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A B S T R A C T   

Continuous underwater Passive Acoustic Monitoring (PAM) has emerged as a strong tool for cetacean research. 
To handle the vast volume of collected data, it is essential to employ automated detection and classification 
methods. The recent advancement of deep learning, involving model training and testing, requires a large 
amount of labeled data. These labels are derived through the manual annotation of audio files often reliant on 
human experts. Based on an annotation campaign focusing on blue whale calls in the Indian Ocean involving 19 
novice annotators and one expert in bioacoustics, this study explores the integration of novice annotators in 
marine bioacoustics research, through citizen science programs, which could drastically increase the size of 
labeled datasets and enhance the performance of detection and classification models. The analysis reveals 
distinctive annotation profiles influenced by the complexity of vocalizations and the annotators’ strategies, 
ranging from conservative to permissive. To address the challenges of annotation discrepancies, Convolutional 
Neural Networks (CNNs) are trained on annotations from both novices and the expert. The results show varia-
tions in model performance. Our work highlights the importance of annotation guidelines encouraging a more 
conservative approach to improve overall annotation quality. In an effort to optimize the potential of multi- 
annotation and mitigate the presence of noisy labels, two annotation aggregation methods (majority voting 
and soft labeling) are proposed and tested. The results demonstrate that both methods, particularly when a 
sufficient number of annotators are involved, significantly improve model performance and reduce variability: 
the standard deviation of the area under PR and ROC curves fall under 0.02 for both vocalizations with 13 
aggregated annotators, while it was at 0.17 and 0.21 for the Blue Whale Dcalls and 0.05 and 0.04 for the SEIO 
PBW vocalizations with all annotators separately. Moreover, these aggregation methods enable the training of 
models using non-expert annotations that achieve performance of models trained with expert annotations. These 
findings suggest that crowdsourced annotations from novice annotators can be a viable alternative to expert 
annotations.   

1. Introduction 

Continuous underwater Passive Acoustic Monitoring (PAM) con-
ducted over extended periods has emerged as a pivotal tool for studying 
cetaceans as they rely on sound for essential activities and social in-
teractions [Krause, 1987; Leroy et al., 2018a; Torterotot, 2020]. The 
amassed acoustic data furnishes invaluable insights across various di-
mensions of cetacean ecology, encompassing migration routes, 

population dynamics and behaviors [Courts et al., 2020; Yurk et al., 
2002]. Yet, the colossal volume of acoustic data collected over the years 
calls for automated methodologies for detecting and classifying acoustic 
events. Recent strides in this arena have been made with the application 
of deep learning models, yielding efficacious outcomes [Shiu et al., 
2020; Usman et al., 2020; Miller et al., 2022]. 

However, supervised methods, including deep learning approaches, 
demand a “ground truth” generated by human experts to create training 
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datasets and evaluate model performance. This ground truth is estab-
lished through manual annotations of the audio data usually represented 
as spectrograms. Typically, one or two experts undertake this annotation 
process, but discerning unfamiliar acoustic features can prove more 
intricate than identifying commonplace objects like cats and dogs in 
images. Consequently, this process is laborious, time-intensive, and 
subject to human subjectivity [Nguyen Hong Duc et al., 2021a; Leroy 
et al., 2018b]. Additionally, assessing the quality of collected annota-
tions is a challenge. To mitigate this challenge, the standard practice in 
underwater PAM studies is to annotate only a fraction of datasets 
[Usman et al., 2020; Miller et al., 2021; Solsona-Berga et al., 2020]. The 
repercussions of limited annotations manifest as difficulties in the 
model’s ability to generalize due to the lack of reference data. This is 
especially pronounced given the existence of species-specific or 
geographical sound variations, variability in acoustic recording quality, 
and the wide range of non-standardized vocalizations. 

Engaging citizen scientists within the marine bioacoustics research 
community emerges as a promising strategy to overcome annotation 
shortfalls [Shamir et al., 2014]. This approach allows access to an 
increased amount of annotated data for training and validating detec-
tion and classification models, which would enhance their capacity for 
generalization [Kosmala et al., 2016; McClure et al., 2020]. Neverthe-
less, several studies highlight inter-annotator variability, especially with 
novice annotators [Nguyen Hong Duc et al., 2021a; Leroy et al., 2018b; 
Dubus et al., 2023], often found in citizen sciences programs. As a 
consequence, training deep learning models on erroneous additions of 
labels could result in lower performance [Song et al., 2022; Frenay and 
Verleysen, 2014]. 

Based on an annotation campaign conducted on sounds emitted by 
two species of blue whales in the Indian Ocean, this paper presents a 
comparison of convolutional neural networks (CNN) trained from an-
notations of an expert and 19 novice annotators. 

The first part of this study evaluates the inter-annotator variability 
with metrics generally used to evaluate detection models, which are 
precision and recall, calculated here between each pair of annotators. 

In a second part, CNNs were trained based on the annotation from 
each annotator to assess the impact of the inter-annotator variability (i. 
e., the uncertainty regarding the noise on a labeled dataset) on models 
for automatic detection. All models are evaluated on datasets different 
from the one used for training, in terms of recording devices, 
geographical areas and annotator that produced the annotation for 
pseudo-ground truth. The performances of those models are then 
assessed by taking into account the agreement between the annotations 
of novices and those of the expert. 

In order to reduce the variability due to the different novice anno-
tators and increase the performance of models without a priori knowl-
edge of the quality of the annotations produced by novices, two methods 
are proposed to aggregate the annotations: majority grouping and soft 
labeling. Ultimately, the objective of these methods is to ensure the 
quality of the aggregated annotation and the possibility of training high- 
performance models with it, without any regards on the quality of each 
individual annotation set. 

