Supplementary :

Targeted and non-targeted mass spectrometry to explore the chemical diversity of the genus *Gambierdiscus* in the Atlantic Ocean

Authors

Thomas Yon^{1*}, Damien Réveillon¹, Manoëlla Sibat¹, Chris Holland², R. Wayne Litaker³, Silvia M. Nascimento⁴, Araceli E. Rossignoli^{5,6}, Pilar Riobó⁷, Philipp Hess¹ and Samuel

Bertrand^{8,9}

- ⁴ Laboratório de Microalgas Marinhas, Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, Brazil
- ⁵ Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain
- ⁶ Present address: Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, Apdo. 13. 36620, Vilanova de Arousa, Spain
- ⁷ Instituto de Investigaciones Marinas, CSIC. Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
- ⁸ Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
- ⁹ ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44311 Nantes, France

*Corresponding author : thom.yon@gmail.com

¹ Ifremer, PHYTOX, Laboratoire METALG, F-44000 Nantes, France

² Beaufort Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, Beaufort, NC 28516, USA

³ CSS, Inc. Under Contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, National Ocean Service, Beaufort, NC 28516, USA

Table S 1 Summary of compounds identified in the Gambierdiscus species reported in the Atlantic Ocean 3
Table S 2 Quantification of Gambierones (Sulfo-gambierones, gambierone, 44-methylgambierone) and
Maitotoxins (MTX1 and 4) in the different pool per strain per laboratory expressed in pg equivalent
cell-1 measured in this study and reported in the literature4
Table S 3 MRM transitions used for targeted LC-MS/MS analysis in negative ionization mode (ESI-,
reproduced from (Yon et al. 2021). In bold the transitions used for quantification
Table S 4 MRM transitions used for LC-MS/MS targeted analysis in positive ionization mode (ESI+)
Table S 5 Strains provided by each laboratory, culture conditions and harvesting methods. 7
Table S 6 Number of cells, dry mass and final concentration in for each replicate
Table S 7 Limits of detection and quantification of gambierone, 44-methylgambierone (determined in this
study) and MTX1 (from (Pisapia et al. 2017)) in ng mL-1 and pg cell-1
Table S 8 Steps and parameters for peak picking and grouping procedure used in MZmine 2.53
Table S 9 Average peak area (n=2) of standards injected at three concentrations and comparison of response
areas between Gambierones and MTX110
Table S 10 . Putative annotation of the features with GNPS with the cluster number, Molecular families, node
ID, putative compound name, precursor mass, retention time, library mass, delta ppm, cosine score
and number of shared peaks (i.e. fragment ions)17

Figure S 1 Overlay of the EICs resulting from the sum of MRM transitions for each molecule as described in
Table S3 acquired in negative ionization mode for standards of gambierone, 44-methylgambierone,
MTX1 and algal extracts provided by each laboratory: (IFR) METALG Laboratory, Ifremer; (NOAA)
Beaufort Laboratory, National Oceanic and Atmospheric Administration; (UNIRIO) Marine Microalgae
Laboratory, Federal University of Rio de Janeiro and (IEO) Spanish Institute of Oceanography, Vigo
Oceanographic11
Figure S 2 Overlay of the EICs resulting from the sum of MRM transitions for each molecule as described in
Table S4 acquired in positive ionization mode for algal extracts provided by each laboratory: (IFR)
METALG Laboratory, Ifremer; (NOAA) Beaufort Laboratory, National Oceanic and Atmospheric
Administration; (UNIRIO) Marine Microalgae Laboratory, Federal University of Rio de Janeiro and (IEO)
Spanish Institute of Oceanography, Vigo Oceanographic.
Figure S 3. Partial least square – discriminant analysis score plot of targeted analysis data acquired on the
pool per strain per laboratory (based on 298 features manually integrated, R ² : 0.97; Q ² : 0.83; p-value
0.02 with 100 permutations). The color coding represents the species
Figure S 4. ComDim score plot (PC1 to PC5) of untargeted analysis data acquired using full scan mode in both
polarities (log-transformed and pareto-scaled data). The color coding represents the species while the
symbol shapes represent the laboratory14
Figure S 5. Multi-blocks partial least square – discriminant analysis score plot of untargeted analysis data
acquired using full scan mode in both polarities (log-transformed and pareto-scaled data). The color
coding represents the species while the symbol shapes represent the laboratory

	PIGMENTS	MAITOTOXINS	OTHER POLYETHERS	OTHER COMPOUNDS
G. australes		MTX1 (Rhodes <i>et al.</i> 2014) *MTX 5 (Estevez <i>et al.</i> 2021)	44-methylgambierone (Rhodes <i>et al.</i> 2014, Estevez <i>et al.</i> 2020a, Murray <i>et al.</i> 2021) *Gambieric acids C and D (Estevez <i>et al.</i> 2020a)	
G. belizeanus	Chlorophyll a (Gwinn <i>et al.</i> 2019)	Desulfo-MTX1 (Mazzola et al. 2019)	44-methylgambierone (Pisapia <i>et al.</i>2017, Boente-Juncal <i>et al.</i> 2019)Gambierone (Rodriguez <i>et al.</i> 2015)	Dimethylsulfoniopropionate (Gwinn et al. 2019)
G. caribaeus			44-methylgambierone (Murray <i>et al.</i> 2021) *C-CTX1/2 (Mudge <i>et al.</i> 2023) *C-CTX5 (Mudge <i>et al.</i> 2023)	
G. carolinianus			44-methylgambierone (Pisapia <i>et al.</i> 2017)	
G. carpenteri			44-methylgambierone (Murray <i>et al.</i> 2021, Malto <i>et al.</i> 2022) Gambierone (Murray <i>et al.</i> 2021)	Carbohydrates Fatty acids (Malto <i>et al.</i> 2022)
G. excentricus	Peridinin Chlorophyll C2 Chlorophyll a Chlorophyll C1 Diadinoxanthin Dinoxanthin (Zapata <i>et al.</i> 2012)	MTX4 (Pisapia <i>et al.</i> 2017, Estevez <i>et al.</i> 2020a, Yon <i>et al.</i> 2021)	Sulfo-gambierone (Yon <i>et al.</i> 2021) Dihydro-sulfo-gambierone (Yon <i>et al.</i> 2021)	
G. silvae			44-methylgambierone (Pisapia <i>et al.</i> 2017) *29-methylgambierone (Mudge <i>et al.</i> 2022) Gambierone (Mudge <i>et al.</i> 2022) *C-CTX1/2 (Mudge <i>et al.</i> 2023) *C-CTX5 (Mudge <i>et al.</i> 2023)	

Table S 1 Summary of compounds identified in the Gambierdiscus species reported in the Atlantic Ocean.

* Putatively reported

Table S 2 Quantification of Gambierones (Sulfo-gambierones, gambierone, 44-methylgambierone) and Maitotoxins (MTX1 and 4) in the different pool per strain per laboratory expressed in pg equivalent cell-1 measured in this study and reported in the literature.

