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Abstract Climate change could irreversibly modify Southern Ocean ecosystems. Marine ecosystem model
(MEM) ensembles can assist policy making by projecting future changes and allowing the evaluation and
assessment of alternative management approaches. However, projected changes in total consumer biomass from
the Fisheries andMarine EcosystemModel Intercomparison Project (FishMIP) global MEM ensemble highlight
an uncertain future for the Southern Ocean, indicating the need for a region‐specific ensemble. A large source of
model uncertainty originates from the Earth system models used to force FishMIP models, particularly future
changes to lower trophic level biomass and sea‐ice coverage. To build confidence in regional MEMs as
ecosystem‐based management tools in a changing climate that can better account for uncertainty, we propose
the development of a Southern Ocean Marine Ecosystem Model Ensemble (SOMEME) contributing to the
FishMIP 2.0 regional model intercomparison initiative. One of the challenges hampering progress of regional
MEM ensembles is achieving the balance of global standardised inputs with regional relevance. As a first step,
we design a SOMEME simulation protocol, that builds on and extends the existing FishMIP framework, in
stages that include: detailed skill assessment of climate forcing variables for Southern Ocean regions, extension
of fishing forcing data to include whaling, and new simulations that assess ecological links to sea‐ice processes
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in an ensemble of candidate regional MEMs. These extensions will help advance assessments of urgently
needed climate change impacts on Southern Ocean ecosystems.

Plain Language Summary Climate change poses a threat to the ecosystems of the Southern Ocean
and the iconic species that live there. To address this, scientists use models to estimate how these ecosystems
might change in the future. Ecosystem models can help inform decisions by evaluating different strategies for
managing and protecting these vulnerable marine environments. Our research focuses on improving MEM
estimates by developing a group of specialized models for the Southern Ocean. This group of models, called the
SOMEME, aims to reduce uncertainties by better representing regional characteristics, like sea ice, and marine
life such as Antarctic krill and whales. Currently, our efforts are concentrated on making sure the group of
models accurately reflects the Southern Ocean's unique conditions. This involves refining how we simulate
climate effects and fishing activities, including historical whaling impacts, and examining the interactions
between marine life and sea ice. By improving these models, we hope to provide clearer guidance on the
potential impacts of climate change on the Southern Ocean, helping to ensure its protection for future
generations.

1. Introduction
Southern Ocean ecosystems are at risk of substantial and potentially irreversible climate‐driven change, against a
backdrop of expanding human activities, such as tourism, pollution, and fisheries (Constable et al., 2023; Mer-
edith et al., 2019). Many species in the Southern Ocean are particularly vulnerable to climate change, especially
those with life‐histories dependent on sea‐ice habitat (Gimeno et al., 2024; Trathan et al., 2020) or with limited
capacity to adapt rapidly to novel biophysical conditions (Peck et al., 2004; Pecl et al., 2017). Importantly, the
Southern Ocean also has a crucial feedback role in regulating the global climate system through its links to
physical, ecological, and biogeochemical processes in other ocean basins (Murphy et al., 2021). Consequently,
the global implications of large‐scale ecosystem responses to climate change exhibited in the Southern Ocean are
profound, with Antarctic and Southern Ocean ecosystem services conservatively valued at US $180 billion
annually (Stoeckl et al., 2024).

Risks associated with Southern Ocean ecological change are not limited to direct impacts on biomass and species
populations, but also potential broader geopolitical and socio‐economic knock‐on implications (Pethybridge
et al., 2020; Trebilco et al., 2020). For instance, changes in Southern Ocean ecosystems could lead to increased
tensions over resources, as nations vie for fishery resources or seek new opportunities for natural resource use. In
light of these challenges, there is an urgent need to provide modelling support to evaluate the consequences of
climate change in the Southern Ocean and its risks to marine life, the services these ecosystems provide,
and potential biogeochemical‐climate feedbacks (Mallet et al., 2023; Meskhidze & Nenes, 2006). Providing
mechanisms to strengthen existing management frameworks and ensuring that they are fit‐for‐purpose will help
ecosystem protection and management, given the rapid changes emerging.

Southern Ocean ecosystems are managed by the Commission for the Conservation of Antarctic Marine Living
Resources (CCAMLR). Initially formed in 1982 to manage the increasing commercial interest in Antarctic krill,
the jurisdiction extends to encompass all marine living resources and associated populations within ∼36 million
km2 south of a line roughly delineating the Antarctic Polar Front (Figure 1). Its management objectives aim to
conserve marine life, allowing rational use within that framework to meet societal needs for sustainably managed
living and non‐living resources. These objectives are pursued through a multifaceted approach that integrates
international cooperation on scientific research, population and ecosystem monitoring, a precautionary approach
to fisheries, including the setting of conservative catch limits, and the establishment of Marine Protected Areas
(MPAs).

Building climate resilience into these management strategies is essential to account for short, medium, and long‐
term climate change. The recent Marine Ecosystem Assessment for the Southern Ocean (MEASO) highlighted
the urgent need to further develop global policies focused on actions to mitigate impacts of climate change on
Southern Ocean biodiversity and ecosystems (Constable et al., 2023). This work also stressed that advancing the
suite of available climate‐forced ecological models that can incorporate Earth system model (ESM) outputs will
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build confidence in MEM outputs (McCormack, Melbourne‐Thomas, et al., 2021). Murphy et al. (2012) outlined
three focus areas for improved modelling of Southern Ocean ecosystems.

1. Developing a fundamental understanding of food web dynamics.
2. Employing a range of mechanistic models to resolve ecological processes at different scales that consider

physical and biogeochemical processes, as well as feedback.
3. Implementing robust methodologies for testing past and future change scenarios.

The wide range of regional MEMs developed across the Southern Ocean, the assessments of structure and
function of marine food webs, and the improved understanding of ecosystem dynamics across spatiotemporal
scales are a testament to the work carried out addressing focus areas one and two (Constable et al., 2023; Dahood
et al., 2019; Hill et al., 2021; McCormack, Melbourne‐Thomas, et al., 2021; Murphy et al., 2021). However,
progress toward focus area three remains less advanced.

Figure 1. Projected % change in marine animal biomass for the Southern Ocean using global marine ecosystem model (MEM) outputs recreated from Tittensor
et al. (2021). (a) Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Marine Protected Area (MPA) Planning domains (color fill;
source: CCAMLR GeoServer) overlaid onto the Marine Ecosystem Assessment for the Southern Ocean (MEASO) assessment areas (dashed gray lines; source:
measoshapes R package), (b) Mean change in total consumer biomass (%) in the Southern Ocean under the high emissions scenario (SSP5‐8.5) from the Fisheries and
Marine Ecosystem Model Intercomparison Project (FishMIP) global ESM‐MEM ensemble by the end of the century (2091–2100) from the reference period (2005–
2014). Continuous gray lines represent the CCAMLR MPA domains and dashed gray lines the MEASO regions, and (c) Box plots showing both the spatial variation
(box and whiskers) in ensemble mean change and inter‐model uncertainty (greyscale fill: SD) in total consumer biomass (%) by CCAMLRMPAs Planning Domain by
the end of the century (2091–2100) from the reference period (2005–2014) under SSP5‐8.5, based on 6 members of the FishMIP global MEM ensemble. The red vertical
line represents no change from the reference period. See Text S1 in Supporting Information S1 for notes on methodology to recreate these Southern Ocean‐focused
results from Tittensor et al. (2021) for panels B and C.
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Global MEM ensembles have increasingly been used to assess medium to long‐term potential future changes in
marine animal biomass and ecosystem structure and function under various climate change scenarios (e.g., Lotze
et al., 2019; Tittensor et al., 2021). These ensembles average outputs from multiple MEMs, driven by two ESMs.
This approach allows consideration of diverse representations of marine ecosystems and the quantification of
inter‐model uncertainties, from MEMs and ESMs, in projected biomass for improved understanding of potential
marine ecosystem states and of the confidence around such understanding. The Fisheries and Marine Ecosystem
Intercomparison Project (Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP)), which is
part of the broader Inter‐Sectoral Impact Model Intercomparison Project, has demonstrated how model simu-
lations can help evaluate the impacts of climate change on marine ecosystems at global and regional scales
(Tittensor et al., 2018). This work has revealed potential declines in marine animal biomass with important
consequences for fishery catches and the many socioeconomic benefits that marine ecosystems provide (Cinner
et al., 2022; Lotze et al., 2019; Tittensor et al., 2021).

