Reactivity and bioconcentration of stable cesium in a hyperturbid fluvial-estuarine continuum: a combination of field observations and geochemical modelling

Teba Gil-Díaz^{a,b*}, Frédérique Pougnet^a, Maëva Labassa^a, Lionel Dutruch^{a,c}, Melina Abdou^a, Alexandra Coynel^a, Frédérique Eyrolle^d, Nicolas Briant^e, Joël Knoery^e, Jörg Schäfer^a

^aUniv. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France; ^bCurrently at: Institute of Applied Geosciences, Karlsruhe Institute of Technology, Germany; ^cCurrently at: Université de Rennes, UMR CNRS 6118, Campus Beaulieu 35000 Rennes, France; ^dInstitut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV, STAAR/LRTA, BP 3, 13115 Saint-Paul-lez-Durance, France; ^eIfremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France. *Corresponding author: teba.gil-diaz@kit.edu

Figure S1: Cs content in whole body tissue of wild oysters (Cs_b , crosses, n = 55). Grey area shows Cs_b variability for soft tissue masses < 200 mg. Inset contains the average distribution of Cs (pooled n = 5) in four organs from wild oysters in La Fosse (LF 85km).

Figure S2: Visual scheme of water flow regimes used during modelling approaches. The model names (Model 2 and Model 3) are to be compared with descriptions in Table 1.

Figure S3: Comparison between Cs_p and Th_p concentrations from the estuarine system (along the salinity gradient during the MGTS campaigns between Bdx_0km and C_{110km} , as well as at the estuary mouth during the 24h cycle, site C_{110km}). In grey, values from the freshwater endmember at La Réole (LR_Gar-70km) are also included for two years as an example.

Figure S4: Example of one of the outcomes from Model 3 during simulated drought conditions. The column is originally full of freshwater and the seawater endmember starts from the righthand side to flow inside the column. Different steps of this inflow are plotted simultaneously, each of them indicated by the gradient of the ionic strength (IS), where seawater is represented via IS = 0.7 M. The graph represents the fraction of occupied sites at the modelled clay minerals (Illite: CsIII_f, CsIII_ii, CsIII_p; Smectite: CsSmec_f and CsSmec_p) and dissolved species (Cs⁺, CsCI) compared to total Cs in the system (i.e., Cs_d + Cs_p, which changes every time new equilibriums are reached within the column, with every fresh-/seawater inflow).

Figure S5: Average ± SD log₁₀ Kd values per month during 4-years monitoring at five fluvial sites in the Lot-Garonne watershed. Shaded areas are to guide the eye. Fluvial sites correspond to: La Réole (LR_Gar-70km), Port-Sainte-Marie (PSM_Gar-135km), Temple (T_Lot-135km), Boisse-Penchot (BP_Lot-235km) and Riou Mort (RM_Rio-250km).

Figure S6: Dependency of log₁₀ Kd values and water temperature at Boisse Penchot (a,b; BP_Lot-235km) and Temple (c,d; T_Lot-135km). Data for Sb and As (a,c) from a 14-year time series (2003 – 2016; Gil-Díaz et al. 2018) as well as for Cs and Te (b,d) from a 4-year time series (2014-2017; this work and Gil-Díaz et al. 2019) are shown.

Table S1: Composition of the simulated solutions used during the modelling approach. Freshwater and seawater solutions are simplified via the following elemental composition, including pH and salinity.

Elemental composition (mg/l)	Simulated freshwater	Simulated seawater	
	(pH: 7.27, S: 0.008)	(pH: 8.2, S: 34.1)	
Ca	15	409	
Cl*	7	19162	
Cs	0.00001	0.0003	
K	3	395	
Mg	4	1278	
Na	6	10679	
Rb	0.0001	0.0001	
S(+6)	11	2680	
Si	7	0.001	
Sr	15	7.5	