Species	Strains	Laboratory	Sulfo-gambierones (pg eq. gambierone cell ⁻¹)	Gambierone (pg cell ⁻¹)	MTX4 (pg eq. MTX1 cell ⁻¹)	44-methylgambierone (pg cell ⁻¹)	MTX1 (pg cell ⁻¹)	References
	Dullay Didge	IFR	0.5		16.4			This study
	Gam 2	/			22.9			(Pisapia <i>et</i>
	Bahamas Gam	NOAA	1.0		35.5			
	5	IFR	0.6		19.8			This study
		IFR	2.3		29.0			This study
		UNIRIO	4.9		38.4			This study
	UNR-08				10.8			(Pisapia <i>et</i>
		/	• •		19.0			<u>al. 2017)</u>
	UNR-07	UNIRIO	2.8		19.2			(Pisapia at
G. excentricus		/			16.0			al. 2017)
	VGO1035	/			13.0			(Pisapia <i>et</i>
		/			22.2			(Pisapia et
	VG0790	/			25.2			<u>al. 2017)</u>
	VGO792	/			20.0			(Pisapia <i>et al.</i> 2017)
		IEO	0.6		~6			This study
	VGO 791				<luq)< td=""><td></td><td></td><td>(Pisapia <i>et</i></td></luq)<>			(Pisapia <i>et</i>
		/			72.8			<i>al.</i> 2017)
	IRTA-SMM- 17-407	/			37.1			(Estevez <i>et</i> <i>al</i> . 2020a)
	AUS S08	IFR				21.4	15.5	This study
		IEO				16.7	9.3	This study
		UNIRIO				34.7	15.8	This study
	CAWD149			< 0.01		259		(Murray <i>et</i>
	IRTA-					3/1/ (0/1)*		(Estevez et
	SMM17-189					344 (9.4)		al. 2020a)
G. australes	SMM17-162					720 (19.7)*		(Estevez <i>et</i> <i>al.</i> 2020a)
	IRTA-					1661 (45.5)*		(Estevez <i>et</i>
	IRTA-					1222 (2(2)*		(Estevez <i>et</i>
	SMM17-271					1322 (30.2)*		<i>al.</i> 2020a)
	SMM17-253					1081 (29.6)*		(Estevez <i>et</i> <i>al.</i> 2020a)
	IRTA-					479 (13.1)*		(Estevez et
	<u>SMM17-244</u> ST1 F4	NOAA		17.9		1.7		<i>al. 2020a)</i> This study
G. belizeanus	UNR-58	UNIRIO		6.4		8.35		This study
	UNR-51	UNIRIO		10.0		13.1		This study
	ST1C5	NOAA		0.7		19.3		This study
G. caribaeus	Dive 1F4	NOAA		0.9		33.3		This study
	CAWD301			<0.01		44		(Murray <i>et</i> <i>al.</i> 2021)
	RROV5	NOAA		0.6		0.1		This study
G.	VGO 1197	VIGO		15.8		0.6		This study
curountunus	Kenny 6	NOAA		1.3		0.1		This study
G silvaa	UNR-30	UNIRIO		29.8		2.0		This study
G. suvae	VGO 1358	IEO		6.5		8.4		This study

 $* Results \ reported \ in \ MTX1 \ equivalent \ (corrected \ with \ the \ response \ factor \ between \ MTX1 \ and \ 44-methyl gambierone \ calculated$

in this study- Table S9).

Table S 3 MRM transitions used for targeted LC-MS/MS analysis in negative ionization mode (ESI-, reproduced from (Yon et al. 2021). In bold the transitions used for quantification.

Instrumental parameters	The mobile phases were 100% water (eluent A) and acetonitrile/ (95:5, v/v) (eluent B), both added with 2 mM ammonium formate ar mM formic acid and the elution gradient was as follows: 10 to 95% from 0 to 10 min. held at 95% B for 2 min and then back to the				
	condition (10% B) at 12.1 min a	and held for 3 min.			
Compound name	Transitions	lon species			
	(precursor ion/product ion)			
MTX1 (Murata et al. 1993)	1689.8/1689.8	[M-2H] ²⁻ /[M-2H] ²⁻			
	1689.8/96.9	[M-2H] ²⁻ /[HOSO ₃] ⁻			
	1126.2/1126.2	[M-3H] ³⁻ /[M-3H] ³⁻			
	1126.2/96.9	[M−3H] ^{3−} /[HOSO ₃] [−]			
MTX2 (Lewis et al. 1994)	1637.8/1637.8	[M-2H] ²⁻ /[M-2H] ²⁻			
	1637.8/96.9	[M−2H] ^{2−} /[HOSO ₃] [−]			
	1091.8/96.9	[M−3H] ^{3−} /[HOSO ₃] [−]			
MTX4 (Pisapia et al. 2017,	1646.2/1646.2	[M-2H] ²⁻ /[M-2H] ²⁻			
Pisapia et al. 2020)	1646.2/96.9	[M−2H] ^{2−} /[HOSO ₃] [−]			
	1097.8/1097.8	[M-3H] ³⁻ /[M-3H] ³⁻			
	1097.8/96.9	[M−3H] ^{3−} /[HOSO ₃] [−]			
MTX Unknown1 (Mazzola et al.	1649.8/1649.8	[M-2H] ²⁻ /[M-2H] ²⁻			
2019)	1649.8/96.9	[M−2H] ^{2−} /[HOSO ₃] [−]			
MTX Unknown2 (Mazzola et al.	1641.8/1641.8	[M-2H] ²⁻ /[M-2H] ²⁻			
2019)	1641.8/96.9	[M−2H] ^{2−} /[HOSO ₃] [−]			
Gambierone (Rodriguez et al.	1023.5/1023.5	[M–H] ⁻ /[M–H] ⁻			
2015)		(SG) [M-SO ₃ -H] ⁻ / [M-SO ₃ -H] ⁻			
Sulfo-Gambierones (SG)	1023.5/97.0	[M−H] ⁻ /[HOSO ₃] ⁻			
(Yon <i>et al.</i> 2021)		(SG) [M-SO₃-H] ⁻ /[HOSO₃] ⁻			
	1023.52/899.4	[M−H] [−] /[C ₄₃ H ₆₃ O ₁₈ S] [−]			
	1023.52/963.5	[M−H] [−] /[C ₄₉ H ₇₁ O ₁₇ S] [−]			
44-methylgambierone (Murray	1037.5/1037.5	[M−H] ⁻ /[M−H] ⁻			
et al. 2019)	1037.5/97.0	[M−H]⁻/[HOSO₃]⁻			
	1037.5/899.5	[M-H] ⁻ /[C ₄₃ H ₆₃ O ₁₈ S] ⁻			
	1037.5/977.6	[M-H] ⁻ /[C ₅₀ H ₇₃ O ₁₇ S] ⁻			
Gambieroxide (Watanabe et al.	1193.6/96.9	[M−H] ⁻ /[HOSO ₃] ⁻			
2013)	1193.6/987.6				
	1193.6/1193.6	[M-H] ⁻ /[M-H] ⁻			
Gambieric Acid A (Nagai et al.	1055.1/1037.1	[M-H] ⁻ /[M-H ₂ O-H] ⁻			
1992)	1055.1/1055.1	[M-H] ⁻ /[M-H] ⁻			
Gambieric Acid B (Nagai et al.	1069.1/1069.1	[M–H] ⁻ /[M–H] ⁻			
1992)	1069.1/1051.1	[M-H] ⁻ /[M-H ₂ O-H] ⁻			
Gambieric Acid C (Nagai et al.	1183.7/1183.7	[M–H] ⁻ /[M–H] ⁻			
1992)	1183.7/1165.7	[M–H] ⁻ /[M–H ₂ O–H] ⁻			
Gambieric Acid D (Nagai et al	1197 7/1197 7	[M-H] ⁻ /[M-H] ⁻			
1002)	1107 7/1170 7				