However, uncertainty in global FishMIP projections remains high, particularly in terms of spatial differences
between models (Tittensor et al., 2021). For the Southern Ocean, a mix of climate‐driven changes in marine
animal biomass are expected, and areas with the highest projected increase in biomass also have the highest inter‐
model uncertainty (Figure 1). Current FishMIP work focuses on better understanding and addressing some of the
most prominent sources of uncertainty, including ESM and socioeconomic forcing and MEM structure (Hene-
ghan et al., 2021). This is particularly relevant at the regional scale, where FishMIP outputs could play a critical
role in informing climate‐resilient fisheries policy and management (Eddy et al., 2024). To build confidence in
projections, a new phase of the model intercomparison project, FishMIP 2.0, considers aspects such as the use of
higher spatial resolution, reanalysis‐forced ocean model outputs, and globally standardised fishing effort forcing
the development of a model ensemble skill assessment and evaluation framework for FishMIP 3a (Blanchard
et al., 2024; Frieler et al., 2024), as well as integration of future climate and fishing scenarios (Maury et al., 2024,
FishMIP 3b). FishMIP2.0 (Blanchard et al., 2024) also includes a detailed workflow to implement the regional
MEM protocol (Ortega‐Cisneros et al., 2025) to facilitate model intercomparison across scales and different parts
of the world to help build regional modelling capacity, identify issues, and ultimately improve models.

To address the research gap of robustly testing scenarios of past and future change (focus area 3; Murphy
et al., 2012), we propose the Southern Ocean Marine Ecosystem Model Ensemble (SOMEME; Figure 2) as a
contribution to the FishMIP 2.0 regional model inter‐comparison initiative. As a first step, we propose and
develop a regionally relevant simulation experimental protocol that builds on the FishMIP two‐track framework:
(a) model evaluation and past change and (b) climate change projection that incorporates five stages of detailed
assessment to determine its relevance for Southern Ocean regional marine ecosystems, along with identification
of candidate MEMs, necessary extensions to simulation experiments, and challenges for future work. Evaluating
the performance of ESMs and fisheries information provided to force MEMs will aid the understanding of un-
certainty in marine animal biomass projections for this unique region and improve confidence in the use of such
projections to inform policy and decision‐making. This work will help address substantial uncertainties in our
current understanding of marine ecosystem responses to future climate change, identified in the MEASO report as
one of the main shortcomings in Southern Ocean modelling (Constable et al., 2023).

2. Materials and Methods
2.1. Protocol Development

Building on previous efforts to enhance regional MEM for the Southern Ocean (Constable et al., 2023;
McCormack, Melbourne‐Thomas, et al., 2021; Murphy et al., 2012), and facilitated by the FishMIP 2.0 protocol
(Blanchard et al., 2024; Ortega‐Cisneros et al., 2025) and the extensive FishMIP network, we first assembled and
consulted a group of experts in ocean, biogeochemical, biological and socio‐ecological modelling. We deter-
mined that an evaluation of model skill was required to assess the ocean‐biogeochemical model environmental
forcing variables (sea surface temperature (SST), sea ice concentration (SIC), and phytoplankton biomass:
collectively referred to as climate forcings from hereon in) used in FishMIP 3a. These climate forcings are
required to drive MEMs and it was necessary to establish if they are fit‐for‐purpose in Southern Ocean regions.
Carrying out this initial evaluation of model skill for the FishMIP 3a climate forcings would inform whether
further regionally specific climate forcing extensions are necessary to capture key uncertainties and issues,
relating to poor understanding and resolution of physical and biogeochemical processes, such as mixed‐layer
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Figure 2. Schematic of proposed Southern Ocean Marine Ecosystem Model Ensemble protocol building upon ISIMIP3 and the Fisheries and Marine Ecosystem Model
Intercomparison Project (FishMIP) 2.0 protocols for Track A (model evaluation ‐ past: FishMIP 3a) and Track B (projections ‐ future: FishMIP 3b). The proposed
protocol is composed of some stages that we complete and present here (i.e., Stage 1, 2, and 3), while others are future stages requiring further model development (Stage
4) and further consultation of the expert working group to reach a consensus (Stage 5).
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depth and sea ice dynamics (Constable et al., 2023; McCormack, Melbourne‐Thomas, et al., 2021). By estab-
lishing standardised climate forcing for Southern Ocean regional MEMs, assembling a set of suitable MEMs and
historical human activity forcing (fishing/whaling), as well as consolidating potential regional MEM outputs to
inform an ensemble for ecosystem assessment, we propose the SOMEME protocol. Here, we step through the
different stages of the proposed SOMEME protocol (Figure 2) to determine its suitability, potential applications,
and possible future extensions.

2.1.1. Stage 1: Climate Forcing

2.1.1.1. Track A ‐ Observed Drivers of Past Change

Total consumer biomass projections from Tittensor et al. (2021) were from global MEMs forced with non‐bias
adjusted (i.e., future projections are not corrected relative to observed current conditions) ESM outputs (GFDL‐
ESM4.1 and IPSL‐CM6A‐LR) and are therefore not necessarily expected to compare skilfully with observations,
especially regionally. Therefore, FishMIP 2.0 includes a reanalysis‐forced (JRA55‐do: Tsujino et al., 2018)
ocean‐biogeochemical model (GFDL‐MOM6‐COBALT2: Adcroft et al., 2019; Liu et al., 2022; Stock
et al., 2020) for Track A, focused on building confidence through MEM evaluation, detection, and attribution of
past change to relative effects of drivers (e.g., climate and fishing). The reanalysis forcing, JRA55‐do, is an
observationally constrained atmospheric model product for driving ocean model simulations and provides
realistic forcing that captures historical climate variations, such as observed Southern Annular Mode variability.
For most of the global ocean, it also includes temporally dynamic river freshwater and nitrogen inputs derived
from long‐term trends in land‐use change (Liu et al., 2021), except Antarctica where riverine input and sea ice
runoff are decoupled and constant with time (Tsujino et al., 2018). However, for FishMIP 2.0, SIC is the only
climate forcing variable that is taken directly from JRA55‐do rather than the reanalysis‐forced ocean‐
biogeochemical model, GFDL‐MOM6‐COBALT2. The accuracy of sea‐ice hindcasts from a suite of CMIP5
ESMs (Cavanagh et al., 2017), and more recently CMIP6 ESMs, have been previously assessed for the Southern
Ocean (Casagrande et al., 2023). However, for FishMIP models these assessments have not been carried out in
unison with an evaluation of other key forcing fields, such as phytoplankton biomass and temperature. To assess
the ability of GFDL‐MOM6‐COBALT2 (GFDL‐JRA from hereon in) to reproduce past trends for SST and
phytoplankton biomass in the Southern Ocean, as well as assessing the JRA55‐do SIC, we compared the climate
forcings to publicly available observational datasets.

2.1.1.2. Track B ‐ Future Scenarios and Drivers

For historical simulations we intentionally choose climate forcings that are not far removed from the observations
(i.e., either a reanalysis forced ocean‐biogeochemical model or the reanalysis products themselves). Using
realistic environmental forcing variables over the historical period to drive MEM hindcast simulations means that
observed disagreements in simulations of past fish biomass can be more reliably attributed to uncertainty in the
MEM, rather than their environmental forcing. However, as observations do not exist for the future, we must also
determine which free‐running ESM are mechanistically best suited to force future projections with. The best way
to do this is to compare the ESM forcing variables over the historical period to historical observations. The
assumption then is that free‐running ESMs that can best recreate past observations will simulate more reliable
projections of the future. While choosing a single ocean forcing model simplifies comparisons across MEMs (i.e.,
Track A) for focused ecological research and reduces computational effort, it prevents the quantification of
uncertainties in marine animal biomass projections due to differences in ESM structure. We thus carried out the
same evaluation process as in Track A, but for a suite of CMIP6 models, to assess a broader range of ESMs for
their suitability to force MEMs in the Southern Ocean. To align with best practices, we carefully considered the
selected ESMs and climate forcing variables used to compare with observations to ensure we tested the key
processes we are aiming to model (Schoeman et al., 2023). In doing so, we developed a proposed SOMEME
protocol, which we outline in the following sections.