Finally, multiple guidelines are proposed to manage citizen sciences 
for PAM studies. 

2. Materials and methods 

2.1. Datasets 

Audio recordings used in this study originally came from three 
different datasets presented below. The first one, named AmStP here, is 
annotated by one expert and 19 novice annotators and is used as the 
development set for the training stage only. The second and third 
datasets, SWAMS and ElephantIsland2013 respectively, are used only as 
evaluation sets and were annotated by two different experts (and no 
novices), differents from the one that has annotated AmStP. 

2.1.1. Development set – AmStP 
The dataset annotated used for the present study is made of 762 h of 

audio signal recorded off Amsterdam and Saint Paul, two French sub- 
Antarctic islands in the Indian Ocean from February 28 to April 5, 
2019 [Torterotot et al., 2022]. The acoustic signals were recorded 
continuously using a HTI92 WB hydrophone mounted on a SeaExplorer 
glider, sampled at 48 kHz and coded on 16 bits. 

The whole dataset was manually annotated by an expert in 
bioacoustics, one of the authors of the original dataset publication. A 
hundred 10-min files downsampled at 250 Hz (16 h and 40 min) were 
kept for the annotation campaign with 19 novice annotators. They were 
asked to annotate South Eastern Indian Ocean Pygmy Blue Whales (SEIO 
PBW) vocalizations and blue whale’s D-call type vocalizations (Dcall) 
[Torterotot et al., 2022]. Fig. 10 (in Appendix) presents the number of 
calls per species identified by each annotator. Each set annotated by an 
annotator was used as a different development set for CNNs. Two 
aggregating methods to constitute development sets for CNN training 
are also proposed and tested. 

2.1.2. Evaluation sets - SWAMS and ElephantIsland2013 
To evaluate the performance of the CNNs trained on different 

annotation sets, datasets containing other SEIO PBW vocalizations and 
blue whale’s Dcall were chosen. Only a small portion of those datasets 
were used to reduce computational time, as hundreds of networks were 
trained and compared. 

For the evaluation of the SEIO PBW vocalizations, 7 h of audio sig-
nals recorded during the OHASISBIO program were used [Royer, 2009; 
Torterotot et al., 2020]. These recordings were collected at the SWAMS 
site, located in the Indian Ocean’s oceanic zone, between Kerguelen and 
Amsterdam Island. This dataset is called SWAMS in this paper. The re-
cordings were made in March 2015 using a hydrophone deployed at a 
depth of 1000 m. The sampling rate was 240 Hz. A total of 102 vocali-
zations were manually annotated by a second expert. 

For the evaluation of the models’ performance on blue whale’s 
Dcalls, we used the underwater acoustic dataset recorded during 2013, 
off Elephant Island, North of the Antarctic Peninsula [Miller et al., 
2021]. A total of 16 h and 55 min have been randomly selected, 
including more than 600 annotated vocalizations annotated by a third 
expert. The sampling rate was 250 Hz. 

Geographical positions of each site are reported on a map centered 
on Antarctica, Fig. 1. 

Fig. 1. Map of Antarctic underwater recording sites illustrating sites used in 
this study (red crosses). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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2.2. Annotation protocol 

2.2.1. Multi-annotation campaign with novice volunteer annotators 
In this study, 19 volunteer annotators were enlisted to provide an-

notations. They were recruited online, with the network of the associ-
ation Astrolabe Expeditions.1 The objective was to recognize SEIO PBW 
vocalizations and blue whale Dcalls. More specifically, they were asked 
to annotate only the third harmonic of the second part of the PWB calls 
(see Fig. 2). This part is known to be the loudest one in the SEIO PBW 
vocalization, with the better signal-to-noise ratio (SNR) and is therefore 
the easiest one to identify on spectrograms [Gavrilov et al., 2011]. All 
annotators in this campaign were novices: inexperienced in both PAM 
and underwater recording annotation. Prior to annotating acoustic re-
cordings, they were provided a 1-h virtual training session. The objec-
tive was to give them general information about underwater 
soundscapes, to let them listen to cetacean vocalization samples and to 
introduce them to both time-frequency representations and the vocali-
zations of interest. When introducing the SEIO PBW and Dcalls, key 
features for their identification were presented, such as the time dura-
tion and the frequency bandwidth. The annotation campaign spanned a 
duration of one month. Throughout this period, annotators were 
encouraged to seek clarification by emailing our team all along the 
annotation phase. 

2.2.2. Annotation platform for ocean sound explorers (APLOSE) 
The web-based annotation platform APLOSE2 [Nguyen Hong Duc 

et al., 2020; Keribin et al., 2024] was used to annotate acoustic events 
present in the audio recordings. Each user had login credentials, 
granting them access to the selected datasets, and a unique identifier 
(ID). They can visualize pre-computed spectrograms for visual inspec-
tion and listen to the acoustic recordings to confirm or not the presence 
of the vocalizations of interest. Playback controls allow users to play/ 
pause the sound file and adjust playback speed (from 0.25× to 4×) to be 
able to hear the low frequency sounds studied in this work. A complete 
user guide for APLOSE can be found on our GitHub repository.3 For each 
identified vocalization, annotators were asked to draw a time-frequency 
box around the identified sound to delimit its start/end times and fre-
quencies. For each box, the annotators had to assign a class name from a 
given list corresponding to the sound they recognized. Finally, all an-
notations were continuously collected and automatically written to a 
downloadable CSV file, containing the name of the audio file, the ID of 
the annotator, the vocalization identified, the start and end time (rela-
tive and absolute), and the start and end frequencies of the time- 
frequency box. In order to mitigate the potential over-representation 
of the first annotations by influence, the platform ensured that annota-
tors were unable to access annotations created by others. 