Instrumental parameters	LC mobile phase was 5mM ammonium formate and 0.1% formic acid in H_2O (A) and MeOH (B). The gradient used was: 78% to 88% B in 10 min and holding for 5 min. Return to initial conditions for 2 min					
Compound name	Transitions ion/product ion)	(precursor	Ion species			
C-CTX1/2	1123.6/1105.6		[M-H ₂ O+H] ⁺ /[M-2H ₂ O+H] ⁺			
(Vernoux et al.	1123.6/191.1		[M-H ₂ O+H] ⁺ /fragment			
1997, Estevez <i>et al.</i> 2019, Estevez <i>et al.</i> 2020b)	1141.4/1123.4		[M+H]*/[M-H ₂ O+H]*			
C-CTX3/4	1143.6/1125.6		[M+H]*/[M-H ₂ O+H]*			
(Kryuchkov et al.	1143.6/1089.5		[M+H] ⁺ /[M-3H ₂ O+H] ⁺			
2020)	1143.6/547.3		[M+H] ⁺ /fragment			
	1143.6/141.0		[M+H] ⁺ /fragment			
C-CTX-1159	1159.4/1141.4		[M+H] ⁺ /[M-H ₂ O+H] ⁺			
(Pottier et al. 2002)	1159.4/1123.4		[M+H] ⁺ /[M-2H ₂ O+H] ⁺			
C-CTX-1127	1127.4/1109.4		[M+H] ⁺ /[M-H ₂ O+H] ⁺			
(Pottier et al. 2002)	1127.4/1091.4		[M+H] ⁺ /[M-2H ₂ O+H] ⁺			
I-CTX3/4	1157.4/1139.4		[M+H] ⁺ /[M-H ₂ O+H] ⁺			
(Hamilton et al.	1139.6/1121.6		[M-H ₂ O+H] ⁺ /[M-2H ₂ O+H] ⁺			
2002)	1139.6/1103.4		[M-H ₂ O+H] ⁺ /[M-3H ₂ O+H] ⁺			
	1174.6/1139.6		[M+NH4] ⁺ /[M-H ₂ O+H] ⁺			
I-CTX5 (Diogène	1121.6/1103.6		[M-H ₂ O+H] ⁺ / [M-2H ₂ O+H] ⁺			
et al. 2017)	1121.6/1085.6		[M-H ₂ O+H] ⁺ / [M-3H ₂ O+H] ⁺			
	1156.6/1121.6		[M+NH4] ⁺ /[M-H ₂ O+H] ⁺			
I-CTX6 (Diogène	1155.6/1137.6		[M+H] ⁺ /[M-H ₂ O+H] ⁺			
et al. 2017)	1137.6/1119.6		[M-H ₂ O+H] ⁺ / [M-2H ₂ O+H] ⁺			
	1137.6/1101.6		[M-H ₂ O+H] ⁺ / [M-3H ₂ O+H] ⁺			
	1177.6/1137.6		[M+Na]⁺/[M-H₂O+H]⁺			

Table S 4 MRM transitions used for LC-MS/MS targeted analysis in positive ionization mode (ESI+).

Laboratory	Species	Strain	Reference	Origin	Culture Collection	Container	-Sea water -Salinity -Medium	Temperature -Dark/ Light cycle -Intensity -Light source	-Cell counting - inoculate- harvest -Harvesting procedure -Quenching					
	G. australes	S080911_1	Nishimura et al. (2013)	Kochi, Susaki City, Kutsu, Japan					- Sedgewick rafter chamber or 'drop					
Laboratório de	G. belizeanus	UNR51	Nascimento et al. in prep	Fernando de Noronha Archipelago, Brazil	UNIRIO	-	- filtered and autoclaved		on slide' (100 µL, 3-5 replicates).					
Microalgas Marinhas,	G. belizeanus	UNR58	Nascimento et al. in prep	Fernando de Noronha Archipelago, Brazil	UNIRIO		natural seawater (Arraial do Cabo, Rio de Janeiro state)	-24 °C.	- Harvested 2300 - 3400 cells mL ⁻¹ .					
Departamento de Ecologia e	G. excentricus	UNR-08	Nascimento et al. (2015)	Armação dos Búzios, Rio de Janeiro, Brazil	UNIRIO	flask with vented cap	-Salinity 32 (adjusted)	-12 h light/ 12 h dark -90 μ mol m ⁻² s ⁻¹	-Centrifugation for 15 min (5000g) in 50 mL centrifuge tubes.					
Recursos Marinhos (UNIRIO)	G. excentricus	UNR-07	Nascimento et al. (2015)	Armação dos Búzios, Rio de Janeiro, Brazil	UNIRIO		(by omitting silicate, nickel, vanadium and chromium)	alternated)	-cells were stored at -80°C, then					
	G. silvae	UNR-30	Nascimento et al. in prep	Trindade Island, Brazil	UNIRIO				freeze-dried and stored at -20°C until shipment.					
	G. australes	S080911_1	(Nishimura et al. 2013)	Kochi, Susaki City, Kutsu, Japan					- Beckman Coulter Multisizer™ 3					
National Oceanic	G. belizeanus	ST1F4	(Vandersea et al. 2012)	St. Thomas, U.S. Virgin Islands	CCFHR		-0.2µm filtered seawater (Gulf stream offshore North	-0.2µm filtered seawater (Gulf stream offshore North	-0.2µm filtered seawater (Gulf stream offshore North	-0.2µm filtered seawater (Gulf stream offshore North	-0.2µm filtered seawater (Gulf stream offshore North	-0.2µm filtered seawater (Gulf	27.00	particle counter
and Atmospheric	G. caribaeus	ST1C5	(Vandersea et al. 2012)	St. Thomas, U.S. Virgin Islands	CCFHR							- 27 C		
Administration, National Ocean	G. caribaeus	DIVE1Fa	(Vandersea et al. 2012) Marathon key, Florida, United States CCFHR	CCFHR	- 75 cm ² plastic	Carolina) -Salinity 33	-12 h light/ 12 h dark	- 500 cell mL ⁻¹ – 3000 cell mL ⁻¹						
Service, National Centers for Coastal Ocean Science G. carolir	G. carolinianus	Kenny 6 (KEN6)	(Vandersea et al. 2012)	60 km offshore, Cape Fear North Carolina, United States of America	CCFHR	flask	-modified K medium, sterilized	-90–100 µmoi m s -Fluorescent tubes (Full	 - 20 μm sieve to collect cells, then centrifugation at 3200g for 10 minutes 					
	G. carolinianus	RR0V5		Puerto Rico, United States of America	CCFHR		in microwave and 0.2µm	spectrum						
(NOAA)	G. excentricus	Bahamas Gam 5 (BG5)		Freeport, Grand Bahama Island	CCFHR		filtered		-cells were stored at -80°C until shipment and freeze-dried upon arrival					
	G. australes	S080911_1	(Nishimura et al. 2013)	Kochi, Susaki City, Kutsu, Japan				-25 °C	- Beckman Coulter Multisizer™ 3					
	G. excentricus	Pulley Ridge Gam 2 (PRG2)	(Litaker et al. 2017)	Pulley Ridge, Florida, United States of America	CCFHR		-Sterilized natural seawater		-500 cell mL ⁻¹ - 2000 cell mL ⁻¹					
Ifremer, Laboratoire METALG (IFR)	G. excentricus	Bahamas Gam 5 (BG5)		Freeport, Grand Bahama Island	CCFHR	- 225 cm² plastic vented cap culture flask	- 225 cm² plastic vented cap culture flask	(English Channel) -Salinity 34.5	-12 h light/ 12 h dark -70-90 μmol m ⁻² s ⁻¹ Fluorescent tubes (cool-	-Harvesting using a 20 μm sieve to reduce volume then centrifugation				
	G. excentricus	UNR-08	(Nascimento et al. 2015)	Armação dos Búzios, Rio de Janeiro, Brazil	UNIRIO		-11-01	white and pink)	-Quenching with liquid nitrogen then freeze-drying and stored at -20°C					
	G. australes	S080911_1	(Nishimura et al. 2013)	Kochi, Susaki City, Kutsu, Japan					- Beckman Coulter Multisizer™ 3					
Instituto Español	G. carolinianus	VGO 1197	(Rodríguez et al. 2017)	Alcalá, Tenerife, Spain	CCVIEO		- 0.2um filtered seawater	-25 °C	particle counter -500 cell mL ⁻¹ – 2000 cell mL ⁻¹					
de Oceanografía, Centro Ocenográfico de Vigo (IEO)	G. excentricus	VG0791	(Fraga <i>et al.</i> 2011)	Punta Hidalgo, Tenerife, Canary Islands, Spain	CCVIEO	- 1000 mL Erlenmeyer flask	(Gulf stream) -Salinity 32	-12 h light/ 12 h dark -90–100 μmol m ⁻² s ⁻¹ -Fluorescent tubes (Full	-Harvesting using a 20 μm sieve to reduce volume then centrifugation 1000 g for 5 min					
	G. silvae	VG01358	(Rodríguez et al. 2017)	La Gomera, Valle Rey harbor, Canary Islands	CCVIEO		- moaified K/2-medium-Si	Spectrum)	- -Quenching with liquid nitrogen then freeze at -80°C then freeze-dried and maintain at -20°C before shipment.					