We considered 11 ESMs (NorESM2‐LM, CanESM5, ACCESS ESM1.5, MIROC‐ES2L, CESM2, CanESM5‐
CanOE, UKESM1‐0‐LL, IPSL‐CM6a‐LR, CNRM‐ESM2.1, CMCC‐ESM2, and GFDL‐ESM4.1) from CMIP6
that have diverse representations of the phytoplankton community, temperature effects, and sea ice dynamics
(Eyring et al., 2016). Some of the selected models have been assessed for their representation of the Antarctic sea‐
ice seasonal cycle, area, and concentration, highlighting the advancements in CMIP6 over previous model
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iterations (Casagrande et al., 2023). By analyzing these aspects concurrently, our study aims to provide a multi‐
faceted evaluation of ESM phytoplankton, temperature, and sea ice representation when compared to observa-
tional data.

2.1.1.3. Observational Data

Monthly sea‐ice concentration data (1982–2010) came from the National Oceanic and Atmospheric Adminis-
tration (NOAA)/National Snow and Ice Data Center (NSIDC) Climate Data Record of Passive Microwave SIC,
Version 4 (Meier et al., 2021) with a spatial resolution of 25 × 25 km. Monthly SST data was obtained from
MODIS for the period 2002–2014 (O’Malley, 2015). Surface phytoplankton biomass is inferred from empirical
relationships between living phytoplankton biomass (Graff et al., 2015) and the particle backscattering coefficient
derived from the water‐leaving radiance spectrum measured by the MODIS satellite (Westberry et al., 2008) for
the period 2002–2014.

2.1.1.4. ESM Evaluation

To evaluate past model performance, we compared the seasonal cycle of regional climatologies from the FishMIP
3a climate forcing variables and the 11 free‐running CMIP6 ESMs against the remote sensing record. Temporally,
climatological means were computed over the overlapping period between ESM simulation and satellite oper-
ation (1982–2010 for NOAA/NSIDC sea ice; 2002–2014 for MODIS SST and phytoplankton biomass).
Regionally, climatologies were averaged over three domains, the Southern Ocean (30°S–80°S), Antarctic zone
(60°S–80°S), and Weddell Sea (64.5°S–83.5°S; 20.5°W–83.5°W).

Model performance (i.e., skill) is quantified and evaluated against four metrics: the correlation coefficient (r), the
difference in standard deviations (ΔSD), the centered Root‐mean Square Error (cRMSE), and the mean bias
(Figures 4 and 5). Qualitatively, these metrics each describe a different aspect of model skill (e.g., Fu et al., 2022;
Taylor, 2001). The correlation coefficient describes how well the shape of the seasonal cycle is simulated (more
skill = closer to one). The difference in the standard deviations describes how well the amplitude of the seasonal
cycle is simulated (more skill = closer to one). The cRMSE refers to the RMSE computed after removing the
annual mean for both the observational and model climatologies and describes the combined influence of how
well the shape (correlation) and size (standard deviation) of variance is simulated (more skill = closer to zero);
cRMSE does not include any information about model bias. Mean bias, the difference in the means of the cli-
matologies, completes the picture by describing the mean offset of the climatologies (more skill= closer to zero).
A model's skill and therefore whether it is deemed fit‐for‐purpose, should be assessed holistically against all four
metrics, but can be more succinctly assessed through the combination of the cRMSE (which include information
on the correlation and standard deviation) and mean bias.

2.1.2. Stage 2: Selecting Regional MEMs and Links to Climate Forcing Variables

To be considered in this round of MEM selection, we required regional modellers to be registered with FishMIP,
submit shapefiles of the boundaries for their regional MEM and commit to running model simulations with the
SOMEME protocol in the future. For models still in development, regional modellers had to establish a minimum
requirement of incorporating climate forcing variables for temperature and primary production, with a SIC
climate forcing encouraged. To date, the suite of existing MEM types, that could accommodate the minimum set
of two climate forcing variables and fishing effort, includes Atlantis, mizer, Ecopath with Ecosim (EwE) and
Ecospace (McCormack et al., 2020; Subramaniam et al., 2020, 2022), a mass‐balance Trophic Model, which has
been adapted to an EwE model (Pinkerton & Bradford‐Grieve, 2014; Pinkerton et al., 2010), a southern hemi-
sphere model of intermediate complexity (MICE; Tulloch et al., 2018, 2019), and an Antarctic krill mechanistic
spatial population model (KRILLPODYM; Green et al., 2023). This proposed MEM ensemble covers regions
including Prydz Bay (5 models), the Kerguelen Plateau (4 models), East Antarctica (3 models), South Georgia (3
models), and the Ross Sea (3 models) (Figure 3). The proposed regional MEMs do not represent a traditional
“ensemble” as there are variations in the areas represented by each model type, although there are areas with
overlap from multiple models for spatial comparisons. However, constructing a framework for standardised
MEM outputs and assessments, as outlined in the Results and Discussion, sets up this proposed ensemble to better
quantify model skill, understand uncertainties, and provide more comprehensive projections on the relative and
combined effects of climate change and exploitation on changing Southern Ocean ecosystems.
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2.1.3. Stage 3: Selecting Standardised Fishing Forcings

To capture changes in fishing effort over time, we used the standardised FishMIP fishing inputs (Rousseau
et al., 2024) from the Shiny app (Ortega‐Cisneros et al., 2025) for fish species. The FishMIP effort does not
include historical whaling, which is a dominant historical activity in this region. We therefore extend the fishing
forcing for the Southern Ocean to include International Whaling Commission (IWC) whaling data (Alli-
son, 2020), using the Prydz Bay region as an example. We aggregated the fishing and whaling effort to the
functional group levels represented in the model. Mapping of fishing effort to species and functional groups is
model‐specific, but the workflow to implement this step is outlined in Ortega‐Cisneros et al. (2025). For regional
MEMs that include whale species or functional groups, a similar method will be applied for the IWC effort data.

2.1.4. Stage 4: SOMEME Simulation Experimental Design

Building on the simulation experiments from the FishMIP 2.0 framework, we assessed whether simulation
experiment extensions were needed to additionally capture regional relevance for SOMEME, with a focus on
Track A. Given the importance of additional drivers (sea ice and whaling) that are not explicitly captured in the
core FishMIP 3a attribution experiments, we developed a minimum set of additional simulation runs. First the
outcome of the skill assessment of the climate forcings was needed to determine whether or not additional or
different climate forcings were required for initial model evaluation simulations. We also visualized the historical
fishing forcing data to assess coverage of key fish and crustacean groups and due to the importance of historical
whaling in the region, compiled data from the IWC.

2.1.5. Stage 5: Model Outputs and Ecosystem Assessment

To assess how well the regional MEM ensemble outputs capture past changes in ecosystem structure, function,
and fisheries changes, we will need to draw on a range of existing databases to provide examples for model output
evaluation for the Southern Ocean in alignment with the Southern Ocean‐specific ecosystem Essential Ocean
Variables (eEOVs; Constable et al., 2016) and Essential Biodiversity Variables (EBVs; Muller‐Karger

Figure 3. Regional ecosystem models currently proposed to form the initial Southern Ocean Marine EcosystemModel Ensemble. Colored lines show the spatial domain
of each regional model. Note that Southern Ocean MICE and KRILLPODYM cover the same spatial extent. Colored polygons represent the subregions included within
the Southern Ocean MICE model.
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et al., 2018). These databases include biological and ecological variables established as key to aiding ecosystem
understanding and assessment (Constable et al., 2016). We propose an extended set of model outputs for
SOMEME (Table 3) to work toward integrating ecosystem assessment with existing efforts, such as MEASO
(Constable et al., 2023).