**Cl* is used as the charge balance anion during the calculations

Parameters	Illite	Smectite
	(Bradbury and Baeyens 2000)	(Missana et al. 2014)
Type I sites	$Log_{Cs/Na}K = 7.0$	$Log_{Cs/Na}K=7.59\pm0.15$
(FES – T1)	$Log_{Cs/K}K = 4.6$	$Log_{Cs/K}K = 5.15 \pm 0.15$
	$Log_{Cs/NH4+}K = 3.5$	$Log_{Cs/Ca}K = 14.41 \pm 0.17$
Type – II sites	$Log_{Cs/Na}K = 3.6$	-
(T2)	$Log_{Cs/K}K = 1.5$	
Planar sites	$Log_{Cs/Na}K = 1.6$	$Log_{Cs/Na}K = 1.68 \pm 0.15$
(T3)	$Log_{Cs/K}K = 0.5$	$Log_{Cs/K}K = 1.16 \pm 0.15$
		$Log_{Cs/Ca}K = 3.02 \pm 0.15$
Solid charateristics	CEC = 0.20 eq/kg	$CEC = 30.91 \ \mu eq/m^2 (1.02 \ eq/kg)$
		$BET = 33 \text{ m}^2/\text{g}$
	Site densities :	Site densities :
	Illite (T1) = 5.10^{-4} eq/kg	Ca-smectite (T1) = $3.5.10^{-3} \mu eq/m^2$
	Illite (T2) = 4.10^{-2} eq/kg	Ca-smectite (T3) = $30.91 \ \mu eq/m^2$
	Illite (T3) = $1.6.10^{-1}$ eq/kg	K-smectite (T1) = $1.3.10^{-2} \mu eq/m^2$
		K-smectite (T3) = $30.91 \ \mu eq/m^2$

Table S2: Summary of the cation-exchange parameters used during model simulations.

Table S3: Statistical approaches to identify Cs_b bioaccumulation trends in the historical dataset of 34 years (LF_85km), and its correlation with the water basin discharge. Visual representations (graphs) are included, together with the obtained regression equations (with standard error of the prediction band in brackets), significance of the equation parameters, significance of the correlation (R value), and normality tests for the datasets used.

	Graphical representation	Statistical information		
Linear regression on dataset < 2010 (short dataset)	$\begin{array}{c} 350 \\ 300 \\ \hline \\ & 250 \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	Regression equation and determination coefficient: $y = y0 + ax$ $y = 1640 (\pm 1840) - 0.76 (\pm 0.92) x$ (R = 0.233)Significance of parameters: $p_value(y0): 0.39$ (not passed) $p_value(a): 0.42$ (not passed)Normality test:Shapiro-Wilk test: p_value of 0.49 (passed)		
Linear regression on full dataset (1984 – 2017)	$\begin{array}{c} 350 \\ 300 \\ 300 \\ \hline \end{array}$ $\begin{array}{c} \text{Linear regression} \\ 0 \\ \text{Dataset} \\ 95\% \text{ Confidence Band} \\ 95\% \text{ Prediction Band} \\ \hline \\ 95\% \text{ Prediction Band} $	Regression equation and determination coefficient: $y = y0 + ax$ $y = -4460 (\pm 2100) + 2.29 (\pm 1.05) x$ (R = 0.479)Significance of parameters: $p_value(y0): 0.05$ (passed) $p_value(a): 0.04$ (passed)Normality test:Shapiro-Wilk test: p_value of 0.60 (passed)		

Table S4: Spearman correlations (r) for water discharge (Q), suspended particulate matter (SPM), water temperature (Temp), dissolved Cs (Cs_d), particulate Cs (Cs_p) and Th-normalized Cs_p (Cs_p/Th_p) at the five sampled sites: in table A (LR_Gar-70km and PSM_Gar-135km), in table B (T_Lot-135km and BP_Lot-235km) and in table C (RM_Rio-250km). The first number corresponds to the correlation coefficient, the second number (in italics) is the p_value. Significant correlations (p_value \leq 0.05) are highlighted in black and bold format.

Α	SPM (mg/l)	Q (m ³ /s)	Temp (°C)	Csp (mg/kg)	Cs/Th	Csd (ng/L)	
SPM (mg/l)		0.63	-0.22	0.22	-0.03	-0.48	
_	-	2.0e-7	0.09	0.10	0.85	1.6e-4	
$Q(m^3/s)$	0.64		-0.68	0.36	0.19	-0.33	
	2.0e-7	-	2.0e-7	5.8e-3	0.17	0.01	L
Temp (°C)	-0.18	-0.61		-0.46	-0.24	0.06	a F
	0.18	2.3e-7	-	2.6e-4	0.08	0.65	k éo
Csp (mg/kg)	0.22	0.37	-0.24		0.78	0.03	le
	0.09	4.0e-3	0.06	-	2.0e-7	0.82	(LI
Cs/Th	0.24	0.43	-0.28	0.71		0.28	2
	0.08	1.2e-3	0.04	2.0e-7	-	0.03	
Cs _d (ng/L)	-0.36	-0.44	0.29	-0.19	-0.05		
_	6.6e-3	7.6e-4	0.03	0.16	0.75	-	
	Port Sainte Marie (PSM)						