Table S 5 Strains provided by each laboratory, culture conditions and harvesting methods.

UNIRIO: Rio de Janeiro State, Federal University, Brazil CCFHR: National Oceanographic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries Habit Research, Beaufort, NC, USA CCVIEO: Culture Collection of Harmful Microalgae of IEO, Centro de Vigo, Vigo, Spain

Table S 6 Number of cells, dry mass and final concentration in for each replicate.

Laboratory	Species	Strains	Counting Method	Replicate	Number of cells (x10 ⁶)	Dry mass of extracts* (mg)	Final mass concentration of
			-			57.0	extracts (mg mL ⁻¹)
				1	1.1	57.0	13.0
	G australes	S080911_1		3	1.4	99.3	20.7
	0. 4461/4/00	0000011_1		4	1.3	127.3	24.5
			Codgowiek rofter	5	1.8	94.8	13.2
		LINR 08	- Sedgewick ratter	1	0.8	26.8	8.0
UNIRIO	G. excentricus		slide' (100 µL, 3-5	2	0.4	12.9	8.7
	C ailuraa	UNR 07	replicates).	1	0.1	/	/
	G. Slivae	UNK 30		1	0.2	12.0	33
		UNR 51		2	0.5	16.4	8.9
G. b	G. belizeanus			3	0.1	6.2	14.1
		LINE 58		1	0.3	11.8	9.2
		01111 30		2	0.3	10.6	10.2
				1	2.8	83.4	7.4
	G australos	S080011 1		2	2.8	59.1 67.9	5.5
	G. australes	3000911_1		4	2.5	68.0	6.8
				5	2.5	62.6	6.3
				1	1.1	37.4	8.5
				2	1.2	46.3	9.6
		Bahamas Gam 5		3	1.4	47.5	8.5
			- Beckman Coulter	4	1.4	44.7	8.0
IFR			Multisizer [™] 3 particle	5	1.5	46.6	7.8
			counter	2	1.1	44.5	75
	G excentricus	Pulley Ridge Gam		3	1.4	39.2	8.9
	er encontribue	2		4	1.2	47.9	10.0
				5	1.5	45.6	7.6
				1	1.9	52.9	7.0
		UNR 08		2	1.5	41.1	6.9
		UNIX UU		3	1.5	40.7	6.8
				4	1.5	43.4	7.2
				5 1	1.3	49.0	9.4
				2	2.3	121.3	13.2
	G. australes	S080911_1 VGO 1197		3	2.1	168.5	20.1
				4	2.4	97.5	10.2
				5	2.7	133.4	12.4
	G. carolinianus			1	2.1	42.8	5.1
				2	2.2	45.0	5.1
				3	2.5	49.2	4.9
			- Beckman Coulter Multisizer™ 3 particle	5	2.1	55.6	9.4
IEO			counter	1	1.1	35.0	8.0
				2	1.0	37.5	9.4
	G. excentricus	VGO 791		3	1.0	63.7	15.9
				4	1.0	40.7	10.2
				5	1.2	39.2	8.2
				1	2.0	38.9	4.9
	G silvae	VGO 1358		3	2.3	35.4	4.0
	01011100	VGO 1556		4	2.6	41.0	3.9
				5	2.9	36.8	3.2
				1	1.1	32.4	7.4
		Kenny 6		2	1.0	33.5	8.4
		i toriniy o		3	1.1	30.8	7.0
	G. carolinianus		-	4	1.4	32.5	0.0
				2	#	25.6	5.1
		RROV5		3	1.2	35.4	7.4
				4	1.4	39.4	7.0
				1	1.1	74.1	17.3
				2	1.1	38.0	9.0
	G. excentricus	Bahamas Gam 5		3	1.1 <u>"</u>	65.0	14.4
			- Beckman Coultor	4 5	# #	50.U 68.5	0.3
1			- Becknan Courter Multisizer™ 3 narticle	1	# 11	30.1	71
NOAA			counter	2	1.1	35.4	8.1
	G. belizeanus	ST1F4		3	1.0	38.6	9.7
				4	1.1	28.4	6.5
			-	5	1.7	50.5	7.4
				1	1.0	38.2	9.5
		ST1CF		2	1.2	35.5	(.4
		51105		4	1.0	35.5	8.9
				5	1.0	43.7	10.9
	G. caribaeus		1	1	1.0	56.0	14.0
				2	1.1	69.8	15.9
		Dive1 F4		3	1.2	39.9	8.3
				4	1.4	77.0	13.8
1	1		1	5	1.2	57.6	12.0

* Dry mass was estimated by evaporating 1/3 of each sample. # When cell number was missing, it was estimated at 1x10⁶

Table S 7 Limits of detection and quantification of gambierone, 44-methylgambierone (determined in this study) and MTX1 (from (Pisapia et al. 2017)) in ng mL-1 and pg cell-1.