3. Results
3.1. Stage 1: Climate Forcing ‐ Track A and B

Evaluation of the FishMIP 3a climate forcings, suggests that they are fit‐for‐purpose for regional MEMs in the
Southern Ocean. We established this due to their performance when ranked against the 11 CMIP6 ESMs, with the
SST climate forcing outperforming all CMIP6 ESMs at reproducing historical observations (first cRMSE, joint
third mean bias, joint first correlation, and joint second ΔSD) across the whole Southern Ocean (Figure 4a).
Likewise, for SIC, the FishMIP 3a climate forcing, which is from JRA55‐do, performed the best at reproducing
observations across the Southern Ocean (first cRMSE, first mean bias, first correlation, and second ΔSD), when
compared to the 11 CMIP6 ESMs (Figure 4a). However, for surface phytoplankton biomass, the FishMIP 3a

Figure 4. Evaluation of 11 CMIP6 Earth SystemModels (ESMs; color‐coded to match Figure 5 and Figures S7–S9 in Supporting Information S1) and the Fisheries and
Marine Ecosystem Model Intercomparison Project 3a climate forcings (black) in reproducing historical remote‐sensed observations of sea surface temperature (SST),
sea ice concentration (SIC), and phytoplankton biomass across three spatial scales: (a) the entire Southern Ocean (30°S–80°S), (b) the Antarctic Zone (60°S–80°S), and
(c) the Weddell Sea (64.5°S–83.5°S; 20.5°W–83.5°W). For each ESM and region, skill metrics include centered Root‐mean Square Error (cRMSE), mean bias,
correlation coefficient (r), and standard deviation difference (ΔSD), compared to observationally based data products. Skill metric values are superimposed in text for
each model‐region pair with the following interpretation of model skill: cRMSE closer to 1 = more skill; bias closer to 0 = more skill; r closer to 1 = more skill; and
ΔSD closer to 1 =more skill. The color scale is normalized across regions for each metric (i.e., by each row with the darkest shade of violet indicating the best skill and
the darkest shade of orange indicating the worst skill) to highlight the inter‐ESM differences in skill, as well as the spatial differences in skill. Results indicate high
model skill for SST and SIC across the Southern Ocean, with skill declining and variability increasing at more regional scales. Overall, model performance in simulating
historical phytoplankton biomass is lower than for SST and SIC, highlighting challenges that remain in capturing critical ecosystem characteristics in Southern Ocean
models.
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climate forcing was ranked ninth when compared to the CMIP6 ESMs for cRMSE but ranked first in mean bias
for the Southern Ocean scale (Figure 4a), reflecting the large suite of contributing factors that can influence
phytoplankton. Despite the lower performance of the FishMIP 3a climate forcing for surface phytoplankton
biomass, we still deem the overall performance of the suite of climate forcing variables to be fit‐for‐purpose due to
the peak performance of SST and SIC, the overall model skill across the four metrics and due to some uncertainty
associated with remote sensing products to perform the surface phytoplankton comparison to observations
(Moutier et al., 2019), in addition to a number of considerations relating to the mechanistic composition of the
biogeochemical model (see Discussion section “FishMIP 3a phytoplankton biomass forcing”). As a result, we
propose the SOMEME protocol to follow in accordance with the FishMIP 3a regional protocol (Ortega‐Cisneros
et al., 2025), using GFDL‐JRA to force SST and phytoplankton biomass and JRA55‐do to force SIC in regional
MEMs, at 0.25° horizontal resolution. These forcings are also provided as both vertically resolved and vertically
integrated to accommodate a range of regional MEM structural requirements.

Reanalysis‐forced GFDL‐JRA should be expected to perform better at capturing historical conditions than fully
coupled ESMs (Schoeman et al., 2023). However, fully coupled ESM are required for climate projections. As the
new FishMIP 2.0 (Track B) climate and fishing forcing data are still under development, we compared the default
FishMIP ESMs (GFDL and IPSL) as part of a broader suite of 11 CMIP6 ESMs. Overall, across the 11 CMIP6
ESMs, the inter‐model variance was lowest and model skill at matching observations was highest for SST
(Figures 4a, 5a and 5d). Sea ice concentration had higher inter‐model variance and lower model skill when
compared to SST (Figures 4a, 5c and 5f), while surface phytoplankton biomass had the highest inter‐model
variance and lowest model skill (Figures 4a, 5b and 5e), consistent with increasing levels of uncertainty in
future projections of net primary production across models (Tagliabue et al., 2021). Also, it is noteworthy that
some ESMs perform particularly poorly for specific forcings, like MIROCC‐ES2L for SIC and Can‐ESM5 for
phytoplankton biomass. Despite SST and SIC displaying good model skill associated across the CMIP6 models at

Figure 5. Evaluation of Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) historical climate forcing in the Southern Ocean. (a) The FishMIP
2.0 climate forcing variables' climatology for (a) sea surface temperature (SST) (2002–2014), (b) sea ice concentration (SIC) (1981–2014), and (c) surface
phytoplankton (2002–2014) (solid black) are plotted with the remote sensing records (dashed black) and 11 fully coupled Earth system models (ESMs) over the
historical period (solid colored). Climatologies are spatially averaged across the entire Southern Ocean (30°S–80°S). Below, the corresponding Taylor diagrams
illustrate the skill of the FishMIP 2.0 historical climate forcing (black circle) and fully coupled ESMs (colored triangles) against the remote sensing record (black
triangle) over the same period for (d) SST, (e) SIC, and (f) surface phytoplankton biomass. Taylor statistics are computed across space and time (i.e., they are not
spatially averaged) and are normalized by the standard deviation of the remote sensing record.
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the scale of the Southern Ocean, with a more regional focus when assessed for the Antarctic Zone and a case study
of theWeddell Sea, model skill reduces substantially, and inter‐model variance increases substantially (Figure 4b,
c and Figures S7–S9 in Supporting Information S1). This highlights the need for improved ESM climate forcing
for sea ice and associated links to primary production to better represent regional scale dynamics.

3.2. Stage 2: Regional MEMs and Linking Climate Forcing Variables

Through our assessment of selected MEMs that can contribute model simulation results to SOMEME, we
evaluated the way that environmental forcing is incorporated into the different regional model types. Below we
provide a description of the regional MEM types proposed for SOMEME, and the way in which climate forcings
have been incorporated into model processes, as well as potential areas that novel climate forcings could be
included (Table 1).

3.2.1. Atlantis

Atlantis is an end‐to‐end ecosystem model that extensively represents the food web and associated ecological
processes (Audzijonyte et al., 2017a). It also contains fishing, management and economic sub‐models that can be
activated to represent human dimensions of ecosystem interactions (Audzijonyte et al., 2017b). The ecosystem
represented in Atlantis is an environmentally influenced representation of physiological and ecological processes.
Many environmental variables can be incorporated, but temperature is the most used and typically the best un-
derstood. Processes include temperature‐forcing conditions, physiological rate processes, the nutritional content
of lower‐level ecosystem species, and the timing and magnitude of environmentally mediated events (such as
spawning) for relevant consumer groups. Atlantis implementations in the Southern Ocean have a simple but
representative ecological sea ice forcing, with the state and extent of the sea ice influencing the growth and
survivorship of sea‐ice dependent species groups. Atlantis does not typically use primary production forcing,
relying instead on its explicit biogeochemical sub‐model to dynamically model these components. However, a
comparison with remote sensing and ESMs outputs is undertaken to check for consistency. In extreme cases,
where there is strong disagreement between the two approaches and modellers wish to resemble ESM distri-
butions of primary production (especially nearshore) more closely, a hybrid approach is taken that uses a weighted
average of the external forcing values for primary production and the explicit Atlantis sub‐model variables.
Modellers determine the weighting, and it is typically tuned such that the best fit to observations is achieved.

3.2.2. Ecopath With Ecosim (EWE)

In brief, EwE models can use forcing functions that can influence predator‐prey interactions or production rates
for primary producers. The Ecopath module sets up the initial conditions for the temporal within Ecosim and the
spatio‐temporal dynamics within Ecospace (Bentley et al., 2024). In Ecosim, trends in primary productivity can
be used to evaluate ecosystem response to environmental change. For consumers in the model, response curves
can be used to represent environmental influences on the biological parameters of a functional group or on
predator‐prey interactions (Stock et al., 2023). Ecospace inherits these response curves and simulates environ-
mental influences using reference time series maps depicting spatial distribution and magnitude (de Mutsert
et al., 2024). Environmental parameters such as temperature, salinity and oxygen concentration have been used to
model climate impacts on ecosystems (Stock et al., 2023) and recently, Antarctic models have begun representing
sea‐ice dynamics to further understand climate impacts on Southern Ocean ecosystems (Dahood et al., 2019).