2.2.3. Dealing with several novice annotators 
Previous work assessing the inter-annotator variability, especially 

between novice annotators, shows that this leads to disagreement with 
the expert or systematic errors of annotation by novice annotators in 
labeling campaigns of underwater sounds in PAM studies [Dubus et al., 
2023]. To reduce the disagreement between annotators in this work, a 
majority voting approach was used: a given sample was considered 
annotated by the group if more than half of the group annotated it. 
Therefore, a singular aggregated annotation was created from the novice 
annotations and compared to an expert annotation in Section 3.3. To 
consider that two annotations overlap, the overlap time needed to 
represent at least 20% of the total time-duration covered by the two 
boxes. This value was based on the histogram of all the time-overlap 

between boxes and allows to prevent the overlapping of two boxes 
drawn for different, but close, sound events. The coordinates of the 
shared annotation box were computed as an average of the coordinates 
of every annotator’s box. A graphical example of the proposed method 
with three annotators is presented in Appendix (Fig. 11). 

Detection models have been trained for different aggregated anno-
tation sets, and compared with a model trained with the annotation of 
the expert. 

2.3. Automatic detection using CNN 

A CNN was designed and trained on different annotation sets. This 
type of model is already widely used for image classification and has also 
shown good results in bioacoustics for automatic detection of sound 
events [Shah et al., 2018]. 

2.3.1. Data preparation 
The acoustic recordings were resampled at 250 Hz and cut into 50-s 

long sections to cover the frequency range and duration of the targeted 
vocalizations [Miller et al., 2021; McDonald et al., 2023; Nguyen Hong 
Duc et al., 2020]. They were then filtered by a high-pass filter at 5 Hz 
using a Butterworth filter at order 10 and normalized by the energy 
calculated on a sliding 1-h window centered on the sample. Power 
spectrograms were computed for each 50-s section with an analysis 
window of 512 samples (around 2.05 s) using a Hanning window, 
overlapped by 471 samples (1.89 s). The time and frequency resolutions 
of the spectrograms were respectively 0.16 s and 0.5 Hz, yielding 2D 
matrices of shape 292*256. Finally, each spectrogram was visualized in 
dB and thresholded between − 20 dB and + 20 dB to optimize the 
visualization. 

Each 50-s section was then characterized as a positive section (i.e., a 
section with a vocalization) or a negative section (i.e., a section without 
vocalization). As some annotations overlapped between two 50-s sec-
tions, a minimal threshold in the percentage of the annotation present 
within the 50-s section is set to avoid: (i) an incomplete but still 
consequent part of vocalization in negative sections, and (ii) positive 
sections which only contains a small part of an annotation and therefore 
of a vocalization. Above this threshold, the section is considered posi-
tive, otherwise, it is considered negative. Taking the margin between the 
vocalization on the spectrogram and the time-frequency boxes drawn 
around into account, this threshold is set at 20%. 

The number of 50-s sections for each dataset is presented in Table 1. 
For the dataset AmStP, the percentage of positive sections is given as 
mean and standard deviation, computed on all annotations (19 novices 
and 1 expert). As the number of positive sections in the training set 
(dataset AmStP) for the blue whale’s Dcall was particularly low, models 
trained on different ratios of positive/negative sections were tested from 
the annotation sets produced by the expert, by randomly removing 
negative sections from the testing set (undersampling method [Johnson 
and Khoshgoftaar (2019)]). Ultimately, a positive section ratio of 0.2 
was practically determined to enhance the model’s ability to learn from 
the data. 

2.3.2. From multi-annotation to soft labels for training 
Recent studies proposed that using explicit training models with soft 

labels may mitigate the disparity arising from human uncertainties and 
enhance overall generalization performance [Peterson et al., 2019; Du 
et al., 2022]. The annotation process usually employed in PAM studies 
does not provide probabilities for each annotation. From our annotation 
campaign, enough annotations were provided to transform the binary 
labels (aka Hard labels), to probabilities or soft labels for training pur-
poses. For each sample, the soft labels used for the training is n/N with N 
the number of annotators that have checked the sample and n the 
number of annotators that have annotated it positively. 

Fig. 3 presents three samples for the two distinct vocalizations types 
with the soft label associated. As expected, for both vocalizations, 

1 https://www.astrolabe-expeditions.org/  
2 https://osmose.ifremer.fr/app/  
3 https://github.com/Project-OSmOSE/osmose-app/blob/master/docs/user 

_guide_annotator.md 
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samples associated with a soft label of 1 correspond to isolated calls with 
a good SNR. The second example for SEIO PBW vocalization and Dcall, 
with a soft label of 0.68 and 0.78 respectively, shows samples with calls 
but also impulsive noises that could have misled some annotators. 
Finally, the third example for SEIO PBW vocalization presents the 
desired third harmonic of the first part of the call, with a low SNR, but 
also the second part of other calls and an impulsive noise, thus, the 
majority of novice annotators have missed this call. The last example of 
blue whale’s Dcall has a very low SNR and impulsive noise too. 

2.3.3. Architecture of the model used 
Because the training sets for both cases were relatively small 

(Table 1), we implemented a CNN comprising three convolutional layers 
followed by three fully connected layers (Fig. 4). The training for each 
vocalization’s type was done independently. In order to mitigate the 
impact of noisy labels on the robustness of the model, a dropout layer 
(with a dropout rate of 0.25) was incorporated to prevent overfitting 
[Jindal et al., 2017]. During the training process, we employed a binary 
cross-entropy loss function that computed the disparity between the 
annotated binary label and the network’s output. The Adam optimizer 
was used as the gradient descent algorithm. The implementation was 
carried out using PyTorch [Paszke et al., 2019]. 

