ent platform fits best and is more widely used by ecological and 

biodiv ersity scientific comm unities in the end, the work done on 

Galaxy will not be lost as tools are easily transposable to other 
interfaces (e.g., scripts dir ectl y usable with R, Python, etc., trans- 
lation of w orkflo ws to other w orkflo w engines). 

Galaxy is ready to use and has pr ov ed its efficiency and suitabil- 
ity in other r esearc h fields, including genomics and climate sci- 
ence [ 61 , 62 ]. Galaxy-Ecology has implemented w orkflo ws for bio- 
div ersity data explor ation, envir onmental DNA pr ocessing, gen- 
eral population and community metrics and models, ecoregional- 
ization, and normalized difference vegetation index (NDVI) com- 
putation with Sentinel-2 data, among others [ 63 ], with tutorials 
for se v er al of them av ailable on the GTN platform [ 64 ]. 

In addition to using existing tools, users may de v elop and up- 
load entir el y ne w tools and w orkflo ws to the Galaxy server in 

an y computational langua ge to make them accessible to all other 
users. 

Galaxy is a participative platform, and several ways to partici- 
pate in Galaxy exist depending on one’s skills , a vailable time , and 

needs. Anyone can participate in the Galaxy-Ecology initiative by 
– sharing datasets , histories , and w orkflo ws; 
– giving feedback on servers , tools , and w orkflo ws; 
– sharing tools and w orkflo w ideas (e v entuall y with code)

through Git issues; 
– asking for tool modifications through issues; 
– modifying existing tools or proposing new tools through 

GitHub or GitLab; 
– writing or contributing to a GTN tutorial on a specific function-

ality or a w orkflo w on the GTN platform; 
– creating learning pathways with a set of tutorials curated 

by community experts to form a coherent set of lessons
around a topic and building knowledge [ 65 ]; and 

– pr oposing tr aining e v ents and helping users in the utilization
of a w orkflo w and tutorial. 

Anal yses ar e r ar el y computed onl y once. An y anal ysis with a
eneralization potential is a suitable candidate to be Galaxy-fied.
 methodological fr ame work is pr esented in online supplemen-

ary material [ 66 ] at 3 le v els depending on potential interests,
omputing language skills, and willingness to inv est mor e or less
ime in the process: (i) “user” relying on existing Galaxy tools and
 orkflo ws to analyze data (lo w er time investment), (ii) “developer”
 el ying on an existing and v alidated anal ytical pr ocedur e to de-
elop Galaxy tools and w orkflo ws (highest time investment), and
iii) “tr ainer” r el ying on existing Galaxy tools to share w orkflo ws
nd create training material (variable time investment). 

iscussion and limitations 

an y best pr actices and r ecommendations exist for anal ytical
r ocedur es, data mana gement, and computational code de v elop-
ent. The le v els of a pplication of these best pr actices fall within
 continuum offering a range of possibilities from the sole shar-
ng of processed and interpreted results with a brief descrip-
ion of methods to an executable paper published within a con-
ainer and emulated virtual machine [ 17 , 67 ]. Situated some-
here in between the aforementioned extremes, the atomization–

ener alization fr ame work and the utilization of the Galaxy plat-
orm might r epr esent viable solutions offering a satisfactory le v el
f best practices. 

Atomization and generalization of computer codes can r epr e-
ent a r elativ el y low inv estment str ategy to attain certain le v els
f best practices such as transparency and reusability. It also car-
ies adv anta ges suc h as easier peer r e vie w, modularity of anal yti-
al pr ocedur es, and, consequentl y, time sa vings . Indeed, a ppl ying
he fr ame work is not sufficient to attain the highest le v els of best
r actices. For r epr oducibility and tr anspar ency, the mana gement
f the envir onment, softwar e, and pac ka ge v ersions can be hard
o maintain and record. For example, on a local computer, a com-
r ehensiv e tr ac king of input, outputs, and codes r equir es metic-
lous management of folder structure in the environment. Addi- 
ionall y, noncode de v elopers will be able to partially review the
nal ytical pr ocedur e onl y if the w orkflo w is clearly outlined in an
dapted format (e .g., table , gr a phical r epr esentation). Accessibil-
ty and findability of the atomized and gener alized anal ytical pr o-
edur e ar e dependent on its proper sharing (e.g., persistent link,
pen repository). 