3.2.3. KRILLPODYM

KRILLPODYM integrates environmental forcings to compute krill habitat quality indices and the advection of
biomass (Green et al., 2023). Temperature and primary production are used in the calculation of both spawning
habitat (Green et al., 2021), a multiplier on recruitment, and life‐stage habitats, which scale mortality rates of krill
age classes. Sea ice concentration is also used to calculate the habitat for key life stages, modulating survival of
both late summer and overwintering larvae. The spatial dynamics of krill biomass are forced through a combi-
nation of ocean current and sea ice advection.
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Table 1
A Selection of Regional Marine Ecosystem Models, Including Published and in Development, That Would Be Ready to Implement the Proposed Southern Ocean Marine
Ecosystem Model Ensemble Protocol

MEM Region Functional groups modeled Climate forcing Stage

Atlantis East Antarctica Phytoplankton, zooplankton, krill, fish, sea
birds, marine mammals

Temperature
Phytoplankton

Sea ice
concentration

In development

EwE + Ecospace Kerguelen Plateau Zooplankton, fish, marine mammals Temperature
Phytoplankton

(chl a)
Sea ice

concentration

Subramaniam et al. (2020, 2022)

EwE East Antarctica: CCAMLR
58.4.2

Phytoplankton zooplankton, fish, marine
mammals

Temperature
Phytoplankton

Sea ice
concentration

In development

EwE Prydz Bay Zooplankton, fish, marine mammals Temperature
Phytoplankton

(chl a)
Sea ice

concentration

McCormack et al. (2020)

Ecopath
(EwE)

South Georgia
(CCAMLR subarea 48.3)

Zooplankton, fish, marine mammals Temperature
Phytoplankton

Sea ice
concentration

Hill et al. (2012)
In development

KRILLPODYM
(SOMEME
compatibility)

Circumpolar Antarctic krill Temperature
Phytoplankton

(chl a)
Sea ice

concentration

Green et al. (2023)
In development

Mass balance
Trophic Model

Ross Sea Zooplankton, fish, marine mammals Temperature
Phytoplankton

(chl a)
Sea ice

concentration

Pinkerton & Bradford‐Grieve, 2014;
Pinkerton et al. (2010)

MICE Circumpolar (entire southern
hemisphere)

Zooplankton, Antarctic krill, baleen whales Temperature
Phytoplankton

(chl a)
Sea ice

concentration

Tulloch et al. (2018, 2019)

mizer/therMizer Heard Island and McDonald
Islands

Fish Temperature
Phytoplankton

(biomass)
Sea ice

concentration

In development

mizer/therMizer Prydz Bay Zooplankton, fish, marine mammals, sea birds Temperature
Phytoplankton

(biomass)
Sea ice

concentration

In development

mizer/therMizer Southern Ocean Time Series (SOTS) Zooplankton, fish Temperature
Phytoplankton

(biomass)
Sea ice

concentration

In development

Note. Climate forcings are differentiated as currently used in the MEM (italic), and possible to include with model development (underlined).
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3.2.4. MICE

Models of Intermediate Complexity for Ecosystem Assessments (MICE) extend stock assessment approaches to
represent multiple species and stressors in an ecosystem. In contrast to more complex whole‐of‐ecosystem
models, MICE focus on key species, ecological processes, interactions, and data‐driven model fitting while
managing uncertainties (Plagányi et al., 2014). These models integrate physical models to evaluate effects of
environmental forces and interactions between species and stressors, such as climate change impacts. In the
Southern Ocean, MICE models have been developed to hindcast (1890–2012) and predict future abundance to
2,100 of five baleen whales and krill under climate change Representative Concentration Pathways 8.5 (Tulloch
et al., 2018, 2019). These existing MICEMEMs, that can contribute to SOMEME, link krill and whale population
dynamics to sea‐surface temperature, phytoplankton, and sea‐ice extent outputs from an early version of the
Australian ESM (ACCESS), which included a Nutrient‐Phytoplankton‐Zooplankton‐Detritus model (NPZD)
forced by a General Circulation Model that included ocean and atmosphere dynamics (Law et al., 2017; Ziehn
et al., 2017). Environmental forcing was included in the krill dynamics through a statistical climate‐growth
parameter (Atkinson et al., 2006) that relates experimentally validated increases in Antarctic krill length (mm.
d− 1) to SST (°C), and food availability indicated by chlorophyll‐a concentration (CHL, mg.m− 3). The model also
included the relative favourability of environmental conditions encountered by whales based on sea‐ice con-
centration (mean sea‐ice mass (kg.m− 2)) outputs of the coupled climate‐NPZD model.

3.2.5. Mizer

Size spectrum models developed using mizer (Scott et al., 2014) can incorporate temperature effects using the
therMizer extension (Woodworth‐Jefcoats et al., 2019), which includes temperature scalars on metabolism and
search rates. Plankton forcing can be included by constructing size spectra time series for the resource spectrum
that forces the dynamic food web component of the models, usually derived from biomass of phytoplankton and
zooplankton (Woodworth‐Jefcoats et al., 2019). There are also options to include additional primary producer
resource spectra, through the addition of modified resource spectra (Audzijonyte et al., 2023), similar to a bespoke
sea‐ice algae primary production included in a Ross Sea food web model (Pinkerton et al., 2010). Links between
sea‐ice concentration and a habitat suitability index for growth and mortality are not currently represented in
mizer, but it could be included through a size‐based mortality term, similar to other novel uses of adapted fishing
mortality terms that can provide a flexible forcing functionality (Houle et al., 2016).

3.3. Additional Marine Ecosystem Model Types

The regional MEMs proposed for the initial round of SOMEME best represent east Antarctic ecosystems, but due
to the open nature of FishMIP and the larger number of published MEMs that have potential to be incorporated in
future rounds (Figure S10 in Supporting Information S1, Table S1 in Supporting Information S1), we anticipate
improved region representation. Additionally, this proposed MEM ensemble contains some model types not
currently contributing to FishMIP. In advancing the SOMEME protocol, one of the critical discussion points in
the expert working groups was assessing the kinds of extensions to the FishMIP 2.0 protocol that are needed to
better represent Southern Ocean regional processes and uncertainties. One key extension is the assessment of
model capacity to resolve dominant energy pathways. This is particularly important for Antarctic krill, given its
dominance in many regions, as well as it being the target of the largest Southern Ocean fishery, which is predicted
to grow substantially (Trathan, 2023). With the range of regional MEMs available, a valuable step in model
assessment would be comparing krill biomass projections among food web models that resolve trophic linkages
(e.g., mizer, EwE and Atlantis) versus krill‐specific models that better resolve life‐history and habitats (e.g.,
KRILLPODYM (Green et al., 2023) and MICE (Tulloch et al., 2018)). As a result, we are proposing the inclusion
of additional models to address this important area, while future addition of species‐specific model frameworks
remains open.

3.4. Stage 3: Fishing and Whaling Forcing ‐ Prydz Bay Case Study

For the proposed SOMEME protocol, we suggested three fishing and whaling scenarios (Stage 3, Figure 2).

1. No fishing or whaling effort forcing
2. Fishing effort forcing
3. Fishing and whaling effort forcing
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Implementing these scenarios will allow for standardised comparisons of fishing and no fishing between regional
MEMs and global MEMs across the shared region, as well as accounting for the inclusion of whaling effort in
SOMEME.

The two effort time series for whaling and fishing in Prydz Bay (Figure 6) demonstrate the long‐term historical
human forcing in the region and are both important to include in ecosystem model evaluation, detection, and
attribution studies that include systematic comparison of climate and fishing effects.

3.5. Stage 4: SOMEME Simulations

Establishing that for Track A the FishMIP 3a climate forcings are fit‐for‐purpose for use in the Southern Ocean
provides confidence in using the FishMIP 3a protocol as a framework for SOMEME. The simulations for Track A
SOMEME will therefore include the core set from FishMIP, and an extended set of additional simulations to
account for historical whaling activity (Table 2). The SOMEME protocol is a living document, with detailed
protocol guidelines, code, and community development hosted on a GitHub repository, while continuity of re-
sources will be assured using Zenodo releases.

As the climate forcings for FishMIP 2.0 (Track B) are not yet publicly accessible, the corresponding and
potentially additional Southern Ocean ESM forcings are yet to be decided. To support the development of future
simulation rounds we propose a structured quantitative assessment to determine whether SOMEME requires an
extended climate forcing, in addition to FishMIP 2.0 core runs. The same procedure is recommended, along with

Figure 6. (a) Total whaling effort and (b) fishing effort in the 20th and early 21st centuries for the Prydz Bay region. Whaling
effort is presented as days at sea aggregated for all species from the International Whaling Commission database version 7.1
(Allison, 2020), and fishing effort is the nominal effort of the active fleet (NomActive) for the region from Novaglio
et al. (2024).
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stakeholder discussions, to develop applicable regional extensions for implementing future fishing scenarios
(Maury et al., 2024).