Toxin	transition	LOD (ng mL ⁻¹)	LOQ (ng mL ⁻¹)	LOD* (pg cell ⁻¹)	LOQ* (pg cell ⁻¹)
Gambierone	1023.5/1023.5	1	2	0.004	0.008
44-methylgambierone	1037.5/1037.5	1	2	0.004	0.008
MTX1	1689.8/1689.8	640	2120	2.56	8.48

* in a methanolic 90% extract corresponding to 250 000 cells $mL^{\text{-}1}$

Table S 8 Steps and parameters for peak picking and grouping procedure used in MZmine 2.53.

Steps	Parameters	Value for ESI+	Value for ESI-
	Retention time range (min)	0.46-12.0	0.46-12.0
	MS level	1	1
1) Raw data methods > Feature	Mass detector	Centroid	Centroid
detection > Mass detection	Noise (counts)	5000	1000
2) Raw data method > Peak	Min groupe size		
detection > ADAP	(number of scans)	5	5
Chromatogram builder	Group intensity threshold		
	(counts)	10000	2000
	Min highest intensity (counts)	5000	1000
	m/z tolerance	0.001 <i>m/z</i> or 5.0 ppm	0.001 <i>m/z</i> or 5.0 ppm
3) Feature list methods > Peak	S/N threshold	10	10
detection > Chromatogram	S/N estimator	Intensity window SN	Intensity window SN
deconvolution> Wavelets	Min feature height (counts)	3000	1000
(ADAP)	Coefficient/ area threshold	100	100
	Peak duration range (min)	0.02-2.0	0.02-2.0
	RT wavelet range	0.02-0.2	0.02-0.2
4) Feature list methods	m/z tolerance	0.001 <i>m/z</i> or 5.0 ppm	0.001 <i>m</i> / <i>z</i> or 5.0 ppm
>Isotopes > Isotope peak grouper	Retention time tolerance (min)	0.05	0.05
	Monotonic shape	false	false
	Representative isotope	Lowest m/z	Lowest m/z
5) Feature list methods	Filter mode	OLD AVERAGE	OLD AVERAGE
>Filtering > Duplicate peak filter	m/z tolerance	0.001 <i>m/z</i> or 5.0 ppm	0.001 <i>m</i> / <i>z</i> or 5.0 ppm
	RT tolerance (min)	0.05	0.05
6) Feature list methods >	m/z tolerance	0.001 <i>m/z</i> or 5.0 ppm	0.001 <i>m/z</i> or 5.0 ppm
calibration	RT tolerance (min in absolute)	0.1	0.1
	Minimum standard intensity (counts)	2500	1000
7) Feature list methods >	m/z tolerance	0.001 <i>m/z</i> or 5.0 ppm	0.001 <i>m</i> / <i>z</i> or 5.0 ppm
Alignment >Join aligner	Weight for m/z	1	1
	RT tolerance (min in absolute)	0.1	0.1
	Weight for RT	1	1
8) Peak list methods >Gap filling	Intensity tolerance	30.0%	30.0%
> Peak finder	m/z tolerance	0.001 <i>m/z</i> or 5.0 ppm	0.001 m/z or 5.0 ppm
	RT tolerance	0.08	0.08
	RT correction	True	True
9) Peak list methods >Filtering >	Filter mode	OLD AVERAGE	OLD AVERAGE
Duplicate peak filter	m/z tolerance	0.001 <i>m/z</i> or 5.0 ppm	0.001 m/z or 5.0 ppm
	RT tolerance (min)	0.05	0.05

Table S 9 Average peak area (n=2) of standards injected at three concentrations and comparison of response areas between Gambierones and MTX1

Concentration of standards (ng mL ⁻¹)	Average peak area (n=2) 1023.5/1023.5	ge peak Average peak Average peak Ratio (n=2) area (n=2) area (n=2) Gamierone/ (1023.5 1037.5/1037.5 1689.8/1689.8 MTX1		Ratio 44-Methyl- gambierone/MTX1	
200	977 895	952 935	24 731	40	39
400	1 403 000	1 388 200	49 257	28	28
800	4 065 100	4 256 150	98 381	41	43
				Average ratio	Average ratio
				36.5	36.5

Figure S 1 Overlay of the EICs resulting from the sum of MRM transitions for each molecule as described in Table S3 acquired in negative ionization mode for standards of gambierone, 44-methylgambierone, MTX1 and algal extracts provided by each laboratory: (IFR) METALG Laboratory, Ifremer; (NOAA) Beaufort Laboratory, National Oceanic and Atmospheric Administration; (UNIRIO) Marine Microalgae Laboratory, Federal University of Rio de Janeiro and (IEO) Spanish Institute of Oceanography, Vigo Oceanographic.

Figure S 2 Overlay of the EICs resulting from the sum of MRM transitions for each molecule as described in Table S4 acquired in positive ionization mode for algal extracts provided by each laboratory: (IFR) METALG Laboratory, Ifremer; (NOAA) Beaufort Laboratory, National Oceanic and Atmospheric Administration; (UNIRIO) Marine Microalgae Laboratory, Federal University of Rio de Janeiro and (IEO) Spanish Institute of Oceanography, Vigo Oceanographic.

Figure S 3. Partial least square – discriminant analysis score plot of targeted analysis data acquired on the pool per strain per laboratory (based on 298 features manually integrated, R^2 : 0.97; Q^2 : 0.83; p-value 0.02 with 100 permutations). The color coding represents the species.

Figure S 4. ComDim score plot (PC1 to PC5) of untargeted analysis data acquired using full scan mode in both polarities (log-transformed and pareto-scaled data). The color coding represents the species while the symbol shapes represent the laboratory.

Figure S 5. Multi-blocks partial least square – discriminant analysis score plot of untargeted analysis data acquired using full scan mode in both polarities (log-transformed and pareto-scaled data). The color coding represents the species while the symbol shapes represent the laboratory.

Supplementary Part 1. Strategies to remove the laboratory effect

As interlaboratory variations impair exploration of the data by ComDim, it was decided to tentatively remove such an effect from the data to confirm the species effect on the clustering. First, attempts to correct the data according only to *G. australes* interlaboratory variations were unsuccessful (data not shown) indicating that the impact of culture condition variation is at least species dependent. An attempt to remove variables related to the observed interlaboratory variation after selection by PLS-DA removed more than half of the features of the data matrices, and thus was not retained. The use of ANOVA decomposition of variance (Gémin *et al.* 2021) was not possible because it requires equal group size, which was not the case in the present study. Finally, as PLS-DA was able to accurately discriminate sample origin, orthogonal signal correction (OSC) was attempted. This chemometric approach was previously successfully applied in a few metabolomic studies (Bony *et al.* 2016, He *et al.* 2022). OSC allows for extracting a sub matrix that is highly related to a specific effect, and consequently provides a residual orthogonal matrix where this specific effect is removed. The OSC was thus performed to remove the interlaboratory effect from the original data matrix, providing two new data matrices: one related to the interlaboratory effect and one orthogonal (formerly the residue) where such effect is reduced. The latter residual matrix was finally explored to highlight species differences.