Galaxy can r epr esent an easier gate w ay to w ar d higher le v els of
est practice as sharing a complete, detailed, and (re)executable 
nal ytical pr ocedur e is facilitated thr ough pr ov enance tr ac k-
ng and automatic metadata enric hment. In comparison, man y
cientific w orkflo w mana gement systems, suc h as Snak emak e,
extflow, or the R pac ka ge Tar gets, oper ate fr om the command

ine. In ecology, n umerous initiati ves have tried to introduce such
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systems, starting with more user-friendly solutions—for example, 
the KNIME and Kepler systems with the CoESRA initiative (Col- 
labor ativ e Envir onment for Sc holarl y Researc h and Anal ysis) in 

Austr alia, Tav erna with the BioVeL initiative (Biodiversity Virtual 
e-Labor atory) in Eur ope, or, v ery r ecentl y, the BON in a Box pipeline 
engine . T hese systems are more accessible to new users by of- 
fering a gr a phical interface while ac hie ving high specificity [ 68–
70 ]. Ho w e v er, good computer pr ogr amming or scientific w orkflo w 

management knowledge is still necessary to use these applica- 
tions a ppr opriatel y. 

In comparison to the atomization–generalization framework, 
Galaxy can be rightfully seen as necessitating more time invest- 
ment for scientists with pr ogr amming experience as it r equir es 
learning to use a new platform. Additionally, more effort may be 
r equir ed on Galaxy when an additional analytical step needs to be 
de v eloped, but the Galaxy community can be an efficient crutch 

on which hard-pressed scientists can rely. Indeed, one can ask for 
help on the implementation of tools whether one knows comput- 
ing languages and can share their code or not. 

Conclusions 

This article showcases a simple proposition to ac hie v e best prac- 
tices in analytical procedures with 2 plain guidelines: atomization 

and generalization. This straightforw ar d framew ork represents a 
different manner to think and build analytical procedures; it does 
not r equir e using a ne w tec hnology or learning to use a new soft- 
ware. In terms of attaining higher levels of best practice, whether 
it is through the atomization–generalization framework, Galaxy, a 
combination of the two or otherwise, the optimal a ppr oac h is to be 
determined by individuals depending on their inter ests, pr ojects,
and av ailable r esources. Rel ying on existing solutions as m uc h as 
possible is, in our perspective, an efficient way to ac hie v e a bet- 
ter understanding of best practices and their implications. Given 

the curr ent envir onmental crisis, science has the major political 
and social responsibility to maintain good levels of transparency,
r epr oducibility , and efficiency . 

Availability of Supporting Source Code and 

Requirements 

Project name: Galaxy-Ecology tools 
Pr oject homepa ge: https:// github.com/ galaxyecology/ tools- 
ecology [ 71 ] 
Softwar e Herita ge PID: swh:1:dir:2d6d04c76c640f6796c6bb27abfd 

42c63028d4ca 
Operating system(s): Platform independent, installation using 
the Galaxy Tool Shed, notabl y thr ough the Ecology section: 
https:// toolshed.g2.bx.psu.edu/ repository/ browse _ repositories _ 
in _ category?id=b4146bb7fe9b8726&message=&status=done ) 
Pr ogr amming langua ge: R, Python, XSLT 

License: MIT 

This has also been arc hiv ed in Software Heritage [ 72 ] 
The Workflow Hub dedicated project is available at [ 63 ] with re- 
lated w orkflo ws [ 73–81 ]. 
Galaxy training materials “Ecology” topics are available at [ 64 ] and 

associated w orkflo ws [, ]. 
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GTN: Galaxy Training Network; NDVI: normalized difference veg- 
etation index. 
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