To ensure comparability across trained models, we maintained 
consistent hyperparameters across all training instances for each task (i. 
e., SEIO PBW vocalization and Dcall). Specifically, for SEIO PBW 

vocalization training and blue whale Dcall training, we set the batch 
sizes to 5 and 4, and the learning rates to 1e-4 and 1e-3, respectively. 
This decision was based on the fact that more samples were used for 
SEIO PBW vocalization training. The models were trained for 40 and 25 
epochs respectively. However an early stopping method was used to 
keep the model weights before the models overfitted. The patience 
parameter is set at 10 epochs for all training phases. 

2.4. Evaluation metrics 

Considering the absence of absolute ground truth for identifying 
audio events within underwater acoustic recordings, the annotation sets 
proposed by the annotators, expert or novice, are called pseudo ground 
truth in the present study. 

State-of-the-art metrics [Hildebrand et al., 2022] have been used to: 
1. Compare a pair of annotators, with each one taking turns as the tester 
and the pseudo ground truth. 2. Evaluate the performance of the 
detection models with the annotations from an expert as pseudo ground 
truth. 

For every sample subjected to analysis by either the CNN or an 
annotator, four possible outcomes are defined:  

• True Positive (TP): A call is accurately detected and annotated.  
• False Positive (FP): A call is detected, but there is no annotation.  
• True Negative (TN): No call is detected and no call is annotated 

Fig. 2. Spectrograms of the two blue whale’s vocalizations annotated during the campaign. Reds doted rectangles correspond to the annotation of the expert. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Datasets and number of positive samples used for each task in the proposed studies.  

Sec Method used Number of 
annotators 

Sound event 
to detect 

Dataset used 
for training 

Number of sample 
(percentage of 
positive) 

Dataset used for 
evaluation 

Number of sample 
(percentage of 
positive) 

Number of trained 
models 

3.2 Mono annotators 
Hard label 

1 SEIO PBW AmStP 1205 (45.66 +/−
5.82) 

SWAMS 503 (30.81) 20 (1 from the expert, 
19 from novices) 

3.2 Mono annotators 
Hard label 

1 Blue whale’s 
Dcall 

AmStP 323 (18.27 +/− 9.48) Elephant Island 
2013 

1218 (49.91) 20 (1 from the expert, 
19 from novices) 

3.3 Multi-annotator 
majority voting 

2–13 SEIO PBW AmStP 1205 (41.55 +/−
3.31) 

SWAMS 503 (30.81) 120 (10 for each size of 
aggregated subgroup) 

3.3 Multi-annotator 
majority voting 

2–13 Blue whale’s 
Dcall 

AmStP 323 (12.34 +/− 1.65) Elephant Island 
2013 

1218 (49.91) 120 (10 for each size of 
aggregated subgroup) 

3.4 Multi-annotators 
Soft labeling 

13 SEIO PBW AmStP 1205 (31.75 +/−
4.21) 

SWAMS 503 (30.81) 10 

3.4 Multi-annotators 
Soft labeling 

13 Blue whale’s 
Dcall 

AmStP 323 (14.88 +/− 1.47) Elephant Island 
2013 

1218 (49.91) 10  
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• False Negative (FN): No call is detected but a call was annotated 

In the case of a comparison of two annotation sets produced by a 
given pair of annotators, A1 and A2, the false positives of A1 with A2 as 
pseudo ground truth, equal the false negatives of A2 with A1 as pseudo 
ground truth. Each pair of annotators, regardless of their expertise, is 
considered twice here, with each annotator once as the tester and once 
as the pseudo ground truth. 

From these four potential outcomes, Precision, Recall, and False 
Positive Rate (FPR) are derived: 

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (1)  

FPR =
FP

FP + TN
(2) 

The harmonic mean of recall and precision from Section 3.1, called 
F1 score, has been used in Section 3.2 to represent with one value the 

agreement between a novice annotator and the expert: 

F1 = 2×
Precision × Recall
Precision + Recall

(3) 

Precision-Recall curve (PR) and Recall-False Positive Rate curve, 
usually called Receiver Operating Characteristic curve (ROC), are 
widely employed in the assessment of automated methods for detection 
and classification [Hildebrand et al., 2022; Best, 2022]. These curves are 
generated by adjusting the model’s output threshold and subsequently 
calculating the aforementioned metrics for each threshold value. 

Both representations were kept in Section 3.2 as (i) ROC represen-
tation is one of the most used representations in PAM for automatic 
detection of cetacean’s low frequency vocalizations and (ii) Hildebrand 
et al. (2022) enlightened the potential overestimation of the perfor-
mance using ROC representation due to the unbalanced ratio between 
FP and TN. 

As 130 models were trained and compared in Section 3.3, the area 
under ROC and PR curves, respectively called AUC (Area Under ROC 

Fig. 3. Spectrograms of the two blue whale’s vocalizations with different values of soft labels. All vocalizations presented have been annotated positively by the 
expert, displayed with red doted rectangles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

(292,256)

(64,63,72))
(128,31,35) (256,15,17)

(256)

(128)
(16)

Output
[0,1]

64 features 128 features 256 features

Fig. 4. Design of the CNN structure for automatic detection whale’s vocalizations.  
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Curve) and mAP (mean Average Precision), were computed, to facilitate 
the comparison. They are described as: 

AUC =

∫ 1

0
Recall(x)dFPR(x) (4)  

mAP =

∫ 1

0
Recall(x)dPrecision(x) (5)  

with x the threshold applied on the output of the detection model. 

3. Results 

3.1. Precision and recall of novice annotators 

Based on the multi-annotators campaign managed on the dataset 
AmStP, Fig. 5 presents an analysis of the concordance among pairs of 
annotators, visualizing the precision and recall scores computed for each 
duo. Pairs wherein the expert annotations serve as references (or pseudo 
ground truth) are highlighted in blue: The more an annotator agrees 
with the expert, the more the corresponding blue dot point is close to the 
upper-right corner. 