3.6. Stage 5: Model Outputs and Ecosystem Assessment

To enhance ecosystem assessments in the face of climate change, it is imperative to standardize key ecological
outputs across MEM protocols for model evaluation and future scenario testing. As a preliminary step, we
propose that all regional MEMs produce the mandatory outputs as specified in the FishMIP 2.0 protocol (Table 9
of the FishMIP2.0protocol), enabling comprehensive inclusion in FishMIP 2.0. These outputs, which can be
provided as spatial data or aggregated by region, include total consumer biomass, total pelagic biomass, total
demersal biomass, total catch, total industrial catch, total pelagic catch across artisanal and industrial sectors, and
total demersal catch across artisanal and industrial sectors. While the optional outputs in Table 9 focus on refining
size structure among model outputs, they do not primarily address Southern Ocean research questions. Therefore,
we recommend expanding the output set for all regional MEMs participating in the SOMEME protocol (Table 3)
to cover essential aspects such as biomass of key functional groups, species distribution, phenology, range shifts,
and trophic interactions, all crucial for understanding marine ecosystem structure and function.

By mapping model outputs to established ecosystem assessment frameworks, we can leverage existing obser-
vational data to refine model evaluations and augment current research efforts via resources like the Antarctic

Table 2
Model Simulations for Track a of the Southern Ocean Marine Ecosystem Model Ensemble Protocol, an Extension of Track a of Fisheries and Marine Ecosystem Model
Intercomparison Project 2.0, Which Contributes to FishMIP 3a

Climate forcing (x 2) Emission scenario Time period Socio‐economic scenario (x 3) No. of runs Track (ISIMIP)

GFDL‐JRA (SST, phyto biomass)
+ JRA55‐do sea ice concentration

GFDL‐JRA (SST, phyto biomass)
‐ JRA55‐do sea ice concentration

historical
(obsclim)

1961–2010 ‐ No fishing (nat)
‐ Fishing: time‐varying effort (histsoc)
‐ Fishing + whaling (histsoc + IWC)

6 A ‐ model evaluation (FishMIP 3a)

Note. Climate forcing spatial resolution is 0.25° for all simulations.

Table 3
Model Outputs Proposed to Contribute to the Fisheries and Marine Ecosystem Model Intercomparison Project 2.0 Protocol Extension, Southern Ocean Marine
Ecosystem Model Ensemble

Model output EBV/EOV/Evaluation Example data sources

Antarctic krill abundance/biomass Species abundance/biomass OBIS‐GBIF
COPEPOD (COPEPOD, 2019)
KRILLBASE (Atkinson et al., 2017)

Antarctic krill catches Species catches FishMIP reconstructed catch
CCAMLR
KRILLBASE (Atkinson et al., 2017)

Plankton size spectra Total community spectrum Pelagic Size Structure database (PSSdb) (Dugenne et al., 2023)

Mesopelagic fish biomass Total, functional group, and species biomass Myctobase (Woods et al., 2022)

Demersal fish abundance and biomass Total and species abundance/biomass OBIS‐GBIF
Survey data (Duhamel et al., 2019)

Demersal fish catches Total and species catch FishMIP reconstructed catch
CCAMLR: https://fisheryreports.ccamlr.org/

Penguin/seal/other seabird abundance Total, functional group, and species abundance CCAMLR Ecosystem Monitoring Program (CEMP)

Whale abundance Total, functional group, and species abundance OBIS‐GBIF

Whale biomass Total, functional group, and species biomass OBIS‐GBIF

Whale catch Total, functional group, and species IWC catch

Trophic structure Diet, trophic level SCAR Southern Ocean Diet and Energetics Database (SCAR, 2018)

Note. Each model output has an associated category of Essential Biodiversity Variable (EBV), Essential Ocean Variable (EOV) or evaluation variable and some ex-
amples of data sources to carry out model evaluation.

Earth's Future 10.1029/2024EF004849

MURPHY ET AL. 15 of 25

 23284277, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024E

F004849 by Ifrem
er C

entre B
retagne B

lp, W
iley O

nline L
ibrary on [24/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/Fish-MIP/FishMIP2.0_ISIMIP3a
https://www.obis.org/
https://www.gbif.org/
https://www.st.nmfs.noaa.gov/copepod/
https://www.obis.org/
https://www.gbif.org/
https://fisheryreports.ccamlr.org/
https://www.ccamlr.org/en/science/ccamlr-ecosystem-monitoring-program-cemp
https://www.obis.org/
https://www.gbif.org/
https://www.obis.org/
https://www.gbif.org/


bioDiVersity dAta iNfrastruCture (ADVANCE). Long‐standing data collection and ecosystem monitoring has
been carried out by CCAMLR Ecosystem Monitoring Program (CEMP). For key indicator species CEMP have
collected annual population, diet and life‐history parameter observations (predominantly of seabirds and seals) at
sites across the Southern Ocean since 1989. Incorporating eEOVs into MEMevaluations (Table 3) enhances
predictive capabilities, supports strategic planning, and strengthens conservation efforts. This holistic approach
underscores the importance of structured, data‐driven decision‐making in managing marine ecosystems. Com-
parisons between eEOVs and a standardised regional MEM ensemble should include data on abundance at
varying ecological levels, from individual species to community metrics. Noteworthy data resources include the
Ocean Biodiversity Information System (OBIS, https://www.obis.org/) and the Global Biodiversity Information
Facility (GBIF, https://www.gbif.org), for which Southern Ocean EOVs/EBVs have been assessed for suitability
in MEASO ecosystem assessment (Bonnet‐Lebrun et al., 2023). Additional landmark databases include
COPEPOD and KRILLBASE (Atkinson et al., 2017) for zooplankton, Myctobase (Woods et al., 2022) for fish,
and the Pelagic Size Structure database (PSSdb) (Dugenne et al., 2023) for abundance, biomass, and size structure
data.

Fisheries dependent and independent survey data, such as those conducted in the Kerguelen region (Duhamel
et al., 2019), are essential for parameterizing and calibrating MEMs (Subramaniam et al., 2022). It is crucial to
avoid duplication in the data used for parameterizing and testing models (McCormack, Melbourne‐Thomas,
et al., 2021). Additionally, integrating reconstructed catch data that FishMIP has provided for modellers to use in
model evaluation is vital, and a comparable product exists for the Sea Around Us fish catch data set (Pauly
et al., 2020). Regional fisheries catches are publicly available fromCCAMLR (https://fisheryreports.ccamlr.org/).
Whaling catch data are available from the IWC (https://iwc.int/scientific‐research/data‐availability) upon request.

4. Discussion
Our results show that the FishMIP 3a model evaluation protocol is suitable, albeit with extensions, for the initial
phase of SOMEME to conduct model evaluation for regional MEMs in the Southern Ocean. Extensions include
historical whaling activity while establishing a baseline for sea ice processes in ecosystems, allowing for attri-
bution of past change. To this end, we provide a framework for simulation experiments, climate forcing and
fishing and whaling effort on a regional MEM basis, as well as recommending observational data for use in model
evaluation. The FishMIP 3b climate projection protocol, that combines both climate and future fishing scenarios,
is still under development for Track B (Maury et al., 2024) and will require a similar assessment to determine what
extensions are needed to ensure relevance for Southern Ocean, and other regions. As a preliminary step, our
comparison of a broader suite of 11 CMIP6 ESMs, inclusive of the two CMIP6 ESMs used in FishMIP 3b future
projections without fishing (Tittensor et al., 2021), show that to adequately capture uncertainties in lower trophic
levels and sea ice variables, other ESMs should be considered for the Southern Ocean, alongside a common
standard applied globally. We also identify future model development priorities and data requirements, including
physical, lower trophic level, and higher trophic level data to be able to assess implications of climate change and
support fisheries policy relevant scenarios (MEASO) in the Southern Ocean.