В	SPM (mg/l)	Q (m ³ /s)	Temp (°C)	Csp (mg/kg)	Cs/Th	Cs _d (ng/L)	
SPM (mg/l)		0.33	-0.23	0.16	0.19	-0.28	
_	-	2.0e-7	0.10	0.21	0.16	0.03	
$Q (m^3/s)$	0.44		-0.63	0.52	0.12	-0.35	
	3.2e-69	-	1.7e-7	1.9e-5	0.36	6.6e-3	
Temp (°C)	-0.19	-0.74		-0.77	-0.21	0.57	Te
	0.15	2.0e-7	-	2.0e-7	0.15	1.1e-5	mp
Cs _p (mg/kg)	0.21	0.50	-0.40		0.55	-0.27	le
	0.11	5.1e-5	1.7e-3	-	1.4e-5	0.04	E
Cs/Th	0.24	0.45	-0.29	0.80		0.27	-
	0.08	4.7e-4	0.04	2.0e-7	-	0.05	
Cs _d (ng/L)	-0.45	-0.63	0.56	-0.53	-0.36		
	2.2e-4	5.8e-9	3.9e-6	1.2e-5	5.3e-3	-	
	Boisse Penchot (BP)						

С	SPM (mg/l)	Q (m ³ /s)	Temp (°C)	Cs _p (mg/kg)	Cs/Th	Cs _d (ng/L)	
SPM (mg/l)		0.62	-0.14	0.62	0.32	-0.42	
_	-	2.0e-7	0.30	1.4e-7	0.02	9.4e-4	
Q (m ³ /s)			-0.58	0.67	0.25	-0.80	R
	-	-	2.2e-6	2.0e-7	0.07	2.0e-7	iou
Temp (°C)				-0.22	-0.06	0.54	1 N
	-	-	-	0.10	0.69	2.1e-5	lor
Cs _p (mg/kg)					0.60	-0.66	t (]
	-	-		-	2.0e-6	2.0e-7	RN
Cs/Th						-0.24	D
	-	-		-	-	0.08	
Cs _d (ng/L)	-	-		-	-	_	

Experimental conditions	Kd values	Reference			
Clay minerals					
Three homo-ionic smectites (Na-,	Case of Na-smectite for $pH > 5$ at:	Missana et			
K-, Ca-smectite), in a wide pH range	0.1 M NaClO ₄ : 501 L/kg (log Kd ~ 2.7 L/kg)	al. 2014			
(2 - 11), at varying ionic strength	0.01 M NaClO ₄ : 5011 L/kg (log Kd ~ 3.7 L/kg)				
(0.001 M to 1 M) and Cs					
concentrations $(10^{-10} - 10^{-3} \text{ M})$.					
Basic pH (8 and 10), sorption of Cs	Colloidal: ~10 000 L/kg	Iijima et al.			
$(10^{-11} - 10^{-5} M)$ onto	Sedimented: ~ 1 000 L/kg	2010			
montmorillonite nanoparticles					
Cs sorption (0.94 and 4.29 mM)	~140 - 300 L/kg *	Gutierrez			
onto Ca-montmorillonite, in the		and Fuentes			
presence of Sr ²⁺ competition. 20 g/L		1996			
of solid/liquid ratio, in 0.001 M					
NaCl, at adjusted pH between 4 – 9.					
10 g/L solid to liquid ratio, non-	Kaolinite < 10 L/kg	Bayülken et			
specified ionic strength but Cs	Sepiolite ~ 25 L/kg	al. 2011			
concentrations of 10 ⁻² M and	Zeolite (fine) ~ 150 L/kg				
regulated pH between 3 and 8	Bentonite ~ 225 L/kg				
	Zeolite (coarse) ~ 250 L/kg at pH ~7				
	Other surfaces				
Unspecified solid/liquid ratio ("0.1	Ferrite ~300 L/kg	Sheha and			
g of magnetite in a certain volume"),	Natural magnetite ~120 L/kg	Metwally			
and unspecified ionic strength		2007			
(assumed freshwater = 0.05 M) at					
pH ~8.					
> 20 g/L of humic dosage, at pH	~200 kg/L*	Khan and			
between 7 and 9, for an initial dose		Bagla, 2022			
of ~ 6.7 mg/L of Cs.					
0.25 g/L of nanoparticles, 25°C and	TiO ₂ : 124.59 L/kg	Metwally et			
10 ⁻² M CsCl, probably at pH 6		al. (2007)			
Parameters for a reactive transport	Quartz: 0 L/kg	Voutilainen			
study.	Feldspars: 106 L/kg in feldspars	et al. 2017			
	Biotite: 317 L/kg				

Table S5: Non exhaustive summary of experimental studies reporting Kd values for Cs sorption onto single-mineral surfaces.

*Calculated values from presented data