For the SEIO PBW vocalizations, results showed that all the novice 
annotators have good precision: the large majority of the sound events 
annotated by a novice have also been annotated by the expert. Their 
recall is lower, between 0.35 and 0.8 (but a large majority over 0.5), thus 
a substantial part of the vocalizations annotated by the expert were 
missed by the novices. Concerning blue whale’s Dcall annotations, 
notable distinctions emerged for two annotators who displayed pro-
nounced discordance with the expert. One of these annotators exhibited 
notably low recall (0.12), indicating a substantial omission of genuine 
Dcall sounds according to the expert’s judgment. Conversely, the other 
annotator demonstrated low precision (0.22), implying excessive 
marking of false positives. In contrast, the remaining annotators 
appeared to be more closely aligned with the expert annotations. 

3.2. Performance of the detection regarding the annotation set for training 

For each annotation provided (one based on the expert annotations 
and the other on the novices annotations), two models were trained on 
the dataset AmStP to detect SEIO PBW vocalizations and blue whale’s 
Dcalls, and evaluated on the dataset SWAMS and Elephant Island 2013 
respectively. ROC and PR curves computed using the expert annotations 
as pseudo ground truth for each vocalization are represented on Fig. 6. 

As expected, the model trained with the expert annotations gets 
better results than the other models. The AUC and mAP metrics for the 

blues curves are 0.85 +/− 0.05 and 0.77 +/− 0.17 respectively, while 
they reach 0.90 and 0.85 with the model trained from the expert an-
notations. For the blue whale’s Dcall, 13 models out of 19 trained from 
novice annotations showed performance close to the model trained on 
expert annotations with AUC and mAP metrics at 0.92 +/− 0.02 and 
0.87 +/− 0.3 while the model trained with the expert got 0.96 and 0.94. 
However, 6 curves show very low performances in comparison to the 
others, with AUC and mAP of 0.56 +/− 0.21 and 0.57 +/− 0.17. 

Performances of each model are then observed by considering the 
agreement between novice annotations and expert annotations. Fig. 7 
presents the results of the models trained on novice annotation, by 
showing the F1 score of the annotation set computed from the mea-
surements of recall and precision in the previous subsection, using the 
expert annotations as pseudo ground truth. 

As expected, for both vocalizations, the models trained on the 
annotation sets closer to the expert annotation set show better perfor-
mance. For the blue whale’s Dcalls, the two annotation sets with sys-
tematic errors, corresponding to the two annotators who displayed 
pronounced discordance with the expert on Fig. 5b, did not allow the 
model to generalize. Moreover, the four other curves with low AUC and 
mAP values correspond to models trained on an annotation set with low 
precision but high recall by comparison to the expert one. All models 
based on annotation sets with high recall by comparison to the expert 
one yield performances close to the model trained with the expert 
annotation. 

3.3. Performance of the detection regarding the annotation set for training 
- aggregated annotation 

To remove noise in the novice annotation sets, a majority voting 

(a) SEIO PBW vocalizations (b) Blue whale’s Dcall
Fig. 5. Precision and recall computed for each pair of annotators. Blue dots: 
results with expert considered as ground truth. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 

(a) SEIO PBW vocalizations

(b) Blue whale s Dcall

Fig. 6. Performance of the models trained with all annotation sets provided 
from the annotation campaign. Red line corresponds to the model trained with 
the annotations from the expert. Blues lines with low opacity correspond to the 
model trained with the annotations from the novices. Blue line with high 
opacity is the mean curve for all novice lines. 
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strategy was used to aggregate annotation sets. Thus, for different sizes 
of annotator subgroups (between 2 and 13), 10 random selections of 
novice annotators were realized, creating 10 distinct trainsets. A model 
was trained on the subgroup annotations from the development set 
AmStP and evaluated on the evaluation sets: SWAMS and ElephantIs-
land2013 for SEIO PBW and Dcall, respectively. Fig. 8 shows the mean 
and standard deviation of AUC and mAP metrics of those 10 models, in 
comparison with the performance of the model trained with the expert 
annotation. The results for the group size of 1 are the mean and standard 
deviation of the 19 models trained with the annotation of the novices, 
one by one, presented in the previous section. 

An increase in both metrics with the number of novices is observed, 
indicating better performance. The aggregated novices produce on 
average a better annotation set than the majority of the novices alone. In 
the same way as the previous observation, the variation of performance 
for the SEIO PBW vocalizations is lower than the blue whale’s Dcall. 

Red dotted lines represent the performances of the model trained 
with the expert annotation set. A Krustkal-Wallis test is performed, using 
the performances of the largest subgroup size and the performance of the 
expert on Fig. 8, to evaluate the null hypothesis formulated as “the 
performance of the model trained with an expert annotation does not 
significantly differ from performance obtained with models trained on 
non-experts annotations”. P-values computed for each metrics (AUC, 
mAP) are (0.11, 0.75) and (0.11, 0.21) for SEIO PW and Dcall respec-
tively. The null hypothesis cannot be rejected. However, the perfor-
mances of the model trained with the expert annotation are always 
higher than the mean performance obtained with models trained with 
non-expert annotations. 

Although performances of the expert are not exactly reached, the 
improvement of AUC and mAP values and the reduction of the standard 
deviation with the subgroup size is observed. The evolution of the per-
formance with the subgroup size seems to be asymptotic. A plateau is 
reached after a given size of the subgroup of novice annotators, around 5 
and 10 for the SEIO PBW vocalizations and the blue whale’s Dcall, 
respectively. 