Supplementary Part 2. Chemical diversity of natural products

The untargeted approach performed in this study led us to build a large MN providing an informative overview of the different molecular families of compounds that can be produced by the 5 species of *Gambierdiscus* considered (Table S10).

In this study, 18 compounds were putatively identified by GNPS using MolNetEnhancer (Ernst *et al.* 2019) with a cosine score higher than 0.9 and an accurate mass error inferior to 10 ppm (Table 2).

Table S 10. Putative annotation of the features with GNPS with the cluster number, Molecular families, node ID, putative compound name, precursor mass, retention time, library mass, delta ppm, cosine score and number of shared peaks (i.e. fragment ions).

Molecular	Node	Dutative compound name	Precursor	Rt	Library	Delta	Cosine	Shared
families	ID	Futative compound name	mass	(sec)	Mass	ppm	score	peaks
Betain lipids	P-507	Lyso DGCC (20:5)	536.358	484.0	536.36	1.48	0.99	7
Betain lipids	P-3610	DGCC (38:7)	798.587	637.3	798.59	0.53	0.97	11
Betain lipids	P-671	Lyso DGCC (22:6)	562.374	526.9	562.37	0.54	0.97	7
Aliphatic	D 274	monoalaidin	220.280	642.0	220.20	2.07	0.08	11
compounds	1-3/4	monoeraidm	559.289	042.0	559.29	2.91	0.98	11
Aliphatic	P-407	$\Delta FG(0.14.1/16.1)$	523 471	782 3	523 47	1 28	0.96	10
compounds	1-407	ALO(0-14.1/10.1)	525.471	102.5	525.47	1.20	0.70	10
Aliphatic	P-1670	1-Hexadecanovl-sn-glycerol	331 284	532.8	331.28	0.92	0.96	9
compounds	1 10/0	i ilonadeealloji shi gijeeloi	331.201	552.0	551.20	0.72	0.90	, ,
Aliphatic	P-235	1-Palmitoyl-2-oleoyl-sn-	577.519	638.7	577.52	5.07	0.96	11
compounds		glycerol				5.07	0.90	11
Aliphatic	P-2800	Glycerol 1-myristate	285.242	770.2	285.24	0.32	0.94	10
compounds		- J						
Aliphatic	P-181	AEG(0-16:2/16:0)	551.503	730.4	551.50	0.77	0.92	13
compounds								
Aliphatic	P-640	AEG(0-16:2/18:2)	575.503	704.4	575.50	0.53	0.92	12
compounds								
Aliphatic	P-1025	DAG (16:0/18:1)	612.556	773.3	612.56	0.10	0.90	15
compounds								
Chlorophyll								
degradation	P-4608	Pheophytin a	871.572	603.6	871.58	1.05	0.96	11
product								
Polyphenols	P-18	Gossypol derivative	415.212	448.7	415.21	0.73	0.99	7
Single node	P-6228	Spermine	203.223	29.5	203.22	0.97	0.99	7
Single node	P-2581	Arginine	175.119	35.6	175.12	0.61	0.99	7
Single node	P-5188	4-Guanidinobutyric acid	146.092	48.9	146.09	3.45	0.98	7
Single node	P-961	Dimethylsulfoniopropionate	135.047	69.8	135.05	3.73	0.95	4
Single node	P-3899	Nicotinamide adenine dinucleotid	664.115	46.2	664.12	2.39	0.93	8

Among the putatively identified compounds, some of them were expected to be produced by photosynthetic micro-algae such as lipids, carbohydrates, amino acids or peptides and pigments but the putative identification of other compounds was more surprising. The lipids and lipid-like compounds were identified with different sub-structure types such as betain lipids (Figure 6, cluster 1): diacylglyceryl carboxy-hydroxy-methylcholines (DGCC) and Lyso-DGCC, mono-acylglycerols (Figure 6, cluster 10): monoelaidin, 1-Hexadecanoyl-sn-glycerol, 1-Palmitoyl-2-oleoyl-sn-glycerol and Glycerol 1-myristate or acyl/diacyl-glycerophopholipids (Figure 6, cluster 2) (AEG and DAG). The high presence of lipids in the MN is consistent with the extraction and analysis method well adapted for lipophilic compounds. In addition, micro-algae are known to be able to adapt to a variety of environmental conditions and one of the key factors explaining this adaptability is the production of a wide variety of lipids that are used for cell membrane synthesis or as storage products (Eichenberger *et al.* 1997, Guschina *et al.* 2006).

A large cluster of chlorophyll degradation products was observed in the MN (Figure 6 cluster 4) with the putative identification of pheophytin a (cosine score 0.96, 11 shared peaks) however, no other pigments were identified by GNPS in contrary to the pigments reported by Malto et al., (Malto *et al.* 2022).

A polyphenolic compound related to gossypol was also identified, this compound is a natural product extracted from cotton plant and was unlikely to be present in *Gambierdiscus* extracts (Zeng *et al.* 2019). In the single nodes, several compounds were identified with GNPS, e.g. spermine, a polyamine demonstrated as important in the synthesis of nucleic acids and proteins in marine algae (Hamana *et al.* 1982), 4-Guanidinobutyric acid, an amino acid derivative widely found in eukaryotes, dimethylsulfoniopropionate (DMSP), a compound produced by many species of marine phytoplankton that can act as an osmoregulator but this latter function was not confirmed in *Gambierdiscus* (Gwinn *et al.* 2019) and finally the Nicotinamide adenine dinucleotide (NAD) a co-enzyme essential in cell metabolism (Burlacot *et al.* 2019).

References

Boente-Juncal, A., M. Alvarez, A. Antelo, I. Rodriguez, K. Calabro, C. Vale, O. P. Thomas and L. M. Botana (2019). "Structure Elucidation and Biological Evaluation of Maitotoxin-3, a Homologue of Gambierone, from Gambierdiscus belizeanus." <u>Toxins</u> **11**(2): 19.https://doi.org/10.3390/toxins11020079

Bony, N. F., D. Libong, P. Champy, A. K. Malan and P. Chaminade (2016). "Établissement du profil chromatographique liquide non aqueux des métabolites phytochimiques apolaires des phytomédicaments." <u>Comptes Rendus Chimie</u> **19**(7): 863-875.https://doi.org/10.1016/j.crci.2016.02.010 Burlacot, A., G. Peltier and Y. Li-Beisson (2019). "Subcellular Energetics and Carbon Storage in Chlamydomonas." <u>Cells</u> **8**(10): 1154.https://doi.org/10.3390/cells8101154

Diogène, J., L. Reverté, M. Rambla-Alegre, V. del Río, P. de la Iglesia, M. Campàs, O. Palacios, C. Flores, J. Caixach, C. Ralijaona, I. Razanajatovo, A. Pirog, H. Magalon, N. Arnich and J. Turquet (2017). "Identification of ciguatoxins in a shark involved in a fatal food poisoning in the Indian Ocean." <u>Scientific Reports</u> 7(1): 8240.https://doi.org/10.1038/s41598-017-08682-8