4.1. FishMIP 3a Climate Forcing

We set out to address whether using a reanalysis‐forced global‐ocean‐biogeochemistry model with high reso-
lution for a regional focus (i.e., GFDL‐JRA) was fit‐for‐purpose to carry out FishMIP 3a (model evaluation
through detection and attribution of past ecosystem change) in Southern Ocean regions. The comparison of the
FishMIP 3a climate forcings for SST and sea ice from GFDL‐JRA and JRA55‐do, respectively, to observational
data suggests they are fit‐for‐purpose within the protocol for regional MEMs in the Southern Ocean (Figure 4a,
Figures S7 and S9 in Supporting Information S1). However, there is considerable uncertainty for the FishMIP 3a
climate forcing for phytoplankton biomass from GFDL‐JRA (Figure 4a and Figure S8 in Supporting Informa-
tion S1). Across the full Southern Ocean, GFDL‐JRA exhibits the lowest cRMSE and third lowest mean bias with
the observed SST climatology and the lowest cRMSE and lowest mean bias with the observed sea ice clima-
tology. However, while GFDL‐JRA exhibits the lowest mean bias relative to the phytoplankton biomass
observational product, it also exhibits the fourth worst cRMSE, suggesting that while the GFDL‐JRA phyto-
plankton biomass forcing captures the mean state biomass well, the size and shape of the seasonal cycle is not as
well aligned with the remote sensing phytoplankton biomass product as some other models. However, given high
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uncertainty in remote sensing biomass product, combined with the ability of GFDL‐JRA to prognostically resolve
key Southern Ocean ecosystem processes, we determine it is fit‐for‐purpose (see Discussion section “FishMIP 3a
phytoplankton biomass forcing” for further details).

4.1.1. FishMIP 3a Phytoplankton Biomass Forcing

To determine if this degree of alignment is acceptable, we must consider both the quality of the “observations”
and the internal mechanistic composition of the biogeochemical model. First, while remote sensing estimates of
SST and sea ice are close to direct measurements of physical properties, remote sensing estimates of phyto-
plankton biomass are from an empirical model trained to infer the concentration of phytoplankton biomass from
the particle backscattering coefficient derived from a semi‐analytical inversion of the water‐leaving radiance
spectrum (Maritorena et al., 2002). Thus, while it remains the only option for a globally gridded, time‐resolved,
long‐term record of living phytoplankton biomass, it can be compromised by various empirical biases, including
non‐living particulate matter and non‐homogeneous vertical profiles (Brewin et al., 2023; Westberry et al., 2008).
Given the inherent uncertainty in the “observational” reference, model agreement is better interpreted as a first‐
order benchmark for phenology and mean‐state, rather than a strict hierarchy. By this standard, the GFDL‐JRA
phytoplankton biomass forcing is reasonably adequate.

In turn, without a more reliable globally gridded product to constrain phytoplankton biomass, it is essential to
interrogate the intrinsic, mechanistic structure of a model to determine if it is fit‐for‐purpose to simulate Southern
Ocean change. Three of the most critical processes required to capture Southern Ocean biogeochemical dynamics,
and subsequently change, are: (a) the proliferation of silicifying diatoms (Boyd et al., 2024); (b) the seasonal
succession of phytoplankton functional groups (Boyd et al., 2024); and (c) the pervasive but seasonally variable
iron limitation (Boyd et al., 2024). COBALTv2, the biogeochemical component of GFDL‐JRA, can resolve all
three processes through the inclusion of 4 phytoplankton functional groups (the most of any considered ESM),
explicit silica cycling and uptake by diatoms, and a sophisticated iron cycle that accounts for variable stoichi-
ometry, ligand stabilization and particle scavenging (Stock et al., 2020). Thus, considering uncertainty in remote
sensing observations of phytoplankton biomass and the propensity for biogeochemical models to get the right
answer for the wrong reason (Ward et al., 2010), it is appropriate to prioritize the robust mechanistic resolution of
GFDL‐JRA in determining its fit for purpose to capture biogeochemical change.

Given the high levels of uncertainty in phytoplankton biomass across all ESMs, it is valuable to use ESMs run at
higher resolutions to ensure the models can more accurately resolve important coastal (Liu et al., 2019) and
mesoscale processes that shape biologically critical nutrient distributions (Rohr et al., 2020a, 2020b). This pre-
sents a final advantage of using GFDL‐JRA, which is readily available at higher spatial resolution (0.25°) than
more commonly hosted ESM output (1°).

In future, other higher resolution reanalysis (i.e., 0.1°) forced ocean‐biogeochemical models could be considered,
as well as those that include other important biogeochemical processes, such as ice algae (Hayashida et al., 2021).
For example, ACCESS‐OM2‐01 is a high‐resolution global ocean‐sea ice coupled model (Kiss et al., 2020) forced
with the JRA‐55 atmospheric reanalysis product (Tsujino et al., 2018) and presents another, potentially higher
spatial resolution product. However, it currently lacks the level of complexity in lower trophic levels preferred for
FishMIP MEMs, with only one phytoplankton and one zooplankton group (Rohr et al., 2023). However, current
developments of ACCESS‐OM2‐01 suggest this is likely to change in the near future.

4.1.2. Improving Climate Forcings for Projections

To carry out future climate scenario projections, climate forcings that are based on fully coupled ESMs are
required to capture climate dynamics and long‐term variability. Despite advances in sea‐ice representation from
CMIP5 to CMIP6, ESMs are still lacking in their capacity to represent sea‐ice dynamics at a regional scale
(Casagrande et al., 2023). Our case‐study evaluating 11 ESMs highlights high levels of uncertainty in climate
forcing in the historical period for the Southern Ocean, with inter‐model variability increasing and model skill
reducing as the spatial comparison became more regionalized (Figure 4 and Figures S7–S9 in Supporting In-
formation S1). We face significant challenges in accurately predicting changes in marine ecosystems due to these
highlighted uncertainties. This uncertainty at the ESM level can propagate to MEMs, affecting our ability to
project changes in important marine biogeochemical processes such as net primary productivity, zooplankton
grazing, mesozooplankton biomass, and carbon export (Henson et al., 2022; Petrik et al., 2022; Rohr et al., 2023;
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Tagliabue et al., 2021). For example, variations in phytoplankton biomass due to different rates of grazing by
zooplankton can substantially alter estimates of carbon transfer through marine food webs, impacting predictions
of carbon export to deeper ocean layers, a process crucial for long‐term carbon sequestration. In addition, MEM‐
ESM two‐way coupling is an important future direction to incorporate key biogeochemical and ecological
feedback related to climate change (Rohr et al., 2023), and is necessary to incorporate potential ocean‐climate
feedbacks independent of carbon cycling. Phytoplankton and zooplankton are known to release cloud‐forming
aerosols, which can lead to substantial modification to earth's radiative budget, especially in the Southern
Ocean (Mallet et al., 2023; Meskhidze & Nenes, 2006). Thus, improving phytoplankton cycling through to higher
trophic level coupling could have a profound effect on our ability to accurately simulate Southern Ocean climate.
Further complexity is added by the regional variability in these processes. For instance, uncertainties in how
phytoplankton respond to nutrient availability directly impact the predictions of regional net primary productivity.
There are hints of increasing iron limitation associated with the changing light field in the Southern Ocean (Ryan‐
Keogh et al., 2023) that, if continued, potentially herald losses in future primary production. Yet. almost all ESMs
as part of CMIP6 project exhibit increasing rates of primary production and standing stocks of phytoplankton
biomass (Kwiatkowski et al., 2020). These uncertainties underscore the need to further assess key nutrient cycling
processes (Boyd et al., 2024), and the requirement for refined observational data and model inter‐comparisons to
improve the predictive capabilities of both ESMs and MEMs regarding these important oceanic functions. By
carrying out a regional assessment of ESMs and establishing a standardised protocol via SOMEME, we aim to
highlight areas in particular need for refined ESM forcings. We envision following a similar staged assessment of
climate forcing for Track B to fulfill a crucial step in building confidence in future projections for the Southern
Ocean by enabling us to assess ESM and MEM‐side uncertainty. This also suggests a potential requirement to
assess higher resolution ocean‐sea ice models for our protocol extension for Track B, future scenarios. This could
also include considering ESM climate forcings that use reanalysis‐based products for bias‐adjustment, provided
the inputs are assessed and the resolution is appropriate for regional‐scale MEMs.

4.2. Linking ESM Forcing to Regional MEM Ecological Processes

Ecological processes that are critical in determining the response of marine life to climate change are often poorly
understood, with an associated lack of information and data for testing or are fundamentally difficult to represent
in ecological models (Murphy et al., 2016). Links between sea‐ice habitat and life history and mortality are
lacking or not well resolved in many models, resulting in large associated uncertainty. Given the high uncertainty
of change in total consumer biomass in key areas (Figures 1B and 1C), the impact of sea‐ice habitat loss could be
an additional source of uncertainty in ecosystem resilience to current and future changes that are not well covered
by current projections for animal biomass. Given the already bleak outlook projected for some iconic species,
such as the emperor penguin (Aptenodytes forsteri; Fretwell & Trathan, 2019; Trathan et al., 2020), and the
consequences of sea‐ice habitat loss already occurring such as mass mortality of emperor penguin chicks
(Fretwell et al., 2023), improved representation of these processes is vital for ecosystem modelling in the
Southern Ocean.