3.4. Assessing the use of soft label from multi-annotation for the training 

To assess the performance of the soft labeling aggregation method, it 
was benchmarked against the model trained using the expert annota-
tions and the 10 models trained with the aggregated annotations of 13 
annotation sets with hard labels (using the majority voting strategy). 10 
models were trained using random selections of 13 annotator to build 
the soft labels. Fig. 9 presents the mean and standard deviation of the 
AUC and mAP metrics for all three cases (except for the model trained on 
the expert as only one annotation set was available). 

The mean AUC and mAP are slightly better for the soft labeling 
methods in the case of the detection of SEIO PBW vocalizations with an 
increase of 0.01 for the mean of both metrics. Results are slightly lower 
for the blue whale’s Dcalls with a decrease of 0.01 for the mean AUC and 
0.005 for the mean mAP. Both methods give results close to the model 
trained with expert annotations for the detection of SEIO PBW: 0.849 
and 0.904 for AUC and mAP respectively. The model trained on the 
expert annotation set produced better results for the Dcall with 0.94 for 
AUC and 0.956 for mAP. 

A two-sample Z-test has been used for each metrics and each label to 
compare models trained with soft and hard labels. The null hypothesis 
formulated as “the distribution of the performance of the model trained 
with soft labels and the distribution of the performance of the models 
trained with hard labels has the same mean” cannot be rejected. P-values 
computed with each metrics (AUC, mAP) are (0.10, 0.38) and (0.22, 
0.56) for SEIO PW and Dcall respectively. Moreover, any of the two 
methods provides best mean performances for both labels. Thus, no 
significant improvements between the soft and hard labels from 13 
aggregated novice annotators are observed. 

(a) SEIO PBW vocalizations

(b) Blue whales Dcall
Fig. 7. Performance of the models trained with all annotation sets of novices 
provided from the annotation campaign. The colour of the lines correspond to 
the F1 score computed on the annotation set with the expert annotation as 
pseudo ground truth. 

(a) SEIO PBW vocalizations

(b) Blue whale’s Dcall
Fig. 8. Performance (AUC and mAP) of the models trained with aggregated 
annotation sets of novices using a major voting. The red dotted line corresponds 
to the performance of the model trained on the expert. 
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4. Discussion 

Overall, our study provides new empirical results to better assess the 
impact of manual annotation variability on machine learning perfor-
mance in the field of marine bioacoustics. A multi-annotator annotation 
campaign, including a variety of profiles from novices to experts, was set 
up with the task of annotating two blue whale call types in the Indian 
Ocean. Three hundred models were trained using different annotation 
sets and tested on two different datasets to assess the impact of inter- 
annotator discrepancies on model performance. This paper also pre-
sents a comprehensive comparison of two approaches (majority voting 
with hard labels and the creation of a soft labeled dataset) for aggre-
gating annotations produced by novice annotators. 

First, our study proposes to evaluate the inter-annotator variability 
in our campaign. We observe that there is notably less variability in the 
annotations of the novices for SEIO PBW vocalizations when compared 
to the annotations of blue whale’s Dcalls. They exhibit a higher level of 
precision when compared to expert annotations used as the ground 
truth. This is indicative of the fact that SEIO PBW vocalizations tend to 
exhibit a more stereotypical and unique nature, compared to other nu-
merical noise or biologic, anthropophonic and geophonic sounds in the 
area [Torterotot et al., 2019]. This specificity makes them less suscep-
tible to confusion with other sound sources. In contrast, Dcalls are often 
mistaken for other types of short and impulsive sounds. It is noteworthy 
that two annotators appear to have misunderstood the task for the Dcall, 
as their recall and precision scores are significantly lower than the other 
annotators. 

Two discernible annotation profiles in relation to the expert, became 
apparent as it has been reported in a previous study [Leroy et al., 
2018a]. Firstly, the “conservative annotator” who limited their anno-
tations to instances of high confidence. This approach yielded 
commendable precision while trading off some recall due to the 

potential oversight of less conspicuous calls. “Conservative” profiles are 
found above the x = y line on Fig. 5. Secondly, the “permissive anno-
tator” marked a broader range of shapes resembling the target call, 
leading to commendable recall but sacrificing precision due to an 
increased incidence of false positives. “Permissive” profiles are found 
under the x = y line on Fig. 5. For the South Eastern Indian Ocean pygmy 
blue whale calls, all novice annotators exhibited a conservative anno-
tation profile. This likely stems from the distinct stereotypical nature of 
these calls, making them less prone to confusion with alternative sound 
sources. 

CNN models were trained using each annotation set to study the 
impact of inter-annotator variability on the performance of deep 
learning models. All trained models were evaluated on different data-
sets, in different areas with different recording devices and with multiple 
expert annotations. 

Variations in performances are observed by comparing the model 
trained on the annotations from the expert and the 19 models trained on 
the annotations from the novices for both vocalization types. Novice 
annotators that produced annotations close to the expert got better 
performance in the ROC and Precision-Recall curves. Previous studies 
showed that the most reported consequence of label noise is a decrease 
in detection performance [Frenay and Verleysen, 2014; Shah et al., 
2018]. Considering that the expert produced an annotation set closer to 
the ground truth than the annotation set from the novices, the latter can 
be considered noisier. Hence, models trained with the annotations from 
annotators for whom the results were farther from the expert get lower 
performance. This variability, due to the presence of non-correct an-
notations in the training set, put into question the use of CNNs applied 
directly to datasets where the relevance of annotations has not been 
evaluated. 

However, results shows high performance (mean AUC and mAP 
above 0.75), and a good capacity for generalization of convolutional 
neural networks [Fonseca et al., 2019]. 