Eichenberger, W. and C. Gribi (1997). "Lipids of Pavlova lutheri: Cellular site and metabolic role of DGCC." <u>Phytochemistry</u> **45**(8): 1561-1567.https://doi.org/10.1016/S0031-9422(97)00201-X

Ernst, M., K. B. Kang, A. M. Caraballo-Rodríguez, L.-F. Nothias, J. Wandy, C. Chen, M. Wang, S. Rogers, M. H. Medema, P. C. Dorrestein and J. J. J. van der Hooft (2019). "MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools." <u>Metabolites</u> **9**(7): 144.<u>https://doi.org/10.3390/metabo9070144</u>

Estevez, P., D. Castro, J. M. Leão-Martins, M. Sibat, A. Tudó, R. Dickey, J. Diogene, P. Hess and A. Gago-Martinez (2021). "Toxicity Screening of a Gambierdiscus australes Strain from the Western Mediterranean Sea and Identification of a Novel Maitotoxin Analogue." <u>Marine Drugs</u> **19**(8): 460.<u>https://doi.org/10.3390/md19080460</u>

Estevez, P., D. Castro, J. M. Leao, T. Yasumoto, R. Dickey and A. Gago-Martinez (2019). "Implementation of liquid chromatography tandem mass spectrometry for the analysis of ciguatera fish poisoning in contaminated fish samples from Atlantic coasts." Food Chemistry 280: 8-14.<u>https://doi.org/10.1016/j.foodchem.2018.12.038</u>

Estevez, P., M. Sibat, J. Leão-Martins, À. Tudó, M. Rambla-Alegre, K. Aligizaki, J. Diogène, A. Gago-Martinez and P. Hess (2020a). "Use of Mass Spectrometry to Determine the Diversity of Toxins Produced by Gambierdiscus and Fukuyoa Species from Balearic Islands and Crete (Mediterranean Sea) and the Canary Islands (Northeast Atlantic)." <u>Toxins</u> **12**: 305.<u>https://doi.org/10.3390/toxins12050305</u>

Estevez, P., M. Sibat, J. M. Leao-Martins, P. R. Costa, A. Gago-Martinez and P. Hess (2020b). "Liquid Chromatography Coupled to High-Resolution Mass Spectrometry for the Confirmation of Caribbean Ciguatoxin-1 as the Main Toxin Responsible for Ciguatera Poisoning Caused by Fish from European Atlantic Coasts." <u>Toxins</u> **12**(4): 7.https://doi.org/10.3390/toxins12040267

Fraga, S., F. Rodríguez, A. Caillaud, J. Diogène, N. Raho and M. Zapata (2011). "Gambierdiscus excentricus sp. nov. (Dinophyceae), a benthic toxic dinoflagellate from the Canary Islands (NE Atlantic Ocean)." <u>Harmful Algae</u> **11**: 10-22.https://doi.org/10.1016/j.hal.2011.06.013

Gémin, M.-P., S. Bertrand, V. Séchet, Z. Amzil and D. Réveillon (2021). "Combined effects of temperature and light intensity on growth, metabolome and ovatoxin content of a Mediterranean Ostreopsis cf. ovata strain." <u>Harmful Algae</u> **106**: 102060.<u>https://doi.org/10.1016/j.hal.2021.102060</u>

Guschina, I. A. and J. L. Harwood (2006). "Lipids and lipid metabolism in eukaryotic algae." Progress in Lipid Research 45(2): 160-186.https://doi.org/10.1016/j.plipres.2006.01.001

Gwinn, J. K., A. Robertson and R. P. Kiene (2019). "Effect of Salinity on DMSP Production in Gambierdiscus belizeanus (Dinophyceae)." Journal of Phycology: 11. https://doi.org/10.1111/jpy.12923

Hamana, K. and S. Matsuzaki (1982). "Widespread occurrence of norspermidine and norspermine in eukaryotic algae." <u>The Journal of Biochemistry</u> **91**(4): 1321-1328.https://doi.org/10.1093/oxfordjournals.jbchem.a133818

Hamilton, B., M. Hurbungs, A. Jones and R. J. Lewis (2002). "Multiple ciguatoxins present in Indian Ocean reef fish." <u>Toxicon</u> 40(9): 1347-1353.https://doi.org/10.1016/S0041-0101(02)00146-0

He, G. Y., X. Hou, M. Han, S. T. Qiu, Y. Li, S. D. Qin and X. Chen (2022). "Discrimination and polyphenol compositions of green teas with seasonal variations based on UPLC-QTOF/MS combined with chemometrics." Journal of Food Composition and Analysis **105**.https://doi.org/10.1016/j.jfca.2021.104267

Kryuchkov, F., A. Robertson, C. O. Miles, E. M. Mudge and S. Uhlig (2020). "LC–HRMS and Chemical Derivatization Strategies for the Structure Elucidation of Caribbean Ciguatoxins: Identification of C-CTX-3 and -4." <u>Marine Drugs</u> **18**(4): 182.https://doi.org/10.3390/md18040182

Lewis, R. J., M. J. Holmes, P. F. Alewood and A. Jones (1994). "Ionspray mass spectrometry of ciguatoxin-1, maitotoxin-2 and -3, and related marine polyether toxins." <u>Natural Toxins</u> **2**: 56-63.https://doi.org/10.1002/nt.2620020203

Litaker, R. W., W. C. Holland, D. R. Hardison, F. Pisapia, P. Hess, S. R. Kibler and P. A. Tester (2017). "Ciguatoxicity of Gambierdiscus and Fukuyoa species from the Caribbean and Gulf of Mexico." <u>PLoS One</u> **12**(10): e0185776.https://doi.org/10.1371/journal.pone.0185776

Malto, Z. B. L., G. A. Benico, J. D. Batucan, J. Dela Cruz, M. L. J. Romero, R. V. Azanza and L. A. Salvador-Reyes (2022). "Global Mass Spectrometric Analysis Reveals Chemical Diversity of Secondary Metabolites and 44-Methylgambierone Production in Philippine Gambierdiscus Strains." <u>Frontiers in Marine Science</u> 8. <u>https://doi.org/10.3389/fmars.2021.767024</u>

Mazzola, E. P., J. R. Deeds, W. L. Stutts, C. D. Ridge, R. W. Dickey, K. D. White, R. T. Williamson and G. E. Martin (2019). "Elucidation and partial NMR assignment of monosulfated maitotoxins from the Caribbean." <u>Toxicon</u> **164**: 44-50.https://doi.org/10.1016/j.toxicon.2019.03.026

Mudge, E. M., C. O. Miles, L. Ivanova, S. Uhlig, K. S. James, D. L. Erdner, C. K. Fæste, P. McCarron and A. Robertson (2023). "Algal ciguatoxin identified as source of ciguatera poisoning in the Caribbean." <u>Chemosphere</u>: 138659.<u>https://doi.org/10.1016/j.chemosphere.2023.138659</u>