Representing sea‐ice related ecological processes in MEMs remains an area of significant uncertainty, particu-
larly in the context of ecological links that are critical for both regional and global assessments (Dahood
et al., 2019). Marine ecosystem projections for the Arctic Ocean face parallel challenges with uncertainty around
sea ice and associated ecological processes propagating from ESMs to MEMs (Mason et al., 2024). Efforts to
understand the ecological implications of changing sea‐ice dynamics in the Southern Ocean could look to the
Arctic for insights into what may lay ahead. Sea‐ice loss in the Arctic has diverse and interconnected implications
for marine food webs, initially for lower trophic levels responses to changes in sea ice algae population dynamics
(Lannuzel et al., 2020), with potentially important implications for upper trophic levels and ecosystem services
(Kohlbach, Lange, et al., 2017; Steiner et al., 2021). Importantly, lessons learned from model integration and
improvement relating to sea‐ice processes in either polar region could help improve science‐based decision‐
making for both regions. Therefore, the model evaluation and socioeconomic scenarios used in SOMEME
could also be applied to research and planning for future fisheries management and marine ecosystem change in
the Arctic and vice‐versa for ongoing efforts in the Arctic (Mason et al., 2024).
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4.3. Ecosystem Assessment Using SOMEME

To summarize information about ecosystem structure and function across models and to quantify uncertainties,
outputs from the diverse set of MEMs are combined into an ensemble. A recent assessment of Ecopath models
from four regions in the Southern Ocean highlights a number of ways to assess outputs across regional MEMs
robustly (Hill et al., 2021). Hill et al. (2021) identified several effective methodologies to account for the inherent
variations caused by distinct approaches used in each regional MEM, which they refer to as “model personality.”
First, converting all models to a common currency, such as from wet mass to organic carbon, is essential for
standardizing comparisons and ensuring that outputs are evaluated on a consistent basis. Furthermore, aggre-
gating species into common functional groups across different models can significantly reduce discrepancies
arising from varied classification systems, thereby harmonizing the representation of ecosystem components.
Another critical step involves the standardization of energetic parameters, such as consumption to biomass and
production to biomass ratios, across models. This standardization helps to neutralize differences due to arbitrary
parameter choices and focuses the comparison on structural differences in the ecosystems.

Reconciling outputs across MEMs with varying spatial scales is essential for accurate ecosystem assessments in
the Southern Ocean (Fulton et al., 2019). We will address this challenge through a hierarchical approach, starting
with the highest level of comparison between global MEM and regional MEM outputs, where results from global
MEMs will be extracted for the same spatial domains as the regional MEMs. The use of standardised climate and
fishing forcings will enhance global versus regional MEM comparisons (Eddy et al., 2024). For regional models
with overlapping domains, such as the Prydz Bay mizer and EwE models, we will be able to make direct
comparisons, while spatially explicit MEMs, like EwE with Ecospace and Atlantis, enable area‐specific “cookie‐
cutter” comparisons. These methods allow us to quantify spatial alignment and boundary effects, which are
critical for establishing robust cross‐scale comparisons. Although our MEM ensemble operates as an “ensemble
of opportunity” rather than a traditional ensemble with perfectly aligned spatial domains, it offers valuable in-
sights into ecosystem dynamics, highlights the need for future model alignment, and underscores the importance
of developing MEMs with shared spatial extents. Once the regional MEM representation in SOMEME has
expanded, especially in West Antarctica, we aim to implement statistical analyses (e.g., mixed‐effects models) to
formally test the sensitivity of model outputs to differing degrees of spatial overlap, which influence the climate
and fishing forcings driving each MEM. This may enable us to refine methods for boundary condition testing,
setting a foundation for future advances in MEM output integration and ecosystem assessment.

Employing robust model metrics that are insensitive to absolute biomass values, such as connectivity and network
analysis indices, also provides a clearer insight into ecosystem dynamics, independent of their scale. Additionally,
carefully evaluating regional differences in biomass and feeding relationships, while controlling for structural
uncertainty in MEMs is crucial (Reum et al., 2024). This approach not only helps in distinguishing genuine
ecological differences across regions but also enhances our understanding of how regional characteristics in-
fluence ecosystem dynamics. Finally, reconciling and balancing different model outputs by adjusting known
biases ensures the reliability and consistency of comparisons, thus providing a robust framework for evaluating
and understanding MEMs. This comprehensive approach is essential for isolating true ecological insights from
artifacts introduced by differing model constructions. All MEMs should be subjected to systematic validation and
uncertainty assessments when the tools to do so have become sufficiently mature (Rynne et al., 2024; Steenbeek
et al., 2024).

Moreover, projecting the impacts of climate change on fisheries with confidence is vital. Ecosystem models
should provide projected catches for key species such as Antarctic krill and toothfishes, which are essential for
managing sustainable fisheries. These projections help in understanding potential shifts in species abundance and
distribution, allowing for adaptive management strategies in fisheries to mitigate the impacts of climate change.
Standardizing these ecological and fishery‐related outputs across ecosystem models facilitates comprehensive
analyses, aiding conservation efforts and informed policymaking in response to climate challenges. To ensure
outputs include those that are comparable for detection of past ecosystem changes, we must also consider the
availability of observational data and whether it is fit for purpose for model intercomparison in the Southern
Ocean regional model domains.
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4.4. Enhancing Species‐Specific Processes and Regional MEM Representation

Future work will benefit from assessment of biomass projections among food web models that resolve trophic
linkages versus species‐specific models that better resolve life‐history and habitats. The application of this
approach would be useful for key species that present nuanced relationships with their biophysical environment,
such as Antarctic krill. The environmental drivers that influence krill population success are highly dependent on
life‐history stage, which for krill is complex and thought to be synchronised with seasonal cycles of sea ice and
primary production (Kawaguchi et al., 2007; Nicol, 2006). In particular, the autumn‐winter environment likely
exerts a strong control on the recruitment of larvae into the post‐larval population the following spring
(Meyer, 2012; Murphy et al., 2007). Larval krill were initially viewed as sea ice‐obligate over winter, their
survival and recruitment being determined by the availability of sea ice (Atkinson et al., 2004; Siegel &
Loeb, 1995). However, in certain environments, alternate mechanisms may enable larvae to overwinter without
sea ice, making the relationship with sea‐ice more facultative (Jia et al., 2016; Reiss et al., 2017; Walsh
et al., 2020). While these conceptual models are all plausible, the mechanisms remain challenging to empirically
validate in the field due to the large spatio‐temporal scales over which these processes integrate (Kohlbach,
Schaafsma, et al., 2017; Veytia et al., 2021). A species‐specific framework complimenting the MEM could
provide a robust approach for hypothesis testing, explicitly examining how empirical knowledge gaps contribute
to uncertainty in future projections.

NumerousMEMs exist across the Southern Ocean that were unable to be considered for the candidate set proposed
in this iteration of SOMEME (Figure S10 in Supporting Information S1, Table S1 in Supporting Information S1),
due to limited ability to continue model development and carry out simulations. As the capacity to incorporate
additionalMEMs increases, the SOMEMEprotocol and data assimilation and integration frameworkswill ease the
incorporation of a more comprehensive regionalMEM coverage for the Southern Ocean.We expect an increase in
capacity due to an expanding network of collaborators, as well as advances in climate and ecological model
development (Christin et al., 2019; Nguyen et al., 2023) and the integration of artificial intelligence tools with
ecosystemmodelling approaches.Given the highly regional nature of current projections, thiswill build confidence
in incorporating information from SOMEME into management and policy decision making.

Data Availability Statement
The R (R Core Team, 2024) code, and associated data, detailing the workflow for this paper are available via the
following repository: Murphy et al. (2024). This study used several publicly available datasets and datasets
available upon request: the IWC individual catch database (Allison, 2020), NOAA/NSIDC Climate Data Record
of Passive Microwave SIC (Meier et al., 2021), Oregon State University Ocean Productivity dataset (O’Mal-
ley, 2015), analytical phytoplankton carbon measurements (Graff et al., 2015), ISIMIP3a ocean physical and
biogeochemical input data (Liu et al., 2022), and ISIMIP3a reconstructed fishing activity data (Novaglio
et al., 2024).
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