Fig. 6 shows that the gap between annotations from expert and 
novices produced more variation in the models’ performances for blue 
whale’s Dcalls than for SEIO PBW. Considering the difference in positive 
ratio between the two vocalizations (45.66 ± 5.82 and 18.27 ± 9.48 
respectively. Table 1), label noise seems to be more detrimental under 
class imbalanced settings. This result has already been observed in 
image classification by Gu et al. (2023). 

However, it has been observed that annotation sets used to train 
models qualified as “permissive annotators” get lower performance than 
the ones qualified as “conservative annotators” even with comparable 
F1 score with the annotations from the experts. Gu et al. (2023) also 
proposed that at the same ratio of noise on the training set, the model’s 
performance can decrease differently regarding the type of noise. In this 
study, it seems that simple convolutional neural network models 
generalize better from the most obvious examples and the introduction 
of false positives deteriorates the performance more than the omission of 
a vocalization in the annotation set. For future annotation campaigns, 
this result might suggest that instructing annotators to adopt a more 
conservative approach could be beneficial. 

To optimize the potential offered by multi-annotation and limit the 
potential error due to the addition of noisy labels in the training set, two 
grouping methods are used to assess the interest of crowdsourcing to 
improve the performance of the models. 

In audio annotation tasks [Cartwright et al., 2019] and more spe-
cifically in PAM applied to cetaceans [Nguyen Hong Duc et al., 2021a; 
Dubus et al., 2023], it has been observed that an augmentation of the 
number of annotators increases the precision of the annotations and 
reduces the inter-annotator variability. Fig. 8 shows enhancements in 
AUC and mAP values and a decrease in standard deviation as the sub-
group size increases. With the majority voting method, the systematic 
errors of some annotators are avoided. Similar results are observed in 
Wong et al. (2022), in a medical application of CNN for disease recog-
nition, where the performance of models trained with the annotation of 

(a) SEIO PBW vocalizations

(b) Blue whale’s Dcall
Fig. 9. Performance (AUC and mAP) of the models trained with expert anno-
tation sets of 13 novices with soft labels (SL), aggregated annotation sets of 13 
novices with hard labels (HL). 
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several annotators is higher than models trained with a single annotator. 
The performance trend with subgroup size appears to follow an 
asymptotic pattern, suggesting that adding more annotators for the ag-
gregation will not increase the performance of the model. Similar results 
are observed in [Walter et al., 2022], where an increase in the number of 
annotators improves data quality. After a given number of raters (20 in 
their application of pointing on 2D images), the improvement got very 
small and is not worthwhile in relation to the costs. 

The second aggregating method proposed produces results similar to 
the majority voting method. A similar result has been observed in an 
application with emotion recognition from images by [Fayek et al., 
2016]. Gardiner et al. (2012) found that expert validation of data 
gathered through citizen science could be more cost-effective than 
traditional methods. Both methods proposed in this study, as they are 
applied with a sufficient number of annotators, allows us to use anno-
tations produced from non expert annotators for the training of deep 
learnings models (classical CNN + Fully-connected layer model in this 
case) without expert validation, and nevertheless get detection perfor-
mances close to that of a model that would be trained with expert 
annotations. 

In general, even if the annotation of the two vocalizations presents 
different types of results, with different strategies of annotation 
(permissive and conservative), a high level of performance is reached 
after less than 10 annotators. Effectively overseeing annotation cam-
paigns involving fewer than 10 annotators per sample seems to be 
feasible and has the potential to significantly boost the volume of an-
notated datasets available for training and testing automatic detection 
and classification models. Moreover, Kosmala et al. (2016) underlined 
the potential improvement of novice annotators in several citizen sci-
ences programs, thus, the number of annotators per sample to ensure 
annotation quality could be expected to decrease as novice annotators 
will gain experience. 

5. Managing an annotation campaign for manual annotations in 
PAM studies: A guideline 

Based on the literature and on the present study, a guideline is 
proposed to manage annotation campaigns on PAM studies (Table 2). 

This guideline starts with the key requirements for the design or 
selection of an annotation platform used to conduct a multi-annotator 
campaign. In the first part, propositions are made about the prepara-
tion of the campaign. The ergonomics of the annotation platform are 
important in the context of long-term campaigns: If the annotation 

platform is not user-friendly, annotators will become disengaged and 
cease annotating the files. As annotation campaigns generally aim to 
annotate large datasets, online access to the data is recommended. It is 
necessary for the procedure to be automatic, from the first observation 
of data by the annotators to the gathering of all annotations. Moreover, 
the platform must unify the data representation for all users, in order to 
reduce the variability. To reduce the over-representation of the first 
annotations, it is also important to keep all the annotations independent. 
We also strongly believe that the temporal context is an important factor 
for many underwater sound events: song context, periodic emission of 
vocalization [Madhusudhana et al., 2021]. Thus, the spectrogram 
should be proposed to the annotator in a chronological order, or be long 
enough to capture the long-term temporal context of targeted sound 
events. Furthermore, a large majority of the annotators used mainly the 
visual observation of the spectrogram rather than the sound. But the 
possibility of hearing the sounds was reported as extremely important as 
it increased the interest and motivation of annotators. Thus, it is 
important that the annotation platform gives the possibility to hear the 
sound. A playback control seems also important when the targeted 
sounds are outside the frequency range audible to humans. 

In this kind of project, volunteer citizen scientists give free time to 
explore and annotate large datasets. Contact with the annotator is 
extremely important: (i) proposing a clear explanation about the aim of 
the annotation campaign, (ii) answering questions, (iii) organizing 
meetings throughout the campaign and share a report after. Those steps 
motivate the annotators and increase the educational potential of the 
campaign. 