Mudge, E. M., A. Robertson, A. K. Leynse, P. McCarron and C. O. Miles (2022). "Selective extraction of gambierone and related metabolites in Gambierdiscus silvae using m-aminophenylboronic acid–agarose gel and liquid chromatography–high-resolution mass spectrometric detection." Journal of Chromatography B **1188**: 123014.https://doi.org/10.1016/j.jchromb.2021.123014

Murata, M., H. Naoki, T. Iwashita, S. Matsunaga, M. Sasaki, A. Yokoyama and T. Yasumoto (1993). "structure of maitotoxin." Journal of the <u>American Chemical Society</u> **115**(5): 2060-2062.https://doi.org/10.1021/ja00058a075

Murray, J. S., S. C. Finch, J. Puddick, L. L. Rhodes, D. T. Harwood, R. van Ginkel and M. R. Prinsep (2021). "Acute Toxicity of Gambierone and Quantitative Analysis of Gambierones Produced by Cohabitating Benthic Dinoflagellates." <u>Toxins</u> **13**(5): 333.<u>https://doi.org/10.3390/toxins13050333</u>

Murray, J. S., A. I. Selwood, D. T. Harwood, R. van Ginkel, J. Puddick, L. L. Rhodes, F. Rise and A. L. Wilkins (2019). "44-Methylgambierone, a new gambierone analogue isolated from Gambierdiscus australes." <u>Tetrahedron Letters</u> **60**(8): 621-625.<u>https://doi.org/10.1016/j.tetlet.2019.01.043</u>

Nagai, H., M. Murata, K. Torigoe, M. Satake and T. Yasumoto (1992). "Gambieric acids, new potent antifungal substances with unprecedented polyether structures from a marine dinoflagellate Gambierdiscus toxicus." <u>Journal of Organic Chemistry</u> **57**(20): 5448-5453.<u>https://doi.org/10.1021/jo00046a029</u>

Nascimento, S. M., G. Melo, F. Salgueiro, B. D. Diniz and S. Fraga (2015). "Morphology of Gambierdiscus excentricus (Dinophyceae) with emphasis on sulcal plates." <u>Phycologia</u> 54(6): 628-639.https://doi.org/10.2216/15-61.1

Nishimura, T., S. Sato, W. Tawong, H. Sakanari, K. Uehara, M. M. Shah, S. Suda, T. Yasumoto, Y. Taira, H. Yamaguchi and M. Adachi (2013). "Genetic diversity and distribution of the ciguatera-causing dinoflagellate Gambierdiscus spp. (Dinophyceae) in coastal areas of Japan." <u>PLoS One</u> **8**(4): e60882.<u>https://doi.org/10.1371/journal.pone.0060882</u>

Pisapia, F., M. Sibat, C. Herrenknecht, K. Lhaute, G. Gaiani, P. J. Ferron, V. Fessard, S. Fraga, S. M. Nascimento, R. W. Litaker, W. C. Holland, C. Roullier and P. Hess (2017). "Maitotoxin-4, a Novel MTX Analog Produced by Gambierdiscus excentricus." <u>Marine Drugs</u> 15(7): 31.<u>https://doi.org/10.3390/md15070220</u>

Pisapia, F., M. Sibat, R. Watanabe, C. Roullier, T. Suzuki, P. Hess and C. Herrenknecht (2020). "Characterization of maitotoxin-4 (MTX4) using electrospray positive mode ionization high-resolution mass spectrometry and UV spectroscopy." <u>Rapid Communications in Mass Spectrometry</u> **n/a**(n/a): e8859.https://doi.org/10.1002/rcm.8859

Pottier, I., J. P. Vernoux, A. Jones and R. J. Lewis (2002). "Characterisation of multiple Caribbean ciguatoxins and congeners in individual specimens of horse-eye jack (Caranx latus) by high-performance liquid chromatography/mass spectrometry." <u>Toxicon</u> **40**(7): 929-939.https://doi.org/10.1016/S0041-0101(02)00088-0

Rhodes, L., T. Harwood, K. Smith, P. Argyle and R. Munday (2014). "Production of ciguatoxin and maitotoxin by strains of Gambierdiscus australes, G. pacificus and G. polynesiensis (Dinophyceae) isolated from Rarotonga, Cook Islands." <u>Harmful Algae</u> **39**(0): 185-190.http://dx.doi.org/10.1016/j.hal.2014.07.018

Rodríguez, F., S. Fraga, I. Ramilo, P. Rial, R. I. Figueroa, P. Riobó and I. Bravo (2017). ""Canary Islands (NE Atlantic) as a biodiversity 'hotspot' of Gambierdiscus: Implications for future trends of ciguatera in the area"." <u>Harmful Algae</u> **67**: 131-143.https://doi.org/10.1016/j.hal.2017.06.009 Rodriguez, I., G. Genta-Jouve, C. Alfonso, K. Calabro, E. Alonso, J. A. Sanchez, A. Alfonso, O. P. Thomas and L. M. Botana (2015). "Gambierone, a Ladder-Shaped Polyether from the Dinoflagellate Gambierdiscus belizeanus." <u>Organic Letters</u> **17**(10): 2392-2395.https://doi.org/10.1021/acs.orglett.5b00902

Vandersea, M. W., S. R. Kibler, W. C. Holland, P. A. Tester, T. F. Schultz, M. A. Faust, M. J. Holmes, M. Chinain and R. W. Litaker (2012). "Development of semi-quantitative PCR assays for the detection and enumeration of Gambierdiscus species (Gonyaulacales, Dinophyceae)." Journal of Phycology **48**(4): 902-915. <u>https://doi.org/10.1111/j.1529-8817.2012.01146.x</u>

Vernoux, J.-P. and R. J. Lewis (1997). "Isolation and characterisation of Caribbean ciguatoxins from the horse-eye jack (Caranx latus)." <u>Toxicon</u> **35**(6): 889-900.https://doi.org/10.1016/S0041-0101(96)00191-2

Watanabe, R., H. Uchida, T. Suzuki, R. Matsushima, M. Nagae, Y. Toyohara, M. Satake, Y. Oshima, A. Inoue and T. Yasumoto (2013). "Gambieroxide, a novel epoxy polyether compound from the dinoflagellate Gambierdiscus toxicus GTP2 strain." <u>Tetrahedron</u> **69**(48): 10299-10303.https://doi.org/10.1016/j.tet.2013.10.022

Yon, T., M. Sibat, E. Robert, K. Lhaute, W. C. Holland, R. W. Litaker, S. Bertrand, P. Hess and D. Réveillon (2021). "Sulfo-Gambierones, Two New Analogs of Gambierone Produced by Gambierdiscus excentricus." <u>Marine Drugs</u> **19**(12): 657.<u>https://doi.org/10.3390/md19120657</u>

Zapata, M., S. Fraga, F. Rodríguez and J. L. Garrido (2012). "Pigment-based chloroplast types in dinoflagellates." <u>Marine Ecology Progress Series</u> **465**: 33-+.<u>https://doi.org/10.3354/meps09879</u>

Zeng, Y., J. Ma, L. Xu and D. Wu (2019). "Natural Product Gossypol and its Derivatives in Precision Cancer Medicine." <u>Current Medicinal</u> <u>Chemistry</u> **26**(10): 1849-1873.https://doi.org/10.2174/0929867324666170523123655