To ensure the relevance of the collected annotations, a clear 
description of the task is also extremely important: explaining clearly 
with examples the targeted sounds, if the time-frequency boxes have to 
be drawn on each vocalization, on only a part of the vocalization or 
around group of vocalzations. Then, a prior estimation of the task dif-
ficulty is of high interest for the management of an annotation campaign 
in terms of human resource planing. Indeed, such estimation will help in 
finding an initial guess of the number of annotators to start with, and 
even adapt this number to different time periods in case of a time- 
dependent estimation. Having said that, this estimation and its appli-
cations in setting an annotation campaign remains an open question for 
further investigation. Some previous works [Nguyen Hong Duc et al., 
2021b; Dubus et al., 2023] already provided first evidence-based results 
confirming the intuition that certain acoustic features such as low SNR 
or the heterogeneity of some vocalizations could play an important role 
in complexifying the annotation process, but these results will have to be 

Table 2 
Manage a multi-annotator annotation campaign for manual annotations in PAM studies: a guideline.  

Manage an annotation campaign for manual annotations in PAM studies: a guideline 

Before the 
campaign 

Annotation platform - Online, user-friendly and scalable 
- Provide uniform and non-editable spectrograms 
- Preserve annotator independence 
- Allows to listen sounds samples, with a playback control 

Upstream work on data 
- Clear description of the task - Prior evaluation of the task difficulty 
- Propose a training session to to the annotators and present a catalogue of the targeted sounds 

During the 
campaign 

Contact with the annotators 
- Organize regular meetings 
- Answer possible questions 
- Favor a conservative annotation 

Annotations check: 

- Regularly evaluate the inter-annotator variability with κ metrics, or precision and recall computed for each pair of 
annotators. [Nguyen Hong Duc et al., 2021a; Dubus et al., 2023] 
- If the mean κ value is kept constant when adding new annotators and a large majority of the precision-recall values are in the 
upper right corner of the PR plot, the sufficient number of annotators is reached 

After the 
campaign 

Contact with the annotators - Summit a report to the annotators 

Produce annotation set from the 
campaign 

- Evaluate the inter-annotators variability to ensure the sufficient number of annotators is reached. 
- Pronounced discordance with the majority can be observed on the PR plot, they can be deleted 
- Use one of the 2 methods to aggregate all annotations proposed in this work: 
- majority grouping by sample (Section 2.2.3) 
- soft labeling (Section 2.3.2)  
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scaled up to larger datasets and explanatory variable sets. The initial 
training of the annotators could be a source of bias, it has to be as 
representative as possible of the datasets proposed and in line with the 
difficulty of the task [Kosmala et al., 2016]. 

During the campaign, methods are proposed to assess inter- 
annotator variability and aggregate annotation sets. Those methods 
will help to define the minimal number of annotators needed [Dubus 
et al., 2023; Walter et al., 2022]. Increasing the number of annotators 
per sample could be helpful if the variability is too high. Finally, the two 
grouping methods: majority voting (Section 2.2.3) and soft labeling 
(Section 2.3.2) can also be used to produce relevant annotation sets for 
deep learning. 

6. Conclusion 

In this study, new approaches were explored to improve the accuracy 
and efficiency of cetacean vocalization detection using deep learning 
models. Leveraging multi-annotation campaigns involving both expert 
and novice annotators aimed to address the challenges associated with 
the scarcity of ground truth data in underwater PAM studies. 

First, it was observed that annotator variability is influenced by 
factors such as the complexity of vocalizations and the annotation 
strategy (conservative or permissive). For South Eastern Indian Ocean 
pygmy blue whale calls, annotators exhibited a more conservative 
approach, resulting in high precision but slightly lower recall. 
Conversely, blue whale Dcalls, a non-stereotypical call with varied 
modulations, exhibited greater variability in annotations, with some 
annotators showing notably lower precision or recall. The results of the 
models trained on each annotator emphasize the importance of anno-
tation guidelines that encourage a more conservative approach to 
improve annotation quality. 

Furthermore, the study demonstrated the potential of crowdsourced 
annotations through a grouping method. Combining annotations from 
multiple novice annotators resulted in significant performance im-
provements, bringing detection models closer to the performance 

achieved with expert annotations. The results indicated that even with 
fewer than 10 annotators per sample, substantial enhancements in 
performance were attainable. This highlights the feasibility and effec-
tiveness of crowdsourcing annotations to create larger and more diverse 
training datasets for cetacean vocalization detection models. 

In the exploration of soft labeling, it was found that this approach 
provided a viable alternative to hard labeling when multiple annotators 
contributed to the annotations. While no significant improvements were 
observed over hard labeling, the soft labeling method consistently out-
performed models trained on individual novice annotations and, in some 
cases, matched the performance of models trained with expert 
annotations. 

In conclusion, this study underscores the potential of multi- 
annotation to advance the field of cetacean vocalization detection. By 
harnessing the collective efforts of novice annotators and optimizing 
annotation strategies, researchers can increase the quantity of annotated 
data and, thus, the capacity of generalization of deep learning models for 
detection. Ultimately, the findings provide valuable insights for future 
efforts in marine bioacoustics research and underline the importance of 
collaborative approaches in advancing our knowledge of underwater 
ecosystems and cetacean populations. 
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Appendix A. Appendix 

A.1. Number of annotations per annotator and per label

Fig. 10. Number of positive annotations per annotator and per label.  
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A.2. Schema of the aggregation methods by majority voting using three annotators

1/3 2/3 and 

overlap time > 20%

2/3 but

overlap time < 20%

3/3 and

overlap time > 20% 

Time-frequency

boxes averaged

Time-frequency

boxes averagedX X

Spectrogram with time-frequency boxes annotated by three annotators

Spectrogram with aggregated annotations of the three annotators using majority voting

Annotator 1

Annotator 2

Annotator 3

Aggregated

annotation

Fig. 11. Schema of the aggregation methods by majority voting using three annotators.  
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